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On an elliptic system related to desertification studies
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Abstract In this communication, we consider the stationary problem of a non-linear parabolic
system which arises in the context of dry-land vegetation. In the first part, we examine the
existence and multiplicity of biomass stationary solutions, in terms of the precipitation rate
parameter p, for a localized simplification of the system, with non-homogeneous rate of
biomass loss. In fact, we show that under appropriate conditions on fixed parameters of the
problem, multiple positive solutions exist for a range of the parameter p. In the second part,
we consider the case of an idealized “oasis”, ω ⊂⊂Ω , where we study the transition of the
surface-water height in a neighborhood of the set ω .

Keywords Multiplicity of positive solutions · Dry-land vegetation

1 Introduction

We study a system of elliptic equations which is the stationary version of a dry-land vegeta-
tion model proposed by Gilad et al. (2007). Precisely, the stationary problem is given by the
following elliptic system:

−δb∆b =−µb+Gbb(1−b) in Ω ,

−δw∆w =−Gww−Ebw+Ibh in Ω ,

−δh∆h2 =−Ibh+ p in Ω ,

∂b
∂n

=
∂w
∂n

=
∂h
∂n

= 0 on ∂Ω ,

(1)
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where we suppose that Ω ⊂ R2 is a bounded domain with C2 boundary and n denotes the
outward pointing unit normal vector field on ∂Ω . Here, b represents the biomass, w the
soil-water content and h the surface-water height after suitable non-dimensionalization. The
growth rate Gb and the water uptake rate Gw are non-local terms given by

Gb(b,w) = ν

∫
Ω

g(x,y)w(y)dy and Gw(b) = γ

∫
Ω

g(y,x)b(y)dy,

where g(x,y) =
1

2πσ2 exp
[
− |x− y|2

2(σ(1+ηb))2

]
for x,y ∈Ω . Moreover, µ > 0 represents the

biomass loss rate, Eb(b) =
ν

1+ρb
is the evaporation rate of the soil water, and Ib(b) =

α
b+q/c
b+q

represents the infiltration rate of the surface-water. The third equation of the

parabolic system is a porous medium type equation and involves the precipitation rate pa-
rameter p > 0. The rest of the parameters are positive, and in fact, c > 1. As we shall see, in
special cases, some of the parameters may also be taken to be equal to zero. (More informa-
tion about the modeling may be found in Gilad et al. (2007); Meron (2011)).

In section 1, we consider the case of plant species with negligible below-ground biomass.
In that case we may assume that the root extension parameter η is equal to zero. Further-
more, since the minimal root size of such plant species tends to zero, the non-local effect
of the root system is insignificant. In particular, we may replace g(x,y) with the Dirac delta
based on x, arriving at the following local coupled system



−δb∆b =−µb+νwb(1−b) in Ω ,

−δw∆w =−γbw−Ebw+Ibh in Ω ,

−δh∆h2 =−Ibh+ p in Ω ,

∂b
∂n

=
∂w
∂n

=
∂h
∂n

= 0 on ∂Ω .

(2)

Moreover, we shall limit ourselves to the case where infiltration feedback and soil-water
diffusion are not present, which corresponds to δw = δh = 0. Finally, we consider an in-
homogeneous biomass loss rate µ , which cannot exceed a minimal loss rate due to natural
mortality and a maximal total loss rate. Precisely, in dimensionless quantities, we suppose
that µ ∈ C1(Ω̄) is such that 1 ≤ µ(x) ≤ µ̄ , for x ∈ Ω̄ . On the basis of the considerations
described above, in the first section we shall investigate the existence of positive solutions
in terms of the precipitation parameter p.

In the third part, we consider system (1) assuming that the precipitation rate is inhomo-
geneous. Particularly, we assume that p is constant in a closed subset ω ⊂⊂Ω and vanishes
outside ω . Here, one may think of p(·) as a distributed water resource which is not neg-
ligible only on a sub-region ω of Ω . Moreover, in contrast with section 2, in this section
we suppose that δw,δh > 0 and that the loss rate µ is a positive constant. In that occasion,
we investigate the free boundary of the surface-water solution component h, in terms of the
parameters involved in the third equation of (1).
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2 A multiplicity result

In this section, we seek non-negative solutions of (2), depending on the parameter p, when
δw = δh = 0 and µ(x) is a smooth function in Ω such that 1 ≤ µ(x) ≤ µ̄ . In fact, without
loss of generality we also assume that δb = 1. Thus, we study the following elliptic problem

−∆b+µ(x)b = p f (b) in Ω ,

∂b
∂n

= 0 on ∂Ω ,

(Pp)

for

f (b) =
νb(1−b)(1+ρb)

γb(1+ρb)+ν
.

Clearly, f (·) ∈C2(R+),

0≤ f (s)≤M for all s ∈ [0,1],

and

f (s)< 0 for s≥ 1.

We also note, that b≡ 0 is a solution of (Pp) for all p > 0, such a solution will be called the
trivial. We shall first consider a subclass of weak solutions, namely, the so-called variational
solutions. So, let us consider the set

K = {v ∈ H1(Ω) |0≤ v≤ 1inΩ},

and let

Fp(v) = p
∫ v

0
f (s)ds .

We define the variational functional

Jp(v) =
1
2

∫
Ω

(
|∇v|2 +µ(x)v2)dx−Φp(v),

where

Φp(v) :=
∫

Ω

Fp(v(x))dx.

Definition 1 We shall call a function v ∈ H1(Ω), a variational solution of (Pp), if v is a
minimum of the functional Jp on the set K.

Remark 1 It can be easily verified that any variational solution is a weak solution (it suffices
to consider the Euler-Lagrange equation associated to the functional Jp).

We have:

Theorem 1 For each p > 0, there exists at least one variational solution of (Pp).
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Proof Since K is a convex closed subset of H1(Ω), in order to show that Jp attains a mini-
mum (due to a version of the Weierstrass theorem, see Zeidler (1990) p.513), it suffices to
show that Jp is weakly lower semicontinuous and weakly coercive defined on K.

(i) Jp is weakly lower semicontinuous. Indeed, the norm on H1(Ω) is weakly lower
semicontinuous. On the other hand, the embedding H1(Ω) ↪→ Lq(Ω) is compact for 1 ≤
q < ∞, since N = dim(Ω) = 2. Therefore, if vn is a sequence in K that converges weakly in
H1(Ω) to a function v, we know that (up to a subsequence) vn→ v strongly in Lq(Ω). This
actually implies that

Φp(vn)→Φp(v)

and so the map Φp : K ⊂ H1(Ω)→ R is weakly continuous. Thus Jp(v) is weakly lower
semicontinuous.

(ii) Jp is coercive. Indeed, for u ∈ K we have Φp(v) ≤ pM‖v‖L1(Ω) ≤ pM|Ω | so for

some constant C(p,Ω) > 0, Jp(v) ≥
1
2
‖v‖2

H1 −C(p,Ω) which implies that J(v)→ ∞ as

‖v‖2
H1 → ∞. This ends the proof of the Theorem 1.

We now proceed to consider solutions of (Pp) which are not necessarily variational
solutions. Our study is inspired by a previous one arising in a completely different context:
some simple climate models Dı́az et al. (1997).

Before stating our main result, it is useful to consider the following auxiliary algebraic
equations which provide us with positive constant super and sub-solutions of (Pp) for a
range of the parameter p.

s = p f (s), s ∈ R, (E1)

µ̄s = p f (s), s ∈ R. (E2)

So, let us make some observations and introduce notation related to the set of non-negative
solution of (E1) and (E2). We first observe that for all p> 0, s= 0 satisfies both equations and
any possible positive solution of the auxiliary equations has to be lower than unity. We shall
denote by Γ1 and Γ2 the (bifurcation) curves of nontrivial positive solutions corresponding
to the algebraic equations (E1) and (E2), respectively. Now, let

T1(p,s) = s− p f (s)

and
T2(p,s) = µ̄s− p f (s).

Clearly, if pi is such that
∂

∂ s
Ti(pi,0) = 0, (3)

then Γi bifurcates from the line of trivial solutions at (pi,0), for i = 1,2. One can easily
check that p1 = 1 and p2 = µ̄ . Moreover, if the following condition is satisfied

ρ > 1 and γ < ν(ρ−1), (C1)

then
∂ 2

∂ s2 Ti(pi,0) < 0 and the bifurcation at (pi,0) is subrcritical. In fact, (C1) also assures

that Γi has a unique ”turning point” (p∗i ,s
∗) which satisfies

Ti(p∗i ,s
∗) = 0 =

∂

∂ s
Ti(p∗i ,s

∗) (4)
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as well as
∂ 2

∂ s2 Ti(p∗i ,s
∗)> 0 and

∂

∂ p
Ti(p∗i ,s

∗)< 0,

for i = 1,2, where

s∗ =
−(γ +ν)+

√
ν2 + γν +ργν

γρ
> 0.

Finally, we point out that for fixed p ∈ (p∗i , pi), (Ei) has two distinct positive solutions de-
noted by s1

i,p and s2
i,p, which are such that

s1
i,p < s∗ < s2

i,p,

while for p≥ pi, (Ei) has a unique positive solution denoted again by s2
i,p.

Theorem 2 Let p1, p2 be the bifurcation points of (E1), (E2) given by (3). Also, assume that
(C1) holds true and let p∗i be the unique points that satisfy (4) for i = 1,2. Then,

(i) if p ∈ (0, p∗1), the trivial solution b ≡ 0 is the only possible non-negative solution of
(Pp).

(ii) if p∗2 < p1 and p ∈ (p∗2, p1), (Pp) has at least two positive solutions, besides the trivial
solution b≡ 0.

(iii) if p ∈ (max{p1, p∗2},∞), then besides the trivial solution, (Pp) has at least one positive
solution. In fact, for p large enough, there exists ξ ∈ (0,1) and a unique non-trivial
positive solution of (Pp) satisfying ξ ≤ b(x) < 1 in Ω . Moreover, this unique solution
is also a variational solution of (Pp).

Proof (i) By (C1), there exists a unique pair (p∗1,s
∗) ∈ Γ1 such that f ′(s∗) > 0. In fact, we

have that

f (s)≤ s f ′(s∗) for all s≥ 0. (5)

Therefore, if b ∈ H1(Ω) is a non-negative solution of (Pp), by multiplying (Pp) by b and
integrating over Ω , since µ(x)≥ 1, we have that∫

Ω

b2 dx≤
∫

Ω

(
|∇b|2 +b2)dx≤

∫
Ω

f (b)bdx≤ p f ′(s∗)
∫

Ω

b2 dx.

So, a non-negative solution which is not the trivial may exist only for p > p∗1. In order to
obtain (ii) and (iii), we now focus on positive constant super and sub-solutions of (Pp).
Clearly, for p > 0 any positive solutions of the following problems

−∆Up +Up = p f (Up) in Ω ,

∂Up
∂n ≥ 0 on ∂Ω ,

and 
−∆Vp + µ̄Vp = p f (Vp) in Ω ,

∂Vp
∂n ≤ 0 on ∂Ω ,

are respectively, sup or sub-solutions of (Pp). So, for every p > p∗1 positive solutions of
(E1) form a family of positive constant super-solutions and for every p > p∗2 > 0 positive
solutions of (E2) form a family of sub-solutions of (Pp). Namely, we let

U1
p ≡ s1

1,p, U2
p ≡ s2

1,p and V 2
p ≡ s2

2,p.
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(ii) If p∗2 < p1, for each p ∈ (p∗2, p1), we consider the ordered intervals [0,U1
p ] and

[V 2
p ,U

2
p ], then from (Theorem 15.2 Amann 1976, p.668), (Pp) has at least three distinct

solutions b1,b2 and b3 such that 0 ≤ b1 < b2 < b3 < U2
p . Since b1 may be identically zero

(ii) follows.
(iii) For each p ∈ (max{p1, p∗2},∞), we consider the ordered interval [V 2

p ,U
2
p ] where Vp

and Up are such that Vp <Up. It is easy to check that the conditions of the results in Amann
(1976) hold true and so there exist a minimal and a maximal solution in [V 2

p ,U
2
p ]. Moreover,

for p large enough, any such positive weak solution takes values in an interval [ξ ,1) where
f (·) is decreasing which implies the uniqueness of any possible weak solution taking values
in that interval. Finally, the energy of such weak solution is less than zero. Therefore, we
deduce that for p large enough up is also a variational solution of (Pp).

It is actually natural to ask whether the set of positive solutions consists of a connected
closed set in R×X for some function space X . To this end, we let X = C(Ω̄) and recall
that X possesses a positive cone P induced by the natural ordering. In fact, since P has non-
empty interior, P is total i.e., {u−v : u,v∈ P−0} is dense in X . We denote by K the solution
operator of −∆ +µ(x) together with the homogeneous Neumann boundary conditions, and
by F : P→ X the Nemiskii operator given by F(u) = f+(u(·)). Note that f+ ∈ C0,α(R)
and F is continuous and clearly, if u ∈ P, then F(u) ∈ P. Now let us consider the following
auxiliary problem. 

−∆b+µ(x)b = p f+(b) in Ω ,

∂b
∂n

= 0 on ∂Ω .

(P+
p )

Since K is a linear positive compact operator from X to itself, we have that for p > 0 the
map

pK ◦F : P→ X

is completely continuous and positive, where the latter means that pK ◦F(P) ⊂ P. Finally,
the fixed point equation u = pK ◦Fu for u ∈ X , is equivalent to equation (P+

p ). It can be
checked that K◦F is right Frechet differentiable at u= 0, with K being the Frechet derivative
from the right. Therefore by Theorem 18.3 in Amann (1976) (see also Dancer (1973)), we
conclude that:

Theorem 3 The problem (P+
p ) possesses an unbounded continuum of positive solutions

C+ in R+×P, emanating from the line of trivial solutions (p,0) at (p∗,0), where p∗ is the
unique positive eigenvalue with a positive eigenvector of the following eigenvalue problem:


−∆b+µ(x)b = λb in Ω ,

∂b
∂n

= 0 on ∂Ω .

(6)

Remark 2 By standard regularity theory and the strong maximum principle, we have that
max

Ω̄

b(x) < 1. Therefore, since f (s) = f+(s) for s ∈ [0,1], we have that (p,b) ∈ C+ also

satisfies (Pp). Note that this is true for all ν ,γ,ρ > 0.
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3 Surface water transition

In this section, we study the third equation of system (1), assuming that δw,δh > 0 and that
the precipitation rate is not completely constant in Ω , but vanishes outside a closed subset
ω ⊂⊂ Ω . For p > 0, we let p(x) = pχω(x) on Ω , where χω denotes the characteristic
function of ω . We recall that the non-linear term of the equation involves the so-called
infiltration contrast parameter c > 1. Now, supposing that b is a given non-negative solution
of the corresponding equation of system (1) for the given boundary conditions, we set

θ(x) := α
b(x)+q/c
b(x)+q

in Ω .

Obviously, we have that α

c ≤ θ(x)≤ α on Ω . On the other hand, letting h̃ = h2, if h≥ 0 and
δh > 0, then the third equation can be written as

−∆ h̃+
θ(x)
δh

√
h̃ = φ(x) in Ω ,

∂ h̃
∂n

= 0 on ∂Ω ,

(7)

with φ(x) :=
p
δh

χω(x).

We point out that, in general, we cannot ensure the uniqueness of function h̃ (in fact, in
the preceding section, we exhibit a case of multiplicity of b and so of h). Nevertheless, for
fixed b the non-negative solution of (7) is unique. Furthermore, by the maximum principle,
we know that a possible solution h̃ must satisfy that

‖h̃‖L∞(Ω) ≤
( pc

α

)2
.

The following theorem provides an estimate on the location of the null set of a solution
component h. This estimate depends on c,α,δh and p.

Theorem 4 Let h be the third component of any non-negative solution of the system (1).
Then, necessarily, h(x) = 0 for all x ∈Ω −ω such that

d(x,∂Ω ∪∂ω)> 4
√

p
c
√

δh

α
.

In fact, at least one of those possible solutions verifies that h(x) = 0 for any x ∈Ω −ω such

that d(x,∂ω)> 4
√

p
c
√

δh

α
.

Proof We set m =
α/c
δh

. Following Dı́az (1985), we look for a local comparison function

h̃m such that h̃ ≤ h̃m on the ball BR(x0) and h̃m(x0) = 0, where R ≥ 4
√

p
c
√

δh

α
so that

BR(x0) ⊂ Ω −ω . Then, since h̃ ≥ 0 clearly h̃(x0) = 0 (and in a weak sense if h̃ is not
continuous). In fact, if h̃m ∈ H1(Ω) satisfies

−∆ h̃m +m
√

h̃m ≥0 in BR(x0), (8)

h̃m ≥
( pc

α

)2
on ∂BR(x0), (9)
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then, since

−∆ h̃+m
√

h̃ =

(
m− θ(x)

δh

)√
h̃≤ 0≤−∆ h̃m +m

√
h̃m in BR(x0),

by the comparison principle, we have that h̃≤ h̃m.
Now, for such x0 ∈Ω−ω , we consider the function h̃m(x) =Cm|x−x0|4 where Cm =

( m
16

)2.
Then it is not difficult to check (see Dı́az (1985)) that

−∆ h̃m +m
√

h̃m ≥ 0 in BR(x0),

and so the first conclusion holds. The second assertion holds merely by extending by zero

some of those solutions on the set of x ∈ Ω −ω such that d(x,∂ω) > 4
√

p
c
√

δh

α
(since,

obviously it also satisfies the Neumann boundary conditions).

Remark 3 In fact, it is possible to give a sharper estimate (near ∂Ω ) depending on the ge-
ometry of the domain Ω (Dı́az 1985, ch. 2) but we shall not detail it here.

Remark 4 From the estimate of the preceding theorem we deduce that the distance of the
free boundary from the set ω increases when one of the parameters p, δh or c increases
or when α decreases. Moreover, the same answer remains true when the variation of the
parameters is not necessarily monotone in each of them but the combination of them given

by the expression
√

pc
√

δh

α
increases.
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