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Abstract

We prove the global null controllability for the one-dimensional non-
linear slow diffusion equation by using both a boundary and an internal
control. We assume that the internal control is only time dependent. The
proof relies on the “return method” in a combination of some local con-
trollability results for non-degenerate equations and rescaling techniques.
Keywords: Nonlinear control, nonlinear slow equation, porous medium
equation

1 Introduction

We study the null controllability of the one-dimensional nonlinear slow diffusion
equation, sometimes referred as the Porous Media Equation (shortly PME), by
using a combination of internal and boundary controls. Our techniques of proof
need such a combination of both controls due to the degenerate nature of this
quasilinear parabolic equation.

The PME belongs to the more general family of non linear diffusion equations
of the form

yt −∆φ(y) = f, (1.1)
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where φ is a continuous non-decreasing function with φ(0) = 0. For the PME,
the constitutive law is precisely given by

φ(y) = |y|m−1y, (1.2)

with m ≥ 1.
This family of equations arises in many different frameworks and, depending

on the nature of φ, it models different diffusion processes, mainly grouped into
three categories, namely “slow diffusion”, “fast diffusion” and linear processes.

The “slow diffusion” case is characterized by a finite speed of propagation and
the formation of free boundaries while the “fast diffusion” one is characterized
by the finite extinction time, which means that the solution becomes identically
zero after a finite time.

If one neglects the source term, i.e. f = 0, and imposes the constraint of
nonnegativeness to the solutions, something which is fundamental in all the ap-
plications where y represents for example any density, then one can precisely
characterize these phenomena. In fact, it was shown in [12] that the homoge-
neous Dirichlet problem associated to (1.1) on a bounded open set Ω of RN
satisfies the finite extinction time if and only if∫ 1

0

ds

φ(s)
< +∞,

which, for constitutive laws given by (1.2), corresponds to the case m ∈ (0, 1).
If, on the contrary ∫ 1

0

ds

φ(s)
= +∞, (1.3)

(which is the case of m ≥ 1) then, for any initial datum y0 ∈ H−1(Ω) ∩ L1(Ω)
with (−∆)−1y0 ∈ L∞(Ω), it occurs a kind of “retention property”. This means
that, if y0(x) > 0 on a positively measured subset Ω′ ⊂ Ω, then y(t, .) > 0 on
Ω′ for any t > 0. If, in addition to (1.3), we have that φ satisfies that∫ 1

0

φ′(s)ds

s
< +∞,

(i.e. m > 1 in the case of (1.2)) then the solution enjoys the finite speed of
propagation and gives rise to a free boundary given by the boundary of its
support (∂{y > 0}).

Most typical applications of “slow diffusion” are the nonlinear heat propa-
gation, groundwater filtration and the flow of an ideal gas in a homogeneous
porous medium (from which the name PME). The fast diffusion, instead, finds
a paradigmatic application to the flows in plasma physics. Many results and
references can by found in the monographs [2] and [22].

As already said, the main aim of this paper is to show how a combined action
of boundary controls and a spatially homogeneous internal control may allow
the global extinction of the solution (the so called global null controllability) in
any prescribed temporal horizon T > 0. In this paper we shall prove the global
null controllability for the following two control problems

PDD


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
y(0, t) = v0(t)χI(t) t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(1.4)
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and

PDN


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
(ym)x(0, t) = 0 t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(1.5)

where I = (t1, T ) with t1 ∈ (0, T ), m ≥ 1 and χI is the characteristic function
of I. In both problems, y represents the state variable and UDN := (uχI , v1χI)
and UDD = (uχI , v0χI , v1χI), respectively, are the control variables. The func-
tion ym should be more properly written in form (1.2), but as we shall impose
the constraint y ≥ 0 it makes no real difference.

We point out the fact that the internal control u(t) have the property to
be independent of the space variable x and that the controls are active just
on a part and not on all the time interval. Moreover, since, as we shall show,
the systems are null controllable in any arbitrarily fixed time, the localized
form of the control u(t)χI(t) (and the same for the boundary controls), on a
subinterval of [0, T ], is more an emphatic than a real difficulty. It serves mostly
to underline the fact that, in our choice, the control are not active in the first
time lapse. In the same way it could be possible to take a control interval (t, t)
with t, t ∈ (0, T ) or even more generally three different control intervals, one
for each control v0, v1, u, such that the intersection of the three intervals is not
empty.

The main results of this paper are contained in the following statement.

Theorem 1.1. Let m ∈ [1,+∞).
i) For any initial data y0 ∈ H−1(0, 1) such that y0 ≥ 0 and any time T > 0,
there exist controls v0(t), v1(t) and u(t) with v0(t)χI(t), v1(t)χI(t) ∈ H1(0, T ),
v0, v1 ≥ 0 and u ∈ L∞(0, T ) such that the solution y of PDD satisfies y ≥ 0 on
(0, 1)× (0, T ), and y(·, T ) = 0 on (0, 1).
ii) For any initial data y0 ∈ H−1(0, 1) such that y0 ≥ 0 and any time T > 0,
there exist controls v1(t) and u(t) with v1(t)χI(t) ∈ H1(0, T ), v1 ≥ 0 and u ∈
L∞(0, T ) such that the solution y of PDN satisfies y ≥ 0 on (0, 1)× (0, T ), and
y(·, T ) = 0 on (0, 1).

Notice that since H−1(0, 1) = (H1
0 (0, 1))′ and H1

0 (0, 1) ⊂ C([0, 1]) then we
have that H−1(0, 1) ⊃M(0, 1), the set of bounded Borel measures on (0, 1).
Hence, the initial datum can be, for instance, a Dirac mass distribution at a
point in (0, 1). As said before, in the case of slow diffusion, m > 1, which is
the one we are dealing with, the solution may present a free boundary given by
the boundary of its support (once that the support of y0 is strictly smaller than
[0, 1]). Nevertheless, our method of proof is based in the strategy to avoid such
a free boundary. Indeed, on the set of points (x, t) where y vanishes (i.e. on the
points (x, t) ∈ (0, 1)×(0, T )\supp(y)) the diffusion operator is not differentiable
at the function y ≡ 0 and so some linearization methods which works quite well
for second order semilinear parabolic problems (see, e.g., [13, 17, 19, 20]) can not
be directly applied. Moreover, the evanescent viscosity perturbation with some
higher order terms only gives some controllability results for suitable functions
φ as the ones of the Stefan problem ([13], [14] and [15]).
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Here we shall follow a different approach which is based mainly on the so
called return method introduced in [9, 10] (see [11, Chapter 6] for more informa-
tion on this method). More precisely, we shall prove first the null controllability
of problem (1.4) by applying an idea appeared in [8] (for the controllability of
the Burgers equation), and then, in a second step, by using some symmetry
arguments we shall show that the same result holds in fact for (1.5).

Our version of the return method consists in the idea of choosing a suitable
parametrized family of trajectories a(t)/ε, which is independent of the space
variable, going from the initial state y ≡ 0 to the final state y ≡ 0. Then we
shall use the controls to reach one of such trajectories, no matter which one, in
some concrete large positive time smaller then the final T . Once we prescribe
a partition, of the form 0 < t1 < t2 < t3 < T , we shall choose a function a(t)
satisfying the following properties:

i) a ∈ C2([0, T ]);

ii) a(t) = 0, 0 ≤ t ≤ t1 and t = T ;

iii) a(t) > 0, t ∈ (t1, T );

iv) a(t) = 1, t2 ≤ t ≤ t3.

Then, we can write the decomposition of the solution y of problem PDD
as a perturbation of the explicit solution a(t)/ε of the same equation with the
controls U = (a(t)/ε, a(t)/ε, a(t)/ε) in the following way:

y(x, t) =

(
a(t)

ε
+ z(x, t)

)
. (1.6)

Our aim is now to find controls such that z(x, t3) ≡ 0, which means that we
have controlled our solution y(x, t) to the state 1/ε at time t = t3; this will be
done by using a slight modification of a result in [4]. On the final time interval
(t3, T ), we shall use the same trajectory, y(x, t) = a(t)/ε, to reach the final state
y(x, T ) ≡ 0. An ideal representation of the trajectory can be seen in Figure 1.

One can see that the central core of our procedure is to drive the initial state
to a constant state in a finite time thanks to the use of a boundary and internal
control (which depends only on the time variable).

On the first interval (0, t1) we shall not make any use of the controls. So
we let the solution, y(t) := y(., t), to regularize itself from an initial state in
H−1(0, 1) to a smoother one in H1

0 (0, 1) for t = t1. Then, as the degenerate
character of the diffusion operator neglects the diffusion effects outside the sup-
port of the state, we move y(t) away from the zero state by asking z(t) = z(., t)
to be non-negative at least in the interval (t1, t2). With this trick, the solution
y(t) will be far enough from zero. On the interval (t2, t3) the states y(t) will
be kept strictly positive even if the internal control u(t) will be allowed to take
negative values.

As already mentioned concerning the local retention property, we point out
that the presence of the control u(t) is fundamental for the global null control-
lability property. To be more precise, notice that if we assume u(t) ≡ 0 then
we can find initial states which cannot be steered to zero at time T just with
some non negative boundary controls. As a matter of fact, to show it, one can
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Figure 1: Solution profile.

use the well-known family of Barenblatt solutions [3, 22] (also known as ZKB
solutions). Indeed, if we introduce the parameters

α =
1

m+ 1
, k =

m− 1

2m(m+ 1)
, τ << 1

and choose C such that (C/k)1/2(T + τ)α < 1/2, then the function

ym(x, t) = (t+ τ)−α
(
C − k |x− 1/2|2 (t+ τ)−2α

)1/(m−1)
+

is a solution of system (1.4) with u = 0, v0 = v1 = 0 and ym(x, T ) 6= 0. Any
other solution of system (1.4) with the same initial data and v0, v1 ≥ 0 would
be a supersolution of ym which implies that ym(x, 0) cannot be connected with
y(., T ) ≡ 0.

2 Well posedness of the Cauchy problem

For the existence theory of problem (1.4) we refer to [1, 6, 7, 5, 21, 22]; in
particular we adopt a frame similar to the ones in [1] and [6]. More precisely,
we use the following definition.

Definition 2.1. Let (v0, v1) ∈ L∞(0, T )2 and vD = (1 − x)v0(t) + xv1(t) and
let u ∈ L∞(0, T ). Assume that y0 ∈ H−1(0, 1). We say that y(x, t) is a weak
solution of

PDD


yt − (|y|m−1y)xx = u(t) in (0, 1)× (0, T ),
y(0, t) = v0(t) t ∈ (0, T ),
y(1, t) = v1(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(2.1)

if

y ∈ C0([0, T ];H−1(0, 1)) and y(0) = y0 in H−1(0, 1), (2.2)

y ∈ L∞(τ, T ;L1(0, 1)), ∀τ ∈ (0, T ], (2.3)

∂ty ∈ L2(τ, T ;H−1(0, 1)), ∀τ ∈ (0, T ], (2.4)

|y|m−1y ∈ |vD|m−1vD + L2(τ, T ;H1
0 (0, 1)), ∀τ ∈ (0, T ], (2.5)
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and if∫ T

τ

< ∂ty, ξ > +

∫ T

τ

∫ 1

0

(|y|m−1y)xξx =∫ T

τ

∫ 1

0

uξ,∀τ ∈ (0, T ), ∀ξ ∈ L2(0, T ;H1
0 (0, 1)), (2.6)

where the symbol < ·, · > stands for the dual pairing between H−1(0, 1) and
H1

0 (0, 1);

Remark 2.2. We have modified the definition of weak solution given in [1] in
order to handle the case where y0 is only in H−1(0, 1), instead of y0 ∈ Lm+1(0, 1)
as assumed in [1].

The modifications to extend the previous definition to the case of problem
(PND) are straightforward (see [1]). For instance, the extension to the interior
of the boundary datum can be taken now as vD = (c1 + c2x

2)v1(t).
With this definition, one has the following proposition.

Proposition 2.3. The boundary-value problem (1.4) has at most one weak
solution.

The proof of proposition 2.3 is the same as in [1, Theorem 2.4] due to the
regularizing effect required in Definition 2.1. See also [5].

The next two propositions follow from results which can be found in [1,
Theorem 1.7, Theorem 2.4] and [7].

Proposition 2.4. Suppose that (v0, v1) ∈ H1(0, T )2 and vanishes in a neigh-
bourhood of t = 0, then there exists one and only one weak solution of problem
(1.4). Moreover, if

Proposition 2.5. Suppose that (v0, v1) ∈ H1(0, T )2 and that y0 ∈ Lm+1, then
there exists one and only one weak solution y of problem (1.4). Moreover this
solution satisfies

y ∈ L∞(0, T ;L1(0, 1)), (2.7)

∂ty ∈ L2(0, T ;H−1(0, 1)), (2.8)

|y|m−1y ∈ |vD|m−1vD + L2(0, T ;H1
0 (0, 1)). (2.9)

We now emphasize that the solution of problem (PDD) enjoys an additional
semigroup property (we will need it in constructing the final trajectory), which
directly follows from Definition 2.1, Proposition 2.4 and Proposition 2.5.

Lemma 2.6 (Matching). Suppose that y1 is a weak solution of (1.4) on the
interval (0, T1) and that y2 is a weak solution of (1.4) on the interval (T1, T )
with y2(T1) = y1(T1) ∈ L2(0, 1). If we denote

y(t) =

{
y1(t) t ∈ (0, T1),
y2(t) t ∈ (T1, T ),

then y is a weak solution of (1.4) on the interval (0, T ).
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3 Proof of the main theorem: first step

In the interval (0, t1] the solution with no controls evolves as in [7], hence 0 ≤
ym(t) ∈ H1

0 (0, 1) for all t ∈ (0, t1]. Due to the inclusion H1
0 (0, 1) ⊂ L∞(0, 1) we

got that y1(x) := y(x, t1) is a bounded function. We call the solution on this
first interval y0(x, t), i.e.

y|(0,t1) = y0. (3.1)

In order to be able to apply the null controllability result in [4] to the function
z(x, t), given in the decomposition (1.6), on the interval (t2, t3) we need the H1-
norm of z(t2) to be small enough. We want to find some estimates of the solution
z of 

zt −

(
m

(
a(t)

ε
+ z

)m−1
zx

)
x

= 0, in (0, 1)× (t1, t2),

zx(t, 0) = zx(t, 1) = 0, t ∈ (t1, t2),

z(x, 0) = y1(x), x ∈ (0, 1).

(3.2)

For the existence, regularity and comparison results for this problem we refer
to [18], where the equation in recast in the form (|Y |1/msign(Y ))t−Yxx = a′/ε.
From the maximum principle, we deduce that y1 ∈ L∞(0, 1) and y1 ≥ 0 imply
that z ∈ L∞((0, 1) × (t1, t2)) and z ≥ 0. In fact, we have 0 ≤ z ≤ M , where
M := ‖y1‖L∞(0,1) is a solution of the state equation of (3.2), and in particular

a super solution of (3.2).
To study the behaviour of z, we will actually make use of rescaling.

3.1 Small initial data and a priori estimates

For δ > 0, we define z̃ := δz. Then z̃ satisfies


z̃t −

(
m

(
a(t)

ε
+

1

δ
z̃

)m−1
z̃x

)
x

= 0, in (0, 1)× (t1, t2),

z̃x(t, 0) = z̃x(t, 1) = 0, t ∈ (t1, t2),

z̃(x, 0) = δy1, x ∈ (0, 1).

(3.3)

After collecting the factor
1

ε
and rescaling the time τ :=

t

εm−1
, we get

z̃t −
(
m
(
a(τ) +

ε

δ
z̃
)m−1

z̃x

)
x

= 0.

Choosing δ := ε1−α with 0 < α < 1, the system can be written in the following
form 

z̃τ −
(
m (a(τ) + εαz̃)

m−1
z̃x

)
x

= 0, in (0, 1)× (τ1, τ2),

z̃x(τ, 0) = z̃x(τ, 1) = 0, τ ∈ (τ1, τ2),

z̃(x, 0) = ε1−αy1, x ∈ (0, 1),

(3.4)

where τ :=
t

εm−1
. For simplicity, we take α = 1/2.
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Thus, the null controllability of system (3.2) is reduced to the null controlla-
bility of system (3.4). As we can see, the initial data in (3.4) is now depending
on ε and tends to 0 as ε→ 0.

3.2 H1-estimate

We recall that, according to regularity theory for linear parabolic equations
with bounded coefficients, z̃(t) ∈ H2(0, 1) for t > 0, see, e.g. [16, pp. 360-364] .
Multiplying by z̃xx the first equation of (3.4) and integrating on x ∈ (0, 1), we
get ∫ 1

0

z̃τ z̃xx dx =

∫ 1

0

(
m
(
a(τ) +

√
εz̃
)m−1

z̃x

)
x
z̃xx dx.

Then, integrating by parts and using the boundary condition in (3.4), we are
led to

1

2m

d

dτ

∫ 1

0

z̃2x dx = −
∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2xx dx

− (m− 1)

3

√
ε

∫ 1

0

(
a(τ) +

√
εz̃
)m−2 (

z̃3x
)
x
dx

= −
∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2xx dx

+
(m− 1)(m− 2)

3
ε

∫ 1

0

(
a(τ) +

√
εz̃
)m−3

z̃4x dx.

We denote by

IT1 := −
∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2xx dx,

IT2 :=
(m− 1)(m− 2)

3
ε

∫ 1

0

(
a(τ) +

√
εz̃
)m−3

z̃4x dx.

We observe that IT1 ≤ 0. Let us look to the term IT2. For m ∈ (1, 2), we have
that IT2 ≤ 0. Otherwise,

IT2 ≤
(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε

∫ 1

0

z̃4x dx.

The fact that L∞ norm of z̃ is finite comes from the fact that z̃ = δz and that
the supremum of z is bounded, as already pointed out. We use now a well-known
Gagliardo-Nirenberg’s inequality in the case of a bounded interval:

Lemma 3.1. Suppose z ∈ L∞(0, 1) with zxx ∈ L2(0, 1) and either z(0) =
z(1) = 0 or zx(0) = zx(1) = 0, then

‖zx‖L4 ≤
√

3 ‖zxx‖
1
2

L2 ‖z‖
1
2

L∞ .

Proof of lemma 3.1. Integrating by parts and using the boundary conditions,
we obtain ∫ 1

0

z4x dx =

∫ 1

0

z3xzx dx = −3

∫ 1

0

z2xzxxz dx.
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Then, using Cauchy–Schwarz’s inequality, we get

‖zx‖4L4 ≤ 3 ‖zx‖2L4 ‖z‖L∞ ‖zxx‖L2 ,

and the result follows immediately.

Setting C ′ := C ‖z̃‖2L∞ and considering that ‖z̃x‖4L4 ≤ C ′ ‖z̃xx‖2L2 , we have

1

2m

d

dτ

∫ 1

0

z̃2x dx ≤ −
∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2xx dx

+
(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε

∫ 1

0

z̃4x dx,

≤ − (a(τ))
m−1

∫ 1

0

z̃2xx dx

+ C ′
(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε

∫ 1

0

z̃2xx dx,

= C ′′(m, τ, ε)

∫ 1

0

z̃2xx dx,

where

C ′′(m, τ, ε) :=

(
C ′

(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε− (a(τ))

m−1
)
.

For τ > 0, we have
C ′′(m, τ, ε) < 0,

if ε is small enough.
From these estimates, we deduce that the H1-norm is non increasing in the

interval (τ1, τ2). Hence, for all ρ ≥ 0, we can choose ε small enough to get
‖z̃(τ2)‖H1(0,1) ≤ ε ‖y1‖H1(0,1) ≤ ρ.

4 End of the proof of the main theorem

We now go back to problem (3.4) but with Dirichlet boundary conditions and
initial data z̃(τ2) and apply an extension method that can be found, for instance,
in [19, Chapter 2]. This method consists in extending the space domain from
(0, 1) to E := (−d, 1 + d) and inserting a sparse control in ω, an nonempty
open interval whose closure in R is included in (−d, 0). We look at the following
system 

wt −
(
m(1 +

√
εw)m−1wx

)
x

= χωũ, (x, τ) ∈ Q′,
w(−d, τ) = 0, w(1 + d, τ) = 0, τ ∈ (τ2, τ3),

w(x, τ2) = w2(x), x ∈ E,
(4.1)

where Q′ = E × (τ2, τ3) and τ3 = t3/ε
m−1. The function w2 ∈ H1

0 (E) ∩
H2(E) is an extension of z̃(τ2) to E which does not increase the H1-norm, i.e.
‖w2‖H1(E) ≤ k ‖z̃(τ2)‖H1(0,1) ≤

√
εk ‖y1‖H1(0,1), for some k > 0 independent of

z̃(τ2).
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Proposition 4.1. There exists ρ > 0 such that, for any initial data w2 with
‖w2‖H1 ≤ ρ and for any ε sufficiently small, system (4.1) is null controllable,
i.e. there exists ũ ∈ L2(Q′) such that w(τ3) = 0.

Sketch of proof of Proposition 4.1. The proof is substantially the same as in [4].
We just have to choose ρ sufficiently small such that the solution of the control
problem satisfies, for suitable value of ε, ||w||L∞ < 1√

ε
.

Remark 4.2. Note that, combining the results in [4] and [16, pp. 360-364], the
solution of (4.1) satisfies w(0, ·), w(1, ·) ∈ H1(τ2, τ3).

Proof of Theorem 1.1. We consider the function

y(., t) =



y0(., t), t ∈ (0, t1),
a(t)

ε
+ z(., t) =

a(t)

ε
+
z̃(., t)√

ε
, t ∈ (t1, t2),

a(t)

ε
+
w(., t)√

ε
, t ∈ (t2, t3),

a(t)

ε
, t ∈ (t3, T ),

(4.2)

which is a solution of system (1.4) with controls given by

u(t) :=
a′(t)

ε
, t ∈ (0, T ), (4.3)

v0(t) :=



0, t ∈ (0, t1),
a(t)

ε
+
z̃(0, t)√

ε
, t ∈ (t1, t2),

a(t)

ε
+
w(0, t)√

ε
, t ∈ (t2, t3),

a(t)

ε
, t ∈ (t3, T ),

(4.4)

and

v1(t) :=



0, t ∈ (0, t1),
a(t)

ε
+
z̃(1, t)√

ε
, t ∈ (t1, t2),

a(t)

ε
+
w(1, t)√

ε
, t ∈ (t2, t3),

a(t)

ε
, t ∈ (t3, T ).

(4.5)

The function y ∈ C([0, T ];H−1(0, 1)) and as one can check using the improved
regularity of the solution when it is strictly positive, (v1, v2) ∈ H1(0, T )2. So
combining Proposition 2.4, Proposition 2.5 and Lemma 2.6, it is easy to see that
the function given by (4.2) is the solution on the interval (0, T ) of problem (1.4)
with boundary conditions given by (4.4)-(4.5) and nonhomogeneous term (4.3).

To conclude, we have for construction that y(·, T ) = 0.
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The proof of part ii) follows the common argument of extension by symmetry.
One first notice that using the smoothing property of (1.5) when u = 0 and
v1 = 0, we may assume that y0 is in L2(0, 1). Then, we consider the auxiliary
problem

P sDD

 yt − (ym)xx = ũ(t)χI(t) in (−1, 1)× (0, T ),
y(−1, t) = v0(t)χI(t) and y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = ỹ0(x) x ∈ (−1, 1),

(4.6)
with ỹ0 ∈ L2(−1, 1) defined by

ỹ0(x) = y0(x) and ỹ0(−x) = y0(x), ∀x ∈ (0, 1). (4.7)

and with v0(t) = v1(t). We apply the arguments of part i) to P sDD with (0, 1)
replaced by (−1, 1) and adjusting the formulation of (4.1) in such a way that
the control region ω is now symmetric with respect to x = 0. Then, as we show
later, the restriction of the solution of P sDD to the space interval (0, 1) is the
sought trajectory for system PDN .

Lemma 4.3. Let ω be a nonempty open subset of [−1− d, 1 + d] \ [−1, 1] which
is symmetric with respect to x = 0. Then, if w2 is symmetric with respect to
x = 0, we can find a control us, symmetric w.r.t. x = 0, such that the solution
w of system (4.1) satisfies

1. w is symmetric w.r.t. x = 0,

2. w(·, τ3) = 0.

Proof. The proof follows almost straightforward from [4, Theorems 4.1 and 4.2].
We just have to minimize the functional which appear in [4, Theorems 4.1] in
the space of L2 functions which are symmetric w.r.t. x = 0.

The symmetry of the initial value implies as a consequence the symmetry of
the solution w.

To conclude the proof of part ii) of Theorem 1.1 we note that as the solution
y(·, t) of (4.6) belongs to H2(−1, 1) for all t ∈ (0, T ), we see that yx(0, t) = 0
for all t ∈ (0, T ) and so the conclusion is a direct consequence of part i).
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[14] Jesús Ildefonso Dı́az and Ángel Manuel Ramos. Approximate controllabil-
ity and obstruction phenomena for quasilinear diffusion equations. Com-
putational Science for the 21st Century (M.-O. Bristeau, G. Etgen, W.
Fitzgibbon, J.-L. Lions, J. Periaux y M. F. Wheeler, eds.), John Wiley
and Sons, Chichester, pages 698–707, 1997.
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