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EXISTENCE OF GLOBAL SOLUTIONS TO SOME
NONLINEAR DISSIPATIVE WAVE EQUATIONS

By A. CARPIO

ABSTRACT. ~ Let Q2 be a smooth bounded domain. We prove existence of global solutions, i.e., solutions defined
for all ¢ € R, for dissipative wave equations of the form:

u”—Au-Hu']p_lu':O in Q@ X (=00, ), p> 1,

with Dirichlet boundary conditions. When (2 is unbounded the same existence result holds for p > 2.

Introduction

In this paper we are concerned with proving the existence of global solutions to damped
wave equations of the form:

(D) o' —Au+g(u)=0 in RxQ,
u=20 on R x 99,
where g (s) is a locally Lipschitz continuous nondecreasing function satisfying ¢ (0) = 0
and § stands for a bounded domain in R™. When g (s) is sublinear at infinity global

existence for the backward and forward initial value problems is assured. Therefore, we
shall only deal here with the superlinear case.

Let us state our main results in the model case:

) v —Au+|u Pl =0 in RxQ,
u=0 on R x 99,

where @ C R™ and p > 1.

THEOREM 1. — Let us assume that § is a smooth (at least of class C?) bounded domain
and that1 <p < oowhenn <2o0rl<pS<n+2/n—2=2*—1whenn > 2. Then,

D) if p 2 2, for each solution ) of the elliptic problem

—AwZ( - >plw|"‘1w in 2,
p—1
Yo =0,
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472 A. CARPIO

there exists at least one solution
ueC (R, Hy())nC" (R, L*(Q))

behaving like ® = |t|7T ¢ ar —co.
2)if 1 < p < 2, there exists at least one solution

ue C (R, Hy () NC' (R, L* ()
behaving like ® = |t [P/P=14) at —oo for each solution v of (€) with constant sign.

Remark 1. ~ Let us define 2E (v (¢)) = || Vo (¥)||3- - (©) + [V (8)||Z2 (- By “behave

like ®” we mean that the energy E (u — ®) (t) = o(|¢|7-7) when ¢ tends to —oc. In fact,
for any fixed ¢y < 0 and any i as above we construct a solution u defined when ¢ < g
that can be decomposed as v = v + w where:

—v € C((—o0c, to], L (22)) is a sum of functions of the form |¢|” f (x) in which the
highest order term (that is, the one growing the fastest as | ¢| increases) is .

~w € C((~o0, to], Hy (2)) N C* ((—o0, to], L* () is such that E (w (¢)) tends to
zero when ¢ goes to —oo.

Then, we extend this u to a global solution defined for all £ € R by solving the dissipative
initial value problem with initial data (u (o), w’ (to))-

Once a solution u (¢) is known, its translates « (¢t + &), & € R furnish solutions of (H)
with the same asymptotic behavior as u (¢). We ignore whether we have uniqueness up to
translations, Z.e., given two solutions u;, us behaving like | ¢ ]ﬁ 1 at —oo we don’t know
if there exists k£ € R such that (¢ + k) = u(t), V¢t € R.

Remark 2. — Some comments concerning the existence of solutions to (£) are in order.
Let us first consider the cases where n £ 2 or1 < p < 2* — 1 and n > 2 so that injection
H} (2) — LP*1(Q) is compact. Since the nonlinear term is odd, infinitely many solutions
to (£) are found (see [AR]) by looking for critical points in H} (2) of the functional

2 e () e e

On the other hand, the existence of (at least) a positive solution is easily proved by using
a minimization approach (for more detail see [LI]).

In this case, a bootstrap argument yields that any solution ¢ € H} () of (€) belongs
to CH*(Q) (see [GTY).

In the critical case p = 2* — 1 further hypothesis on the topology and geometry of
the domain €2 are needed in order to ensure the existence of solutions (see {BR] and the
references therein). For instance, positive solutions are known to exist for smooth domains
with holes. Positive solutions in H} (2) of (£) in this limit case are known [BK] to
be in L* (Q) for p 2 1.

In both cases, the solutions ¢ € C'™ (2) and, up to the boundary, they are as smooth
as Jf2 and p allow.

Note that 2* — 1 < 2 when n 2 6. Therefore, since we assume p < 2* — 1, in this range
of dimensions we are necessarily in case ii).
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EXISTENCE OF GLOBAL SOLUTIONS 473

Remark 3. — The boudedness of 2 is only necessary when 1 < p < 2.

In order to understand the meaning of this theorem it is worth recalling some facts
about dissipative problems like (D). It is well known that, due to the monotonicity of the
nonlinear term, the forward initial value problem

u' —Au+g(u')=0 in R x Q,

u=0 on RT x 99,

u(z, 0) =wug, v (z, 0) =u; in Q,
can always be solved for (ug, u;) € H} (Q) x L?(Q) yielding a unique global bounded
solution in H} (Q) x L? (2). Moreover, when ¢ (s) s > 0 for s # 0 the trajectories (u, u)

are shown to converge in H] () x L? () to the single stationary state of the system, i.e.
(0, 0). (See [H1], for instance, and the references therein.)

However, almost nothing is known regarding the backward problem even as far as local
existence is concemed. Let us recall several facts pointed out in [H2] in connection with
this question. By reversing the time we deduce that w (¢) = u (—¢) must satisfy:

w’' —Aw+g(—w')=0 in RT x Q,
w=0 on RT x 99,
w(x, 0) = ug, w' (x, 0) = ~u; in Q.

This time the nonlinear term has “the bad sign” so that monotonicity theory does not
apply. On the other hand, since the map g : v — g¢(v) is not Lipschitz in L? (Q) we
cannot consider the nonlinear term as a Lipschitz perturbation of the linear wave equation
unless some restrictions on the smoothness of the initial data and the dimension are made.
For instance, when n = 1 the map ¢ : v — ¢ (v) tums out to be locally Lipschitz from
H{ (Q) to Hg (Q) so that we can construct local solutions to initial value problems with
data (ug, u1) € H*(Q) N H (Q) x H} ().

Nevertheless, global existence can not be guaranteed even for small initial data. In fact,
when g (s) = |s[P~1s, p > 1 we can construct solutions blowing up in a finite time for
arbitrary small initial data. Indeed, let B, = B (g, r) be any ball contained in Q. We
take initial data (ug, vo) € HJ (2) x L? () such that ug = 0 and vy = A on B,., A being
a constant. Since in the light cone with basis B,

Co={(z, ) : 05t < |z —xo| Sr—t}

the solution of the wave equation depends only on the values of the initial data in B,, it
agrees there with the solution of the ordinary differential equation:

W —|u Pt =0 t2>0,

u (0) =0, ' (0) = A,
whose energy blows up like (|£| — TO)I;TZ)1 at time T (A) = 1/(p — 1) AP~1. In order to
guarantee that the solution blows up in the cone C,. it suffices to choose A large enough to
have 1 (A) < r. By taking v (t) = u(—t) and then extending it to ¢ > O by the solution

of the dissipative problem with initial data (ug, —vg) we obtain a solution v defined on
(=To (A), oo) whose energy tends to zero when ¢ goes to oc. Thus, (v (1), v’ (¢)) are

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



474 A. CARPIO

initial values for the backward problem whose norm can be made arbitrarily small by
taking ¢ large enough and that generate blowing-up solutions.

On the other hand, it follows from the energy decay to zero at infinity that any global
solution of () must be unbounded at —oc. Indeed, the energy of such a solution must
satisfy (see [H1]) the inequality:

Em(t+7) SF(E®)rr=1 teR, 7>0,

where F' (F (t)) is an increasing bounded fonction of the energy. Supposing the energy to
be bounded by a constant K and taking £ = —7 it follows that:

Eu(0) < F(K)r=1  7>0.

Thus, E(u(0)) = 0 and u = 0.

In the particular case p = 2 we can easily construct infinitely many (up to translations)
global solutions of (), under restrictions on n, p and {2 analogous to these made in
theorem 1. It suffices to take:

u(z, t) =tp(z)+n(z) 20,
where ¢ and 7 solve:

~Ap=4|ply inQ
{0
(p|3ﬂ‘_‘07

—An=-2¢ inf
iy {50
n]ag =0,

and then extend them to ¢ > 0 by solving the dissipative initial value problem with initial
data (n(z), 0).

It follows from standard Min-Max theory that infinitely many solutions to (P,) exist
provided that 2 < (n + 2)/(n — 2) that is, n < 6. The existence of at least one positive
solution can be proved by solving a minimization problem. Owing to the maximum
principle, the 7 corresponding to a positive ¢ turns out to be negative. Nevertheless,
for smooth £, the resulting u will be positive for ¢ large enough. Indeed, it suffices to
remark that, by the strong maximum principle, both the normal derivatives of ¢ and —n
are strictly negative on 0f).

In the case n = 6, (P,) correspond to a problem with critical exponent for the Sobolev’s
embedding so that, as we pointed out before, we need additional hypotheses on the
geometry and topology of 2 to conclude.

Theorem 1 is a natural extension of this result to any p > 1, but the solutions we obtain
are no more explicit for large negative ¢ when p # 2.

Since forward dissipative initial value problems can always be solved, we must manage
to find solutions of

' — Au+|u [P =0 in(—oo0, tg] x Q,
u=20 on (—oo, to] x 09,
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EXISTENCE OF GLOBAL SOLUTIONS 475

for some fixed to. When p = 2 this is done explicitely but we ignore if solutions different
from those exhibited above exist. In order to find solutions for other values of p we remark
that the functions v (t, ) = |t|7~* ¢ (z) where

— p g p-1 i
—Ap={—=] [¢[fT e inQ,
p—1
¢ loa =0,
are still solutions of the parabolic problem:
) —Av+ v P71y =0 in (—oo, 0] x Q,
v=0 on (—oo, 0] x 9.

Heuristically, for an unbounded solution u of the wave equation behaving as a power
of |t| when ¢ - —oo the term «” should be much smaller than the others so that it
might approach the solutions of this “parabolic” problem. On the other hand, any v of
this form satisfies:

1 p
v — Av 4| [P = P )V (— |t|77 2 ¢ (z) in (—o0, 0] x 2,
p—1 p—1
v=0 on(—o0c, 0] x 99,

where the second term tends to zero as ¢ — —oo so that v is “almost” a solution of the
wave equation. This is the starting point in our existence proof.

Theorem 1 will follow by putting together the following two results:
LEMMA 1. — Let us assume that there exists a function
v € C (o0, tol, Hy () N C! (o0, tol, L ()
satisfying:

[ AT = (68 in (oo, to] X9
v=>0 on (—oo, tg] x 01,

where p > 1, tg < 0 and f € C ((—o0, to]; L?(R)) with

N f @z = O]

for some positive C and o < —1. Suppose further that E (v(t)) 2 K > 0 for every
t < tg and some K > 0.

Then, there exists a global solution
u € C((—o0, to], Hy (2)) N C ((—00, to], L (2))
of:
) {u” —Au+ v P =0 inRxQ,
u=20 on R x 99,

which behaves like v at —oc in the sense that E (u—v) (t) tends to zero when t goes to —oc.
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476 A. CARPIO

Remark 4. — As a matter of fact, we shall prove that the solutions uz on [—T, to] of initial
value problems with initial data (v (T"), v’ (—T')) at —T are “atracted” by v in the sense that

E(v—up)(t) £C |t etD),

This estimate will allow to prove the convergence of ur to a solution v such that
E(v—u)(t) > 0ast— —oo by using the monotonicity of the nonlinear term.

Remark 5. — In this lemma 2 can either bounded or unbounded and no smoothness
hypothesis is needed.

2
LEMMA 2. — We set tg < 0 and assume that eithern S 2o0rn >2and1 <p < nt .

n—2
Let ) be
— any solution of (E) if p 2 2
— a solution with constant sign of (E) if 1 <p < 2.

Then, there exists
v € C((—o0, to], He ()N C* ((—o0, to], L* ()
behaving like ® = |t |P/P=Y ) at —co and satisfying:

(A) v — Qv+ [V PR = f(t, @) in (—oo, to] X Q,
v=20 on (—0oo, to] x 09,

with f depending on 1 such that || f (t) ||z £ C |t|*® for some a < ~1 depending on p.

Remark 6. — We already know that vy (¢, z) = % (z)|t|P/®P~D satisfies (A) with

o= Ll — 2 < 0. The functions v are constructed by adding to vy several terms of the

form vy, = 1 ()| t|P/P~V-2%  with a; > 0 in such a way that the sum satisfies (.A)
with a right hand side decreasing fast enough.

Remark 7. — An analogous of Lemma 2 can be proved for lower order perturbations
of |sP~'s such as g(z, s) = a(z)|s[P" s+ b(x)|s]?ts withg < p, p> 1, a, b,
being nonnegative bounded functions. Lemma 1 remains valid if we replace |s|[P~' s by
any continuous nondecreasing function g such that g (0) = 0. So, the same existence result
applies in this case.

Remark 8. — The boudedness of €2 is only needed when 1 < p < 2.

It is interesting to compare these results to those known for the analogous (in a certain
sence) ordinary differential equation

W tut+gu)=0
where g is any superlinear and locally lipschitz continuous non decreasing function such
that g (0) = 0. By reversing the sign we obtain v" + v = —g (—v’), where v (t) = u (—t).
We recall some facts established in [S2]:
i) if g(s)s 2 K s? for | s| large enough, then for every t, € R and for every vo € R
there exists at least a global solution v (t) such that v (o) = vo.
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EXISTENCE OF GLOBAL SOLUTIONS 477

i) if m|s|? £ |g(s)| for some m > 0 and p > 1 then, either

v>0, ¢ >0whent—oc, lim v =00, lim v = oo
t—o0 {—o00

or

v <0, v <0whent — oo, lim v = —oco, lim v = —co.
t—o0 t—o0
i) if m|s? £|g(s)| £ M|s|P for some m, M >0 and p > 1 for | x| large enough
then every nontrivial global solution v satisfies:

Cilt|71 S v ()] € Colt]7 T,

CLIt|7=T < [V ()] £ Gy |t]7T,
for certain positive Cy, Cy, C1, C} when t — oc.

iv) if ¢ satisfies the growing condition in iii) and is differentiable on some neighbourhoods
of —oo and co with

. ’ _
sl{rlezloo g (S) = 9%

then there exist exactly two non trivial global solutions (up to translations), one tending to
oo and the other to —oco when ¢ — oo. Moreover,

v =o() t— oo.
Let us assume g (s) = |s|P~! s, so that we are concerned with solutions of
(H) v +u+|v'P"'w' =0 tcR.
By eliminating the second derivative we get the equation
(P) u+|u P 'u' =0 teR.

Since we are mainly interested in solving the backward problem we reverse the time and
get that v (¢) = u(—1) must satisfy

(H) " +v= |1 teR,
(P w = v PPt teR.

This equation can be solved for ¢ 2 ¢ for any initial data v (t9) = vo. Indeed,

p—1 S
v:{T(t—to)—l—UO }

when vo > 0. The same formula holds for negative vy by changing the sing of v and
vg. If vy = 0 we get three different solutions (the nonlinearity obtained when writing the

_1 1
equation as v’ = ¢g~!(v) is not Lipschitz at zero), namely: 0, i(pT (t — t0)> .

—1 p—1
We observe that, up to translations, there are only three solutions: 0, i<p— ) .
p
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478 A. CARPIO

_ 1 p—1
They can be classified by their behavior at co : either v = 0 or 15, — (p—)

$7-1
P
v p—1\r1
or - - — .
7T p

If we make the changes v = wt5-1 and 7 = Int equations (H’) and (P’) become:

(H) AA-Dw+@A-Dw, +w,r)e  +w=[Aw+w "7 Aw+ w,),

(P") w=|Aw+w, P (Aw + w,).
I\
The second one has now two stationary solutions +! = + (p—) which satisfy:
p i 1 g
E = = P=24b.
B = (1) lvre

|w?
: : dt 2 . .
solution of this equation converges to one of the stationary points +/ when ¢ — co. In the
same way, we deduce that the function w obtained from any global solution u of (H) also
converges to ! by using the information about its asymptotic behavior.

Therefore, all nontrivial global solutions u of ( H ) and ( P) are “attracted” by the functions
® (t) = £l |t|7°T at —ooc in the sense that | (® — u) (¢)| |7 — 0 when t — —oo.

We can also prove analogous to Lemma 1 and Lemma 2 which give the existence of

two solutions behaving like 7T 1 for any 1 < p < oo. Here, the solutions +1 = I of
(E) play the role of the solutions of the elliptic problems:

d
By using the fact that P > 0 when | w| < it follows that any non trivial bounded

(2 Y wpry i
o [-2v=(GE1) wre ma
P lan = 0.

In this case, Lemma 1 says that any v satisfying
(A) V" otV =F St

with | f (1) | £ C|t|*, a< land |v(t)| 2 K > 0 for t £t generates a global solution
u such that | (v —u) (t) || £|7=T — 0 when t — —oc. Lemma 2 will provide two functions
v, each of them associated to one of the . By the above considerations on the ordinary
differential equation we know that the only possible global solutions of (H) behave at
—00 like £7°T 1), so that all v satisfying (A) must also behave at —oo like |£|7-T 1.

If we take u to be a global nontrivial solution of (H) or (P) and make the changes
u(—t) = v (t) = wt>1 and 7 = Int [BNP] we shall obtain for w the equations:

(H") QA =-Dw+@A-Dw, +we)e ™ —Aw=|dw+w, P Qw + w,),
(P") - Aw = [Aw+w 7 QAw + wy).
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EXISTENCE OF GLOBAL SOLUTIONS 479

The asymptotic behavior of the global solutions of (P”) is now unknown in general.
With regard to (H"') we lack of estimates analogous to iii) and iv) so that we cannot prove
the convergence of w to solutions of (£) as we did before. The complete structure of the
set of global solutions in both cases remains an open question.

In view of the results existing for ordinary differential equations, one should expect a
similar existence result to hold for the wave equation with more general superlinear g that
those considered here. Unfortunately, the proof of Lemma 2 relies heavily of the fact that
¢ only involves powers of s, which allows us to control the behavior of the solutions
of certain auxiliary problems and its derivatives. As a consequence, we are note able to
extend our existence result to a larger class of g.

To conclude, let us remark that the existence of global solutions to () established in
theorem 1 proves the optimality of the energy decay estimates for forward dissipative initial
value problems obtained in [C1]. In this article we proved that the energy of any solution of

v —Au+g(u)=0 in RT x Q,
u =0 on RT x 69,

u(x, 0) = ug, v’ (x, 0) =u; in £,

with (up, u1) € Hg (Q) x L?(Q) satisfies:

() E(t+m)SF(E@@)r™ 720,
where F'(X) is a bounded function of the initial energy growing like C' (1 + X pr#) for
some positive constant C. If we take u to be a global solution whose energy grows like
2p
|t|>~T when t — —oo and assume the inequality (I) to hold for some F'(X) we deduce

that F'(X) 2 CX* for large X.

1. Proof of Lemma 1

We are going to take advantage of the existence of unbounded “approximated” solutions,
i.e. solutions v of:
v —Av+ [V P71 = F (¢, x) in(—o0, to] X £,
v=0 on (—o0, to] x 99,
where f decays fast enough at infinity and F (v (t)) > K > 0 when ¢ tends to —oo
to construct global non trivial solutions of the backward problem. We shall give here

a simplified version of our original proof (that can be found in [C2]) suggested to us
by A. Haraux.

Let us asssume that:

D || f(z, t)||le2) < C|t|* for some o < —1 and t < ¢y,

i) v e (oo, tol, H} () N C (=00, to], L (%)),
where £y < 0 is fixed.
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480 A. CARPIO

For every T 2 |tg| we solve:
uwy — Augr + |up [P uy =0 in (=7, to] x Q,
ur =0 on (=T, #g] x 91,
up (=T) =v(=-T), up (-T) =" (-T) inQ.
Since (v (=T), v/ (~T)) € H}(Q) N L?(2) we know (see [H1], [L]) that there exists
a unique solution
ur € C (=T, to], HE ()N C (=T, to], L* ().

The next step consists in proving that ur converges strongly in Cloc ((—00, to],
H3 ()N CL.((—oo, to], L?(Q)) to a solution u. The proof relies on the following
estimate ([B2] Lemma 3.1, p. 64):

Let A be a monotone operator on a Hilbert space H, endowed with a norm || ||.
For all weak solutions U and V of U' + AU = F and V' + AV = G with F and
G € L' (a, B; H), [a, 0] C R the following inequality holds:

x NG -vils |lU(8)—V(S)||+/: | F(o)-G(o)ldoassstsp.
Let us fit our problem in this framework. We set W = (w, z) with z = w’ and
H = H} (Q) x L?(Q). Then, the equation
w” — Aw+ | [P e = h
can be rewritten as W/ 4+ AW = (0, h) where A defined by:
D(A) = {(w, z) € H, —Aw + |2 |P7' 2 € L*(Q)},

AW = (—w, —Aw + |z|P712z) YW € D(A)
is maximal monotone (cf: [B3]).

We set Ur = (ur, up), V = (v, V') and G = (0, f). Then:
Uh+ AUr =0 in [-T, to],

\%4 + AV =G in [—OO, t()],
with G € L' (—o0, to; LZ(Q)).
For any t belonging to a time interval [, 8] we get as a consequence of (x):
1Ur () = U ) | £ 1| Ur (@) = Uz () ||
if -7 < -T < a £t Letus take o = =T and 8 = ty. For =17 < —T <ty we have:

| Ur (=T) = Ur (=) || = |V (=T) = Ur (-T) |

<V (-T)— Up (-T) | + / 17 () do

[ all
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EXISTENCE OF GLOBAL SOLUTIONS 481
so that
-T
102 (-1)~ Uz (=D))< [ 117 (o) o
_T/
and

-T

102 = U @IS [ 1) )1do

if —=T" £ —T £t £ #. Letting 7", T tend to infinity we conclude that Ur converges
strongly in C, (—00, to; H) to some limit U = (u, «'). It follows from the general theory
on dissipative initial value problems (see [H], ch. 2) that | v’ [P~ ' € LL _(—oc,to; L' (£2))

loc

and also, since the nonlinear term is odd, the weak solution u turns out to be a solution in
the sense of distributions (see Remark 11.2.3.7. in [H]), that is:

w —Au+|u P =0 in D ((—oo, to] X Q).

Finally, we must make sure that u # 0. Set w = v — v. Applying inequality (x) to ur
and v and then letting 7' — oc we deduce that:

E(w(t)) £ CIt]Pt) Vi e [—oo, to).

Therefore, E (w(t)) tends to zero as ¢ — oo. Taking into account that E (v (¢)) > K
we get:

2E(0(1) 2 Bt 2 5 B0 () 2 5

for | ¢| large. Now, it suffices to extend u by the solution of the dissipative initial value
problem with initial data (u (¢g), u' (£o)) for ¢ > ¢¢ to obtain a global solution.

Remark 1.1. — More generally, if a solution

v e C((_Ooa to]’ H& (Q)) nct ((—oo, tO]’ L? (Q))
of a dissipative problem of the form:
v ~Av+g ()= f(t, z) in(—o0, to] x Q
is known, such that F (v (¢)) does not tend to zero as ¢ — —oc and f € L' (—o0, tg;
L?(Q)) then, we can construct a global solution of:
W —Au+g(u)=0 inRxQ

for any continuous nondecreasing ¢ : R — R such that g (0) = 0.

Remark 1.2. — An analogous result holds if we replace the wave operator with
homogeneous Dirichlet conditions with another one, provided that the resulting operator
A is monotone and a solution V € C((—o0, to], H) of V; + AV = (G with

G € L' (~o0, to; H) is known. For instance, we could consider plate operators with
some adequate boundary conditions.
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482 A. CARPIO

2. Proof of Lemma 2

We seek for a function v of the form v = vg + - - - 4+ vx where the v; satisfy some
adequate partial differential equations.

Let us note Lv = v” — Av + g (v') where g (v') = |/ [P~ v'. By expanding g (v')
we obtain:

9" (w)

9 (v') = g(v) + 9" () (v + -+ F+wi) + === (v + -+ 0p)?
k) (..
+...+gk#0)(vfl+...+v;c)k
g (@

+ (W, + - - - + v )FH,

(k+1)!
for some & € (v}, vy + - - -+ v}), where g*) denotes the k-th order derivative of g.

Thus, we can write L v in the following way:

Lv =[-Avy +g(vp)] + [-Av1 + ' (vp) v1 + 0]

@) ol
+ | —Avy + ¢’ (vy) vy + 0] + Z g (O)U’l"
28ask @

@)
+ —AU3+9/(U6)U3+UIQI+ Z g (UO) + Z C U/a s s

L 25k azs>0
A / / / 1 g /a
+ | —Avk + g (vo) vk + Vo1 + Vie_1
22aZk
ga) (U(l)) o /s /s
—s LS s
+ E —r ( E Ve E Ci,.a, vt vy )
2fa<k ) azs>0 s1+-tss=s,i,;<k
v ) 1/ lax—s /s /s
+ (v + E Vs E Ciy.i, vt v7)
2%a<k ' a2s>0 s+ Hss=s,i,<k
k+1)
g (E) / 1\ k+1
+ ('U +---tw .
(k+1)! 1 t)

We are going to choose the v; € H{ in such a way that they satisfy:

(Eo) — Avg+g(vg) =0,

(E1) — Qv+ ¢ (v) vy = —vyg,

TOME 73 — 1994 - N° 5



[ SN SR

EXISTENCE OF GLOBAL SOLUTIONS 483

@) (o
(EQ) — A’Ug —+ g/ (’1}6) 'Ué — _vi’ _ Y a(vo) ,Ulla’

(E3) —Avs+4g (v))v

XS
i
|
LN
|
Q
L
—~
<
(]
-
—
S
Q
+
Q
[
Sa
Q
|
@
e
)
~—r

o!
28ask azs>0
a) (o,
! / 1 1" g (’UO) la
(Ex) —Avg+g (vo)vp = —v_y — o Ukl
2Zatk :
a) (o,
g (,UO) ta—s 181 13
- E PN ( E Vi1 E Ciyoiy Vit UL ).
2<ask ’ a2s>0 s1+..48,=s,1; <k

Then,

a) (o,

— 1" g (,UO) I la—s 181 IER

Lv= v+ E o (v + E vy E Ciyi, vt -0
28ask ’ azs>0 s1+...+8:=s,1; <k

g* o (§)

AT

(h+ v;c)k“}

and we will prove that for a certain k£ (depending on p) and a suitable choice of the v;
the resulting v satisfies the conditions of Lemma 2.

To find v we must be able to solve:

— Avyg+ | vy P vy =0 in (—o0, 0] x Q,
(PU())
vo =20 on {(—o0, 0) x 99.

If we search for a solution vy of the form f () g (z) we find that vy = |¢|7°T o (z)
where g is a solution to:

P p
— Athy = (—> lho P~ bo in Q,
p—1
Yo =10 on 992,
satisfies (P wvg). It follows from standard Min-Max theory that there exist infinitely many

(P o)

. . 2 .
solutions ¥, provided that p < n_+2 when n > 2 or p < oo if n £ 2. A bootstrap
n

~ . . 2 .
argument yields u € O« (Q) for a certain « if Q is C2. For p = nte the existence

n —
of solutions to this problem QCpends on the domain 2. Solutions, if they exist, are also
known to be in u € CL* (Q).
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Set A = Ll If we take v = vy then
p—
Lv=v~[t]*?

< 1 is never satisfied.

so that the condition (A —2) +1 < 0 ie.
p

Now, we must solve

(Pvy) —Avy +p AP Ut g PR = A (A= 1) |t} in (~o0, 0] x £,
! 1 =0 on (—oo, 0) x 09

0 0
We remark that the operator D = —A + ¢ (v}) Pl ~A + pAPTH || po P g has
the property D (|t|¥ f(z)) = |t|* Dx f (z) where Dy, = —A —p AP~ 1k |4 [Pt In
view of this, if the right hand side has the form Z fi(z)]t]" we can always find a
solution v = Z v; (x) |t]" with D; (v;) = f;. Thus, it suffices to take v; = |t} "2y
where ; solves:
Py [P =¥ =2) (Yo = <A - D in 0,
! 1/)1 =10 on 9N.

Since the right hand side f = —A(A — 1)¢ and the potential ¢(z) = pAP~!
(A — 2)| %o [P~ belong to L™= () we know by elliptic regularity theory (Th 4.2 of
[ST]) that any solution of this equation must be in L= () (c € L? and f € L9, ¢ > n
would be enough for this). In order to study the existence of solutions, we must distinguish
two cases.

Case a: p = 2.

When A — 2 £ 0, ie. p 2 2, the existence of a unique solutlon 1y is guaranteed by
the coercivity of the operator Dy_5 in H} (2).

If A\ =2, ie p= 2, this procedure yields an exact solution v = v + v1 = 9o | t | + ¥,
where g, ¥, solve:

— Avpg = 4% [P0 inQ,
P,
(Fuo) {woian = 0.
— Ay = -2y inQ,
P
(Fo) {7/11139 =0

Indeed, in this case Lv; = v] = 0.
In general, taking v = vg + v; we shall have:

~1
LU:U/1/+p(p2 ) lf|p—2v112

for some €& € (vg, vy + vy)
In the sequel, we shall use the notation f (z, ¢t} ~ |¢|* to mean that

m(z)|t|* S flz, t) S M(2)[t]%,
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with m, M € L*(Q). In the same way, by f (z, t) = Z |t |*~* we mean that

f= Z as ()

)
t |OL—S

for some a,(x) € L°°.
We always have v} ~ |#|*~% When p > 2 it is clear that |£| ~ [¢|*! so that

|€P~2 v ~ | t]|*~*. Hence, if p > 2 we have Lv ~ |t |*~* and the condition A\ —4 < —1
is verified since p = 2 > 3" Therefore, in case p 2 2 we get infinitely many global

solutions of the form vy + v; behaving like |¢ |p’%1 when t goes to —oo, one for each
solution g of (Py,).

Case b : 1 < p < 2.

When A > 2, ie. 1 < p < 2, the existence of a solution ¥, of (P, ) is guaranteed
provided that # = p (A — 2) A’~! is not an eigenvalue of

{—Adf =B|polP™M ¢ inQ,
Ylag = 0.

We already know that 3° = A? is an eigenvalue with eigenfunction . Thus, if the sign
of ¥y remains constant in 2, necessarily 3’ = A1, i.e. 3’ is the first eigenvalue for this
problem. Taking into account have 3 < " we conclude that 3 is not an eigenvalue. Let
us take v = vp + vi. Again

Lv= ,Ulll + p(p2_ L |£|p—2v/12

for some & € (v, v + v})

When 1 < p < 2, in order to avoid singularities in | £ [P=2 v}> we consider only the
solutions 1, whose sign remains constant all over 2. This restriction on the sign also
guarantees the existence of ¢}, as we pointed out before. Since v(|sq = (v{+ v1) [sg = 0
we still could get singularities on the boundary. Now, assuming £l to be smooth, the

strong maximum principle implies that % is either strictly positive or strictly negative
n
on 0} so that for ¢ large and some € > 0

2 2
MSE|1/10|i.e.§~v6+s|1/10||t|k_l and ut S‘ﬂ |t~
[t = 30 I
/2
It follows that |£[P2¢f2 = [¢JP |21|2 is bounded and |£[P72v2 ~ |t|**. When

3
2>p> 2’ the condition A — 4 < —1 is fulfilled and we get a global solution for
each v of constant sign.

3 . . .
If p £ — we must add more terms v; to obtain the necessary rate of decay in the right

hand term. Let us take v = v +v; + v2. Then, we must be able to solve (P v), (P v1) and

1" g// (’U()) 2
(Pva) { —Avy + ¢’ (v))vh = —v1 — 5 U in (—o0, 0] x Q,

Vg =0 on (—oo, 0] x o4

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



486 A. CARPIO

If we search for v; of the form f () g (x) we find that v; = |t |*~2!4); (x) where v; satisfy:

P
p -1
Ay = ( ) Yo lP 0 inQ
p-1 ’
(P 9o) { Yo — on 9.

( —Ayy — p)\P_l (A= 2) %o |P_l i “A(A =19y nQ,
(P 1) _
’l/)l =0 on Of).

(P ) {—A"/& - p)\p—l (A=4) o Ip—l P i fo(z) nQ,
ve =0 on %,

with fo = =(A = 2) (A =3) ¢ = p(p — 1) (A = 2)2 (A = P29} [ [P~ 4o € L (D).
The existence of a unique solution for each of these problems is assured by the fact that
the B, = pA?~1 (A — 2 s) are not eigenvalues for s = 1, 2. Moreover, the solutions belong
to L*>°. In this case Lv is given by:

1 U "
Lo =vf + T (2 s gntag) + T (00 4 gugof? 4 of 430204,
// 1
For |t] large, U’2 (U ) vy vh, ) v§} ~ |£|*7°, the remaining terms being of lower

6
i
order. Hence, L v ~ |t |*~6 and the condition A\ — 6 < —1 is verified for p > Z

5 .
When p £ 7 we must add vz. The equations for vy, v; are the same, but now v,

vz must solve:
—Ava+ ¢ (vy) vy = f1(t, ) in(—o0, 0] x €,
(PUQ)
Uy =0 on (—oo, 0) x 092,
—Avz+ ¢ (vy) vy = f2 (¢, &) in(—o0, 0] x Q,

(P {

vy =0 on (—oo, 0) x 09,
where:
1 / 1
Fi(t, @) = o g" (vg) V2 — 9" (vg) o8,
2 6
1 ,U) " P
fo(t, ) = —vi — J (2 o) (v3 + 20 vh) — g é ) (v3 + av? vy + bvZ vy).

1 !
This time —v) — g S]O) v ~ |t but g (L ) ~ |t|*7% so that v; ~
[#|*=* + |t |*°. In the same way we deduce that f2 ~ |t|’\ 6 +Z |¢|*~2* and from

k24
. . N 7
the expression for L v it follows that Lv ~ |¢|*~8. We can stop here for p > s
Following this procedure, for vg = vo + - - - + vz we get that Lv ~ | £|*~2(*+1) When
2k

1
T we have A — 2(k + 1) < —1 and we can take vg + - - - + vy for the needed

TOME 73 — 1994 — N° 5



Y

EXISTENCE OF GLOBAL SOLUTIONS 487

approximation. Since converges to 1 as k tends to infinity, one can cover in this

way all the range 1 < p < 2. The coefficients J; appearing in these elliptic problems
are not eigenvalues, so that the problems (P 1);) have a (bounded) solution. Indeed, the
v = vg + - - - + vy constructed by this procedure is such that equations (F;) are verified.
By proceeding as before it is easy to prove that:

an Vg R |t|)\a
fi, v [E3

fova = E TN [

8>2
Let us assume that:
fk—17 'Uk—lzlt |)\—2 (k—1) + Z |t I/\_Zs'
s>k—1
Then, the right hand side in (Ej) has the form:
fe=arn @ |tP 43 0, (o) |¢ P,
s>k
so that we can find a solution
U = Z Cs (Z) | i |/\-23’
sk
where the ¢, (z) solve elliptic problems of the form:

(P.) —Ac, —p NPTV A =258) o |P e =a.(z) in L,
s c, =0 on Jf2.

From the expression for L v and the behavior of v; we conclude that Lv ~ | ¢ [*~2(*+1),

Remark 2.1. — A slight modification allows to handle the case a(z)|u’ |P~'u +
b(z)|u |97 1u where p > ¢ > 1, p > 1 and a(z), b(z) are non negative bounded
functions. We could also replace the operator —A with homogeneous boundary conditions
by a plate operator with adequate boundary conditions (in order the maximum principle to
hold) or —Awu + v with homogeneous Neumann conditions.
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