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Abstract. It is a very old and interesting open problem to characterize those
collections of embedded topological types of local plane curve singularities
which may appear as singularities of a projective plane curve C of degree d.
The goal of the present article is to give a complete (topological) classification
of those cases when C is rational and it has a unique singularity which is
locally irreducible (i.e., C is unicuspidal) with one Puiseux pair.
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1. Introduction

It is a very old and interesting open problem to characterize those collections of
embedded topological types of local plane curve singularities which may appear
as singularities of a projective plane curve C of degree d. (We invite the reader to
consult the articles of Fenske, Flenner, Miyanishi, Orevkov, Sugie, Tono, Zaiden-
berg, Yoshihara or [3] and the references therein, for recent developments.) The
goal of the present article is to give a complete (topological) classification of those
cases when C is rational and it has a unique singularity which is locally irreducible
(i.e., C is unicuspidal) with one Puiseux pair.

In fact, as a second goal, we also wish to present some of the techniques which
are/might be helpful in such a classification, and we invite the reader to join us
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in our effort to produce a classification for all the cuspidal rational plane curves.
In fact, this effort also motivates that decision, that in some cases (in order to
have a better understanding of the present situation), we produce more different
arguments for some of the steps.

In the next paragraph we formulate the main result. We will write d for the
degree of C and (a, b) for the Puiseux pair of its cusp, where 1 < a < b. We denote
by {ϕj}j≥0 the Fibonacci numbers ϕ0 = 0, ϕ1 = 1, ϕj+2 = ϕj+1 + ϕj .

Theorem 1.1 (Main Theorem). The Puiseux pair (a, b) can be realized by a unicus-
pidal rational plane curve of degree d if and only if (d, a, b) appears in the following
list.
(a) (a, b) = (d − 1, d);
(b) (a, b) = (d/2, 2d− 1), where d is even;
(c) (a, b) = (ϕ2

j−2, ϕ
2
j ) and d = ϕ2

j−1 + 1 = ϕj−2ϕj, where j is odd and ≥ 5;
(d) (a, b) = (ϕj−2, ϕj+2) and d = ϕj, where j is odd and ≥ 5;
(e) (a, b) = (ϕ4, ϕ8 + 1) = (3, 22) and d = ϕ6 = 8;
(f) (a, b) = (2ϕ4, 2ϕ8 + 1) = (6, 43) and d = 2ϕ6 = 16.

All these cases are realizable: (a) e.g., by {zyd−1 = xd}, (b) by {(zy−x2)d/2 =
xyd−1}, or by the parametrization [z(t) : x(t) : y(t)] = [1 + td−1 : td/2 : td]. The
existence of (c) and (d) is guaranteed by the results by Miyanishi-Sugie in [7] by
Miyanishi and or by Kashiwara classification [5], Corollary 11.4. These two cases
can be realized by a rational pencil of type (0, 1): the generic member of the pencil
is (c), while the special member of the pencil is of type (d) (cf. also with the last
paragraphs of the present article). Orevkov in [9] provides a different construction
for curves which realize the case (d) (denoted by him by Cj). Similarly, the cases
(e) and (f) are realized by the sporadic cases C4 and C∗

4 of Orevkov [9].

1.1. Remarks

(1) Since C is rational and its singular locus p has Milnor number µ = (a−1)(b−1),
the genus formula says that

(a − 1)(b − 1) = (d − 1)(d − 2). (1)

On the other hand, not any triple (d, a, b) with (a− 1)(b− 1) = (d− 1)(d− 2) can
be geometrically realized. E.g., (5, 3, 7) or (17, 6, 49) cannot.
(2) There are two integers which coordinate the above classification. The first one
is defined as follows. Let π : X → P2 be the minimal good embedded resolution
of C ⊂ P2, and let C̄ be the strict transform of C. Clearly, (π∗C, C̄) = C2 = d2,
and π∗C = C̄ + abE−1 + · · · (where E−1 is the unique −1 exceptional curve of π),
hence d2 = C̄2 + ab. Using (1), we get:{

a + b = 3d − 1 − C̄2

ab = d2 − C̄2.
(2)

Then C̄2 in the above cases is as follows: it is positive for (a) and (b), it is zero
for (c), equals −1 for (d), and = −2 for (e) and (f).
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(3) The second guiding integer is the logarithmic Kodaira dimensions κ̄ := κ̄(P2\C)
(cf. [4]). Its values are the following (cf. [9]): −∞ for (a)-(d), and 2 for the last
two sporadic cases. (In particular, κ̄ depends only on the integers (d, a, b), and it
is independent on the analytic type of C which realizes these integers.)

In particular, the above classification shows that κ̄ = −∞ if and only if
C̄2 > −2.

In fact, after we finished the manuscript, we learned from the introduction of
[10] that in [16] (written in Japanese) it is proved that for any unicuspidal rational
curve C, κ̄ = −∞ if and only if C̄2 > −2. Using [16] (i.e., this equivalence),
a possible ‘quick’ classification for C̄2 > −2 would run as follows: Since for all
these cases κ̄ = −∞, we just have to separate in Kashiwara’s classification [5]
those unicuspidal curves with exactly one Puiseux pair. Their numerical invariants
(d, a, b) are exactly those listed in (a)–(d).

On the other hand, this argument probably does not show what is really
behind the classification of this case. Therefore, we decided to keep the structure
of our manuscript, and provide an independent classification.

Note also that in [2] we list the complete topological classification of the
cuspidal rational curves with κ̄ < 2. In fact κ̄ = 0 cannot occur because of a result
of Tsunoda’s [11], see also Orevkov’s paper [9]. Moreover, Tono in [10] provides all
the possible curves C with κ̄ = 1: there is no one with one Puiseux pair.

Hence, in our case, the remaining part of the classification corresponds to
C̄2 ≤ −2, or equivalently, to κ̄ = 2. In general, the classification of this (‘general’)
case is the most difficult; and in our case it is not clear at all at the beginning (and,
in fact, it is rather surprising) that there are only two (sporadic) cases satisfying
these data.

(4) Let α = (3 +
√

5)/2 be the root of α + 1
α = 3. Notice that in family (d) d/a

and b/d asymptotically equals α. In fact, for j odd, {ϕj/ϕj−2}j are the increasing
convergents of the continued fraction of α. Using this, another remarkable property
of the family (d) can be described as follows (cf. [9], page 658). The convex hull of
all the pairs (m, d) ∈ Z2 satisfying m + 1 ≤ d < αm (cf. with the sharp Orevkov
inequality [9], or 2.4) coincides with the convex hull of all pairs (m, d) realizable
by rational unicuspidal curves C (where d = deg(C) and m = mult(C, p)) with
κ̄(P2 \C) = −∞; moreover, this convex hull is generated by curves with numerical
data (a) and (d).

(5) It is clear that the families (a)–(d) are organized in nice series of curves. It is
less clear from the statement of the theorem, but rather clear from the proof, that
also (e)–(f) form a ‘series’: they are the only curves with 3d = 8a (cf. also with
the next remark).

(6) A hidden message of the classification (and some of the steps of the proof) is
that there is an intimate relationship between the semigroup of N generated by
the elements a and b, and the intervals of type ( (l − 1)d , ld ]. The endpoints d
and 3d play crucial roles in some of the arguments. (E.g., C̄2 ≤ −2 if and only if
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a + b > 3d; see also 2.5.) This fact is deeply exploited in [2]. In fact, that paper
strongly motivated the present manuscript.
(7) The (part of the) proof in section 4 clearly shows the deficiencies of the known
restrictions, bounds which connect the local data (a, b) with the degree d – although
we list and try to use a large number of them. On the other hand, the above
classification fits perfectly with the conjectured restriction proposed by the authors
in [2] (valid in a more general situation), which, in fact, alone would provide the
classification.

2. Restrictions and bounds

In the present section we list some general results which impose some restrictions
for the integers (d, a, b). We start with a trivial one: (1) and (2) clearly imply:

Lemma 2.1 (The ‘trivial’ bound.). In any situation b ≥ d. Moreover, if b = d then
(a, b) = (d − 1, d).

If b > d then a < d− 1. The next result proves a ‘gap’ for a: if a < d− 1 then
a ≤ d/2 too.

Lemma 2.2 (The ‘dual curve bound’). If b > d then d ≥ 2a (hence b > 2a too).

Proof. Let (C, p) be the germ of the singular point p of C, and let {mi}i be the
multiplicity sequence of (C, p). We will use the symbol ∨ for the corresponding
invariants of the dual curve C∨ of C. By a result of C.T.C. Wall [15] Proposition
7.4.5, the blow ups of the singularities (C, p) and (C∨, p∨) (where p∨ corresponds to
the tangent cone of (C, p)) are equisingular. Assume that b < 2a. Then m2 = b−a,
hence m∨

2 = b − a ≤ m∨
1 . But, according [15], the intersection multiplicity of the

tangent cone of (C, p) with C at p is i = m1 + m∨
1 , hence d ≥ i = m1 + m∨

1 ≥
a + b − a = b, a contradiction. In particular, b ≥ 2a. In this case m2 = a, hence
m∨

2 = a as well. The above argument gives: d ≥ i ≥ m1 + m∨
1 ≥ 2a. �

2.1. The semicontinuity of the spectrum

The very existence of the curve C shows that the local plane curve singularity (C, p)
is in the deformation of the local plane curve singularity (U, 0) := (xd +yd, 0) (see,
e.g., [1] (3.24)). In particular, we can use the semicontinuity of the spectrum for
this pair [13, 14]. More precisely, this assures that in any interval (c, c + 1), the
number of spectral numbers of (C, p) is not larger than the number of spectral
numbers of (U, 0). E.g., for the intervals (−1 + l/d, l/d) (l = 2, 3, . . . , d) one has
the following inequality:

#{ i

a
+

j

b
<

l

d
; i ≥ 1, j ≥ 1} ≤ 1 + 2 + · · · + l − 2 =

(l − 2)(l − 1)
2

. (SSl)

Notice that the inequality (SSd) is automatically satisfied (with equality), since
for both singularities the number of spectral numbers strict smaller than 1 is
(d − 1)(d − 2)/2.
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2.2. Example. The inequality (SSd−1)
We denote by #d−1 the number of lattice points at the left-hand side of (SSd−1).
Since i/a < (d − 1)/d and a < d, one gets that 1 ≤ i ≤ a − 1. Therefore,

#d−1 =
a−1∑
i=1

#{j : 1 ≤ j < b(
d − 1

d
− i

a
)} =

a−1∑
i=1

⌈
b − b

d
− ib

a

⌉
− 1,

hence

#d−1 = (a − 1)(b − 1) −
a−1∑
i=1

⌊ b

d
+

ib

a

⌋
.

This expression can be computed explicitly. Indeed, since (a, b) is a lattice point
and gcd(a, b) = 1, one has:

a∑
i=1

⌊ ib

a

⌋
=

(a + 1)(b + 1)
2

− a,

hence
a∑

i=1

⌊ ib

a
+

b

d

⌋
=

(a + 1)(b + 1)
2

− a + a
⌊ b

d

⌋
+

a∑
i=1

⌊{ ib

a

}
+

{ b

d

}⌋
.

Notice that the set {ib/a} for i = 1, . . . , a is the same as the set r/a for r =
0, . . . , a − 1. Moreover, r/a + {b/d} ≥ 1 if and only if a− 1 ≥ r ≥ �a(1 − {b/d})	,
hence the number of possible r’s is 
a{b/d}�. Therefore,

a∑
i=1

⌊ ib

a
+

b

d

⌋
=

(a + 1)(b + 1)
2

− a +
⌊ab

d

⌋
.

Hence
a−1∑
i=1

⌊ ib

a
+

b

d

⌋
=

(a + 1)(b + 1)
2

− a − b −
⌊ b

d

⌋
+

⌊ab

d

⌋
,

or

#d−1 =
(a − 1)(b − 1)

2
+

⌊ b

d

⌋
−

⌊ab

d

⌋
,

Then, using (1) and (2), (SSd−1) becomes:
⌊ b

d

⌋
+

⌈ C̄2

d

⌉
≤ 2. (3)

2.2.1. Other examples of (SSl). (SS2) is equivalent with 1/a + 1/b ≥ 2/d. This is
true automatically, since 1/a + 1/b ≥ 1/d + 1/(d − 1) > 2/d. The next inequality
(SS3) is equivalent with 2/b + 1/a ≥ 3/d, which also is satisfied automatically.

If b > d then a+2b > 3a+ b (cf. 2.2), hence (SS4) is equivalent with the pair
of inequalities: a + 2b ≥ 4ab/d and 4a + b ≥ 4ab/d. Or, via (2):

min{3a, b} ≥ d + 1 +
d − 4

d
C̄2.
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This with an (absolute) lower bound for C̄2 already is interesting: 3a > d+const,
which has the flavor of the Matsuoka-Sakai inequality 3a > d (see 2.3) proved by
different methods.

By a similar method as above, one can verify that (SSd−2) is equivalent with:
⌊2b

d

⌋
+

⌈2C̄2

d

⌉
≤ 5.

and (SSd−3) is equivalent with:
⌊3b

d

⌋
+

⌊3b

d
− b

a

⌋
+

⌈3C̄2

d

⌉
≤ 8.

In general, one expects that the set of all inequalities (SSl) is really strong.

2.3. Matsuoka-Sakai inequality

The next set of restrictions are provided by Bogomolov-Miyaoka-Yau type inequal-
ities in [6] which in our case reads as d < 3a (valid for any κ̄).

2.4. Remark. Orevkov’s inequality

Orevkov in [9] obtained different improved versions of 2.3. Below α = (3+
√

5)/2 ≈
2.618 and β = 1/

√
5.

(a) [9] Theorem B(a): If κ̄ = −∞, then d < αa.
(b) [9] Theorem B(b): If κ̄ = 2, then d < α(a + 1) − β.
(c) [9] (2.2)(4): If κ̄ = 2, then

−C̄2 ≤ −2 +
a

b
+

b

a
. (4)

Finally, we end with the following:

2.5. The ‘semigroup density property’ [2]
Let Γ be the semigroup of (C, p), i.e., the semigroup (with 0) of N generated by
the integers a and b. Then for any 0 ≤ l < d the following inequality holds:

#Γ ∩ [0, ld] ≥ (l + 1)(l + 2)/2.

Proof. It is instructive to sketch the proof for l = 3 case: we wish to prove #Γ ∩
[0, 3d] ≥ 10. Recall that a cubic is determined by 9 parameters. Therefore, #Γ ∩
[0, 3d] ≤ 9 would imply the existence of a cubic with intersection multiplicity with
C at p strict greater than 3d, which contradicts Bézout’s theorem. �

In the classical theory, many ‘candidates’ (d, a, b) were eliminated by dif-
ferent geometric constrictions using ingenious Cremona transformations. We will
exemplify this in 4.3.
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3. The classification in the case C̄2 > 0

Theorem 3.1. If C̄2 > 0 then either (a, b) = (d − 1, d) or (a, b) = (d/2, 2d− 1).

Proof. Since b ≥ d (cf. Lemma 2.1), by (3) we get that C̄2 ≤ d. Clearly, equality
holds if and only if (a, b) = (d − 1, d). Next, assume that 0 < C̄2 < d. Then again
by (3) one has 
b/d� ≤ 1, or b < 2d. But notice that b < 2d − 1 would imply (by
(1)) that a > d/2 which contradicts Lemma 2.2. Hence b = 2d − 1. �

4. Classification in the case C̄2 ≤ −2

4.0.1. Our first goal is to prove that 3d ≥ 8a. For this we apply 2.5 for l = 3.
Since a+b > 3d (cf. (2)) and 9a > 3d (cf. 2.3), the needed 10 elements of Γ∩ [0, 3d]
must be b, 0, a, . . . , 8a, hence 8a ≤ 3d.

Corollary 4.1. κ̄(P2 \ C) = 2.

Proof. κ̄ cannot be −∞ because of 2.4(a); cannot be 0 because of [9], Theorem
B(c) (see also [11]). Unicuspidal rational curves with κ̄ = 1 are classified by K.
Tono [10], the corresponding splice diagrams are listed in [2]: there is no example
with one Puiseux pair. �

Now, the classification for C̄2 ≤ −2 can be finished in two different ways.

4.1. First proof. Using the computer

The first version is based on the inequality 2.4(b). Notice that in the case of a
geometric realization one must have

3α(a + 1) − 3β > 3d ≥ 8a,

which is true only if a ≤ 44, (or, by using again d < α(a+1)−β), only if d ≤ 117.
Hence, we have only to analyze the finite family determined by, say, d ≤ 117. Then,
one can search with the computer for 3-uples (d, a, b) verifying all the restrictions
considered above. E.g., we used the conditions d ≤ 117, gcd(a, b) = 1, a < d <
b, d < 3a, 3d ≥ 8a, 2 ≤ −C̄2 ≤ −2 + a

b + b
a , b < α(d − 1)(d − 2)/(d − 2α + β)) +

1, (d − α + β)/α < a, and (SSd−1), (SSd−2), (SSd−3), (SSd−4), (SS4). Using the
inequality 3d ≥ 8a and a similar computation as in the case of (SSd−1), we obtain
that (SSd−4) is equivalent with⌊4b

d

⌋
+

⌊4b

d
− b

a

⌋
+

⌈4C̄2

d

⌉
≤ 13. (5)

Then the only triplets satisfying all these are listed below (in the list appears
(d, a, b; C̄2)):

C1 := ( 8, 3, 22;−2),
C2 := (11, 4, 31;−3),
C3 := (16, 6, 43;−2),
C4 := (17, 6, 49;−5),
C5 := (19, 7, 52;−3),
C6 := (20, 7, 58;−6).
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Next, notice that the curves C1 and C3 exist, they are listed in our classification
theorem. The others do not exist: C2 is eliminated by Orevkov in [9], page 2 (see
also 4.4 (b)); C4 and C6 can be excluded by the semicontinuity property of the
spectrum (applied for all the intervals of type (l/d, l/d + 1), −d < l < d), finally
C5 can be eliminated by the ‘nodal cubic trick’, see Example 4.4 (a). (Notice also
that C2 and C5 cannot be eliminated by the semicontinuity property.)

4.2. Second proof. Resolving diophantic equations

Next we show how one can analyze the case 3d ≥ 8a (cf. 4.0.1) by a diophantic
equation (for the convenience of the reader, later we will make more precise the
geometry behind this equation, cf. 4.2 and 4.3). Our goal is to eliminate everything
excepting C1 and C3, and to emphasize that C exists if and only if 3d = 8a, and
C1 and C3 are the only solutions with 3d = 8a.

Let us write x := 3d − 8a ≥ 0. Then clearly 3|a − x. Moreover,

−C̄2(a − 1) = −(3d − 1 − a − b)(a − 1)

= −(x + 7a − 1 − b)(a − 1)

= (b − 1)(a − 1) − (x + 7a− 2)(a − 1)

= (d − 1)(d − 2) − (x + 7a− 2)(a − 1).

Using again d = (x + 8a)/3 one gets

−9C̄2(a − 1) = x2 + 7ax + a2 + 9a. (6)

4.2.1. The case x = 0. (6) implies the divisibility a− 1|10. Since one also has 3|a,
the only solutions are a = 3 and a = 6, corresponding to C1 and C3 above.

4.2.2. Facts. −C̄2 ≤ 7 and x ≤ 5.

Proof. First we verify −C̄2 ≤ 7. It is easy to verify (using (1), (2) and d/3 < a ≤
d/2, cf. 2.3 and 2.2) that for 6 ≤ d ≤ 10 this is true. Hence assume that d ≥ 11.
Notice that if for some (positive) k one has kd ≤ −C̄2 < (k + 1)d, then (3) gives
b/d ≤ 3 + k. But d/a < 3 by 2.3, hence b/a < 3(3 + k). Using 2.4(c) one gets
−C̄2 ≤ 3k + 7. Since for k > 0 and d ≥ 11 one has 3k + 7 < dk, one should have
k = 0.

Using this and x ≥ 6, from (6) we get 63(a− 1) ≥ 36 + 42a + a2 + 9a, which
has no solution. �

Now, we consider the above equation (6) for x ≥ 1. By 4.2.2 we only have to
analyze the cases 1 ≤ x ≤ 5, and eliminate all the solutions.
The case x = 1. In this case one has −9(C̄2 + 2)(a − 1) = (a − 1)2 + 18, hence
3|a − 1|18 but 9 � |a − 1. In particular, a = 4 or 7 corresponding to C2 and C5

above.
The case x = 2. Similarly as above, a− 1|28 and 3|a− 2, hence a− 1 = 4, 7 or 28.
In fact, if a = 5 then d = 12 and b �∈ Z. The next case (d, a, b; C̄2) = (22, 8, 61;−4)
can be eliminated by (5); the last (78, 29, 210;−6) by 2.4(c).
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The case x = 3. Now a−1|40 and 3|a. The possible a’s are a = 3 which gives d = 9
contradicting 2.3; a = 6 providing C4; a = 9 providing (25, 9, 70;−5) which can be
eliminated by (5), and a = 21 providing (57, 21, 155;−6) which is eliminated by
2.4(c).
The case x = 4. (6) has two solutions: C6: (20, 7, 58;−6) and (28, 10, 79;−6), the
second one can be eliminated by (5).
The case x = 5 provides two integral solutions: (23, 8, 67;−7) and (31, 11, 88;−7).
Both can be eliminated by 2.4(c).

We end this section by the description of the promised geometric construction
(used also in [9] and by E. Artal-Bartolo as well).

Lemma 4.2 (The existence of a specific nodal cubic.). There exists a (unique)
irreducible cubic N ⊂ P2 with a node singularity at p such that N and C share the
first seven infinitely near points at p.

Proof. A cubic is determined by nine parameters. The multiplicity sequence of
N at p should be [2, 16]. Passing through p and having multiplicity 2 provides 3
conditions. The remaining six conditions are imposed by the remaining six infin-
itely near points. The condition which would imply that the singularity (N, p) is
a cusp would involve another equation (the vanishing of the determinant of the
quadratic part at p), and the corresponding system of equations would not have
any solution. Similar arguments eliminates other type of singularities (two smooth
branches with contact two, or (N, p) with multiplicity 3). Hence (N, p) is a node.

Next we prove that N cannot be a product of three linear forms. Indeed,
the tangent line L0 of C at p goes just through the first two infinitely near points
because d < 3a and d = L0 · C. Any other line has less tangency than L0. This
also shows that N cannot be L0 · Q for some Q (transversal to L0 at p).

The remaining possibility is N = LQ where Q is a smooth conic and L and
Q meets transversally at p. Since Q is determined by five conditions (five infinitely
near points) then Q and C must be tangent and share the seven infinitely near
points at p. In particular by Bezout 2d = Q ·C ≥ 6a which is in contradiction with
d < 3a, cf. 2.3. �

4.3. The Cremona transformation associated with the nodal cubic N

Consider the nodal cubic N given in Lemma 4.2. First we verify that C and N
share exactly the first seven infinitely near points. Indeed, assume that this is not
the case. If b ≤ 8a then the multiplicity sequence of (C, P ) is [a7, b−7a, . . . ], hence
3d ≥ 2a+6a+b−7a = a+b = 3d−1−C̄2 > 3d, a contradiction. If b > 8a then the
multiplicity sequence of (C, P ) is [a8, . . . ], hence 3d ≥ 9a which contradicts 2.3.

In particular, the intersection multiplicity of C and N at P is 8a. Assume
that C ∩ N = {P, P1, . . . , Pr}. Notice that at Pi (1 ≤ i ≤ r) both curves C and
N are smooth, let ki be their intersection multiplicity at Pi. By Bezout’s theorem
one has 3d = 8a +

∑
i ki. We prefer to write x :=

∑
i ki, hence 3d = 8a + x (and

the notation is compatible with above).
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Blow up the common seven infinitely near points. We get seven irreducible
exceptional divisors {Ei}7

i=1. Let C̃ and Ñ be the strict transforms of C and N .
One has the following intersections: E2

1 = · · · = E2
6 = −2, E2

7 = −1, Ñ2 = −1,
E1 ·E2 = E2 ·E3 = · · · = E6 ·E7 = 1, E1 ·Ñ = E7 ·Ñ = 1. Also, C̃ intersects E7 (but
not the other irreducible exceptional divisors) at a point P ′, and the singularity
(C̃, P ′) has exactly one Puiseux pairs of type (b − 7a, a). The intersection of Ñ
with E7 is not P ′.

Consider now the curve Ñ ∪ ∪6
i=1Ei. Clearly, this can be blown down, and

after this modification π we get another copy of P2. Let the image of C̃ via this
projection be C′. By standard (intersection) argument one gets that the degree d′

of C′ is

d′ = 8d − 21a (which also satisfies 3d′ = 8x + a).

The curve C′ has at most two singular points. One candidate is the (isomorphic)
image of the germ at P ′ with one Puiseux pair (b−7a, a). The other is the common
image of the points {Pi} (1 ≤ i ≤ r). Clearly, if x = 0 then this point does not
exist, if x = 1 then this is a smooth point, but otherwise it is singular. One can
find its embedded resolution graph by blowing up (for each i) ki times the point
Pi. Hence, by A’Campo’s formula one can determine its Milnor number, which
is µ = 7x2 − 7x − r + 1 (provided that x ≥ 1). Since it has r local irreducible
components, the delta-invariant is (7x2 − 7x)/2. Then one can verify that (6)
corresponds to the genus formula of C′.

4.4. Example

(a) Let us start with (d, a, b) = (19, 7, 52). Then x = 1, hence C′ is again rational
and unicuspidal with (d′, a′, b′) = (5, 3, 7). But such a curve does not exist because
of 3.1 (one can also check the classification of rational curves of degree five, e.g.,
in [8]).

(b) Let us consider now the curve C2 above with data (d, a, b) = (11, 4, 31).
Then x = 1, hence C′ is rational unicuspidal, say at Q1, with (d′, a′, b′) = (4, 3, 4).
Notice that a curve with this triplet may exists – although C2 does not. The image
N̄ under the modification π of the exceptional curve E7 is a (rational) nodal cubic
with a node, say at Q2(�= Q1). Moreover, N̄ · C′ = 4Q1 + 8Q2. At Q1, N̄ is non-
singular and with the same tangent as C′, and at Q2 the quartic C′ has intersection
multiplicity 7 with one of the branches of the node of N̄ and 1 with the other. To
show that C2 does not exist we will prove that such configuration of the rational
curves C′ and N̄ in P2 does not exist.

Choosing affine coordinates we may assume that C′ is given by the zero locus
of ay3 +a1y

3x+a2y
2x2 +a3yx3 +x4 +a0y

4; with a �= 0. In such a case Q1 = (0, 0)
and its tangent line L1 = {y = 0} verifies L1 · C′ = 4Q1. The curve C′ has a
parametrization given by [z(λ, t) : x(λ, t) : y(λ, t)] = [λ4 +a3tλ

3 +a2t
2λ2 +a1t

3λ+
a0t

4 : −at3λ : −at4].
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To have IQ1 (N̄ , C′) = 4 then N̄ must be the zero locus of a polynomial
y + f2(x, y) + f3(x, y) (see the parametrization of C′), where f2(x, y) = m1,1xy +
m2,0x

2 + m0,2y
2 and f3(x, y) = n1,2xy2 + n2,1x

2y + n3,0x
3 + n0,3y

3.
Next one imposes that, in the affine plane P2 \ L1 = {y �= 0}, the curves

C′ and N̄ must meet at only one point Q2 (with intersection multiplicity 8). The
parametrization of C′ in this affine chart is (z, x) = (s4+a3s

3+a2s
2+a1s+a0,−as)

and the equation of N̄ is given by z2 + f2(x, 1)z + f3(x, 1) = 0. Imposing to have
a solution of the form (As + B)8 gives B = a3A/4 which means s = −a3/4. We
have two possibilities: firstly, if a3 = 0 then s = 0 and Q2 = (z, x) = (a0, 0). The
solutions are given by m1,1 = 2a1/a; m2,0 = −2a2/a2; m0,2 = −(2a0 − a2

2); n1,2 =
(−2a0+a2

2)a1/a; n2,1 = (a2
1+2a0a2−a3

2)/a2; n3,0 = −2a1a2/a3; n0,3 = (a0−a2
2)a0.

To have N̄ a node at Q2 implies a2 vanishes and therefore N̄ must be a conic which
is a contradiction.

In the other case, i.e., a3 �= 0 then s = −a3/4 and Q2 = (z, x) = (z0, aa3/4).
The solutions are given by:

m1,1 = (16a1 − a3
3)/(8a);

m2,0 = (3/4a2
3 − 2a2)/a2;

m0,2 = −2a0 + a2
2 + 19a4

3/128 − 3a2a
2
3/4;

n1,2 = − 4096a0a1−2048a1a2
2−304a1a4

3+1536a1a2a2
3−256a0a3

3+a7
3

2048a ;

n2,1 = 211a0a2+(25a1)
2−210a3

2−152a2a4
3+768a2

2a2
3−128a1a3

3−768a0a2
3+7a6

3
(25a)2 ;

n3,0 = (−64a1a2 + 32a3a
2
2 + 3a5

3 − 20a2a
3
3 + 24a1a

2
3)/(32a3);

n0,3 = a2
0 − a0a

2
2 − (19/128)a0a

4
3 + (3/4)a0a2a

2
3 + (1/65536)a8

3.

In order N̄ to have multiplicity two at Q2 one needs a2 = 3a2
3/8 but this

condition also impose that the tangent cone of N̄ at Q2 is a double line and
therefore Q2 cannot be a node. Hence this configuration also does not exist.

5. The case C̄2 = 0,−1

In this section we find all the integer solution (d, a, b) of (2) with C̄2 = 0,−1 and
we show that all of them can be realized by some unicuspidal rational plane curve
of degree d and Puiseux pair (a, b). Let ϕj be the ith Fibonacci number, that is
ϕ0 = 0, ϕ1 = 1 and ϕj+2 := ϕj+1 + ϕj . They share many interesting properties,
see, e.g., [12]. We will use here the following:

3ϕj = ϕj−2 + ϕj+2, and ϕ2
j = (−1)j+1 + ϕj−1ϕj+1. (7)

Let Φ = 1+
√

5
2 be the positive solution of the equation Φ2 − Φ − 1 = 0. For every

integer j > 0 one has:

Φj =
ϕj+1 + ϕj−1 + ϕj

√
5

2
. (8)
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5.1. The Pell equation

The system of equations (2) for C̄2 = 0,−1 can be transformed (see below) into
the Pell equation:

x2 − 5y2 = −4, x, y ∈ Z. (9)
Consider the number field K = Q[

√
5] and its ring of integers R = Z[

√
5], which

is a UFD. If γ = x + y
√

5 is a solution of (9) then its norm is NK(γ) = γγ̄ = −4.

Consider η = 1 +
√

5, then NK(η) = −4 and −4 has a prime decomposition
−4 = ηη̄. Since the fundamental unit of K turns out to be u = 2 +

√
5 and γ is

associated either to η or η̄ then γ is either ±urη or ±ūrη̄ (since ū = −1/u) for
r ∈ Z. Moreover NK(u) = −1 which implies that r must be even, that is r = 2j
for j ∈ Z. Then η = 2Φ and from the identity Φ2 = Φ + 1 one gets Φ3 = u.

Thus solutions of (9) are either γ = ±u2jη = ±2Φ6j+1 or γ = ±ū2j η̄ =
±2Φ̄6j+1 with j ∈ Z. Using ΦΦ̄ = −1, γ is either ±2Φ6j+1, ±2Φ6j−1, or their
conjugates ±2Φ̄6j+1,±2Φ̄6j−1 with j ≥ 0.

Using (7) and (8) the set of solutions of (9) is given by
(A) ± (

ϕ6j+2 + ϕ6j + ϕ6j+1

√
5
)
, with j ≥ 0,

(B) ± (
ϕ6j + ϕ6j−2 + ϕ6j−1

√
5
)
, with j ≥ 0,

(C) ± (
ϕ6j+2 + ϕ6j − ϕ6j+1

√
5
)
, with j ≥ 0,

(D) ± (
ϕ6j + ϕ6j−2 − ϕ6j−1

√
5
)
, with j ≥ 0.

5.2. The case C̄2 = 0
Since gcd(a, b) = 1 and ab = d2 then a = m2, b = n2 and d = mn for some positive
integers m, n with gcd(m, n) = 1. Thus a + b = 3d − 1 transforms into

m2 + n2 = 3mn − 1. (10)

5.3. The case C̄2 = −1
The system (2) provides the equation

a2 + d2 = 3ad − 1. (11)

Thus, any solution (ω, v) of ω2+v2 = 3ωv−1 is a solution of (2ω−3v)2−5v2 = −4.
Hence, with the transformation x = 2ω − 3v, y = v, one gets the solutions of (9).

Case A. If γ = ± (
ϕ6j+2 + ϕ6j + ϕ6j+1

√
5
)
, j ≥ 0, is a solution of (9) then v =

±ϕ6j+1 and ω = ±(ϕ6j+2 + ϕ6j + 3ϕ6j+1)/2 = ±ϕ6j+3 is a solution of (10)
and (11) (for the last equality use (7)). Since 1 < a < d, if C̄2 = −1, then
a = ϕ6j+1, d = ϕ6j+3 and b = 3d − a = 3ϕ6j+3 − ϕ6j+1 = ϕ6j+5 for some
j > 0, by property (7) of Fibonacci numbers. Similarly, if C̄2 = 0, then ω and
v are both either positive or negative which implies a = ϕ2

6j+1, b = ϕ2
6j+3 and

d = ωv = ϕ6j+1ϕ6j+3 = ϕ2
6j+2 + 1.

Case B. If γ = ± (
ϕ6j + ϕ6j−2 − ϕ6j−1

√
5
)
, j ≥ 0, is a solution of (9) then v =

±(−ϕ6j−1) and ω = ±(ϕ6j + ϕ6j−2 − 3ϕ6j−1)/2 = ±(−ϕ6j−3) is a solution of
(10) and (11). In the case C̄2 = −1, one gets a = ϕ6j−3, d = ϕ6j−1 and b =
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3d − a = 3ϕ6j−1 − ϕ6j−3 = ϕ6j+1 with j > 0. If C̄2 = 0, then ω and v are both
either positive or negative which implies a = ϕ2

6j−3, b = ϕ2
6j−1 and d = ωv =

ϕ6j−1ϕ6j−3 = ϕ2
6j−2 + 1 with j > 0.

Case C. If γ = ± (
ϕ6j+2 + ϕ6j − ϕ6j+1

√
5
)
, j ≥ 0, is a solution of (9) then v =

±(−ϕ6j+1) and ω = ±(ϕ6j+2 + ϕ6j − 3ϕ6j+1)/2 = ±(−ϕ6j−1) is a solution of
(10) and (11). If C̄2 = −1, then a = ϕ6j−1, d = ϕ6j+1 and b = ϕ6j+3 with
j > 0. If C̄2 = 0, then ω and v are both either positive or negative which implies
a = ϕ2

6j−1, b = ϕ2
6j+1 and d = ϕ6j−1ϕ6j+1 = ϕ2

6j + 1 with j > 0.

Case D. Any solution in this case is included in the previous cases.

Hence, we determined all the possible integer solutions.

Theorem 5.1 (Classification for C̄2 = −1). If C̄2 = −1 then (a, b) = (ϕj−2, ϕj+2)
and d = ϕj , with j odd ≥ 5. For every such j there exists a unicuspidal rational
plane curve of degree with such invariants.

Theorem 5.2 (Classification for C̄2 = 0). If C̄2 = 0 then (a, b) = (ϕ2
j−2, ϕ

2
j ) and

d = ϕ2
j−1 + 1, with j odd ≥ 5. For every such j there exists a unicuspidal rational

plane curve with such invariants.

Proof. We only need to give equations for such curves. We will rely on [5], Corollary
11.4. Let (x, y) be a system of affine coordinates in P2 and consider

P−1 = y − x2, Q−1 = y, P0 = (y − x2)2 − 2xy2(y − x2) + y5,

Q0 = y − x2, G = xy − x3 − y3, Qs = Ps−1, Ps =
(
Gϕ2s+1 + Q3

s

)
/Qs−1.

Then Ps is a polynomial in x and y of degree ϕ2s+3 and defines a rational uni-
cuspidal curve whose unique singularity p has exactly one characteristic pair
of type (a, b) = (ϕ2s+1, ϕ2s+5). The curves Ps = 0 and Qs = 0 only meet
at p. The rational pencil with only one base point determined by the ratio-
nal function Rs = (Ps)ϕ2s+1/(Qs)ϕ2s+3 has only two special fibres Ps = 0 and
Qs = 0, and the other fibres are rational unicuspidal plane curves of degree
ϕ2s+3ϕ2s+1 = ϕ2

2s+2 + 1. The singularity of a generic fiber has one characteristic
pair (a, b) = (ϕ2

2s+1, ϕ
2
2s+3). �
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