London Mathematical Society Lecture Note Series 380

Real and Complex Singularities

Edited By M. Manoel, M. C. Romero Fuster and C. T. C Wall

CAMBRIDGE

CAMBRIDGE

more information - www.cambridge.org/9780521169691

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor M. Reid, Mathematics Institute,

University of Warwick, Coventry CV4 7AL, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at www.cambridge.org/mathematics

- Structured ring spectra, A. BAKER & B. RICHTER (eds)
- 318
- Linear logic in computer science, T. EHRHARD, P. RUET, J.-Y. GIRARD & P. SCOTT (eds) Advances in elliptic curve cryptography, I.F. BLAKE, G. SEROUSSI & N.P. SMART (eds) Perturbation of the boundary in boundary-value problems of partial differential equations, D. HENRY

- Perturbation of the obuildar y-value provension partial differential equations, D. HENKT Double affine Hecke algebras, I. CHEREDNIK L-functions and Galois representations, D. BURNS, K. BUZZARD & J. NEKOVÁŘ (eds) Surveys in modern mathematics, V. PRASOLOV & Y. ILYASHENKO (eds) Recent perspectives in random matrix theory and number theory, F. MEZZADRI & N.C. SNAITH (eds) Poisson geometry, deformation quantisation and group representations, S. GUTT *et al* (eds) Singularities and computer algebra, C. LOSSEN & G. PFISTER (eds)
- 324

- Singularities and computer algebra, C. LOSSEN & G. PFISTER (eds) Lectures on the Ricci flow, P. TOPPING Modular representations of finite groups of Lie type, J.E. HUMPHREYS Surveys in combinatorics 2005, B.S. WEBB (ed) Fundamentals of hyperbolic manifolds, R. CANARY, D. EPSTEIN & A. MARDEN (eds) Spaces of Kleinian groups, Y. MINSKY, M. SAKUMA & C. SERIES (eds) Noncommutative localization in algebra and topology, A. RANICKI (ed) Foundations of computational mathematics, Santander 2005, L.M PARDO, A. PINKUS, E. SÜLI & M.J. TODD (eds)
- Handbook of tilting theory, L. ANGELERI HÜGEL, D. HAPPEL & H. KRAUSE (eds)
- 334 Synthetic differential geometry (2nd Edition), A. KOCK The Navier–Stokes equations, N. RILEY & P. DRAZIN
- International Context and the second second

- 339
- Surveys in geometry and number theory, N. YOUNG (ed) Groups St Andrews 2005 I, C.M. CAMPBELL, M.R. QUICK, E.F. ROBERTSON & G.C. SMITH (eds) Groups St Andrews 2005 II, C.M. CAMPBELL, M.R. QUICK, E.F. ROBERTSON & G.C. SMITH (eds)
- Ranks of elliptic curves and random matrix theory, J.B. CONREY, D.W. FARMER, F. MEZZADRI & N.C. SNAITH (eds)
- 343

- N.C. SNAITH (eds)
 Elliptic cohomology, H.R. MILLER & D.C. RAVENEL (eds)
 Algebraic cycles and motives I, J. NAGEL & C. PETERS (eds)
 Algebraic and analytic geometry, A. NEEMAN
 Surveys in combinatorics 2007, A. HILTON & J. TALBOT (eds)
 Surveys in contemporary mathematics, N. YOUNG & Y. CHOI (eds)
 Transcendental dynamics and complex analysis, P.J. RIPPON & G.M. STALLARD (eds)
 Model theory with applications to algebra and analysis I, Z. CHATZIDAKIS, D. MACPHERSON, A. PILLAY & 349 A. WILKIE (eds) Model theory with applications to algebra and analysis II, Z. CHATZIDAKIS, D. MACPHERSON, A. PILLAY &
- A. WILKIE (eds) Finite von Neumann algebras and masas, A.M. SINCLAIR & R.R. SMITH
- 353
- Finite von recuriant ageoras and masas, A.M. Sheet E.A.R. & K.S. Shifti Number theory and polynomials, J. MCKEE & C. SMYTH (eds) Trends in stochastic analysis, J. BLATH, P. MÖRTERS & M. SCHEUTZOW (eds) Groups and analysis, K. TENT (ed) Non-equilibrium statistical mechanics and turbulence, J. CARDY, G. FALKOVICH J. CARDY, G. FALKOVICH & K. GAWEDZKI
- Elliptic curves and big Galois representations, D. DELBOURGO Algebraic theory of differential equations, M.A.H. MACCALLUM & A.V. MIKHAILOV (eds)
- Geometric and cohomological methods in group theory, M.R. BRIDSON, P.H. KROPHOLLER & I.J. LEARY (eds) Moduli spaces and vector bundles, L. BRAMBILA-PAZ, S.B. BRADLOW, O. GARCÍA-PRADA &
- S. RAMÁNAN (eds) Zariski geometries, B. ZILBER

- 363
- Zariski geometries, B. ZLEBER Words: Notes on verbal width in groups, D. SEGAL Differential tensor algebras and their module categories, R. BAUTISTA, L. SALMERÓN & R. ZUAZUA Foundations of computational mathematics, Hong Kong 2008, F. CUCKER, A. PINKUS & M.J. TODD (eds) Partial differential equations and fluid mechanics, J.C. ROBINSON & J.L. RODRIGO (eds) Surveys in combinatorics 2009, S. HUCZYNSKA, J.D. MITCHELL & C.M. RONEY-DOUGAL (eds) Highly oscillatory problems, B. ENGQUIST, A. FOKAS, E. HAIRER & A. ISERLES (eds) Bradom mutricary High dimensional phonomene. G. PLOWER

- Inginy oscinatory protoching, B. L. FOGUST, K. FORGS, E. INRENCE A. ISERCES (eds) Random matrices: High dimensional phenomena, G. BLOWER Geometry of Riemann surfaces, F.P. GARDINER, G. GONZÁLEZ-DIEZ & C. KOUROUNIOTIS (eds) Epidemics and rumours in complex networks, M. DRAIEF & L. MASSOULIÉ Theory of *p*-adic distributions, S. ALBEVERIO, A.YU. KHRENNIKOV & V.M. SHELKOVICH Conformal fractals, F. PRZYTYCKI & M. URBAŃSKI 368

- 373 Moonshine: The first quarter century and beyond, J. LEPOWSKY, J. MCKAY & M.P. TUITE (eds) Smoothness, regularity, and complete intersection, J. MAJADAS & A. RODICIO
- 375 Geometric analysis of hyperbolic differential equations: An introduction, S. ALINHAC Triangulated categories, T. HOLM, P. JØRGENSEN & R. ROUQUIER (eds)

- Triangulated categories, T. HOLM, P. JØRGENSEN & R. ROUQUIER (eds) Permutation patterns, S. LINTON, N. RUŠKUC & V. VATTER (eds) An introduction to Galois cohomology and its applications, G. BERHUY Probability and mathematical genetics, N.H. BINGHAM & C.M. GOLDIE (eds) Finite and algorithmic model theory, J. ESPARZA, C. MICHAUX & C. STEINHORN (eds) 379

London Mathematical Society Lecture Note Series: 380

Real and Complex Singularities

Edited by

M. MANOEL Universidade de São Paulo, Brazil

M. C. ROMERO FUSTER Universitat de València, Spain

C. T. C. WALL University of Liverpool, UK

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521169691

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data International Workshop on Real and Complex Singularities (10th : 2008 : São Carlos, São Paulo, Brazil) Real and complex singularities / edited by M. Manoel, M. C. Romero Fuster, C. T. C Wall. p. cm. – (London Mathematical Society lecture note series ; 380) Includes bibliographical references. ISBN 978-0-521-16969-1 (pbk.) 1. Singularities (Mathematics) – Congresses. I. Manoel, M., 1966– II. Romero Fuster, M. C. III. Wall, C. T. C. (Charles Terence Clegg) IV. Title. V. Series. QA614.58.I527 2008 516.3'5 – dc22 2010030522

ISBN 978-0-521-16969-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. This volume is dedicated to Maria Aparecida Ruas and Terence Gaffney on their 60th birthdays

Maria Aparecida Ruas

Terence Gaffney

Contents

Preface

page xiii

1	On	a conjecture by A. Durfee E. Artal Bartolo,	
	J. C	armona Ruber & A. Melle-Hernández	1
	1	Introduction	1
	2	Invariants of singularities	2
	3	Superisolated surface singularities	5
	4	Zariski pairs	11
		References	15
2	On	normal embedding of complex algebraic surfaces	
	L. B	Birbrair, A. Fernandes & W. D. Neumann	17
	1	Introduction	17
	2	Proof	18
		References	21
3	Local Euler obstruction, old and new, II Jean-Paul		
	Bra	sselet & Nivaldo G. Grulha Jr.	23
	1	Introduction	23
	2	Definition of the Euler obstruction	26
	3	Local Euler obstruction for a frame	29
	4	Euler obstruction and hyperplane sections	30
	5	The local Euler obstruction of a function	32
	6	The Euler obstruction and the Euler defect	33
	7	The Euler defect at general points	34
	8	The Euler obstruction via Morse theory	34
	9	Generalizations of Milnor number	35
	10	Bruce and Roberts' Milnor Number	36
	11	Local Euler obstruction of an analytic map	38

Contents

 13 Local Chern obstruction of collections of 1-forms and special points References 4 Branching of periodic orbits in reversible Hamiltonian systems C. A. Buzzi, L. A. Roberto & M. A. Teixeira 1 Introduction 2 Preliminaries 3 Belitskii normal form 4 Liapunov–Schmidt reduction 5 Birkhoff normal form 6 Two degrees of freedom 7 Three degrees of freedom 8 Examples 			
References 4 Branching of periodic orbits in reversible Hamiltonian systems 7 C. A. Buzzi, L. A. Roberto & M. A. Teixeira 1 Introduction 2 Preliminaries 3 Belitskii normal form 4 Liapunov–Schmidt reduction 5 Birkhoff normal form 6 Two degrees of freedom 7 Three degrees of freedom			
 Branching of periodic orbits in reversible Hamiltonian systems C. A. Buzzi, L. A. Roberto & M. A. Teixeira Introduction Preliminaries Belitskii normal form Liapunov–Schmidt reduction Birkhoff normal form Two degrees of freedom Three degrees of freedom 	41		
systemsC. A. Buzzi, L. A. Roberto & M. A. Teixeira1Introduction2Preliminaries3Belitskii normal form4Liapunov–Schmidt reduction5Birkhoff normal form6Two degrees of freedom7Three degrees of freedom	43		
 Introduction Preliminaries Belitskii normal form Liapunov–Schmidt reduction Birkhoff normal form Two degrees of freedom Three degrees of freedom 			
 2 Preliminaries 3 Belitskii normal form 4 Liapunov–Schmidt reduction 5 Birkhoff normal form 6 Two degrees of freedom 7 Three degrees of freedom 	46		
 Belitskii normal form Liapunov–Schmidt reduction Birkhoff normal form Two degrees of freedom Three degrees of freedom 	46		
 4 Liapunov–Schmidt reduction 5 Birkhoff normal form 6 Two degrees of freedom 7 Three degrees of freedom 	49		
 5 Birkhoff normal form 6 Two degrees of freedom 7 Three degrees of freedom 	55		
6 Two degrees of freedom7 Three degrees of freedom	56		
7 Three degrees of freedom	59		
-	60		
8 Examples	65		
*	68		
References	69		
Topological invariance of the index of a binary differential			
equation L. S. Challapa	71		
1 Introduction	71		
2 Index of a binary differential equation	72		
3 Topological invariance of $I(E, 0)$	75		
4 Examples	79		
References	80		
6 About the existence of Milnor fibrations			
J. L. Cisneros-Molina & R. N. Araújo Dos Santos	82		
1 Introduction	82		
2 Milnor fibrations for complex maps	86		
3 Milnor fibrations for real maps	91		
References	101		
Counting hypersurfaces invariant by one-dimensional			
complex foliations Maurício Corrêa Jr. & Márcio			
G. Soares	104		
1 Introduction	104		
2 Statement of results	106		
3 Examples	109		
4 Proofs	110		
References	113		
8 A note on topological contact equivalence J. C. F. Costa	114		
1 Introduction	114		
2 Topological contact equivalence	115		

viii

	3	Properties and invariants	115		
		References	123		
9	Bi-I	ipschitz equivalence, integral closure			
		invariants Terence Gaffney	125		
	1	Introduction	125		
	2	The Lipschitz saturation of an ideal or module	126		
	3	Bi-Lipschitz equisingularity of families of curves	132		
		References	136		
10	Solu	Solutions to PDEs and stratification conditions			
	Tere	nce Gaffney	138		
	1	Introduction	138		
	2	The method of characteristics and W stratifications	138		
		References	145		
11	Real integral closure and Milnor fibrations				
		nce T. Gaffney & Raimundo Araújo Dos Santos	146		
	1	Introduction	146		
	2	Notations and setup	149		
	3	Some results	150		
		References	156		
12	Sur	faces around closed principal curvature lines,			
		nverse problem <i>R. Garcia, L. F. Mello &</i>			
	J. S	otomayor	158		
	1	Introduction	158		
	2	Preliminary results	160		
	3	Hyperbolic principal cycles	162		
	4	Concluding remarks	165		
		References	166		
13	Eul	er characteristics and atypical values			
	Heli	nut A. Hamm	167		
	1	Cohomological results	168		
	2	Absence of vanishing cycles	174		
	3	Topological triviality	178		
		References	183		
14	Answer to a question of Zariski A. Hefez &				
		E. Hernandes	185		
	1	Introduction	185		
	2	Classification of the equisingularity class $(7, 8)$	185		
	3	The question of Zariski	186		
		References	189		

ix

Contents

Х

15	Projections of timelike surfaces in the de Sitter	
	space Shyuichi Izumiya & Farid Tari	190
	1 Introduction	190
	2 Preliminaries	191
	3 The family of projections along geodesics in S_1^n	195
	4 Projections of timelike surfaces in S_1^3	198
	5 Duality	205
	6 Appendix	208
	References	209
16	Spacelike submanifolds of codimension at most two in de	
	Sitter space M. Kasedou	211
	1 Introduction	211
	2 Lightcone Gauss images of spacelike hypersurfaces	212
	3 Lightcone height functions	215
	4 Generic properties and de Sitter hyperhorospheres	217
	5 Spacelike surfaces in de Sitter 3-space	220
	6 Spacelike submanifolds of codimension 2	221
	7 Lightlike hypersurfaces and contact with lightcones	223
	8 Lightcone Gauss maps and lightcone height functions	224
	9 Classification in de Sitter 4-space	226
	References	227
17	The geometry of Hopf and saddle-node bifurcations for	
	waves of Hodgkin-Huxley type Isabel S. Labouriau &	
	Paulo R. F. Pinto	229
	1 Introduction – equations of Hodgkin-Huxley type	230
	2 Linearisation	233
	3 The exchange of stability set	235
	4 The exchange of stability set in (HHW)	238
	5 Example: single channel Hodgkin-Huxley equations	241
	References	244
18	Global classifications and graphs J. Martínez-Alfaro,	
	C. Mendes de Jesus & M. C. Romero-Fuster	246
	1 Introduction	246
	2 Surfaces and graphs	247
	3 3-Manifolds and graphs	262
	References	264
19	Real analytic Milnor fibrations and a strong Łojasiewicz	
	inequality David B. Massey	268
	1 Introduction	268
	2 Singular values of matrices	271

<i>Contents</i>

	3	Ł-maps and Ł-weights	274
	4	Milnor's conditions (a) and (b)	282
	5	The main theorem	286
	6	Comments and questions	290
		References	291
20	An	estimate of the degree of $\mathcal L$ -determinacy by the degree	
	of .	A-determinacy for curve germs T. Nishimura	293
	1	Introduction	293
	2	Proof of Theorem 1.1	294
		References	297
21	Reg	gularity of the transverse intersection of two regular	
	stra	atifications Patrice Orro & David Trotman	298
	1	Introduction	298
	2	Regular stratifications	299
		References	303
22	Pai	rs of foliations on surfaces Farid Tari	305
	1	Introduction	305
	2	Examples from differential geometry	307
	3	Classification	311
	4	Invariants	325
	5	Bifurcations	330
	6	Appendix	331
		References	334
23	Bi-	Lipschitz equisingularity David Trotman	338
	1	An oft-heard slogan	338
	2	Existence of Whitney and Verdier stratifications	339
	3	O-minimal structures	340
	4	Local triviality along strata	341
	5	Mostowski's Lipschitz stratifications	342
	6	Consequences of Valette's triangulation theorem	344
	7	Appendix. Definition of Lipschitz stratifications	345
		References	347
24	Ga	ffney's work on equisingularity C. T. C. Wall	350
		Introduction	350
	1	Early results on equisingularity	351
	2	Notations	356
	3	Integral closures	357
	4	Invariants	362
	5	Criteria for equisingularity	366

xi

Contents

	6 7	Recent work Bibliography of Terry Gaffney's papers References	369 372 374
25	Sing	ularities in algebraic data acquisition <i>Y. Yomdin</i>	378
	1	Introduction	378
	2	Examples of moment inversion	381
	3	Singularities in reconstruction of linear combinations	
		of δ -functions	389
	4	Noisy measurements	393
		References	394

xii

Preface

The Workshops on Real and Complex Singularities form a series of biennial meetings organized by the Singularities group at Instituto de Ciências Matemáticas e de Computação of São Paulo University (ICMC-USP), Brazil. Their main purpose is to bring together world experts and young researchers in singularity theory, applications and related fields to report recent achievements and exchange ideas, addressing trends of research in a stimulating environment.

These meetings started in 1990 following two pioneer symposia on Singularity Theory (in fact the very first talks on Singularities held in Brazil) organized respectively by G. Loibel and L. Favaro in 1982 and 1988 at ICMC-USP. Since then, with Maria Aparecida Ruas as a driving force, meetings have taken place every two years between singularists from around the world who find in São Carlos a centre to interact and develop new ideas.

The meeting held from the 27th of July to the 2nd of August 2008 was the tenth of these workshops. This was a special occasion, for it was also dedicated to Maria Aparecida Ruas (Cidinha) and Terence Gaffney on their 60th birthdays.

Cidinha and Terry started their scientific connection in 1976 when she was a Ph.D. student at Brown University in the U.S.A. At that time Terry held a position as instructor at that university. Their common interest in singularity theory brought them together and he became her (very young) thesis supervisor. Cidinha returned to Brazil in 1980 and joined the Singularities group created by G. Loibel at the ICMC-USP. Her great capacity and notable enthusiasm has brought the group to a leading position in the Brazilian mathematical community.

The mathematical interaction between Cidinha and Terry has had an important influence on the development of Singularity Theory at the ICMC-USP. From the beginning Terry has attended almost all workshops organized by the Preface

members of Cidinha's group, contributing to their research with stimulating discussions and seminars.

This workshop had a total of about 170 participants from about 15 different countries. The formal proceedings consisted of 27 plenary talks, 27 ordinary sessions and 3 poster sessions, with a total of 19 posters. The topics were divided into six categories: real singularities, classification of singularities, topology of singularities, global theory of singularities, singularities in geometry, and dynamical systems.

The Scientific Committee was composed of Lev Birbrair (Universidade Federal do Ceará, Brazil), Jean-Paul Brasselet (Institut de Mathématiques de Luminy, France), Goo Ishikawa (Hokkaido University, Japan), Shyuichi Izumiya (Hokkaido University, Japan), Steven Kleiman (Massachusetts Institute of Technology, USA), David Massey (Northeastern University, USA), David Mond (University of Warwick, UK), Maria del Carmen Romero Fuster (Universitat de València, Spain), Marcio Gomes Soares (Universidade Federal de Minas Gerais, Brazil), Marco Antonio Teixeira (Universidade Estadual de Campinas, Brazil), David Trotman (Université de Provence, France) and Terry Wall (University of Liverpool, UK).

Thanks are due to many people and institutions crucial in the realization of the workshop. We start by thanking the Organizing Committee: Roberta Wik Atique, Abramo Hefez, Isabel Labouriau, Miriam Manoel, Ana Claudia Nabarro, Regilene Oliveira and Marcelo José Saia. We also thank the members of the Scientific Committee for their support. The workshop was funded by FAPESP, CNPq, CAPES, USP and SBM, whose support we gratefully acknowledge. Finally, it is a pleasure to thank the speakers and the other participants whose presence was the real success of the tenth Workshop.

The editors

Preface

Introduction

This book is a selection of papers submitted for the proceedings of the *10th Workshop on Real and Complex Singularities*. They are grouped into three categories: singularity theory (7 papers), singular varieties (8 papers) and applications to dynamical systems, generic geometry, singular foliations, etc. (10 papers). Among them, four are survey papers: Local Euler obstruction, old and new, II, by N. G. Grulha Jr. and J.-P. Brasselet, *Global classifications and graphs*, by J. Martínez-Alfaro, C. Mendes de Jesus and M. C. Romero-Fuster, *Pairs of foliations on surfaces*, by F. Tari, and *Gaffney's work on equisingularity*, by C. T. C. Wall.

We thank the staff members of the London Mathematical Society involved with the preparation of this book. All papers presented here have been refereed.

1

On a conjecture by A. Durfee

E. ARTAL BARTOLO, J. CARMONA RUBER AND A. MELLE-HERNÁNDEZ

Abstract

We show how *superisolated surface singularities* can be used to find a counterexample to the following conjecture by A. Durfee [8]: for a complex polynomial f(x, y, z) in three variables vanishing at 0 with an isolated singularity there, "the local complex algebraic monodromy is of finite order if and only if a resolution of the germ ({f = 0}, 0) has no cycles". A Zariski pair is given whose corresponding superisolated surface singularities, one has complex algebraic monodromy of finite order and the other not (answering a question by J. Stevens).

1. Introduction

In this paper we give an example of a *superisolated surface singularity* $(V, 0) \subset (\mathbb{C}^3, 0)$ such that a resolution of the germ (V, 0) has no cycles and the local complex algebraic monodromy of the germ (V, 0) is not of finite order, contradicting a conjecture proposed by Durfee [8].

For completeness in the second section we recall well known results about monodromy of the Milnor fibration, about normal surface singularities and state the question by Durfee.

In the third section we recall results on superisolated surface singularities and with them we study in detail the counterexample.

In the last section we show a Zariski pair (C_1, C_2) of curves of degree d given by homogeneous polynomials $f_1(x, y, z)$ and $f_2(x, y, z)$ whose

²⁰⁰⁰ *Mathematics Subject Classification* 14B05 (primary), 32S05, 32S10 (secondary). The first author is partially supported through grant MEC (Spain) MTM2007-67908-C02-01. The last two authors are partially supported through grant MEC (Spain) MTM2007-67908-C02-02.

corresponding superisolated surface singularities $(V_1, 0) = (\{f_1(x, y, z) + l^{d+1} = 0\}, 0) \subset (\mathbb{C}^3, 0)$ and $(V_2, 0) = (\{f_2(x, y, z) + l^{d+1} = 0\}, 0) \subset (\mathbb{C}^3, 0)$ (*l* is a generic hyperplane) satisfy: 1) $(V_1, 0)$ has complex algebraic monodromy of finite order and 2) $(V_2, 0)$ has complex algebraic monodromy of infinite order (answering a question proposed to us by J. Stevens).

2. Invariants of singularities

2.1. Monodromy of the Milnor fibration

Let $f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ be an analytic function defining a germ $(V, 0) := (f^{-1}\{0\}, 0) \subset (\mathbb{C}^{n+1}, 0)$ of a hypersurface singularity. The *Milnor fibration* of the holomorphic function f at 0 is the C^{∞} locally trivial fibration $f|: B_{\varepsilon}(0) \cap f^{-1}(\mathbb{D}_{\eta}^{*}) \to \mathbb{D}_{\eta}^{*}$, where $B_{\varepsilon}(0)$ is the open ball of radius ε centered at 0, $\mathbb{D}_{\eta} = \{z \in \mathbb{C} : |z| < \eta\}$ and \mathbb{D}_{η}^{*} is the open punctured disk $(0 < \eta \ll \varepsilon$ and ε small enough). Milnor's classical result also shows that the topology of the germ (V, 0) in $(\mathbb{C}^{n+1}, 0)$ is determined by the pair $(S_{\varepsilon}^{2n+1}, L_V^{2n-1})$, where $S^{2n+1} = \partial B_{\varepsilon}(0)$ and $L_V^{2n-1} := S_{\varepsilon}^{2n+1} \cap V$ is the *link* of the singularity.

Any fiber $F_{f,0}$ of the Milnor fibration is called the *Milnor fiber* of f at 0. The *monodromy transformation* $h : F_{f,0} \to F_{f,0}$ is the well-defined (up to isotopy) diffeomorphism of $F_{f,0}$ induced by a small loop around $0 \in \mathbb{D}_{\eta}$. The *complex algebraic monodromy of* f *at* 0 is the corresponding linear transformation $h_* : H_*(F_{f,0}, \mathbb{C}) \to H_*(F_{f,0}, \mathbb{C})$ on the homology groups.

If (V, 0) defines a germ of isolated hypersurface singularity then $\tilde{H}_j(F_{f,0}, \mathbb{C}) = 0$ but for j = 0, n. In particular the non-trivial complex algebraic monodromy will be denoted by $h : H_n(F_{f,0}, \mathbb{C}) \to H_n(F_{f,0}, \mathbb{C})$ and $\Delta_V(t)$ will denote its characteristic polynomial.

2.2. Monodromy Theorem and its supplements

The following are the **main properties of the monodromy operator**, see e.g. [11]:

- (a) $\Delta_V(t)$ is a product of cyclotomic polynomials.
- (b) Let N be the maximal size of the Jordan blocks of h, then $N \le n+1$.
- (c) Let N_1 be the maximal size of the Jordan blocks of h for the eigenvalue 1, then $N_1 \le n$.
- (d) The monodromy *h* is called of *finite order* if there exists N > 0 such that $h^N = Id$. Lê D.T. [12] proved that the monodromy of an irreducible plane curve singularity is of finite order.
- (e) This result was extended by van Doorn and Steenbrink [7] who showed that if h has a Jordan block of maximal size n + 1 then

2

 $N_1 = n$, i.e. there exists a Jordan block of h of maximal size n for the eigenvalue 1.

Milnor proved that the link L_V^{2n-1} is (n-2)-connected. Thus the link is an integer (resp. rational) homology (2n - 1)-sphere if $H_{n-1}(L_V^{2n-1}, \mathbb{Z}) = 0$ (resp. $H_{n-1}(L_V^{2n-1}, \mathbb{Q}) = 0$). These can be characterized considering the natural map $h - id : H_n(F_{f,0}, \mathbb{Z}) \to H_n(F_{f,0}, \mathbb{Z})$ and using Wang's exact sequence which reads as (see e.g. [19, 21]):

 $0 \to H_n(L_V^{2n-1}, \mathbb{Z}) \to H_n(F_{f,0}, \mathbb{Z}) \to H_n(F_{f,0}, \mathbb{Z}) \to H_{n-1}(L_V^{2n-1}, \mathbb{Z}) \to 0.$ Thus rank $H_n(L_V^{2n-1}) = \operatorname{rank} H_{n-1}(L_V^{2n-1}) = \dim \ker(h - id)$ and: - L_V^{2n-1} is a rational homology (2n - 1)-sphere $\iff \Delta_V(1) \neq 0$, - L_V^{2n-1} is an integer homology (2n - 1)-sphere $\iff \Delta_V(1) = \pm 1$.

2.3. Normal surface singularities

Let $(V, 0) = (\{f_1 = \ldots = f_m = 0\}, 0) \subset (\mathbb{C}^N, 0)$ be a normal surface singularity with link $L_V := V \cap S_s^{2N-1}$, L_V is a connected compact oriented 3manifold. Since $V \cap B_{\varepsilon}$ is a cone over the link L_V then L_V characterizes the topological type of (V, 0). The link L_V is called a rational homology sphere (QHS) if $H_1(L_V, \mathbb{Q}) = 0$, and L_V is called an *integer homology sphere* (ZHS) if $H_1(L_V, \mathbb{Z}) = 0$. One of the main problems in the study of normal surfaces is to determine which analytical properties of (V, 0) can be read from the topology of the singularity, see the very nice survey paper by Nemethi [20].

The resolution graph $\Gamma(\pi)$ of a resolution $\pi: \tilde{V} \to V$ allows to relate analytical and topological properties of V. W. Neumann [22] proved that the information carried in any resolution graph is the same as the information carried by the link L_V . Let $\pi: \tilde{V} \to V$ be a good resolution of the singular point $0 \in V$. Good means that $E = \pi^{-1}\{0\}$ is a normal crossing divisor. Let $\Gamma(\pi)$ be the dual graph of the resolution (each vertex decorated with the genus $g(E_i)$ and the self-intersection E_i^2 of E_i in \tilde{V}). Mumford proved that the intersection matrix $I = (E_i \cdot E_j)$ is negative definite and Grauert proved the converse, i.e., any such graph comes from the resolution of a normal surface singularity.

Considering the exact sequence of the pair (\tilde{V}, E) and using I is nondegenerated then

$$0 \longrightarrow \operatorname{coker} I \longrightarrow H_1(L_V, \mathbb{Z}) \longrightarrow H_1(E, \mathbb{Z}) \longrightarrow 0$$

and rank $H_1(E) = \operatorname{rank} H_1(L_V)$. In fact L_V is a QHS if and only if $\Gamma(\pi)$ is a tree and every E_i is a rational curve. If additionally I has determinant ± 1 then L_V is an \mathbb{Z} HS.

2.4. Number of cycles in the exceptional set *E* and Durfee's conjecture

In general one gets

$$\operatorname{rank} H_1(L_V) = \operatorname{rank} H_1(\Gamma(\pi)) + 2\sum_i g(E_i),$$

where rank $H_1(\Gamma(\pi))$ is the number of independent cycles of the graph $\Gamma(\pi)$. Let $n : \tilde{E} \to E$ be the normalization of E. Durfee showed in [8] that the *number* of cycles c(E) in E, i.e. $c(E) = \operatorname{rank} H_1(E) - \operatorname{rank} H_1(\tilde{E})$, does not depend on the resolution and in fact it is equal to $c(E) = \operatorname{rank} H_1(\Gamma(\pi))$. Therefore, E contains cycles only when the dual graph of the intersections of the components contains a cycle. Durfee in [8] proposed the following

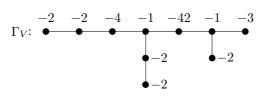
Conjecture. For a complex polynomial f(x, y, z) in three variables vanishing at 0 with an isolated singularity there, "the local complex algebraic monodromy h is of finite order if and only if a resolution of the germ ({f = 0}, 0) has no cycles".

He showed that the conjecture is true in the following two cases:

- (1) if f is weighted homogeneuos (the resolution graph is star-shaped and therefore its monodromy is finite)
- (2) if f = g(x, y) + zⁿ. Using Thom-Sebastiani [27], the monodromy of f is finite if and only if the monodromy of g is finite. Theorem 3 in [8] proves that the monodromy of f is of finite order if and only a resolution of f has no cycles.

2.5. Example (main result)

In this paper we show that the conjecture is not true in general, and for that we use superisolated surface singularities. Let $(V, 0) \subset (\mathbb{C}^3, 0)$ be the germ of normal surface singularity defined by $f := (xz - y^2)^3 - ((y - x)x^2)^2 + z^7 =$ 0. Then the minimal good resolution graph Γ_V of (the superisolated singularity) (V, 0) is



4

where every dot denotes a rational non-singular curve with the corresponding self-intersection. Thus the link L_V is a rational homology sphere and in particular this graph is a tree, i.e. it has no cycles. But the complex algebraic monodromy of f at 0 does not have finite order because there exists a Jordan block of size 2 × 2 for an eigenvalue \neq 1.

3. Superisolated surface singularities

Definition 3.1. A hypersurface surface singularity $(V, 0) \subset (\mathbb{C}^3, 0)$ defined as the zero locus of $f = f_d + f_{d+1} + \cdots \in \mathbb{C}\{x, y, z\}$ (where f_j is homogeneous of degree *j*) is *superisolated*, SIS for short, if the singular points of the complex projective plane curve $C := \{f_d = 0\} \subset \mathbb{P}^2$ are not situated on the projective curve $\{f_{d+1} = 0\}$, that is $\operatorname{Sing}(C) \cap \{f_{d+1} = 0\} = \emptyset$. Note that *C* must be reduced.

The SIS were introduced by I. Luengo in [17] to study the μ -constant stratum. The main idea is that for a SIS the embedded topological type (and the equisingular type) of (V, 0) does not depend on the choice of f_j 's (for j > d, as long as f_{d+1} satisfies the above requirement), e.g. one can take $f_j = 0$ for any j > d + 1 and $f_{d+1} = l^{d+1}$ where l is a linear form not vanishing at the singular points [18].

3.1. The minimal resolution of a SIS

Let $\pi : \tilde{V} \to V$ be the monoidal transformation centered at the maximal ideal $\mathfrak{m} \subset \mathcal{O}_V$ of the local ring of V at 0. Then (V, 0) is a SIS if and only if \tilde{V} is a non-singular surface. Thus π is the *minimal resolution* of (V, 0). To construct the resolution graph $\Gamma(\pi)$ consider $C = C_1 + \cdots + C_r$ the decomposition in irreducible components of the reduced curve C in \mathbb{P}^2 . Let d_i (resp. g_i) be the degree (resp. genus) of the curve C_i in \mathbb{P}^2 . Then $\pi^{-1}\{0\} \cong C = C_1 + \cdots + C_r$ and the self-intersection of C_i in \tilde{V} is $C_i \cdot C_i = -d_i(d - d_i + 1)$, [17, Lemma 3]. Since the link L_V can be identified with the boundary of a regular neighbourhood of $\pi^{-1}\{0\}$ in \tilde{V} then the topology of the tangent cone determines the topology of the abstract link L_V [17].

3.2. The minimal good resolution of a SIS

The minimal good resolution of a SIS (V, 0) is obtained after π by doing the minimal embedded resolution of each plane curve singularity $(C, P) \subset (\mathbb{P}^2, P)$, $P \in \text{Sing}(C)$. This means that the support of the minimal good resolution graph

 Γ_V is the same as the minimal embedded resolution graph Γ_C of the projective plane curve *C* in \mathbb{P}^2 . The decorations of the minimal good resolution graph Γ_V are as follows:

1) the genus of (the strict transform of) each irreducible component C_i of C is a birational invariant and then one can compute it as an embedded curve in \mathbb{P}^2 . All the other curves are non-singular rational curves.

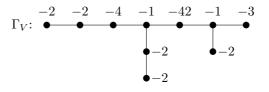
2) Let C_j be an irreducible component of C such that $P \in C_j$ and with multiplicity $n \ge 1$ at P. After blowing-up at P, the new self-intersection of the (strict transform of the) curve C_j in the (strict transform of the) surface \tilde{V} is $C_j^2 - n^2$. In this way one constructs the minimal good resolution graph Γ of (V, 0).

In particular the theory of hypersurface superisolated surface singularities "contains" in a canonical way the theory of complex projective plane curves.

Example 3.2. If $(V, 0) \subset (\mathbb{C}^3, 0)$ is a SIS with an irreducible tangent cone $C \subset \mathbb{P}^2$ then L_V is a rational homology sphere if and only if *C* is a rational curve and each of its singularities (C, p) is locally irreducible, i.e a cusp.

Example 3.3. For instance, if $f = f_6 + z^7$ is given by the equation $f_6 = (xz - y^2)^3 - ((y - x)x^2)^2$. The plane projective curve *C* defined by $f_6 = 0$ is irreducible with two singular points: $P_1 = [0:0:1]$ (with a singularity of local singularity type $u^3 - v^{10}$) and $P_2 = [1:1:1]$ (with a singularity of local singularity type \mathbb{A}_2) which are locally irreducible. Let $\pi : X \to \mathbb{P}^2$ be the minimal embedded resolution of *C* at its singular points P_1 , P_2 . Let $E_i, i \in I$, be the irreducible components of the divisor $\pi^{-1}(f^{-1}\{0\})$.

The minimal good resolution graph Γ_V of the superisolated singularity (V, 0) is given by



3.3. The embedded resolution of a SIS

In [2], the first author has studied, for SIS, the Mixed Hodge Structure of the cohomology of the Milnor fibre introduced by Steenbrink and Varchenko, [28], [29]. For that he constructed in an effective way an embedded resolution of a SIS and described the MHS in geometric terms depending on invariants of the pair (\mathbb{P}^2 , *C*).

The first author determined the Jordan form of the complex monodromy on $H_2(F_{f,0}, \mathbb{C})$ of a SIS. Let $\Delta_V(t)$ be the corresponding characteristic polynomial of the complex monodromy on $H_2(F_{f,0}, \mathbb{C})$. Denote by $\mu(V, 0) = \deg(\Delta_V(t))$ the Milnor number of $(V, 0) \subset (\mathbb{C}^3, 0)$.

Let $\Delta^{P}(t)$ be the characteristic polynomial (or Alexander polynomial) of the action of the complex monodromy of the germ (C, P) on $H_1(F_{g^P}, \mathbb{C})$, (where g^P is a local equation of C at P and F_{g^P} denotes the corresponding Milnor fiber). Let μ^P be the Milnor number of C at P. Recall that if $n^P : \tilde{C}^P \to (C, P)$ is the normalization map then $\mu^P = 2\delta^P - (r^P - 1)$, where $\delta^P := \dim_{\mathbb{C}} n_*^P(\mathcal{O}_{\tilde{C}^P})/\mathcal{O}_{C,P}$ and r^P is the number of local irreducible components of C at P.

Let *H* be a \mathbb{C} -vector space and $\varphi : H \to H$ an endomorphism of *H*. The *i*-th Jordan polynomial of φ , denoted by $\Delta_i(t)$, is the monic polynomial such that for each $\zeta \in \mathbb{C}$, the multiplicity of ζ as a root of $\Delta_i(t)$ is equal to the number of Jordan blocks of size i + 1 with eigenvalue equal to ζ .

Let Δ_1 and Δ_2 be the first and the second Jordan polynomials of the complex monodromy on $H_2(F_{f,0}, \mathbb{C})$ of V and let Δ_1^P be the first Jordan polynomial of the complex monodromy of the local plane singularity (C, P). After the Monodromy Theorem these polynomials joint with $\Delta_V(t)$ and Δ^P , $P \in \text{Sing}(C)$, determine the corresponding Jordan form of the complex monodromy. Let us denote the Alexander polynomial of the plane curve C in \mathbb{P}^2 by $\Delta_C(t)$, it was introduced by A. Libgober [13, 14] and F. Loeser and Vaquié [16].

Theorem 3.4 [2]. Let (V, 0) be a SIS whose tangent cone $C = C_1 \cup ... \cup C_r$ has r irreducible components and degree d. Then the Jordan form of the complex monodromy on $H_2(F_{f,0}, \mathbb{C})$ is determined by the following polynomials

(i) The characteristic polynomial $\Delta_V(t)$ is equal to

$$\Delta_V(t) = \frac{(t^d - 1)^{\chi(\mathbb{P}^2 \setminus C)}}{(t - 1)} \prod_{P \in \operatorname{Sing}(C)} \Delta^P(t^{d+1}).$$

(ii) The first Jordan polynomial is equal to

8

$$\Delta_1(t) = \frac{1}{\Delta_C(t)(t-1)^{r-1}} \prod_{P \in \text{Sing}(C)} \frac{\Delta_1^P(t^{d+1}) \Delta_{(d)}^P(t)}{\Delta_{1,(d)}^P(t)^3},$$

where $\Delta_{(d)}^{P}(t) := \gcd(\Delta^{P}(t), (t^{d}-1)^{\mu^{P}})$ and $\Delta_{1,(d)}^{P}(t) := \gcd(\Delta_{1}^{P}(t), (t^{d}-1)^{\mu^{P}}).$

(iii) The second Jordan polynomial is equal to

$$\Delta_2(t) = \prod_{P \in \operatorname{Sing}(C)} \Delta_{1,(d)}^P(t)$$

Corollary 3.5 [2, Corollaire 5.5.4]. The number of Jordan blocks of size 2 for the eigenvalue 1 of the complex monodromy h is equal to

$$\sum_{P \in \text{Sing}(C)} (r^P - 1) - (r - 1).$$
(3.1)

Let \tilde{D}_i be the normalization of D_i and \tilde{C} the disjoint union of the \tilde{D}_i and $n: \tilde{C} \to C$ be the projection map. Thus the first Betti number of \tilde{C} is $2g := 2\sum_i g(D_i)$ and the first Betti number of C is $2g + \sum_{P \in \text{Sing}(C)} (r^P - 1) - r + 1$. Then $\sum_{P \in \text{Sing}(C)} (r^P - 1) - (r - 1)$ is exactly the difference between the first Betti numbers of C and \tilde{C} . In fact this non-negative integer is equal to the first Betti number of the minimal embedded resolution graph Γ_C of the projective plane curve C in \mathbb{P}^2 , which is nothing but rank $H_1(\Gamma_V)$.

Corollary 3.6. Let (V, 0) be a SIS whose tangent cone $C = C_1 \cup ... \cup C_r$ has r irreducible components. Then the number of independent cycles c(E) =rank $H_1(\Gamma_V) = \sum_{P \in \text{Sing}(C)} (r^P - 1) - (r - 1)$.

In particular E has no cycles if and only if $\sum_{P \in \text{Sing}(C)} (r^P - 1) = (r - 1)$ if and only if the complex monodromy h has no Jordan blocks of size 2 for the eigenvalue 1.

Corollary 3.7 [2, Corollaire 4.3.2]. If for every $P \in \text{Sing}(C)$, the local monodromy of the local plane curve equation g^p at P acting on the homology $H_1(F_{g^p}, \mathbb{C})$ of the Milnor fibre F_{g^p} has no Jordan blocks of maximal size 2 then the corresponding SIS has no Jordan blocks of size 3.

Corollary 3.8. Let $(V, 0) \subset (\mathbb{C}^3, 0)$ be a SIS with a rational irreducible tangent cone $C \subset \mathbb{P}^2$ of degree d whose singularities are locally irreducible. Then:

- (i) the link L_V is a QHS link and E has no cycles,
- (ii) the complex monodromy on H₂(F_{f,0}, ℂ) has no Jordan blocks of size 2 for the eigenvalue 1,

- (iii) the complex monodromy on $H_2(F_{f,0}, \mathbb{C})$ has no Jordan blocks of size 3. (iv) The first Jordan polynomial is equal to
- (v) The first fordan polynomial is equal to

$$\Delta_1(t) = \frac{1}{\Delta_C(t)} \prod_{P \in \operatorname{Sing}(C)} \operatorname{gcd}(\Delta^P(t), (t^d - 1)^{\mu^P}).$$

The proof follows from the previous description and the fact that if every $P \in \text{Sing}(C)$ is locally irreducible then by Lê D.T. result (see 2.2) the plane curve singularity has finite order and $\Delta_1^P(t) = 1$.

Corollary 3.9. Let $(V, 0) \subset (\mathbb{C}^3, 0)$ be a SIS whose tangent cone $C = C_1 \cup \ldots \cup C_r$ has r irreducible components. Assume that $\sum_{P \in \text{Sing}(C)} (r^P - 1) = (r - 1)$, then:

- (i) E has no cycles,
- (ii) the complex monodromy on H₂(F_{f,0}, ℂ) has no Jordan blocks of size 2 for the eigenvalue 1,
- (iii) the complex monodromy on $H_2(F_{f,0}, \mathbb{C})$ has no Jordan blocks of size 3.
- (iv) The first Jordan polynomial is equal to

$$\Delta_1(t) = \frac{1}{\Delta_C(t)(t-1)^{r-1}} \prod_{P \in \text{Sing}(C)} \gcd(\Delta^P(t), (t^d-1)^{\mu^P}).$$

The proof follows from Corollary 3.6 and the part (*e*) Monodromy Theorem 2.2.

3.4. The first Jordan polynomial in Example 3.3

As we described above, the plane projective curve *C* defined by $f_6 = (xz - y^2)^3 - ((y - x)x^2)^3 = 0$ is irreducible, rational and with two singular points: $P_1 = [0:0:1]$ (with a singularity of local singularity type $u^3 - v^{10}$) and $P_2 = [1:1:1]$ (with a singularity of local singularity type \mathbb{A}_2) which are unibranched. Let $\pi : X \to \mathbb{P}^2$ be the minimal embedded resolution of *C* at its singular points P_1 , P_2 . Let E_i , $i \in I$, be the irreducible components of the divisor $\pi^{-1}(f^{-1}\{0\})$. For each $j \in I$, we denote by N_j the multiplicity of E_j in the divisor of the function $f \circ \pi$ and we denote by $v_j - 1$ the multiplicity of E_j in the divisor of $\pi^*(\omega)$ where ω is the non-vanishing holomorpic 2-form $dx \wedge dy$ in $\mathbb{C}^2 = \mathbb{P}^2 \setminus L_\infty$. Then the divisor $\pi^*(C)$ is a normal crossing divisor. We attach to each exceptional divisor E_i its numerical data (N_i, v_i) .

E. Artal Bartolo, J. Carmona Ruber & A. Melle-Hernández

Thus $\Delta^{P_1}(t) = \frac{(t-1)(t^{30}-1)}{(t^3-1)(t^{10}-1)} = \phi_{30}\phi_{15}\phi_6$ and $\Delta^{P_2}(t) = \frac{(t-1)(t^6-1)}{(t^3-1)(t^2-1)} = \phi_6$, where ϕ_k is the *k*-th cyclotomic polynomial. Thus, by Corollary 3.8, the only possible eigenvalues of with Jordan blocks of size 2 are the roots of the polynomial $\Delta_1(t) = \frac{\phi_6^2}{\Delta_C(t)}$.

The proof of our main result will be finished if we show that the Alexander polynomial $\Delta_C(t) = \phi_6$. The Alexander polynomial, in particular of sextics, has been investigated in detail by Artal [1], Artal and Carmona [3], Degtyarev [6], Oka [24], Pho [25], Zariski [30] among others. In [23] Corollary 18, I.2, it is proved that $\Delta_C(t) = \phi_6$.

Consider a generic line L_{∞} in \mathbb{P}^2 , in our example the line z = 0 is generic, and define $f(x, y) = f_6(x, y, 1)$. Consider the (global) Milnor fibration given by the homogeneous polynomial $f_6 : \mathbb{C}^3 \to \mathbb{C}$ with Milnor fibre *F*. Randell [26] proved that $\Delta_C(t)(t-1)^{r-1}$ is the characteristic polynomial of the algebraic monodromy acting on $F : T_1 : H_1(F, \mathbb{C}) \to H_1(F, \mathbb{C})$.

Lemma 3.10 (Divisibility properties) [13]. The Alexander polynomial $\Delta_C(t)(t-1)^{r-1}$ divides $\prod_{P \in \text{Sing}(C)} \Delta^P(t)$ and the Alexander polynomial at infinity $(t^d-1)^{d-2}(t-1)$. In particular the roots of the Alexander polynomial are *d*-roots of unity.

To compute the Alexander polynomial $\Delta_C(t)$ we combined the method described in [1] with the methods given in [13], [16] and [9].

Consider for k = 1, ..., d - 1 the ideal sheaf \mathcal{I}^k on \mathbb{P}^2 defined as follows:

- If $Q \in \mathbb{P}^2 \setminus \operatorname{Sing}(C)$ then $\mathcal{I}_Q^k = \mathcal{O}_{\mathbb{P}^2, Q}$.
- If $P \in \text{Sing}(C)$ then \mathcal{I}_{P}^{k} is the following ideal of $\mathcal{O}_{\mathbb{P}^{2},P}$: if $h \in \mathcal{O}_{\mathbb{P}^{2},P}$ then $h \in \mathcal{I}_{P}^{k}$ if and only if the vanishing order of $\pi^{*}(h)$ along each E_{i} is, at least, $-(\nu_{i}-1)+\left[\frac{kN_{i}}{d}\right]$ (where [.] stands for the integer part of a real number).

For $k \ge 0$ the following map

$$\sigma_k: H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(k-3)) \to \bigoplus_{P \in \operatorname{Sing}(C)} \mathcal{O}_{\mathbb{P}^2, P}/\mathcal{I}_P^k: h \mapsto (h_P + \mathcal{I}_P^k)_{P \in \operatorname{Sing}(C)}$$

is well defined (up to scalars) and the result of [13] and [16] reinterpreted in this language as [1] and [9] reads as follows:

10

Theorem 3.11 (Libgober, Loeser-Vaquié).

$$\Delta_C(t) = \prod_{k=1}^{d-1} (\Delta^k(t))^{l_k},$$
(3.2)

where $\Delta^k(t) := (t - \exp(\frac{2k\pi i}{d})(t - \exp(\frac{-2k\pi i}{d}))$ and $l_k = \dim \operatorname{coker} \sigma_k$

In our case, by the Divisibility properties (Lemma 3.10), $\Delta_C(t)$ divides $\Delta^{P_1}(t)\Delta^{P_2}(t) = \phi_{30}\phi_{15}\phi_6^2$. Thus, by Theorem 3.11, we are only interested in the case k = 1 and 5, $\Delta^1(t) = \Delta^5(t) = \phi_6 = (t^2 - t - 1)$. In case k = 1, we have $l_1 = 0$.

In case k = 5, the ideal $\mathcal{I}_{P_1}^5$ is the following ideal of $\mathcal{O}_{\mathbb{P}^2, P_1}$:

$$\mathcal{I}_{P_1}^5 = \{h \in \mathcal{O}_{\mathbb{P}^2, P_1} : (\pi^*h) \ge E_1 + 3E_2 + 4E_3 + 4E_4 + 8E_5 + 13E_6\}$$

and with the local change of coordinates $u = x - y^2$, w = y, the generators of the ideal are $\mathcal{I}_{P_1}^5 = \langle uw, u^2, w^5 \rangle$ and the dimension of the quotient vector space $\mathcal{O}_{\mathbb{P}^2, P_1}/\mathcal{I}_{P_1}^5$ is 6. A basis is given by 1, u, w, w^2, w^3, w^4 . The ideal

$$\mathcal{I}_{P_2}^5 = \{h \in \mathcal{O}_{\mathbb{P}^2, P_2} : (\pi^* h) \ge 0E_7 + 0E_8 + E_9\} = \mathfrak{m}_{\mathbb{P}^2, P_2}$$

and the dimension of the quotient vector space $\mathcal{O}_{\mathbb{P}^2, P_2}/\mathcal{I}_{P_2}^5$ is 1. A basis is given by 1.

If we take as a basis for the space of conics 1, x, y, x^2 , y^2 , xy, the map σ_5

$$\begin{aligned} \sigma_5 &: H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)) \to \mathcal{O}_{\mathbb{P}^2, P_1} / \mathcal{I}_{P_1}^5 \times \mathcal{O}_{\mathbb{P}^2, P_2} / \mathcal{I}_{P_2}^5 \\ &= \mathbb{C}^6 \times \mathbb{C} : h \mapsto \left(h + \mathcal{I}_{P_1}^5, h + \mathcal{I}_{P_2}^5 \right) \end{aligned}$$

is given in such coordinates by (using $u = x - y^2$): $\sigma_5(1) = (1, 0, 0, 0, 0, 0, 1)$, $\sigma_5(x) = (0, 1, 0, 1, 0, 0, 1)$, $\sigma_5(y) = (0, 0, 1, 0, 0, 0, 1)$, $\sigma_5(x^2) = (0, 0, 0, 0, 0, 1, 1)$, $\sigma_5(y^2) = (0, 0, 0, 1, 0, 0, 1)$ and $\sigma_5(xy) = (0, 0, 0, 0, 1, 0, 1)$.

Therefore σ_5 is injective and dim coker $\sigma_5 = 7 - 6 + 0 = 1$. The key point is that $u \notin \mathcal{I}_{P_1}^5$.

4. Zariski pairs

Let us consider $C \subset \mathbb{P}^2$ a reduced projective curve of degree *d* defined by an equation $f_d(x, y, z) = 0$. If $(V, 0) \subset (\mathbb{C}^3, 0)$ is a SIS with tangent cone *C*, then the link L_V of the singularity is completely determined by *C*. Let us recall, that L_V is a Waldhausen manifold and its plumbing graph is the dual graph of the good minimal resolution. In order to determine L_V we do not need the

embedding of *C* in \mathbb{P}^2 , but only its embedding in a regular neighborhood. The needed data can be encoded in a combinatorial way.

Definition 4.1. Let Irr(C) be the set of irreducible components of *C*. For $P \in Sing(C)$, let B(P) be the set of local irreducible components of *C*. The *combinatorial type* of *C* is given by:

- A mapping deg : $Irr(C) \rightarrow \mathbb{Z}$, given by the degrees of the irreducible components of *C*.
- A mapping top : $Sing(C) \rightarrow Top$, where Top is the set of topological types of singular points. The image of a singular point is its topological type.
- For each $P \in \text{Sing}(C)$, a mapping $\beta_P : T(P) \to \text{Irr}(C)$ such that if γ is a branch of *C* at *P*, then $\beta_j(\gamma)$ is the global irreducible component containing γ .

Remark 1. There is a natural notion of isomorphism of combinatorial types. It is easily seen that combinatorial type determines and is determined by any of the following graphs (with vertices decorated with self-intersections):

- The dual graph of the preimage of *C* by the minimal resolution of Sing'(*C*).
 The set Sing'(*C*) is obtained from Sing(*C*) by forgetting ordinary double points whose branches belong to distinct global irreducible components. We need to mark in the graph the *r* vertices corresponding to Irr(*C*).
- The dual graph of the minimal good resolution of V. Since the minimal resolution is unique, it is not necessary to mark vertices.

Note also that the combinatorial type determine the characteristic polynomial $\Delta_V(t)$ of V (see Theorem 3.4).

Definition 4.2. A *Zariski pair* is a set of two curves $C_1, C_2 \subset \mathbb{P}^2$ with the same combinatorial type but such that (\mathbb{P}^2, C_1) is not homeomorphic to (\mathbb{P}^2, C_2) . An *Alexander-Zariski pair* $\{C_1, C_2\}$ is a Zariski pair such that the Alexander polynomials of C_1 and C_2 do not coincide.

In [2], (see here Theorem 3.4) it is shown that the Jordan form of complex monodromy of a SIS is determined by the combinatorial type and the Alexander polynomial of its tangent cone. The first example of Zariski pair was given by Zariski, [30, 31]; there exist sextic curves with six ordinary cusps. If these cusps are (resp. not) in a conic then the Alexander polynomial equals $t^2 - t + 1$ (resp. 1). Then, it gives an Alexander-Zariski pair. Many other examples of Alexander-Zariski pairs have been constructed (Artal [1], Degtyarev [6]).

We state the main result in [2].

Theorem 4.3. Let V_1 , V_2 be two SIS such that their tangent cones form an Alexander-Zariski pair. Then V_1 and V_2 have the same abstract topology and characteristic polynomial of the monodromy but not the same embedded topology.

Recall that the Jordan form of the monodromy is an invariant of the embedded topology of a SIS (see Theorem 3.4); since it depends on the Alexander polynomial $\Delta_C(t)$ of the tangent cone.

4.1. Zariski pair of reduced sextics with only one singular point of type A_{17}

Our next Zariski-pair example (C_1, C_2) can be found in [1, Théorème 4.4]. The curves C_i , i = 1, 2 are reduced sextics with only one singular point P of type \mathbb{A}_{17} , locally given by $u^2 - v^{18}$.

(I) the irreducible componentes of C_1 are two non-singular cubics. These cubics meet at only one point *P* which moreover is an inflection point of each of the cubics, i.e. the tangent line to the singular point *P* goes through the infinitely near points *P*, P_1 and P_2 of C_1 . The equations of C_1 are given for instance by $\{f_1(x, y, z) := (zx^2 - y^3 - ayz^2 - bz^3)(zx^2 - y^3 - ayz^2 - cz^3) = 0\}$, with $a, b, c \in \mathbb{C}$ generic.

(II) the irreducible componentes of C_2 are two non-singular cubics. These cubics meet at only one point P which is not an inflection point of any of the cubics, i.e. the tangent line to the singular point P goes through the infinitely near points P, P_1 of C_1 but it is not going through P_2 . The equations of C_2 are given for instance by $\{f_2(x, y, z) := (zx^2 - y^2x - yz^2 - a_1(z^3 - y(xz - y^2)))(zx^2 - y^2x - yz^2 - a_2(z^3 - y(xz - y^2))) = 0\}$ with $a_1, a_2 \in \mathbb{C}$ generic.

Consider the superisolated surface singularities $(V_1, 0) = (\{f_1(x, y, z) + l^7 = 0\}, 0) \subset (\mathbb{C}^3, 0)$ and $(V_2, 0) = (\{f_2(x, y, z) + l^7 = 0\}, 0) \subset (\mathbb{C}^3, 0)$ (*l* is a generic hyperplane). In both cases the tangent cone has two irreducible components and it has only one singular point *P* of local type $u^2 - v^{18}$ and therefore $\Delta^P(t) = (t^{18} - 1)(t - 1)/(t^2 - 1) = \phi_{18}\phi_9\phi_6\phi_3\phi_1$, where ϕ_k is the *k*-th cyclotomic polynomial. Thus the number of local branches is 2 and $\sum_{P \in \text{Sing}(C)} (r^P - 1) = (r - 1)$. By Corollary 3.9, for $(V_i, 0), i = 1, 2$, the complex monodromy has no Jordan blocks of size 2 for the eigenvalue 1, and it has no Jordan blocks of size 3. Moreover the first Jordan polynomial is equal to

$$\Delta_1(t) = \frac{\gcd(\Delta^P(t), (t^6 - 1)^{\mu^r})}{\Delta_{C_i}(t)(t - 1)} = \frac{\phi_6\phi_3}{\Delta_{C_i}(t)}.$$
(4.1)

To compute $\Delta_{C_i}(t)$ we use the same ideas as in Theorem 3.11.

Lemma 4.4. For the point P at the curve C_1 the ideals $\mathcal{I}_P^k = \mathcal{O}_{\mathbb{P}^2, P}$ if $k \leq 3$, $\mathcal{I}_P^4 = \langle y^3, z \rangle \mathcal{O}_{\mathbb{P}^2, P}$ and $\mathcal{I}_P^5 = \langle y^6, z - y^3 - ay^4 - by^5 \rangle \mathcal{O}_{\mathbb{P}^2, P}$.

Lemma 4.5. For the point P at the curve C_2 the ideals $\mathcal{I}_P^k = \mathcal{O}_{\mathbb{P}^2, P}$ if $k \leq 3$, $\mathcal{I}_P^4 = \langle y^3, z - y^2 \rangle \mathcal{O}_{\mathbb{P}^2, P}$ and $\mathcal{I}_P^5 = \langle y^6, z - y^2 - y^5 \rangle \mathcal{O}_{\mathbb{P}^2, P}$.

Thus $\Delta_{C_i}(t) = \phi_6^{\dim \operatorname{coker} \sigma_5} \phi_3^{\dim \operatorname{coker} \sigma_4}$.

Therefore the map σ_4 is

$$\sigma_4: H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)) \simeq \mathbb{C}^3 \to \mathcal{O}_{\mathbb{P}^2, P}/\mathcal{I}_P^4 \simeq \mathbb{C}^3,$$

and if we choose as basis of the first space $\{1, y, z\}$ and of the second $\{1, y, y^2\}$ then

(1) by Lemma 4.4, for C_1 the dimension dim coker $\sigma_4 = \dim \ker \sigma_4 = 1$.

(2) by Lemma 4.5, for C_2 the dimension dim coker $\sigma_4 = \dim \ker \sigma_4 = 0$.

On the other hand for the map σ_5

$$\sigma_5: H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)) \simeq \mathbb{C}^6 o \mathcal{O}_{\mathbb{P}^2, P}/\mathcal{I}_P^5 \simeq \mathbb{C}^6,$$

if we choose as basis of the first space $\{1, y, z, y^2, yz, z^2\}$ and of the second $\{1, y, y^2, y^3, y^4, y^5\}$ then we can compute

- (3) by Lemma 4.4, for C_1 the dimension dim coker $\sigma_5 = \dim \ker \sigma_5 = 1$.
- (4) by Lemma 4.5, for C_2 the dimension dim coker $\sigma_5 = \dim \ker \sigma_5 = 0$.

Therefore, $\Delta_{C_1}(t) = \phi_6 \phi_3$ and $\Delta_{C_2}(t) = 1$ and by (4.1) we have proved that the pair (C_1, C_2) is a Alexander-Zariski pair.

Example 4.6. Consider the superisolated surface singularities $(V_1, 0) = (\{f_1(x, y, z) + l^7 = 0\}, 0) \subset (\mathbb{C}^3, 0)$ and $(V_2, 0) = (\{f_2(x, y, z) + l^7 = 0\}, 0) \subset (\mathbb{C}^3, 0)$ (*l* is a generic hyperplane). Then the complex algebraic monodromy of $(V_1, 0) \subset (\mathbb{C}^3, 0)$ has finite order and the complex algebraic monodromy of $(V_2, 0) \subset (\mathbb{C}^3, 0)$ has not finite order

This answers a question proposed to us by J. Stevens: find a Zariski pair C_1, C_2 such that for the corresponding SIS surface singularities $(V_1, 0) \subset (\mathbb{C}^3, 0)$ and $(V_2, 0) \subset (\mathbb{C}^3, 0)$ one has a finite order monodromy and the other it does not.

There are also examples of Zariski pairs which are not Alexander-Zariski pairs (see [23], [3], [4]). Some of them are distinguished by the so-called characteristic varieties introduced by Libgober [15]. These are subtori of $(\mathbb{C}^*)^r$, $r := \# \operatorname{Irr}(C)$, which measure the excess of Betti numbers of finite Abelian coverings of the plane ramified on the curve (as Alexander polynomial does it for cyclic coverings).

Problem 1. How can one translate characteristic varieties of a projective curve in terms of invariants of the SIS associated to it?

References

- 1. E. Artal, Sur les couples des Zariski, J. Algebraic Geom., 3 (1994) 223-247.
- E. Artal, Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc. 525 (1994).
- E. Artal and J. Carmona, Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan 50(3) (1998) 521–543.
- E. Artal, J. Carmona, J. I. Cogolludo, and H.O. Tokunaga, Sextics with singular points in special position, *J. Knot Theory Ramifications* 10 (2001) 547–578.
- E. Artal, J. I. Cogolludo, and H. O. Tokunaga, A survey on Zariski pairs, *Algebraic geometry in East Asia—Hanoi 2005*, 1–100, Adv. Stud. Pure Math. **50** Math. Soc. Japan, Tokyo, 2008.
- 6. A. Degtyarev, Alexander polynomial of a curve of degree six, *Knot theory and Ramif.* **3(4)** (1994) 439–454.
- M. G M. van Doorn and J. H. M. Steenbrink, A supplement to the monodromy theorem, *Abh. Math. Sem. Univ. Hamburg* 59 (1989) 225–233.
- 8. A. Durfee, The monodromy of a degenerating family of curves, *Inv. Math.* **28** (1975) 231–241.
- 9. H. Esnault, Fibre de Milnor d'un cône sur une courbe plane singulière, *Inv. Math.* **68** (1982) 477–496.
- G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0 A computer algebra system for polynomial computations. In M. Kerber and M. Kohlhase: *Symbolic computation and automated reasoning, The Calculemus-2000 Symposium* (2001), 227–233.
- 11. A. Landman, On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities, *Trans. Amer. Math. Soc.* **181** (1973) 89–126.
- 12. D. T. Lê, Sur les noeuds algébriques, Compositio Math. 25 (1972) 281-321.
- 13. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, *Duke Math. J.* **49(4)** (1982) 833–851.
- A. Libgober, Alexander invariants of plane algebraic curves, *Singularities, Part 2* (*Arcata, Calif., 1981*), 135–143, Proc. Sympos. Pure Math. 40 Amer. Math. Soc., Providence, RI, 1983.
- A. Libgober, Characteristic varieties of algebraic curves, *Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001)*, Kluwer Acad. Publ., Dordrecht (2001) 215–254.
- F. Loeser and M. Vaquié, Le polynôme d'Alexander d'une courbe plane projective, *Topology* 29(2) (1990) 163–173.
- I. Luengo, The μ-constant stratum is not smooth, *Invent. Math.*, **90(1)** (1987) 139– 152.
- I. Luengo and A. Melle Hernández, A formula for the Milnor number C.R. Acad. Sc. Paris, 321, Série I. (1995) 1473–1478.
- A. Némethi, Some topological invariants of isolated hypersurface singularities, *Low dimensional topology (Eger, 1996/Budapest, 1998)*, 353–413, Bolyai Soc. Math. Stud., 8, JÛŠnos Bolyai Math. Soc., Budapest, 1999.

- A. Némethi, Invariants of normal surface singularities, *Real and complex singularities*, 161–208, Contemp. Math. **354** AMS, Providence, RI, 2004.
- A. Némethi and J. H. M. Steenbrink, On the monodromy of curve singularities, Math. Z. 223(4) (1996) 587–593.
- W.D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, *Trans. Amer. Math. Soc.* 268(2) (1981) 299–344.
- M. Oka, A new Alexander-equivalent Zariski pair, Dedicated to the memory of Le Van Thiem (Hanoi, 1998). *Acta Math. Vietnam.* 27 (2002) 349–357.
- 24. M. Oka, Alexander polynomials of sextics, *J. Knot Theory Ramifications* **12(5)** (2003) 619–636.
- 25. D.T. Pho, Classification of singularities on torus curves of type (2, 3), *Kodai Math. J.*, **24** (2001) 259–284.
- R. Randell, Milnor fibers and Alexander polynomials of plane curves, *Singularities, Part 2 (Arcata, Calif., 1981)*, 415–419, Proc. Sympos. Pure Math. 40 AMS, Providence, RI, 1983.
- 27. M. Sebastiani and R. Thom, Un résultat sur la monodromie, *Invent. Math.* 13 (1971) 90–96.
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, *Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976)* Alphen a/d Rijn: Sijthoff & Noordhoff (1977) 525–563.
- 29. A. Varchenko, Asymptotic Hodge structure on vanishing cohomology, *Math. USSR Izvestija* **18** (1982) 469–512.
- 30. O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, *Amer. J. Math.* **51** (1929) 305–328.
- 31. O. Zariski, The topological discriminant group of a Riemann surface of genus *p*, *Amer. J. Math.* **59** (1937) 335–358.

E. Artal Bartolo

Departamento de Matemáticas, IUMA Universidad de Zaragoza Campus Pza. San Francisco s/n E-50009 Zaragoza SPAIN artal@unizar.es

A. Melle-Hernández Departamento de Álgebra, Universidad Complutense, Plaza de las Ciencias s/n, Ciudad Universitaria, 28040 Madrid, SPAIN amelle@mat.ucm.es J. Carmona Ruber Departamento de Sistemas Informáticos y Computación, Universidad Complutense, Plaza de las Ciencias s/n, Ciudad Universitaria, 28040 Madrid, SPAIN jcarmona@sip.ucm.es