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BERNSTEIN POLYNOMIAL OF 2-PUISEUX PAIRS IRREDUCIBLE
PLANE CURVE SINGULARITIES*

E. ARTAL BARTOLO', PI. CASSOU-NOGU?, 1. LUENGO$, AND A. MELLE-HERNANDEZY
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Abstract. In 1982, Tamaki Yano proposed a conjecture predicting the set of b-exponents of an
irreducible plane curve singularity germ which is generic in its equisingularity class. In 1986, the
second author proved the conjecture for the one Puiseux pair case. In [1], we proved the conjecture
for the case in which the germ has two Puiseux pairs and its algebraic monodromy has distinct
eigenvalues. In this article we aim to study the Bernstein polynomial for any function with two
Puiseux pairs and its algebraic monodromy has distinct eigenvalues. In particular the set of all
common roots of their corresponding Bernstein polynomials is also explicitely given. We provide
also bounds for some analytic invariants of singularities and illustrate the computations in suitable
examples.
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Introduction. One of the main guide lines of Prof. H.B. Laufer in singularity
theory, particularly concerning normal two dimensional analytic singularities (X, 0),
has been which analytic invariants of (X,0) depends on the topology, i.e., they are
characterized by their link L x ). The link has the same information as the decorated
resolution graph I'(x,q) see [20]. For instance Laufer questioned the following in [13]:
What conditions does the existence of a hypersurface representative of (X, 0) put on
a decorated dual graph I'(x ¢)? The analytic properties of X depend on the analytic
properties of the ramification locus of a projection. In this work, we study the behavior
of some analytic (non-topological) invariants for germs of curves. The main goal of
the paper is to consider germs of irreducible plane curve singularities with the same
topology and describe exactly the set of common roots of their corresponding local
Bernstein polynomials which are analytic invariants of their germs.

Let O be the ring of germs of holomorphic functions on (C",0), D the ring of
germs of holomorphic differential operators of finite order with coefficients in O. Let
s be an indeterminate commuting with the elements of D and set D[s] = D ®¢ C[s].

Given an holomorphic germ f € O, one considers the ring Rss = O [%,s

and the free Ry -module Ry f® of rank 1 with the natural D[s]-module structure.
Then, there exists a non-zero polynomial B(s) € C[s] and some differential operator
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P = P(s,z,D) € DJs|, holomorphic in z1,...,2, and polynomial in 8%1’ A %,
which satisfies in Ry, f* the following functional equation
P(s,x,D) - ()" = B(s) - f(x)". (1)

The monic generator by o(s) of the ideal of such polynomials B(s) is called the Bern-
stein polynomial (or b-function or Berstein-Sato polynomial) of f at 0. The same
result holds if we replace O by the ring of polynomials in a characteristic zero field K
with the obvious corrections, see e.g. [8, 10, Theorem 3.3].

This result was first obtained for f polynomial by Bernstein in [2] and in general
by Bjork [3]. Omne can prove that byo(s) is divisible by s + 1, and we consider the

- be
reduced Bernstein polynomial by (s) := L0858 i(i)
s

In the case where f defines an isolated singularity, one can consider the Brieskorn
lattice H(;/ = Q" /df AdQ"? and its saturated I}g =3 >0 ((?tt)ng. Malgrange [18]
showed that the reduced Bernstein polynomial b 7,0(8) is the minimal polynomial of the
endomorphism —d;t on the vector space F := ﬁg/ 0y 1]?(;’, whose dimension equals
the Minor number p(f,0) of f at 0. The b-exponents {f1,...,B,} are the roots of
the characteristic polynomial of the endomorphism 9;t. Recall that exp(—2iw0;t) can
be identified with the algebraic monodromy of the Milnor fiber of f at the singular
point.

Kashiwara [12] expressed these ideas with differential operators. Let us denote
M = DIs|f*/Dls] 51, where s defines an endomorphism of P(s)f* by multiplication.
This morphism keeps invariant M := (s +1)M and defines a linear endomorphism of
Q" ®@p M)O which is naturally identified with F' and under this identification —0;t
becomes the endomorphism defined by the multiplication by s.

In [18], Malgrange proved that the set Ry of roots of the Bernstein polynomial
is contained in Q<g. Moreover, Kashiwara [12] restricted the set of candidate roots.
The number —ay, := max Ry is the opposite of the log canonical threshold of the
singularity. Saito [21] proved that

Rfyo C [—TL + ay o, —Ozfyo]. (2)

Now let f be an irreducible germ of plane curve. In 1982, Tamaki Yano [29]
made a conjecture concerning the b-exponents. In [4], the second author proved the
conjecture for the one Puiseux pair case. We state this conjecture in the case we are
interested in, the case of two Puiseux pairs. Let C'S;}2:, := (nin2, mnz, mna + q) be
the characteristic sequence of f, such that

e 1 <nj; <m,ged(m,ny) =1;
e g>0,n2>1, ged(g,n2) = 1.
Recall that this means that f(x,y) = 0 has as root (say over z) a Puiseux expansion

mno+q

x:...+alyn_711+...+a2ynln2 _’_”'

with exactly 2 characteristic monomials.
Let

k
By = {a _mim+FR :0 < k < mning, and noma, nenia ¢ Z} ; (3)
mninsg
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Ny

k
B, = o= mEnna+a+ 0<k<noDand npa,Da ¢ Z y . (4)
ng (mning + q)
~—_———

D

YANO’S CONJECTURE ([29]). For almost all irreducible plane curve singularity
germ f : (C%,0) — (C,0) with characteristic sequence (ning, mna, mng + q), the set
By of the b-exponents {f1, ..., Bu} is B1 U Bs.

In [1] Yano’s conjecture was proved for the case
ged(g,nq) =1 or ged(g,m) = 1. (5)

The above condition is equivalent to require that the algebraic monodromy of the
irreducible germ has distinct eigenvalues. In this case, the p b-exponents are all
distinct and they coincide with the opposite of the roots of the reduced Bernstein
polynomial (which turns out to be of degree p).

There is another set which is important too, the set of the exponents of the mon-
odromy (or spectral numbers, up to the shift by one, in the terminology of Varchenko
[28]). This notion was first introduced by Steenbrink [25].

Let f : (C",0) — (C,0) be a germ of a holomorphic function with isolated
singularity. In [25] Steenbrink constructed a mixed Hodge structure on H"~!(Fy o, C).
Let

H" YFj0,C) = Ker(Ts — X : H* Y (Fy,C) — H" Y(Fy,,0C));

where T, T, are, respectively, the unipotent and semisimple factors of the Jordan
decomposition of the monodromy h"~*.
The set Spec(f) of spectral numbers are p rational numbers

O<ap<as<---<a,<n
which are defined by the following condition:
#{j : exp(—2mic;) = \, |aj| =n —p— 1} = dimg Grh H" 1 (F}0,C)5, A#£1
#{j: o =n—p}=dimc Gri. H" ' (Ff,C)1.

The set Spec(f) of spectral numbers is symmetric, that is o; + a,_—1) = n. It is
known that this set is constant under p-constant deformation of f, see [28].

M. Saito [23] gave a formula for Spec(f) in the case of a germ of an irreducible
plane curve singularity (cf. also Theorem 3.1 in [19] or section 2.2 in [24]). In the

case of characteristic sequence (nins, mng, mng + q), the set of spectral numbers less
than 1 is the union of the sets

1 . . . . . .

m={L(Lad)+Lfocicmocicmied crosrcmf, @
n2 \(ni m n2 ni m
i j . . 1 J

Az = _+7’O<z<n2,0<]<mn2m—|—q,—+7<1 . (7
n2 ninam + q n2 ninam + q

Let us denote by A5 := {2 —a | a € Aj}, i.e. the symmetric set of A; with
respect to 1. Then

Spec(f) = A; U Ay U AT U Ay (8)
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There is a closed relationship between spectral numbers and b-exponents. The follow-
ing result summarizes some of them which can be found for instance in [11] or [22,
Remark 3.2 iii)] for (1)

PROPOSITION 1. Let f be a germ of irreducible plane curve singularity. The
spectral numbers Spec(f) and the set By of b-exponents of f satisfy the following
conditions:

(1) Let oy € Spec(f), there exist a b-exponent S, € By such that oy — Bi is a

non negative integer and 0 < ap — B < 1.

(2) min By = min Spec(f) = .

(3) dim Hy /Hy = 3> 0 = 32 B;

From now on, we will study germs having a fixed characteristic sequence C'Sj?:,
satisfying (5). Our goal in this article is to show that one can compute the rational
numbers that are roots of the Bernstein polynomial for any such germ. To do this we
follow the same method as the one used in [7, 1]. To prove that a rational number
is a root of the Bernstein polynomial of some function f, we prove that this number
is a pole of some integral with a transcendental residue. We also offer algorithmic
formulee for the computation of these residues and bounds for dim Hy /H,, .

The two main results in this paper are the following ones. We split the sets B,
and By in terms of two semigroups: I', the one associated with C'S}/2:7 (generated by
the numbers nony, nom,nimns + ¢) and I'y, associated to the truncatwn to the first

Puiseux pair (generated by m,n;). Let

mpB1 +ni1B2
mninsg

Bu—{ﬂ— € B

Bifh € Z>1} )

(which means that k in (3) is in I'y) and

(mB1 + niB2)nz + (mninz + q)Bs + ¢
nz2(mninz + q)

321:{5: € By

B1,B2 € Z>1,B3 € ZZO}- (10)

(which means that & in (4) is in T'y).
In Theorem 2.5 we prove one of the main results of the paper, that is,

m Ryo = B11 U Boy,
FES,

where S, is the set of all germs f with the topological type, of the characteristic
sequence C'S)2f, satisfying (5), i.e. its algebraic monodromy has distinct eigenvalues.

In §3, we prove bounds for dim Hy /H,, for such germs. Let
m=qgni +1rm,0 <7y <ni, g=hnay+re,0<h, 0<7ry <no.
Then

(n2 = 1)(m = 1)(n = 1) < dim By /Hy < 5 —na(m+m) —q++h+4

and the second inequality is generically an equality.

We end the article with several families of examples. In Theorem 4.2 it is proved
that all polynomials with characteristic sequence (4, 6,6 + ¢) have the same Bernstein
polynomial (this is the original Yano’s family). Next we consider polynomials with
characteristic sequence (8,10,10+ ¢) then we compute its Bernstein polynomial up to
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six roots (note that the Milnor number equals 63+ ¢) and we have explicit formulae to
decide the remaining roots. This computation provides an example with two Puiseux
pairs and different Tjurina and Bernstein stratifications.

The second author gave, in [4, Example 9] page 28, examples with one Puiseux
pair and different Tjurina and Bernstein stratifications.

1. Two variable integrals and Bernstein polynomial. Let us recall and
collect some definitions, results and consequences from [1].

DEFINITION 1.1. We say that a real polynomial f € R[x, y] is positive if f(x,y) >
0 for all (z,y) € [0,1]2.

Let f € Rz, y] positive. Let a1, as,b1, by € Z be fixed such that a1, as > 0,b1,by >
1. We denote the following complex variable integral by
dx dy

1 1
V(8) = Vs brsania(5) = / / fla,y)saastorymstin & (11)
o Jo Ty

PROPOSITION 1.2. [1, Proposition 2.4]] The function Y(s) satisfies the following

properties:
(1) It is absolutely convergent for R(s) > g, where ag = sup (—2—11, —Z—i)
(2) It has a meromorphic continuation on C with poles of order at most 2 con-

tained in S = {—ler—Vl, v € ZZO } U {_172:_21/27 vy € Zzo}

ai

NoTATION 1.3. Let f : [0,1] — R be a continous function. We will denote by
Gy(s) the meromorphic continuation of

/1 f(t)f%
0

PROPOSITION 1.4. [1, Proposition 2.6]] With the hypotheses of Proposition 1.2,
let v1 € Z>¢ be fized and such that o = —bl:—l”l #+ —b"'a% for all vy € Z>g, then the
pole of Y(s) at « is simple and

1 g fo
Gh’lll,oc,m (a’2a + b2)7 hu1,o¢,m(y) = Oxvt

Res Y(s) = (0,9). (1.2)

V1!CL1

Note that, under the hypotheses of the above Proposition, Gy, , . (a2s + b2)
admits an integral expression which is absolutely convergent and holomorphic for
R(s) > =Ny — 1, with Na such that o > —%, see the proof in [1] of the above
Proposition 1.2 .

We collect next a result which relates these integrals with the beta function
B(Sl, 82).

LEMMA 1.5. [1, Lemma 2.8]] Let p € N and ¢ € Rsg. Given s1,s2 € C such that
—a = 81+ 82 >0 then

Gyrtey= (ps1) + G(14cary= (pS2) = B (s1,52) (1.3)

where B is the beta function.
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Our goal in this article is to show that one can compute the rational numbers
that are roots of the Bernstein polynomial for any function having characteristic
sequence C'S)2:1 satisfying (5), that is its monodromy has distinct eigenvalues. To
do this we follow the same methods and ideas as the one used by Pi. Cassou-Nogues in
[5, 4, 6, 7, 1]. To prove that a rational number is a root of the Bernstein polynomial of
some function f, we prove that such a number is pole of some integral whose residue
is a transcendental number.

To use the method one needs to start with a real polynomial f € R[x,y] whose
complex analytic germ at the origin has C'S;2'1 as characteristic sequence.

DEFINITION 1.6. A polynomial f € Rz, y] is said to be of type (n1na, mna, mna+
q)" if it satisfies:

flay) = @™ +y™ + ha(z,9)™ + 2%y’ + ha(z,y) (1.4)

where
(GT1) hi(z,y) = Z(i,j)gpnl’m a;;x'y? € Rz, y], where

Pﬂhm = {(7’7]) € ZQEO | mi+nyj > mnl};

(GT2) a,b> 0 such that am + bny = mning + g;
(GT3) the polynomial hy € R[z,y], whose support is disjoint from the other terms
of f, satisfies that the characteristic sequence of f is C'S}2/1 .

PROPOSITION 1.7. Let f € Rlz,y| be a real polynomial as in (1.4) satisfying
((GT1)), ((G*2)) and ((G*3)). Then there exists a domain D = [0,7]?, withn <1,
such that f >0 in [0,1]?\ {(0,0)}.

Proof. Note that the real zero locus of x™ + y™ intersects [0, 1]? only at (0,0).
Since the real zero locus of f = 0 is a deformation of the previous one, then there is
1 > 0 for which the statement follows. O

For B1, B2 € Z>1, and f of type (ning, mna, mna + q)* one defines:

1,1
L (f, B1,B2)(s) :2/0 /0 f(x,y)sxﬁlyﬁzd?x%. (1.5)

PROPOSITION 1.8. [1, Proposition 4.2]] Let f be of type (ning, mng, mng +
q)" and B1,B2 € Z>1. Then the integral 1. (f,[1,B2)(s) is absolutely convergent
for the values s such that R(s) > —8E52 o d may have simple poles only for

mninz
_ﬁ1m+62n1+1/, Ve ZZO~

S =
mning

Next we show the algorithmic description of [1, Section 4] to compute the residue

of the corresponding family of poles. Let us see show to compute the residue at the
eventual pole a = — 81ty ¢ the integral I (f, B1, B2)(s). Let

mning

f(xvy) = f(xmvynl)

and let f; and fy be defined by

[z, zy) = 2™™"™ fi(z,y), flzy,y) = y""" fa(z,y).
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Thus the residue of @ = —8mEB2mty o the integral I (f, 51, B2)(s) equals

1
Res Ly (f,B1,B2)(s) = W(Gh;w(nlﬁﬁ +Gpz,  (mB1)); (1.6)
where
_ o _ 0

hllj,a,m(y) - 8x” (Ovy)a and hlzf,a,y('r) - ({E, 0)

oy”

We define now a simplified version of polynomials of type (ning, mng, mns +q)~
defined in [1].

DEFINITION 1.9. A polynomial f € R[z,y] is said to be of type (n1n2, mna, mna+
q)5 if it satisfies:

fla,y) = gz, y)™ + 2y’ + ha(z,y) (1.7)

where g(z,y) = 2™ —y™
(G™1) a,b> 0 are as in (GT2).
(G~2) The polynomial hy € R[z,y], whose support is disjoint from the first terms,
satisfies that the characteristic sequence of f is C'Sp27 .
(G~3) There is an € > 0 such that for D := {(z,y) e R2 |0< 2 < e,0 <y <z },
we have that f > 0 on D\ {(0,0)}.

PROPOSITION 1.10. For each f as in (1.7) satisfying the conditions (G™1),
and (G~2) then there is € > 0 and a domain D := {(z,y) e R? |0 < 2 <0<y <
xw} for which f satisfies (G™3) in D, that is f is of type (ning, mng, mny + q)5 .

Proof. It is enough to take a suitable truncation of a Puiseux expansion of f
(which has no term between the two characteristic terms). O

For B1, B2 € Z>1, B3 € Z>o and f of type (ninz, mna, mng + q); we set:

dx dy

T (£ P = [[ oy ety TL )

ProposiTiION 1.11 ([1, Proposition 5.2]). Let f € Rlz,y] be of type
(ning, mng,mny + q);, P1,082 € Z>1 and Ps € Zso. Then the integral
Z_(f, 1,082, B83)(s) is convergent for R(s) > —%ﬁm and its set of poles
is contained in the set

PU ] P
ieZZl
where
mpBy + nifa + +
P, :_{_ B1+n1fe +mni B3 +v V€Z>0}
mning -
and

Py = { _ne(mBy + By + mnafs+) + q(Bs +9) +v
o nz(mning + q)

IS Zzo}
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The poles have at most order two. The poles may have order two at the values con-
tained in Py and P, ; for some .

We shall give the residues at the eventual simple poles in P ;. Let f , f, f be
defined by

f(xmvynl) :f(xvy)v f(x,xy) :xmnlngf(xjy% f(xvy) Zf(l',l—y).
Let f, f1, f2 be defined by

fm,y) = fa,y),  Flaay) =2 fi(2,y),  Floyy) =" folz, y).

Let us denote

In particular,
91 —y) =yQy), Q0)=mna.
Let us define
Qy) =Q)» A —y)™P1 Qy) = by
Thus the integral Z_(f, 81, B2, 83)(s) has residue for

__na(mBi+mfBy+mnifs) +q(Bs +i) +v
nz(mning + q)

equals
1 1 .
ResT(f, B, B2, B3)(s) = — > —bi(Gny . (a(Bs +1))+
= Mgt o (1.9)
Gpz ,  (n2(mninsa +mpPy +ni Bz + mnifz))
where
8Vfoz aIJfOt
1 _ 1 2 _ 2 )
hu,a,m(y) - 8$V (O7y)7 and hv,a,y(x) ayy (JJ,O),

recall also that G#(s) is the meromorphic continuation of fol f (t)ts%.
REMARK 1.12. We may assume € = 1 after a suitable change of variables.

Let us summarize the links between these integrals and the Bernstein polynomial.
We are using ideas in [4, 5, 6, 1]. Let us fix notations that may cover both cases. We
fix f with the following properties:
(B1) The characteristic sequence of f € R[z,y] is CS72:4

niy,m:*
(B2) The polynomial Y (xw) € Rlzw] is either 1 (for the +-case) or zm for the
—g-case
(B3) D= {(z,y) ER? | 0<z < 1,0 <y <Y(am)}, g(z,y) = 2™ £y™
(B4) f(z,5) > 0 ¥(r,y) € D\ {(0,0)}.
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Let 81,82 € Z>1 and B3 € Z>¢ (equals 0 for the +-case). Let us consider the
integral

L(f.51. 8 8)(0) = [[ fa ety S L a0

THEOREM 1.13 ([1, Theorem 6.3]). Let f(x,y) € K[z, y] be a polynomial defining
an irreducible germ of complex plane curve at the origin which has two Puiseux pairs
and its algebraic monodromy has distinct eigenvalues and such that K is an algebraic
extension of Q. Let « be a pole of Ty (f,p1,B2,P5)(s) with transcendental residue,
and such that o+ 1 is not a pole of T (f,B1, 5%, 05)(s) for any (81, 85, 8%). Then «
is root of the Bernstein-Sato polynomial by (s) of f.

2. Determination of the set of common roots of the p-constant stratum.
Let f be an irreducible germ of plane curve whose characteristic sequence is C'S;27,
satisfying (5). The Bernstein-Sato polynomial of a germ f with this characteristic
sequence, depends on f, but there is a generic Bernstein polynomial b, gen(s): for
every p-constant deformation of such an f, there is a Zariski dense open set U on

which the Bernstein-Sato polynomial of any germ in U equals by, gen (s).

PROPOSITION 2.1 ([27, Corollary 21]). Let fi(x) be a p-constant analytic defor-
mation of an isolated hypersurface singularity fo(x). If all eigenvalues of the mon-
odromy are pairwise different, then all roots of the reduced Bernstein-Sato polynomial
l;ft (s) depend lower semi-continously upon the parameter t.

PRropPoOSITION 2.2 ([11, Corollary 5.1], [10]). Let f(z) be a germ of an isolated
hypersurface singularity. Then for each spectral number o € Spec(f) such that o <
a1 + 1, then —a is root of the Bernstein polynomial by(s).

Consequently, for a p-constant analytic deformation fi(x) of an isolated hyper-
surface singularity germ fo(x), for every « in

E:={a:aeSpec(f) and a < a1 + 1}

then —a« is root of every Bernstein polynomial by, (s) for every t.

REMARK 2.3. Note that we follow Saito’s convention for the exponents and the
spectral numbers, which differs by 1 from the convention in [11].

The following Corollary is a consequence of Proposition 2.1.

COROLLARY 2.4. Let fo(x,y) be an irreducible germ of plane curve whose mon-
odromy has distinct eigenvalues. Let —a be a root of the local Bernstein-Sato polyno-
mial by, (s). Then, either —a or —(a+ 1) is a root of by, gen(s).

Let S, be the (non-singular) p-constant stratum of f at 0. Let Ry be the set of
the roots of by(—s). For every g € S, and since g has isolated singularities then

R, C Spec(g) U{a — 1| a € Spec(g)}, see [10].

Since the spectral numbers are constant in a p-constant deformation then, in the
image of the map S, — Cls] : g > by(s) there are finitely many polynomials.
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The aim of this section is to describe the set of common roots of the Bernstein
polynomials of the p-constant stratum, that is, the set

CR.:= () Ry.
fes,

By Proposition (2.2) the set £ C CR,,.

In [1], we proved that the set of roots of the Bernstein polynomial b, gen(—s)
is By U By. We split these sets By and Bs using (9) and (10) and we set Bia =
Bi\ Bi1, Baa = By \ Ba.

The aim of this part is to prove

THEOREM 2.5. Let CR,, be the set of common roots of the Bernstein polynomi-

als of every irreducible germ of plane curve whose characteristic sequence is CSp?1,
satisfying (5). Then CR,, = B11 U Bas.

We divide the proof in three parts.
PROPOSITION 2.6. B11 U By CCR,,.

Proof. Let & € B11 U By C B1 U By and let f be a fixed germ in S,. As —«
is a root of the generic Bernstein polynomial, if —«a is not a root of the Bernstein
polynomial of f, then —(a + 1) is by Corollary 2.4. Then —a« —1 > —2 and o < 1.
In particular, if o > 1 then « is a root for any germ. We need only to study B’ =
(B11 U Ba1) N{a € Q|a < 1}. Hence, we need only to prove that B’ C CR,,.

To do this, we use a result of B. Lichtin ([15, Section 3, Corollary 2]) and Loeser
([16, Remarque I11.3.5]). Let us state it.

Diiv Dy Digs Dy D3

Dy

Fic. 1. Resolution graph

Let us consider an embedded resolution of f, see Figure 1, together with a 2-
differential form w. For a divisor Dj;, let us denote N; := ordp,(f) and vj(w) :=
ordp, (w) + 1.

In the resolution of f we have two branching divisors that we denote by Dy, Ds.
We denote by Dj 1,D; 2, D; 3 the divisors adjacent to D;,j = 1,2. For j = 1,2,k =
1,2,3 we set

L 1 Nj Nj7k mod Z I/j(w)Nj)k
Ejyk(w) = Nj det (Vj(o.)) Vj,k(w)) Nj .

If the following conditions hold:
e ¢ ;(w) is not an integer for k = 1,2, 3,
. # <1;
J
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then —# is a root of the Bernstein polynomial of f. We have the relation
dp€ik(w)=—2forj=1,2.
It is easily checked that

N1 =mning, Nz =ng(mning + q),

and
/
Ni1=mninga11, Nig=mnaai2, Niz=(mniaj;+1)na,

where
! ! ’
apinr +1=a3m, arom+1=ajyn, ai13+n2=aj;3q,

all positive integers. We also have
Noo = aza(mning +¢q), Naz =1,

Naj = na(mniay + azi),

where
! !
agine +1=ay1q, «a22q+1=ay9ns,

again all positive integers.

Let us check the conditions for o = % € By1 N B’ with the holomorphic
form wy; = 2%~ 1yP2~ldxdy. Since vi(w1) = mpB; + n1Be2, we have that o = %“1’1)
Only the non-integer condition must be checked. We have:

mod Z (MmfB1 + ni1f2)a1,1MiN2 mod Z N1 f2a11 modZ P2 ¢7
B o m

—aalwn) = mnina m
mod Z (mﬁ1 + TL1[32)042 1MNg modZ MPB11 2 modZ [
—€e12(w1) = : = —= = ——¢7Z
mning ni ni
mod Z (MB1 +n1B2)(mnicd 5+ 1)n2 mod z mBy + n1 B2
_61’3(w1) = mnin 7 = mn ¢ z
12 1

no+q+(mnino+q)Bs ’
(mninatq) € Bob1NB

Finally we check the conditions for a = {2 1+"1i 22)
with the form we = xﬁl_ly'@?_lgy(x, y)'@?’dxdy. Since va(wa) = (MP1 +n1f2)na +q +
v2(@2) T et us check the non-integer condition. We

(mning + q)Bs, we have that o = N,
have:

e 1(w2) mod 2 ((mB1 + n1B2)na + ¢ + (mning + q)B3)(ah ymn + a2,1)n2 mod 2
iR = na(mning + q) B

_mﬁ1 +nyfe —mny
mning +¢q
((mB1 + n1Ba)ns + g + (mning + q)B3)az2(Mning + q) mod 83 + 1
nz(mning + q) N2
mod Z ((mpB1 + ni1f2)ne + ¢+ (mning + q)5s3)
6213(602) = — .
ng(mning + q)

dZ
Ez)g(wg)moE —

Q.

None of the above numbers is an integer. O
PROPOSITION 2.7. For all € Ba, there exists a polynomial fg with charac-
teristic sequence (nine, mne, mns + q) such that —f is not a root of the Bernstein

polynomial of fg.
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Proof. Let B € Bia, i.e. there exists k > 1 such that § = %’”"’k and k is not

nam

in the semigroup I'y generated by m,n;. Then S+ 1 = %W Since the
conductor of I'y is mni; —m—nq, then n; +m+nimms+k € I'; and there exist 51 and
B, such that 1 + g = m8itmibs 1y particular, if f is of type (n1ng, mna, mns + q)*,

mning
then

Res I(f.51,52)(s) # 0

is transcendental, see [1, Proposition 3.3].

CrAM 2.8. There exists f of type (nina, mna, mna + q)* such that

SI:{SSB I (f,B1,B2)(s) =0, V(B1, B2) € Z>1.

Assume that Claim 2.8 has been proved (see the Appendix A). For such an f,
—pB—11is aroot of the Bernstein polynomial of f. Since the hypotheses of Theorem 1.13
hold (see also [1, Theorem 5.3]) —f is not such a root since the monodromy has distinct
eigenvalues. Then there exists f such that —f is not root of the Bernstein polynomial
bf)o(s). 0

PROPOSITION 2.9. For all € Bag, there exists a polynomial fg with charac-
teristic sequence (ning, mng, mnz + q) such that —f is not a root of the Bernstein
polynomial of fg.

Proof. Let B € B, i.e we have g = Zelmtnitatk g ¢ T, where T is the

) na(mninz+q) .
semigroup generated by mns, ning and mnins + ¢; its conductor is

no(mning +¢q) — (m+mn1)ne —q+1
In particular, ny(mnins + ¢) + k € I' and there exist 81, 82, B3 such that

mpB1 4+ nif2 + (mning + q)Bs3

1+8=
b na(mning + q)

As a consequence, for any f of type (ning, mna, mng + ¢)~, we have that
s:R—,eBS—l I—(f7 ﬁl7 ﬁ27 63)(8) 7& 0

is transcendental, see [1, Proposition 4.3].

CrLAM 2.10. There exists f of type (n1n2, mna, mng + q)~ such that

sf:{gsﬂ I_(f, P, P2, 03)(s) =0, V(B1,B2) € Z>1,P3 € Z>o.

Assuming this Claim (to be proved in the Appendix A), the result follows the
arguments of the end of the proof of Proposition 2.7. O
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3. Bounds for dim H, /H, . PROPOSITION 3.1. Let f be an irreducible germ
of plane curve whose characteristic sequence is CS32:f, satisfying (5). Define the

integers ¢ and h by m = gni1 4+ 7,0 < rpy, < N1, ¢ = hng + 74,0 < h,0 < 7y < no.
Then

dimH(IJl/Hg§g—n2(m+n1)—q4’§+h+4

and generically dim Hy /Hy = E—mna(m+mn1) —q+q+h+4

Proof. One can compute the dimension dim ﬁg / Hg using Proposition 1,
dim Hy /Hy = Y a; — Y| Bi, the a; being the spectral numbers, which are
constant in the p-constant stratum S, and the ; being the b-exponents of f, which,
under the conditions of the Proposition, equal the roots of the local Bernstein-Sato
polynomial bs(—s).

The fact that the upper bound of dim I}g / H(/)/ is attained generically is a conse-
quence of the proof of Yano’s conjecture in [1], see also Proposition 2.1, so that the
roots of by, gen (—s) is the set By U Bs.

We start by adding the spectral numbers «; € Spec(f) = A; U Af U Ay U Ay,
see (8). Using the symmetry of the spectral numbers, i.e. a; +a,_(;—1) = 2, for each
characteristic pair, k = 1,2, one has:

> =24l

aiGAkUAkJ‘
Using Saito’s result [23],

(m—1)(n; —1) (ng — 1)(ninam +q—1)
2 2 o (7).

Next we compute the sum of the roots of b, gen(—s) which is the same as the sum of
the elements of B; U By. Let us start with

|4y = 22 (6), |As| =

k
By = {0’ _mAmAr :0 <k <mning, and nomo, nanio ¢ Z} . (3.1)
mning

Since ged(ny, m) = 1 and define N7 := mning and for the first characteristic exponent
one has

mning—1

m+n; +k m4+n,+k
DR ST E
mninsg mning
Bi€B1 k=0 0<k<mning
ny+kemz
_ Z m+n1+k+ Z m+n1+k
N1 Nl
0<k<mnino 0<k<mninsg
m+keEnyZ nit+mt+kEmniz
Using
i,im(m—l—l) nin —1)
.] - 2 2 ’
j=n
the first summand is
1 mninsg mning — 1
mt o+ =y +m g D21
mning 2 2
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For the second summand, we look for 0 < k < mnins such that if m +n; + k = ms
for some s € Z. The minimum of such s is [%W = 2, while the maximum is

-1
\‘m—i-nl + mniny J =ning +1
m
Hence, the second term is
B nlnzﬁl s (nan2 +2)(nins +1) n 1 mng+3
) ning o 2711712 ning B 2 '

For the third term, we proceed in the same way; the extremities are

{m+n1-‘:2+q {m—l—nl—i—mnlng—l

J=1+mnz+d;
ni

ni

the third term is

TS e e ) @) e 2043
. mns - 2mnes o ) .

For the fourth term the extremities are

{m—l—nl-‘ \‘m—i—nl —i—mnlng—lJ
= 17 = ng;
mni

mni

the fourth term is

n
i’: s ng +1
ne 2
s=1 2
As a consequence,

Z ﬂi:n1+m_q_3+an

Bi€B1

For

k
Byim{ o= MmN Akl D and nso Do ¢ 7Y (3.2)
ng (mning + q)
—_——

D
we decompose Y B,€Bs Bi again in four terms. For the first one, we have
2(mning +q) — 1
5 .

For the next terms we proceed as in the case of the first exponent. The limits of the
second term are:

T
(m+mn1)na +q+

(m+ni)ng +q
n2

-‘:m—l—nl—i—h—i—l,

{(m—i— ni)ng + q + na(mning +q) — 1

J =mning +q¢+m+ny + h;
UP)
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the second term is

mn1n2+im+nl+h s __mning +q+ 2(m+ni1+h)+1

mning + q B 2

s=m+ni+h+1

The limits of the third term are:
’7(m+”1)n2 +q—‘ 1
mning + q ’

(m +n1)ng +q+na(mning +q) — 1 — o
mning + q o

the third term is

Finally, the limits for the fourth term are

3

[(m+n1)n2 +qw

na(mning + q)

{(m—i—nl)ng + q+na(mning +q) — IJ _ 1
na(mning + q) 7

the fourth term is 1. Then,

(ng — 1)(mning +q—1)
5 .

Z Bi=(m+ni)nz+q—(m+n+h)—1+
Bi€ B2

Recall that

w=mna(n; —1)(m—1) 4 (ng — 1)(mning + q—1).

The sum of the exponents is

g+(m+n1)n2+q—q—h—4

while the sum of the spectral numbers is p. Then, its difference is

g—(m+n1)n2—q+(j+h+4

as stated. 0

PROPOSITION 3.2. Let f be an irreducible germ of plane curve whose characteris-
tic sequence is CS;21, satisfying (5). Then the following lower bound for dim H, /H,
s obtained:

(ng —1)(m —1)(ny — 1) < dim H, /H,

Proof. We are going to count some spectral numbers a € Af U Ay such that
a — 1 € B3 U Bay. This number is a lower bound for dim H, /H,, .
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Let a € A; we have

1 . .
a—1_1——<i+i+7~),
N9 ny m

with nil + # < 1,7 < ng. Assume that r < ngy — 1:

nim(ng —r — 1) +nim —mi — nyj
a—1=

€ By,
ninam

(m=1)(n1—-1)

5 such

since the numerator is in T'. Hence, we have found at least (ngy — 1)
numbers.

Let o € Ay :

a—lzl—(l n j )Z(ng—z—1)(n1n2m+q)+q+n2(n1m—j)'

n_z ningm +q na(ninam + q)

A necessary (and by the way sufficient condition) for « — 1 € Bg; is the existence
of 51,82 € Z>1 such that mn; — j = mfB1 + n182. We found another set of (no —

1)Wisuch numbers. O

REMARK 3.3. In [11, Proposition 3.5], another bound for dim H, /H, is given

which depends on the analytical properties of the germ, namely, ¢ — 7 < dim H,, / H(;/
which yields the following bound for the Tjurina number:

ng+nz(m+n1)+q—d—h—4

4. Examples. The following examples illustrate our results. Example 4.1 con-
firms Yano’s conjecture and we show that 7 is constant along the generic Berstein
stratum. For Example 4.3 and 4.4 we are not able to confirm Yano’s conjecture but
we show that in both cases the Tjurina number is not constant on the generic Berstein
stratum.

EXAMPLE 4.1. We consider the case studied by Tamaki Yano, that is the char-
acteristic sequence (4,6,6 4+ ¢), i.e. n1 =2, m =3, nz =2 and ¢ = ¢. T. Yano in
1983 claimed the proof of his conjecture in this case, but referred to a non published
article. The set of spectral numbers is

Ay Ai_
—_——— ———
Spee(f) = J 2 LY (19 131
P 1212 12° 12
Ay Ay
12+ q+2j ) q 3(124+q) — 25 ) q
ST 0<<6 {—J U 22T Y < <6 {—J;
{ 2(12+q)’ SI=071y diz+q | TR

it is not hard to see that

14 16 3443
AQUA;Z{ e Ot +q}

2(12+q)" 2(124q)" "7 2(12+¢q)
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is a gap-free arithmetic sequence with step ﬁ. The set of spectral numbers « such
that « — 1 >5/12 is

Spec(f) \ € = {}3} { 1352(1:53" { 11249

-‘§j<12+q}.

Recall that we cannot ensure for these spectral numbers to be exponents. We also
have

5 7 11 13 104 q+ 2k
Bi=Bj1={ —, —, —, — Bo=By1=¢ ————|0< k<11 k#15.
1 11 {12712712712}7 2 21 { 2(12+q) ‘ >~ = +q7 # }

Note also that 1—72 and 5 (11021‘1(1) are the only b-exponents which are not spectral numbers.

As a consequence, we derive the following result.

THEOREM 4.2. For any f with characteristic sequence (4,6,6 + q), By U Bsy is its
set of b-exponents (and also the set of roots of the Bernstein polynomial). Moreover,

Note that the bounds of Propositions 3.1 and 3.2 are equal for any f. From
Hertling-Stahlke bound of Remark 3.3 we get that 7 > p — 2. The value of 7 equals
12 + 2q and it is constant in the whole stratum, see [17].

ExAMPLE 4.3. We consider the case of characteristic sequence (6,9,9 + ¢) with
q =1+ 3k, k € N. In this case n1 =2, m = 3 and ny = 3. We have

5 11 17 n 31 25 19
Al_{ﬁaﬁaﬁ}a Al _{1_871_871_8}7

19+ 3k + 35 , 2(19 + 3k) + 37 .
Ag= =TT <1242k S <6+k
2 { 3(19 + 3%) ‘0<j— + }U{ 593k |0~/ =0TR
5(19 + 3k) — 3 , 4(19 + 3k) — 3§ .
AF = D T2 ) <1242k _ < k.
2 { 3(19 + 3%) }OQ_ * }U{ 59+ 3k |0 /=0T
In fact
AL [ 2243k 73+ 12k 41 + 6k 92 + 15k
2202 319+ 3k)" 7 3(19 + 3k) 3(19 + 3k)" "7 3(19 + 3k)

is the union of two Step‘lg-r;% arithmetic sequences. The set £ is determined by

25 31 2(1943k) + 35| [ 11 19+3k .
D <
Spec(f)\ & {18’18} { 3019 + 35) H -‘_3<19+3k}
19+ 3k + 35| [17( 19+3k
19+ 3k
Vatoaa ||| i< eaf.

The sets of generic b-exponents are

B _B 5 7 11 13 17 19
=PI =187 18° 187187 187 18

1643k + 35| 17+3k+35|
By={ — <1943k pUS — T 0 < <1943k Y,
2 { 3(19 + 3k) ‘ = } { 3(19 + 3k) ‘ = e }

17+ 3k +3)
-322:{7‘7

0<j<k+6Y.
3(19+3k)} sJ< +}
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Note that 178, %g are the generic b-exponents in B; which are not spectral numbers.
For B, this is the case for

16 + 3k 17 + 3k + 35
3(19 + 3k) 3(19 + 3k)

‘0§j<k+7}. (4.1)

In particular, generically dim ﬁg/Hg = 10+ k. Among them, note that 1—78, % € By
and
16 + 3k 35 + 6k
3(19 + 3k)’ 3(19 + 3k)
moreover they are the only common roots which are not spectral numbers, and hence
dim Hy /H, > 4. We do not know if the equality can be reached.

The elements of Spec(f) \ £ that can jump to give generic roots of the Bernstein
polynomial are

25 31 2019+ 3k) + 35| [11(19+ 3k)] _ . 73 + 12k
2 3l <j<1943plu o L
{18’18}U{ 3(19 + 3%) H 18 SJ <1943k U501 am)

€ Boy;

Consider
ft — ($2 _y3)3 +$5+k 2 —l—t( —y )xSyk 1
where ¢ is chosen such that such that f; is of type (6,9,10 + 3k)~. Let § =
SOOI € B,y and in (4.1), i

3(381 +2B2) +3k+2  17+3k+3j
3(19 + 3k) -~ 3(19+ 3k)

& 361+ 28> =5+ 4.

Since we need 1, S2 > 1, all the cases are included but j = 1. We are going to prove
—QBisaroot of f; if t # 0, and as a consequence, for ¢ # 0 we have dim Hg/Hg > 9+k.

We consider the polynomials f, f, f, f, fi, fo:
f(x,y) = (336 - y6)3 + 3315+3ky4 + t(I6 -y )x15y2k 2
f(I, y) _ (1 _ yG)B + :171+3ky4 + t(l _ yﬁ)ler2kka727
Fay)=0-1-y°)+2a"* A —y)* +t(1 - (1 -y O 1 —y)*2 =
P62+ )+t TR — ) Ry (6 L),
f(:c,y) _ y3(1+3k) (63 +..)+ 1+3k)(1 ')+tx3(l+2k)y1+3k(6+ )
Fila,y) =yP03R63 4 )+ (1= )+ tay' 36 +..),

folz,y) = (6% +...) + 23 <1+3’“>( - ...)+tw3(1+2k)y(6+...).
We have
1
Res, I_(f,Br, B2, 0)(s) = m(Gh},,m(1+3k)+Ghi,ﬁ,y(2(—185+351 +2652)),
where
1 3ff5 143k (3, 3(1+3k) —p—1
h—p.a(y) = =5 —(0.y) = 66ty (6" +1)
of; "

h27_,@,y($) — 8y (xjo) — _6th3(1+2]€) (63 + $(1+3]€)3)—B—1'
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If ¢ is algebraic (and t # 0), the above residue is transcendental. Hence, we deduce
that these values are roots of the Bernstein polynomial for these values of ¢. Moreover,
since the Bernstein-polynomial stratification is algebraic, we deduce that this is the
case for t¢ # 0. Note that in this case, for k¥ = 0, and for random values of ¢, the
Tjurina number equals 40, while for ¢ = 0, the value is 41. Hence the Tjurina number
is not constant in the u-constant stratum.

ExAMPLE 4.4. Consider the characteristic sequence (8,10,10+ ¢), where (¢,2) =
1, (¢,5) = 1. In this case ny = 4, m =5 and ng = 2. We have

Al:{iﬁ&ﬂﬁ&%%%ﬂ%@}
407407407 407 40° 40° 40" 40”40 40” 40 40

AL_{EQ@@@QEQ‘LGE‘*_?‘E}
1771407407 407 407 407 407 40 40° 40° 40° 40 40

40 29
AQ_{ﬂ‘OquowgJ}

2(40 + q)
3(40+¢q) — 25 ) q
AL =2 T A <2 L
2 { 5(40 + ) 0<j<20+ |3
Note that
42 +q 44 +q 118+3q}
Ay U AT = ,
2 {2(40+q) 2(40 + ¢) 2(40 + q)

is a step—ﬁ arithmetic sequence.
Then Spec(f) \ € is

51 61 62 63 66 67 71 40 4 ¢ + 2j 29 . q
A AN AN AN AN AN AN U —29 e S §2O \‘_J .
{40 40’ 40° 407 40’ 40 40} { 2(40 + g) ‘ * Lmql 752073
With this data
9+ 40 10 + 4¢ 11+ 4¢
Bl—{+— ogegs}u{ + }1§e§9}u{ + }Ogégg},
40 (4 40 145 40 1#£1,6
where By = {141}, and
B _{18+q+2€
271 240+ ¢q)

20+gq 22+4+g¢q 24+¢q 30+¢q 32+¢q
322 = ) ) ) ) .
2(40+¢q) " 2(40+q)  2(40+q) " 2(40 + ¢) " 2(40 + q)
To get the Bernstein polynomial for any function with characteristic sequence
(8,10,10 + g), we only have to check for the 6 elements of Bis U Bay if they are

roots (recall that the Milnor number is 63 4 ¢). Let us study the generic b-exponents
which are not spectral numbers:

21 22 26 11 23 27 31 18+ g + 20
sl2z b L2 2l B a2y <10\ 5 Biy U B,
{40’40’40’40’40’40’40} {2(40+q)‘ == }3 121522

We get 12 < dim H,, /H, < 18. We shall show, for ¢ = 7, that there exists an f with
characteristic sequence (8,10, 10 + ¢) such that 12 = dim H, /H,,. Consider

’oge<4o+q,z7é11},

fe(@,y) = (a* £9°)% + 27y + ta®yS.
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We assume that fi has type (8,10,10 + ¢)*. Let

fr(@y) = f+ @' 0°) = (@ +y*°) + 2Py"? + 120%™

fra(zy) = 1+ 570 + 27y + taty™
fra(z,y) = (:1020 + 1) + 2%y7 + a0yt

Let B =+ = M The residue is
Res (/4 1,1)(s) = 55(Goy_, (4)+ G, (5):
where
32f;5 an;ﬁ

hy _p.(y) = 922 0,9) =0, h3_g,(x)= 6—y2(517a0) =0.

Then Ress—_g I(f},1,1)(s) = 0; moreover, with the same ideas as in the proof of
Claim 2.8 we have that V(81, 82), Ress=—g I(f+, 51, B2)(s) =

Consider now 8 = 2% = M We know that I(f4,3 9)( ) has a pole for s=-p
with transcendental residue. Comblnlng the two facts, by Theorem 1.13, — 40 is a zero
of the Bernstein polynomial of f; and —= is not. Since fy(x,y) = f,(—x, —y), we
deduce the same property for f_.

It remains to study the cases in Bso, i.e., the set %, 3—2, %, %, %}, for k =
2,4,6,12,14. Since the generators of I" are 8,10,47, only the following suitable com-
binations of f1, B2, 83, v (see proof of Claim 2.10) are available:

k| B | B2 | B3| v |i|uw
2 1 1 0 2 1] 2
4 1 1 0 4 1| 4
6 1 1 0 6 |[1] 6
12 | 1 1 0 |12 ] 1] 12
12| 1 1 012|121 5
12| 2 1 0 4 11| 4
12| 1 2 0 2 1] 2
14| 1 1 0 |14]|1] 14
14| 1 1 0114|127
14| 1 1 0|114]13] 0
14| 2 1 0 6 |1]| 6
14| 1 2 0 4 11| 4

Let us compute the polynomials appearing in the different steps of the process:
Fla,y) = (@ — y°)? + 27y® + taBy®,
F(z,y) = (220 — y20)2 4+ o3y12 4 30,24
f( ) = (1 — y2)2 4 2Ty'2 4 2142
flw,y) =y Hao(y)® + 27 (1 — )"+t (1 - y)*,
f(x,y) — M Hoo(y7)2 + 214 (1 — y7)12 4 t223(1 — y7)?4,
fila,y) =y Hoo(z7y")2 + (1 — 27y7)12 + tz14(1 — 27y7)
fax,y) = Hao(y") + 2 (1 = y)'2 + 12”8y (1 — y)*".
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where yH,(y) = (1 — (1 — y)™), H,(0) = n. From these data it is easy to check that

202y + 1, if N =0
oN f1 (0.4) = —20160y"(1900y'* + 3), if N=17
OxN V7 87178291200(81700y%® + 66y'* +¢), if N = 14
0 if £ ¢7,
and
202 + x4, if N=0
N f (2,0) = —20160(1900 + 3z'4), it N=7
oyN 87178291200(81700 + 66x'* + t2?®), if N = 14
0 if ¥ ¢ 7
With the same ideas
(20%y" +1)77, if N=0
oN -8 201608y7 (1900y** + 3)(20%y** +1)=8-1 if N =7
az}:c}v (0,y) = < —871782912003(81700y %5+ 66y 4+) (20%y 441) P~ 1+ (4.2)
6974263296005 (B+1)y'* (1900y'*43)%(20°y *+1) 72  if N =14
0 if ¥ ¢ 7.
and
(20% + ') =8, if N=0
N 5 201605(1900 4 3z14)(20% + z1*)=F1, ifN=7
ajfv (z,0) = { —871782912003(81700+66x1* +tx28)(20%4214) A1+ (4.3)
6974263296008(6+1)(1900+32*)2(20% +2'*)"#~2  if N = 14
0 if & ¢ 7.

It becomes obvious that all the residues vanish for k& = 2,4,6,12. The residue also
vanishes for k = 14 and (81, 62) = (2,1),(1,2). Let us study the case k = 14, i.e.,
B =32 with (81,82) = (1,1). Note that for 8o =1,

ha(y) = (1 —y)° =1-3y +3y* —y°.

Hence,
1 714
14 Sf:{e_sﬂ If (f, 1, 1, O)(S) = E <Ghi4,5,m (7) + Ghi},—ﬁ,y (—E>>

3 714 714
_ﬁ (Gh%,ﬂ,z(lzl) + Gh’g,fﬂ,y (_E>) + 3 (Gh(l),ﬁ,m (21) + Gh’g,fﬂ,y <_ﬁ)> .

We find the values of hy(k, —3,z) and ha(k,—f,y) in (4.2) and (4.3).
We can prove that the pole at s = —0 of I_(f,1,1)(s) is a polynomial of degree
1 in ¢ and hence there is a value of ¢ for which the residue vanishes. Moreover

(1361 - 63) 41
Res LU LLOG) = =g B\ -m03)

In particular, none of the above elements are roots of the Bernstein polynomial of

f- fort = %. For t # %, —% is such a root but not for ¢ = %. This can
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be confirmed using checkRoot of [14] in Singular [9], inside [26]. Moreover, it can
be proved that for general ¢ (including %) the Tjurina number equals the expected
value for Hertling-Stahlke bound, i.e., 58; using [17] the values of Tjurina number
are constant in these u-constant strata, namely they equal 51 + ¢. This computation
provides an example with two Puiseux pairs and different Tjurina and Bernstein
stratifications.

The second author gave, in [4, Example 9] page 28, examples with one Puiseux
pair and different Tjurina and Bernstein stratifications.

Appendix A. Technical proofs.
Proof of Claim 2.8. Let us recall that § = ™Itk anq k¢ T,

mning
Let (81, 2) € Z2,. If Bym+ Bany > m+ni +k, the greatest pole of I(f, B1, B2)(s)
is smaller than —3 and the statement holds trivially for any f.
We want to fix our attention on the couples (31, B2) € Z%, such that Sym+Bang <
m + n1 + k. There is a finite number of such couples which will be characterized in
the following paragraphs.
Since k ¢ I'1, and from its properties, we know that k < mn; —m —n;. We write

k:mio—i-nljo—mnl, 1<ip<n, 1< j50<m. (Al)

Moreover the pair of positive integers (ig, jo) is unique. Let us assume the existence of
another solution (i1, j1), such that i; > ig; then i; = ig + nyv, v € Zso, i.e., i1 > ny,
leading to a contradiction.
We are going to prove also that 51 < ip and 82 < jo. Let us assume that 8 > ig.
Then
(io+ 1)m + Bany < fim+ Bany <m+ny +k=m(ig+ 1) +n1(jo+1) — mng
= fo+m<jo+1l<m+1,

which is a contradiction. We are going to enumerate these couples (81, 52).
Let us define ¢;; := mi 4+ n1j — nym and consider

{lij 1 by > 1,1 <i<ig,1 <j<jo}={lr,....0}, < ---<lr=k
Let
ly = mi, 4+ n1jp —mna, ip,jp well-defined, for 1 <p <r. (A.2)
For each p we can write

Bip Bap

5= m(l-l—io—ip)‘f'nl (1+j0_jp)+fp.

ninam

note that 81, = B2 =1 and 1 < By, < ip, 1 < P < jo. It is easy to prove that

{(Bips Bap) | 1 <p <1} = {(B1,B2) € Z>1 X L>1 | fim + fany < m +ny + k}. These
r pairs are exactly the ones for which we need to prove the statement.

Define

r n2

p=1
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with ma 4+ n1b = ¢+ mning and t = (¢1,...,t,) € R” such that the polynomial f; is
of type (ning, mng, mns +q)*. By Proposition 1.8 one has

r
ft(x7y) _ (xmnl + ymn1 + thxmipynljp)nz + xmaynlb'
p=1

ks
fealz,y) = (L +y™" + thIePynljp)M +aly™?,
p=1

Jealw,y) = (@™ + 143 tpa™ryt) s 4 amyt,
p=1

Let us fix p € {1,...,7}. To compute the residue of Iy (f¢, B1p, B2p)(s) at s = =0
we apply equation (1.6) and we get

poi= Res L (fo, Bups B2y)(5) (mBay) + Grz (b))

o (
= - 1
Lplmning hey, -8, -8,

where

aé”ftilﬁ agpf;zﬁ
hép,fﬁ,m(y) = 87&;(073/) and hi,,fﬁ,y(x) = Tg;(‘ruo)a

recall that G (s) is meromorphic continuation of fol f(e)sdt,

We have
5€’)ft—i8 v 0" feq
—> (0 = D Z_ % 1 mni\—n2(B+|V])
Hle (7y) Z \4 O tw (uy) ( +y )
V:(“w)L}Vz‘leP(lr’) w=1
where
v VI
Ply) =V = ()i D ww = bpyur - Sy o (A.3)
w=1
and Dy € Q. In the same way,
9tv £75 V] ot
USSR 5 ) O [ e
Y V=(un) ) €P(ty) wir Y

Let us study now the u'™® z-derivative of fe1 evaluated at (0,y), i.e., we need to
look for the monomials of the type %y, for any j. Hence,

o r ‘ )

aft,l 0,y) = 5§q!yn1b+ E Cxk (I I chynlkth> (1+ymn1)n27§ el kh,,

xu
K:(kh);:17u:§ kntn h=1
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for some Cx € Q, where ¢ is the Kronecker symbol. A similar formula holds for
derivatives with respect to y:

o r ) e
%(Jﬁ 0) = 6};q!xma + Z Cx <H tl}cth'rrLk;Lz;L) (1 + x’!?L’!Ll)?’LQ 1 kh7
K:(kh);,,:lvu:z kplp h=1

Let us compute the residue p,. It is a linear combination with coefficients in Q
of terms depending on couples (V, (K )w) where V = (uy) € P({p) and for each
we{l,..., |V}, Ky = (knw)},_, satisfies either

Z kh,wlh = Uw; (A.4)
h=1

or the term involved is y™? or 2™, i.e.,
Uy = ¢,  Fnw=0; (A.5)

let 7y be the number of terms of this type for V' then, the term is obtained as

4
/H(Htkhw nikp, wjh>y7v7l1b(1+ymn1)z w2 =>4 1 know)— nz(ﬂHVHv"v)ym(lJrJo Jp)dyy
h=1

w=1

w=1

11V
/H<Htkhw mkhwzh>xrvma(1+xmnl)z w2 =1 knw)=n2(B+VI+ry) m(1+io— 'Lp)d:c.
x
h=1

This is a monomial in t4,...,t,, namely,

1.5
w kh,w
I1t
h=1

whose coefficient is

1
PV,(K.) ;:/ ynl(Zw,h kh,wjh+l+jo—jp+rvb)(1 +ymn1)—n2(6+’r‘v)—zw’h’ kh’w%—F
0

1
/ xm(Zw,h kn,win+1l+io—ip+rva) (1 4 opmm )—WQ(ﬂ‘f‘TV)—Zw’h kn,w d_,T _
0 X

Grpymrnye |11 [ D knwin + 1470 —jp+rvb | | +
w,h

G(l_;’_wmvnl)a m Z kh,wih +1+4+149— ip +ryva
w,h

where

o= —na(B+rv) Zkhw
We need to compute the sum of the arguments

o :i=n1 Zkh,wjh+1+j0_jp+7’vb +m Zkh,wih—kl%-io—ip—krva . (AG)

w,h w,h
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From the equalities (A.4), (A.5) and the definition (A.2), we have

T T T
Uy =M E knwin +n1 E knhwin — mny E kn w
he1 h=1 h=1

if the first term is not involved and w,, = ¢ if it is; recall also that
q = ma + n1b — mnins. (A.7)
Then

ipm—+nijp—mng = £, = Zuw = (A.8)

m Z knwin +rva | +n1 Z knwin +rvb | —mng Z knw +ryneg
w,h w,h w,h

We obtain several properties from this equality. In particular

m+ni+k=mninzf

o=mny (> knw+rvng | +n1(1+jo) +m(1+io) — mm
w,h

=mny | n2(B+ryv) + Z khw | = —mnia.
w,h

By Lemma 1.5, we have that

PV, (Kw) =

1 B(Zw_’h kh,wjh + 14 50— jp +ryb Zw_,h kh,wih + 1414 — ip + T“V(I>

m ni
As another consequence from (A.8), we have that

Zw,h kh,wjh - jp +rvb Zw,h kh,wih - ip +rva c7z
m ’ ni1

Let us prove it. Since ged(m,n;1) = 1, it is enough to show that the product of n;
and the first denominator is congruent to 0 mod m:

ni g khwin+rvb—7ip|=m ip—nl—g knwin—rva| +mng g knw +ryneg
w,h w,h w,h

From the properties of the beta function, py (k,) is a product of a non-zero

rational number and B (%, H‘%) As a consequence Resg—_g It (ft, 814, B2i)(8) is,

up to the factor B (1:—1’0, H%) a polynomial @, in the ¢;’s with coefficients in Q; the

coefficient of ¢, does not vanish. The only option to have the monomial ¢, is when
V =(¢,) and K = ({,), ry = 0 and for these values

1 1412 14 j0
PV, (Ky) = B ; :
mniy i1 m
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Since ¢; is the minimum, @, is a polynomial in ¢; of degree 1. Then we can
choose t; such that Ress=—_g I+ (f, 811, B21)(s) = 0, since this residue is independent
of t,, for p > 1. From now on f; is a polynomial in ¢y, ...,%,, with #; fixed as above.
In the same way, we choose ¢y such that

szig% I (f¢, B12, P22)(s) =0,

and recursively we can find ts, ..., ¢, such that Ress—_g Iy (f¢, B1p, B2p)(s) = 0, for all
1 < p < r and all the t’s are in Q. Using Proposition 1.7 it is easy to proof that f is
of type (ning, mng, mng +q)*. O

Proof of Claim 2.10. Let (81, 85, 83) be as in the statement. If no(8ym + B4n1) +
Bs(ninam + q) > na(m + ny1) + k, it is not hard to check that the statement holds
trivially for any f of type (ning, mng, mng + q)~.

We are going to characterize the triples not satisfying the above inequality and
to find an fgz satisfying the conditions of the statement. Let

Mp = {(Bl, B2, Bs,v) € L2 x L1 | k = na(mpBy + n1B2) + (mnang + q)Bs + V} :

It is not hard to prove the following properties:
o if (31,32,6371/) S MB’ then 63 < no9;
e if moreover (Bi,Bé,Bé,l/) € Mpg then S5 = 0.
We denote by Ng the set of v which are the fourth coordinate of some element of
Mg and we order Ng. For v € Ng, choose Bl,Bg,ﬁg such that (Bl,Bg,ﬁg, v) € Mg; if
we denote 8; = 3; + 1, i = 1,2, we have:

na(m+mn1) + k = na(mpP1 + n1B2) + (mning + ¢)Bs + v.

Note that §3 is determined by v; it may not be the case for 81, 82. Let £, such that
0</?, <ng, and a,,b, € Z>( such that

(mning + )¢, + (ma, + n1b,)ne = (mning + q)nz + v.

Let

folw,y) = (@™ —y™)"™ + 2%y + > b (@™ —y™) vty
vENg

We choose fg of type (ning, mng, mng + ¢)~. Let us recall the change of variables
that allows to compute the poles of the proper integrals. Note that in this case, one
can choose gy = 2™ — y™. We have:

fﬁ(fE y) _ (xmnl _ ymnl)n2 + Imaynlb + Z t,/(:Emnl _ ymnl)f,,xmayynlby
veNg
= vta(ng—£€y)
Falw,y) = (L—y™m)m aty™b g 3 g, (1—ymm)eg ™ m gt
veNg
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¢ u+q<n —t)
fa(x,y) = y"*hi(y) + x%ha(y Z by "hs s
veENg
Fo(a,y) = ™ () + 2" ha(y?) + D tuy Ohs (a0
vENg
Fra(@,y) = y"ha (2%Y7) + ha(a%y") + Yty Ihs, (29y9)a"
veENg
fop(x,y) = hi(y?) + 2™ %ha(y Z tyy” s, (y9)z¥Hane=6)
vENg

where h1(0) = (mn1)"2, ha(0) = 1 and h3,,(0) = (mn1)%, deg ha(y) = (mny — 1)€, +
n1b,. For further use, ¢;; is the coefficient of v/ in h;, i =1,2 and c3,u,; for hs .
Let

mny

g(z,y) = 2™ —y™™ G(z,y) =1—y™™

and define h4(y) by the property
Pohaly) = (1= (L= )™ (1= g,
where h4(0) = (mny)?, and write

(mn1—1)B3+n182

ha(y) = > byt

i=1
We want to compute Ress=_g I_(f3, 1,02, 83)(s). For 1 < i < (mny — 1)B3 + n1 B2,

set v; such that

na(mpPr +n1fa +mnif3) +q(Bs +1i) + vi
na(mnins + q) 7

8=

we dismiss the cases where v; < 0; note that v = 1q + v;. The formula for the residue,
see (1.9), is

SES%I—(f67617ﬁ2763)(8) =

— __.bi(Gh}/iﬁBYm (q(Bs +1)) + thrﬁyy(m(mﬁl +n1B2 + mny B3 — mninzfB))

where
Vi f—B 8”1‘f‘5
1 _ 18 2 _ 28
hui,fﬁ,z(y) - Vi (O7y)7 hv 75,7;(‘/[:) - ayyl (‘T7O)
We proceed as in the proof of Claim 2.8:
al’zfl_ﬁﬁ (0 ) B Z D l 6wa16 (0 ) (( )n2 naq + 1)—B—|V|
Oxvi YY) = 14 Ovw Y mni Yy
V=(vu)EP(v) w=1
61/1' _B |V‘ a
D SR ) oo T e N

V:(Uw)GP(ul) w=1
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with Dy € Q. The derivatives without powers are computed as follows. For v € Z>y,
let gy := {%J and set

Clu):={he{0,1,...,qu} | u—qgh =v), € Ng}

1 0%
ul 8;25 (0,) = Z c3m oy T X (K (e, 1y™ + creu2)y”
' heC(u)
190
E ayfzﬁ (ZE, 0) = Z cgﬁyh1htyh’IUh+Q(n2—éuh) + XZ(KU)(CKul + CKuzxngq)
' hec(u)

where K, = % and xz is the characteristic function of Z.
The terms of the derivatives involved in the computation of the residues are

Iszll € P(v;); given V we decompose its set of indices in

parametrized by V = (1)
three parts:
e w € Wi, which determines h,, € C(v,), corresponding to a term with coeffi-
cient ¢3u;,  hy;
e w € Wa, where v, = 0 mod ¢, corresponding to a term with coefficient cg,  1;
e w € W3, where v, = 0 mod ¢, corresponding to a term with coefficient CK,, 25
where W = W, [[ W [[ W3. For such a 4-uple (V, Wy, Wy, W3) the integrands are

( H tuhwy(luthrhw)Q>< H yuw+n2q>< H yuw>((mn1)n2yn2q+1),8qu(,f}3+i) _

weWy weWy weW3

< H tuh,w> yq(Zwewl(Zuhw Fhw)+ X wew,uws Kuw+n2\W2\+ﬁ3+i)((mn1)n2yn2q + 1)*13*\"\

weWy
and
( thhw xuh,w+fI(n275uhw )>< Hxn2q>((mn1)n2+xn2q)6Vxn2(mﬁ1+n1ﬁ2+mn163%n1n2ﬁ)_
weWy w€E W3

( th )mzwewl(Vhw+q(n2luh,w))‘Fn2(qW3+mﬁ1+n1ﬁ2+mn153mnlnzﬁ)((mnl)nz_’_mnw)ﬂV
haw

weWy

If « = =8 — |V|, we need to compute

G((mnl)ngynqurl)a (q ( Z (thw + hw) + Z KVw + TL2|W2| + /33 + z))) +

weW, weW2UW3

G((mnl)”2+cv"2q)ﬂ< Z (Vho+aq(na—2y, ) +n2(q|WsH-mpBi+n1 B2 +mni f3 —mnmﬁ))
weWy

The sum of the two entries equals —ngsa, and by Lemma 1.5, we have that this
contribution equals

(mnl)Zwewl oy Thw) T2 ewyuwy Ky +n2|Wal+Bs+i

B (u,v)

naq
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where
1
wi=—{ > (ly,, +ho)+ Y. Ky, +no|Wal+Bs+i
n2 weWy weWUWs
1 1
VT e Y Wn, +alne—6,,)) + AWl + mBy o m1 Bz + mma By = mnanaff).
weWy

Note that v+ v = 8+ |V, i.e., it is congruent with 8 mod Z.
On the other side, since ¢f,, = v mod ns the following congruences modns hold:

qou—(L4B2) =D qly,, +ho)+ > v tqgi—gl, =

weW; wEWLUWs
V]
Z(Vhw+qhw)+ Z uw—l—qi—yzZuw—i-qi—uzui—i—qi—uzo;
weWi weWUWs w=1

since ged(g, n2) = 1, we deduce that

u_£u+63€

2

Z.

In particular, the corresponding contribution is, up to a factor in Q,
B (%,B — %) Hence, the total result is the product of this value and a

polynomial in t with coefficients in Q and the coefficients of degree 1 do not vanish.
Let us denote Ng = {(vV, ..., v} where v < ... < o). For vM) | let us
consider the corresponding ﬁ;l), ﬁél), Bél). Then,

l e
Res I(f5.0".8,".5")(s) = B ( B g L *BS) ¢ (1)

n2 n2

where ¢ is of degree 1. Hence, we can choose t; € R such that the above
residue vanishes. Recursively, we can choose t1,...,%, € R such that fg is of type
(n1ng, mng, mna + ¢)~ and

Res I (f5, 8,85, 6)(5) =0, 1<j<r
This result does not depend on the particular choice of (ng ), ﬁéj )). O
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