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BERNSTEIN POLYNOMIAL OF 2-PUISEUX PAIRS IRREDUCIBLE

PLANE CURVE SINGULARITIES∗

E. ARTAL BARTOLO† , PI. CASSOU-NOGU‡ , I. LUENGO§ , AND A. MELLE-HERNÁNDEZ¶

Dedicated to Prof. H. B. Laufer on the occasion of his 70th birthday

Abstract. In 1982, Tamaki Yano proposed a conjecture predicting the set of b-exponents of an
irreducible plane curve singularity germ which is generic in its equisingularity class. In 1986, the
second author proved the conjecture for the one Puiseux pair case. In [1], we proved the conjecture
for the case in which the germ has two Puiseux pairs and its algebraic monodromy has distinct
eigenvalues. In this article we aim to study the Bernstein polynomial for any function with two
Puiseux pairs and its algebraic monodromy has distinct eigenvalues. In particular the set of all
common roots of their corresponding Bernstein polynomials is also explicitely given. We provide
also bounds for some analytic invariants of singularities and illustrate the computations in suitable
examples.
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Introduction. One of the main guide lines of Prof. H.B. Laufer in singularity
theory, particularly concerning normal two dimensional analytic singularities (X, 0),
has been which analytic invariants of (X, 0) depends on the topology, i.e., they are
characterized by their link L(X,0). The link has the same information as the decorated
resolution graph Γ(X;0) see [20]. For instance Laufer questioned the following in [13]:
What conditions does the existence of a hypersurface representative of (X, 0) put on
a decorated dual graph Γ(X,0)? The analytic properties of X depend on the analytic
properties of the ramification locus of a projection. In this work, we study the behavior
of some analytic (non-topological) invariants for germs of curves. The main goal of
the paper is to consider germs of irreducible plane curve singularities with the same
topology and describe exactly the set of common roots of their corresponding local
Bernstein polynomials which are analytic invariants of their germs.

Let O be the ring of germs of holomorphic functions on (Cn, 0), D the ring of
germs of holomorphic differential operators of finite order with coefficients in O. Let
s be an indeterminate commuting with the elements of D and set D[s] = D ⊗C C[s].

Given an holomorphic germ f ∈ O, one considers the ring Rf,s := O
[
1
f
, s
]

and the free Rf,s-module Rf,sf
s of rank 1 with the natural D[s]-module structure.

Then, there exists a non-zero polynomial B(s) ∈ C[s] and some differential operator
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P = P (s, x,D) ∈ D[s], holomorphic in x1, . . . , xn and polynomial in ∂
∂x1

, . . . , ∂
∂xn

,
which satisfies in Rf,sf

s the following functional equation

P (s, x,D) · f(x)s+1 = B(s) · f(x)s. (1)

The monic generator bf,0(s) of the ideal of such polynomials B(s) is called the Bern-
stein polynomial (or b-function or Berstein-Sato polynomial) of f at 0. The same
result holds if we replace O by the ring of polynomials in a characteristic zero field K

with the obvious corrections, see e.g. [8, 10, Theorem 3.3].

This result was first obtained for f polynomial by Bernstein in [2] and in general
by Björk [3]. One can prove that bf,0(s) is divisible by s + 1, and we consider the

reduced Bernstein polynomial b̃f,0(s) :=
bf,0(s)

s+ 1
.

In the case where f defines an isolated singularity, one can consider the Brieskorn
lattice H

′′

0 := Ωn/df ∧dΩn−2 and its saturated H̃
′′

0 =
∑

k≥0(∂tt)
kH

′′

0 . Malgrange [18]

showed that the reduced Bernstein polynomial b̃f,0(s) is the minimal polynomial of the

endomorphism −∂tt on the vector space F := H̃
′′

0 /∂
−1
t H̃

′′

0 , whose dimension equals
the Minor number µ(f, 0) of f at 0. The b-exponents {β1, . . . , βµ} are the roots of
the characteristic polynomial of the endomorphism ∂tt. Recall that exp(−2iπ∂tt) can
be identified with the algebraic monodromy of the Milnor fiber of f at the singular
point.

Kashiwara [12] expressed these ideas with differential operators. Let us denote
M := D[s]f s/D[s]f s+1, where s defines an endomorphism of P (s)f s by multiplication.
This morphism keeps invariant M̃ := (s+1)M and defines a linear endomorphism of
(Ωn ⊗D M̃)0 which is naturally identified with F and under this identification −∂tt
becomes the endomorphism defined by the multiplication by s.

In [18], Malgrange proved that the set Rf,0 of roots of the Bernstein polynomial
is contained in Q<0. Moreover, Kashiwara [12] restricted the set of candidate roots.
The number −αf,0 := maxRf,0 is the opposite of the log canonical threshold of the
singularity. Saito [21] proved that

Rf,0 ⊂ [−n+ αf,0,−αf,0]. (2)

Now let f be an irreducible germ of plane curve. In 1982, Tamaki Yano [29]
made a conjecture concerning the b-exponents. In [4], the second author proved the
conjecture for the one Puiseux pair case. We state this conjecture in the case we are
interested in, the case of two Puiseux pairs. Let CSn2,q

n1,m
:= (n1n2,mn2,mn2 + q) be

the characteristic sequence of f , such that

• 1 < n1 < m, gcd(m,n1) = 1;
• q > 0, n2 > 1, gcd(q, n2) = 1.

Recall that this means that f(x, y) = 0 has as root (say over x) a Puiseux expansion

x = · · ·+ a1y
m
n1 + · · ·+ a2y

mn2+q

n1n2 + . . .

with exactly 2 characteristic monomials.

Let

B1 :=

{

α =
m+ n1 + k

mn1n2
: 0 ≤ k < mn1n2, and n2mα, n2n1α /∈ Z

}

; (3)
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B2 :=







α =

Nk
︷ ︸︸ ︷

(m+ n1)n2 + q + k

n2 (mn1n2 + q)
︸ ︷︷ ︸

D

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 ≤ k < n2D and n2α,Dα /∈ Z







. (4)

Yano’s Conjecture ([29]). For almost all irreducible plane curve singularity
germ f : (C2, 0) → (C, 0) with characteristic sequence (n1n2,mn2,mn2 + q), the set
Bf of the b-exponents {β1, . . . , βµ} is B1 ∪B2.

In [1] Yano’s conjecture was proved for the case

gcd(q, n1) = 1 or gcd(q,m) = 1. (5)

The above condition is equivalent to require that the algebraic monodromy of the
irreducible germ has distinct eigenvalues. In this case, the µ b-exponents are all
distinct and they coincide with the opposite of the roots of the reduced Bernstein
polynomial (which turns out to be of degree µ).

There is another set which is important too, the set of the exponents of the mon-
odromy (or spectral numbers, up to the shift by one, in the terminology of Varchenko
[28]). This notion was first introduced by Steenbrink [25].

Let f : (Cn, 0) −→ (C, 0) be a germ of a holomorphic function with isolated
singularity. In [25] Steenbrink constructed a mixed Hodge structure onHn−1(Ff,0,C).
Let

Hn−1(Ff,0,C)λ = Ker(Ts − λ : Hn−1(Ff,0,C) −→ Hn−1(Ff,0,C));

where Tu, Ts are, respectively, the unipotent and semisimple factors of the Jordan
decomposition of the monodromy hn−1.

The set Spec(f) of spectral numbers are µ rational numbers

0 < α1 ≤ α2 ≤ · · · ≤ αµ < n

which are defined by the following condition:

#{j : exp(−2πiαj) = λ, ⌊αj⌋ = n− p− 1} = dimC GrpF Hn−1(Ff,0,C)λ, λ 6= 1

#{j : αj = n− p} = dimC GrpFH
n−1(Ff,0,C)1.

The set Spec(f) of spectral numbers is symmetric, that is αi + αµ−(i−1) = n. It is
known that this set is constant under µ-constant deformation of f , see [28].

M. Saito [23] gave a formula for Spec(f) in the case of a germ of an irreducible
plane curve singularity (cf. also Theorem 3.1 in [19] or section 2.2 in [24]). In the
case of characteristic sequence (n1n2,mn2,mn2 + q), the set of spectral numbers less
than 1 is the union of the sets

A1 =

{

1

n2

(

i

n1
+

j

m

)

+
r

n2

∣

∣

∣
0 < i < n1, 0 < j < m,

i

n1
+

j

m
< 1, 0 ≤ r < n2

}

, (6)

A2 =

{

i

n2
+

j

n1n2m+ q

∣

∣

∣ 0 < i < n2, 0 < j < n1n2m+ q,
i

n2
+

j

n1n2m+ q
< 1

}

. (7)

Let us denote by A⊥
j := {2 − α | α ∈ Aj}, i.e. the symmetric set of Aj with

respect to 1. Then

Spec(f) = A1 ∪ A2 ∪ A⊥
1 ∪A⊥

2 . (8)
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There is a closed relationship between spectral numbers and b-exponents. The follow-
ing result summarizes some of them which can be found for instance in [11] or [22,
Remark 3.2 iii)] for (1)

Proposition 1. Let f be a germ of irreducible plane curve singularity. The
spectral numbers Spec(f) and the set Bf of b-exponents of f satisfy the following
conditions:

(1) Let αk ∈ Spec(f), there exist a b-exponent βk ∈ Bf such that αk − βk is a
non negative integer and 0 ≤ αk − βk ≤ 1.

(2) minBf = min Spec(f) = α1.

(3) dim H̃
′′

0 /H
′′

0 =
∑

αi −
∑

βi

From now on, we will study germs having a fixed characteristic sequence CSn2,q
n1,m

satisfying (5). Our goal in this article is to show that one can compute the rational
numbers that are roots of the Bernstein polynomial for any such germ. To do this we
follow the same method as the one used in [7, 1]. To prove that a rational number
is a root of the Bernstein polynomial of some function f , we prove that this number
is a pole of some integral with a transcendental residue. We also offer algorithmic
formulæ for the computation of these residues and bounds for dim H̃

′′

0 /H
′′

0 .
The two main results in this paper are the following ones. We split the sets B1

and B2 in terms of two semigroups: Γ, the one associated with CSn2,q
n1,m

(generated by
the numbers n2n1, n2m,n1mn2 + q) and Γ1, associated to the truncation to the first
Puiseux pair (generated by m,n1). Let

B11 =

{

β =
mβ1 + n1β2

mn1n2
∈ B1

∣
∣
∣
∣
β1, β2 ∈ Z≥1

}

(9)

(which means that k in (3) is in Γ1) and

B21=

{

β =
(mβ1 + n1β2)n2 + (mn1n2 + q)β3 + q

n2(mn1n2 + q)
∈ B2

∣

∣

∣

∣

β1, β2 ∈ Z≥1, β3 ∈ Z≥0

}

. (10)

(which means that k in (4) is in Γ2).
In Theorem 2.5 we prove one of the main results of the paper, that is,

⋂

f∈Sµ

Rf,0 = B11 ∪B21,

where Sµ is the set of all germs f with the topological type, of the characteristic
sequence CSn2,q

n1,m
satisfying (5), i.e. its algebraic monodromy has distinct eigenvalues.

In §3, we prove bounds for dim H̃
′′

0 /H
′′

0 for such germs. Let

m = q̃n1 + rm, 0 < rm < n1, q = hn2 + rq, 0 ≤ h, 0 < rq < n2.

Then

(n2 − 1)(m− 1)(n1 − 1) ≤ dim H̃
′′

0 /H
′′

0 ≤
µ

2
− n2(m+ n1)− q + q̃ + h+ 4;

and the second inequality is generically an equality.
We end the article with several families of examples. In Theorem 4.2 it is proved

that all polynomials with characteristic sequence (4, 6, 6+ q) have the same Bernstein
polynomial (this is the original Yano’s family). Next we consider polynomials with
characteristic sequence (8, 10, 10+ q) then we compute its Bernstein polynomial up to
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six roots (note that the Milnor number equals 63+q) and we have explicit formulae to
decide the remaining roots. This computation provides an example with two Puiseux
pairs and different Tjurina and Bernstein stratifications.

The second author gave, in [4, Example 9] page 28, examples with one Puiseux
pair and different Tjurina and Bernstein stratifications.

1. Two variable integrals and Bernstein polynomial. Let us recall and
collect some definitions, results and consequences from [1].

Definition 1.1. We say that a real polynomial f ∈ R[x, y] is positive if f(x, y) >
0 for all (x, y) ∈ [0, 1]2.

Let f ∈ R[x, y] positive. Let a1, a2, b1, b2 ∈ Z be fixed such that a1, a2 ≥ 0, b1, b2 ≥
1. We denote the following complex variable integral by

Y(s) = Yf,a1,b1,a2,b2(s) :=

∫ 1

0

∫ 1

0

f(x, y)sxa1s+b1ya2s+b2
dx

x

dy

y
. (1.1)

Proposition 1.2. [1, Proposition 2.4]] The function Y(s) satisfies the following
properties:

(1) It is absolutely convergent for ℜ(s) > α0, where α0 = sup
(

− b1
a1
,− b2

a2

)

(2) It has a meromorphic continuation on C with poles of order at most 2 con-

tained in S =
{

− b1+ν1
a1

, ν1 ∈ Z≥0

}

∪
{

− b2+ν2
a2

, ν2 ∈ Z≥0

}

Notation 1.3. Let f : [0, 1] → R be a continous function. We will denote by
Gf (s) the meromorphic continuation of

∫ 1

0

f(t)ts
dt

t
.

Proposition 1.4. [1, Proposition 2.6]] With the hypotheses of Proposition 1.2,
let ν1 ∈ Z≥0 be fixed and such that α = − b1+ν1

a1
6= − b2+ν2

a2
for all ν2 ∈ Z≥0, then the

pole of Y(s) at α is simple and

Res
s=α

Y(s) =
1

ν1!a1
Ghν1,α,x

(a2α+ b2), hν1,α,x(y) :=
∂ν1fα

∂xν1
(0, y). (1.2)

Note that, under the hypotheses of the above Proposition, Ghν1,α,x
(a2s + b2)

admits an integral expression which is absolutely convergent and holomorphic for
ℜ(s) > −N2 − 1, with N2 such that α > − b2+N2+1

a2
, see the proof in [1] of the above

Proposition 1.2 .
We collect next a result which relates these integrals with the beta function

B(s1, s2).

Lemma 1.5. [1, Lemma 2.8]] Let p ∈ N and c ∈ R>0. Given s1, s2 ∈ C such that
−α = s1 + s2 > 0 then

G(yp+c)α(ps1) +G(1+cxp)α(ps2) =
c−s2

p
B (s1, s2) (1.3)

where B is the beta function.
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Our goal in this article is to show that one can compute the rational numbers
that are roots of the Bernstein polynomial for any function having characteristic
sequence CSn2,q

n1,m
satisfying (5), that is its monodromy has distinct eigenvalues. To

do this we follow the same methods and ideas as the one used by Pi. Cassou-Noguès in
[5, 4, 6, 7, 1]. To prove that a rational number is a root of the Bernstein polynomial of
some function f , we prove that such a number is pole of some integral whose residue
is a transcendental number.

To use the method one needs to start with a real polynomial f ∈ R[x, y] whose
complex analytic germ at the origin has CSn2,q

n1,m
as characteristic sequence.

Definition 1.6. A polynomial f ∈ R[x, y] is said to be of type (n1n2,mn2,mn2+
q)+ if it satisfies:

f(x, y) = (xn1 + ym + h1(x, y))
n2 + xayb + h2(x, y) (1.4)

where
(G+1) h1(x, y) =

∑

(i,j)∈Pn1,m
aijx

iyj ∈ R[x, y], where

Pn1,m := {(i, j) ∈ Z2
≥0 | mi+ n1j > mn1};

(G+2) a, b ≥ 0 such that am+ bn1 = mn1n2 + q;
(G+3) the polynomial h2 ∈ R[x, y], whose support is disjoint from the other terms

of f , satisfies that the characteristic sequence of f is CSn2,q
n1,m

.

Proposition 1.7. Let f ∈ R[x, y] be a real polynomial as in (1.4) satisfying
((G+1)), ((G+2)) and ((G+3)). Then there exists a domain D = [0, η]2, with η ≤ 1,
such that f > 0 in [0, η]2 \ {(0, 0)}.

Proof. Note that the real zero locus of xn1 + ym intersects [0, 1]2 only at (0, 0).
Since the real zero locus of f = 0 is a deformation of the previous one, then there is
η > 0 for which the statement follows.

For β1, β2 ∈ Z≥1, and f of type (n1n2,mn2,mn2 + q)+ one defines:

I+(f, β1, β2)(s) :=

∫ 1

0

∫ 1

0

f(x, y)s xβ1yβ2
dx

x

dy

y
. (1.5)

Proposition 1.8. [1, Proposition 4.2]] Let f be of type (n1n2,mn2,mn2 +
q)+ and β1, β2 ∈ Z≥1. Then the integral I+(f, β1, β2)(s) is absolutely convergent

for the values s such that ℜ(s) > −β1m+β2n1

mn1n2
and may have simple poles only for

s = −β1m+β2n1+ν
mn1n2

, ν ∈ Z≥0.

Next we show the algorithmic description of [1, Section 4] to compute the residue
of the corresponding family of poles. Let us see show to compute the residue at the
eventual pole α = −β1m+β2n1+ν

mn1n2
of the integral I+(f, β1, β2)(s). Let

f̃(x, y) = f(xm, yn1)

and let f1 and f2 be defined by

f̃(x, xy) = xn1n2mf1(x, y), f̃(xy, y) = yn1n2mf2(x, y).
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Thus the residue of α = −β1m+β2n1+ν
mn1n2

of the integral I+(f, β1, β2)(s) equals

Res
s=α

I+(f, β1, β2)(s) =
1

ν!mn1n2
(Gh1

ν,α,x
(n1β2) +Gh2

ν,α,y
(mβ1)); (1.6)

where

h1
ν,α,x(y) =

∂νfα
1

∂xν
(0, y), and h2

ν,α,y(x) =
∂νfα

2

∂yν
(x, 0).

We define now a simplified version of polynomials of type (n1n2,mn2,mn2 + q)−

defined in [1].

Definition 1.9. A polynomial f ∈ R[x, y] is said to be of type (n1n2,mn2,mn2+
q)−s if it satisfies:

f(x, y) = g(x, y)n2 + xayb + h2(x, y) (1.7)

where g(x, y) := xn1 − ym

(G−1) a, b ≥ 0 are as in (G+2).
(G−2) The polynomial h2 ∈ R[x, y], whose support is disjoint from the first terms,

satisfies that the characteristic sequence of f is CSn2,q
n1,m

.

(G−3) There is an ǫ > 0 such that for D := {(x, y) ∈ R2 | 0 ≤ x ≤ ǫ, 0 ≤ y ≤ x
n1
m },

we have that f > 0 on D \ {(0, 0)}.

Proposition 1.10. For each f as in (1.7) satisfying the conditions (G−1),
and (G−2) then there is ǫ > 0 and a domain D := {(x, y) ∈ R2 | 0 ≤ x ≤ ǫ, 0 ≤ y ≤

x
n1
m } for which f satisfies (G−3) in D, that is f is of type (n1n2,mn2,mn2 + q)−s .

Proof. It is enough to take a suitable truncation of a Puiseux expansion of f
(which has no term between the two characteristic terms).

For β1, β2 ∈ Z≥1, β3 ∈ Z≥0 and f of type (n1n2,mn2,mn2 + q)−s we set:

I−(f, β1, β2, β3)(s) :=

∫∫

D

f(x, y)s xβ1yβ2g(x, y)β3
dx

x

dy

y
. (1.8)

Proposition 1.11 ([1, Proposition 5.2]). Let f ∈ R[x, y] be of type
(n1n2,mn2,mn2 + q)−s , β1, β2 ∈ Z≥1 and β3 ∈ Z≥0. Then the integral

I−(f, β1, β2, β3)(s) is convergent for ℜ(s) > −β1m+β2n1+β3mn1

mn1n2
and its set of poles

is contained in the set

P1 ∪
⋃

i∈Z≥1

P2,i

where

P1 :=

{

−
mβ1 + n1β2 +mn1β3 + ν

mn1n2

∣
∣
∣
∣
ν ∈ Z≥0

}

and

P2,i :=

{

−
n2(mβ1 + n1β2 +mn1β3+) + q(β3 + i) + ν

n2(mn1n2 + q)

∣
∣
∣
∣
ν ∈ Z≥0

}
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The poles have at most order two. The poles may have order two at the values con-
tained in P1 and P2,i for some i.

We shall give the residues at the eventual simple poles in P2,i. Let f̃ , ˜̃f, f̂ be
defined by

f(xm, yn1) = f̃(x, y), f̃(x, xy) = xmn1n2 ˜̃f(x, y), f̂(x, y) = ˜̃f(x, 1− y).

Let
ˆ̂
f, f1, f2 be defined by

f̂(xn2 , yq) =
ˆ̂
f(x, y),

ˆ̂
f(x, xy) = xn2qf1(x, y),

ˆ̂
f(xy, y) = yn2qf2(x, y).

Let us denote

g(xm, yn1) = g̃Y (x, y) = xmn1 − ymn1 , ˜̃g(y) =
g̃(x, xy)

xmn1
= 1− ymn1 .

In particular,

˜̃g(1− y) = yQ(y), Q(0) = n1.

Let us define

Q̃(y) = Q(y)β3(1 − y)n1β2−1, Q̃(y) =
∑

biy
i−1.

Thus the integral I−(f, β1, β2, β3)(s) has residue for

s = α = −
n2(mβ1 + n1β2 +mn1β3) + q(β3 + i) + ν

n2(mn1n2 + q)

equals

Res
s=α

I−(f, β1, β2, β3)(s) =
1

n2q

∑

i,ν

1

ν!
bi(Gh1

ν,α,x
(q(β3 + i))+

Gh2
ν,α,y

(n2(mn1n2α+mβ1 + n1β2 +mn1β3))

(1.9)

where

h1
ν,α,x(y) =

∂νfα
1

∂xν
(0, y), and h2

ν,α,y(x) =
∂νfα

2

∂yν
(x, 0);

recall also that Gf (s) is the meromorphic continuation of
∫ 1

0 f(t)ts dt
t
.

Remark 1.12. We may assume ǫ = 1 after a suitable change of variables.

Let us summarize the links between these integrals and the Bernstein polynomial.
We are using ideas in [4, 5, 6, 1]. Let us fix notations that may cover both cases. We
fix f with the following properties:

(B1) The characteristic sequence of f ∈ R[x, y] is CSn2,q
n1,m

.

(B2) The polynomial Y (x
1
m ) ∈ R[x

1
m ] is either 1 (for the +-case) or x

n1
m for the

−s-case
(B3) D := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ Y (x

1
m )}, g(x, y) = xn1 ± ym.

(B4) f(x, y) > 0 ∀(x, y) ∈ D \ {(0, 0)}.
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Let β1, β2 ∈ Z≥1 and β3 ∈ Z≥0 (equals 0 for the +-case). Let us consider the
integral

I±(f, β1, β2, β3)(s) :=

∫∫

D

f(x, y)s xβ1yβ2 g(x, y)β3
dx

x

dy

y
. (1.10)

Theorem 1.13 ([1, Theorem 6.3]). Let f(x, y) ∈ K[x, y] be a polynomial defining
an irreducible germ of complex plane curve at the origin which has two Puiseux pairs
and its algebraic monodromy has distinct eigenvalues and such that K is an algebraic
extension of Q. Let α be a pole of I±(f, β1, β2, β3)(s) with transcendental residue,
and such that α + 1 is not a pole of I±(f, β

′
1, β

′
2, β

′
3)(s) for any (β′

1, β
′
2, β

′
3). Then α

is root of the Bernstein-Sato polynomial bf (s) of f .

2. Determination of the set of common roots of the µ-constant stratum.

Let f be an irreducible germ of plane curve whose characteristic sequence is CSn2,q
n1,m

satisfying (5). The Bernstein-Sato polynomial of a germ f with this characteristic
sequence, depends on f , but there is a generic Bernstein polynomial bµ,gen(s): for
every µ-constant deformation of such an f , there is a Zariski dense open set U on
which the Bernstein-Sato polynomial of any germ in U equals bµ,gen(s).

Proposition 2.1 ([27, Corollary 21]). Let ft(x) be a µ-constant analytic defor-
mation of an isolated hypersurface singularity f0(x). If all eigenvalues of the mon-
odromy are pairwise different, then all roots of the reduced Bernstein-Sato polynomial
b̃ft(s) depend lower semi-continously upon the parameter t.

Proposition 2.2 ([11, Corollary 5.1], [10]). Let f(x) be a germ of an isolated
hypersurface singularity. Then for each spectral number α ∈ Spec(f) such that α <
α1 + 1, then −α is root of the Bernstein polynomial bf (s).

Consequently, for a µ-constant analytic deformation ft(x) of an isolated hyper-
surface singularity germ f0(x), for every α in

E := {α : α ∈ Spec(f) and α < α1 + 1}

then −α is root of every Bernstein polynomial bft(s) for every t.

Remark 2.3. Note that we follow Saito’s convention for the exponents and the
spectral numbers, which differs by 1 from the convention in [11].

The following Corollary is a consequence of Proposition 2.1.

Corollary 2.4. Let f0(x, y) be an irreducible germ of plane curve whose mon-
odromy has distinct eigenvalues. Let −α be a root of the local Bernstein-Sato polyno-
mial bf0(s). Then, either −α or −(α+ 1) is a root of bµ,gen(s).

Let Sµ be the (non-singular) µ-constant stratum of f at 0. Let Rf be the set of
the roots of bf (−s). For every g ∈ Sµ and since g has isolated singularities then

Rg ⊂ Spec(g) ∪ {α− 1 | α ∈ Spec(g)}, see [10].

Since the spectral numbers are constant in a µ-constant deformation then, in the
image of the map Sµ → C[s] : g 7→ bg(s) there are finitely many polynomials.
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The aim of this section is to describe the set of common roots of the Bernstein
polynomials of the µ-constant stratum, that is, the set

CRµ :=
⋂

f∈Sµ

Rf .

By Proposition (2.2) the set E ⊂ CRµ.

In [1], we proved that the set of roots of the Bernstein polynomial bµ,gen(−s)
is B1 ∪ B2. We split these sets B1 and B2 using (9) and (10) and we set B12 =
B1 \B11, B22 = B2 \B21.

The aim of this part is to prove

Theorem 2.5. Let CRµ be the set of common roots of the Bernstein polynomi-
als of every irreducible germ of plane curve whose characteristic sequence is CSn2,q

n1,m

satisfying (5). Then CRµ = B11 ∪B21.

We divide the proof in three parts.

Proposition 2.6. B11 ∪B21 ⊂ CRµ.

Proof. Let α ∈ B11 ∪ B21 ⊂ B1 ∪ B2 and let f be a fixed germ in Sµ. As −α
is a root of the generic Bernstein polynomial, if −α is not a root of the Bernstein
polynomial of f , then −(α + 1) is by Corollary 2.4. Then −α − 1 > −2 and α < 1.
In particular, if α > 1 then α is a root for any germ. We need only to study B′ =
(B11 ∪B21) ∩ {α ∈ Q|α < 1}. Hence, we need only to prove that B′ ⊂ CRµ.

To do this, we use a result of B. Lichtin ([15, Section 3, Corollary 2]) and Loeser
([16, Remarque III.3.5]). Let us state it.

. . .

...

. . .

...

D1D1,1

D1,2

D1,3

D2

D2,1

D2,2

D2,3

Fig. 1. Resolution graph

Let us consider an embedded resolution of f , see Figure 1, together with a 2-
differential form ω. For a divisor Dj , let us denote Nj := ordDj

(f) and νj(ω) :=
ordDj

(ω) + 1.

In the resolution of f we have two branching divisors that we denote by D1, D2.
We denote by Dj,1, Dj,2, Dj,3 the divisors adjacent to Dj, j = 1, 2. For j = 1, 2, k =
1, 2, 3 we set

ǫj,k(ω) :=
1

Nj

det

(
Nj Nj,k

νj(ω) νj,k(ω)

)
mod Z

≡ −
νj(ω)Nj,k

Nj

.

If the following conditions hold:

• ǫj,k(ω) is not an integer for k = 1, 2, 3,

•
νj(ω)
Nj

< 1;
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then −
νj(ω)
Nj

is a root of the Bernstein polynomial of f . We have the relation
∑

k ǫj,k(ω) = −2 for j = 1, 2.
It is easily checked that

N1 = mn1n2, N2 = n2(mn1n2 + q),

and

N1,1 = n1n2α1,1, N1,2 = mn2α1,2, N1,3 = (mn1α
′
1,3 + 1)n2,

where

α1,1n1 + 1 = α′
1,1m, α1,2m+ 1 = α′

1,2n1, α1,3 + n2 = α′
1,3q,

all positive integers. We also have

N2,1 = n2(mn1α
′
2,1 + α2,1), N2,2 = α2,2(mn1n2 + q), N2,3 = 1,

where

α2,1n2 + 1 = α′
2,1q, α2,2q + 1 = α′

2,2n2,

again all positive integers.
Let us check the conditions for α = mβ1+n1β2

mn1n2
∈ B11 ∩ B′ with the holomorphic

form ω1 = xβ1−1yβ2−1dxdy. Since ν1(ω1) = mβ1 + n1β2, we have that α = ν1(ω1)
N1

.
Only the non-integer condition must be checked. We have:

−ǫ1,1(ω1)
mod Z

≡
(mβ1 + n1β2)α1,1n1n2

mn1n2

mod Z

≡
n1β2α1,1

m

mod Z

≡ −
β2

m
/∈ Z

−ǫ1,2(ω1)
mod Z

≡
(mβ1 + n1β2)α2,1mn2

mn1n2

mod Z

≡
mβ1α1,2

n1

mod Z

≡ −
β1

n1
/∈ Z

−ǫ1,3(ω1)
mod Z

≡
(mβ1 + n1β2)(mn1α

′
1,3 + 1)n2

mn1n2

mod Z

≡
mβ1 + n1β2

mn1
/∈ Z

Finally we check the conditions for α = (mβ1+n1β2)n2+q+(mn1n2+q)β3

n2(mn1n2+q) ∈ B21 ∩ B′

with the form ω2 = xβ1−1yβ2−1gY (x, y)
β3dxdy. Since ν2(ω2) = (mβ1 +n1β2)n2 + q+

(mn1n2 + q)β3, we have that α = ν2(ω2)
N2

. Let us check the non-integer condition. We
have:

−ǫ2,1(ω2)
mod Z

≡
((mβ1 + n1β2)n2 + q + (mn1n2 + q)β3)(α

′
2,1mn1 + α2,1)n2

n2(mn1n2 + q)

mod Z

≡

−
mβ1 + n1β2 −mn1

mn1n2 + q

ǫ2,2(ω2)
mod Z

≡ −
((mβ1 + n1β2)n2 + q + (mn1n2 + q)β3)α2,2(mn1n2 + q)

n2(mn1n2 + q)

mod Z

≡
β3 + 1

n2

ǫ2,3(ω2)
mod Z

≡ −
((mβ1 + n1β2)n2 + q + (mn1n2 + q)β3)

n2(mn1n2 + q)
.

None of the above numbers is an integer.

Proposition 2.7. For all β ∈ B12, there exists a polynomial fβ with charac-
teristic sequence (n1n2,mn2,mn2 + q) such that −β is not a root of the Bernstein
polynomial of fβ.
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Proof. Let β ∈ B12, i.e. there exists k ≥ 1 such that β = n1+m+k
n1n2m

and k is not

in the semigroup Γ1 generated by m,n1. Then β + 1 = n1+m+n1mm2+k
n1n2m

. Since the
conductor of Γ1 is mn1−m−n1, then n1+m+n1mm2+k ∈ Γ1 and there exist β1 and
β2 such that 1 + β = mβ1+n1β2

mn1n2
. In particular, if f is of type (n1n2,mn2,mn2 + q)+,

then

Res
s=−β−1

I(f, β1, β2)(s) 6= 0

is transcendental, see [1, Proposition 3.3].

Claim 2.8. There exists f of type (n1n2,mn2,mn2 + q)+ such that

Res
s=−β

I+(f, β1, β2)(s) = 0, ∀(β1, β2) ∈ Z≥1.

Assume that Claim 2.8 has been proved (see the Appendix A). For such an f ,
−β−1 is a root of the Bernstein polynomial of f . Since the hypotheses of Theorem 1.13
hold (see also [1, Theorem 5.3])−β is not such a root since the monodromy has distinct
eigenvalues. Then there exists f such that −β is not root of the Bernstein polynomial
bf,0(s).

Proposition 2.9. For all β ∈ B22, there exists a polynomial fβ with charac-
teristic sequence (n1n2,mn2,mn2 + q) such that −β is not a root of the Bernstein
polynomial of fβ.

Proof. Let β ∈ B22, i.e we have β = n2(m+n1)+q+k

n2(mn1n2+q) and k /∈ Γ, where Γ is the

semigroup generated by mn2, n1n2 and mn1n2 + q; its conductor is

n2(mn1n2 + q)− (m+ n1)n2 − q + 1

In particular, n2(mn1n2 + q) + k ∈ Γ and there exist β1, β2, β3 such that

1 + β =
mβ1 + n1β2 + (mn1n2 + q)β3

n2(mn1n2 + q)
.

As a consequence, for any f of type (n1n2,mn2,mn2 + q)−, we have that

Res
s=−β−1

I−(f, β1, β2, β3)(s) 6= 0

is transcendental, see [1, Proposition 4.3].

Claim 2.10. There exists f of type (n1n2,mn2,mn2 + q)− such that

Res
s=−β

I−(f, β1, β2, β3)(s) = 0, ∀(β1, β2) ∈ Z≥1, β3 ∈ Z≥0.

Assuming this Claim (to be proved in the Appendix A), the result follows the
arguments of the end of the proof of Proposition 2.7.
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3. Bounds for dim H̃
′′

0 /H
′′

0 . Proposition 3.1. Let f be an irreducible germ
of plane curve whose characteristic sequence is CSn2,q

n1,m
satisfying (5). Define the

integers q̃ and h by m = q̃n1 + rm, 0 < rm < n1, q = hn2 + rq, 0 ≤ h, 0 < rq < n2.
Then

dim H̃
′′

0 /H
′′

0 ≤
µ

2
− n2(m+ n1)− q + q̃ + h+ 4

and generically dim H̃
′′

0 /H
′′

0 = µ
2 − n2(m+ n1)− q + q̃ + h+ 4

Proof. One can compute the dimension dim H̃
′′

0 /H
′′

0 using Proposition 1,
dim H̃

′′

0 /H
′′

0 =
∑µ

i=1 αi −
∑µ

i=1 βi, the αi being the spectral numbers, which are
constant in the µ-constant stratum Sµ, and the βi being the b-exponents of f , which,
under the conditions of the Proposition, equal the roots of the local Bernstein-Sato
polynomial bf (−s).

The fact that the upper bound of dim H̃
′′

0 /H
′′

0 is attained generically is a conse-
quence of the proof of Yano’s conjecture in [1], see also Proposition 2.1, so that the
roots of bµ,gen(−s) is the set B1 ∪B2.

We start by adding the spectral numbers αi ∈ Spec(f) = A1 ∪ A⊥
1 ∪ A2 ∪ A⊥

2 ,
see (8). Using the symmetry of the spectral numbers, i.e. αi +αµ−(i−1) = 2, for each
characteristic pair, k = 1, 2, one has:

∑

αi∈Ak∪A⊥
k

αi = 2|Ak|.

Using Saito’s result [23],

|A1| =
n2(m− 1)(n1 − 1)

2
(6), |A2| =

(n2 − 1)(n1n2m+ q − 1)

2
, (7).

Next we compute the sum of the roots of bµ,gen(−s) which is the same as the sum of
the elements of B1 ∪B2. Let us start with

B1 :=

{

σ =
m+ n1 + k

mn1n2
: 0 ≤ k < mn1n2, and n2mσ, n2n1σ /∈ Z

}

. (3.1)

Since gcd(n1,m) = 1 and define N1 := mn1n2 and for the first characteristic exponent
one has

∑

βi∈B1

βi =

mn1n2−1∑

k=0

m+ n1 + k

mn1n2
−

∑

0≤k<mn1n2
n1+k∈mZ

m+ n1 + k

mn1n2

−
∑

0≤k<mn1n2
m+k∈n1Z

m+ n1 + k

N1
+

∑

0≤k<mn1n2
n1+m+k∈mn1Z

m+ n1 + k

N1

Using

m∑

j=n

j =
m(m+ 1)

2
−

n(n− 1)

2
,

the first summand is

m+ n1 +
1

mn1n2

(
mn1n2

2

)

= n1 +m+
mn1n2 − 1

2
.



198 E. ARTAL, PI. CASSOU-NOGUÈS, I. LUENGO & A. MELLE

For the second summand, we look for 0 ≤ k < mn1n2 such that if m+ n1 + k = ms
for some s ∈ Z. The minimum of such s is

⌈
m+n1

m

⌉
= 2, while the maximum is

⌊
m+ n1 +mn1n2 − 1

m

⌋

= n1n2 + 1

Hence, the second term is

−

n1n2+1∑

s=2

s

n1n2
= −

(n1n2 + 2)(n1n2 + 1)

2n1n2
+

1

n1n2
= −

n1n2 + 3

2
.

For the third term, we proceed in the same way; the extremities are
⌈
m+ n1

n1

⌉

= 2+ q̃,

⌊
m+ n1 +mn1n2 − 1

n1

⌋

= 1 +mn2 + q̃;

the third term is

−

mn2+q̃+1
∑

s=2+q̃

s

mn2
= −

(mn2 + q̃ + 2)(mn2 + q̃ + 1)− (q̃ + 2)(q̃ + 1)

2mn2
= −

mn2 + 2q̃ + 3

2
.

For the fourth term the extremities are
⌈
m+ n1

mn1

⌉

= 1,

⌊
m+ n1 +mn1n2 − 1

mn1

⌋

= n2;

the fourth term is

n2∑

s=1

s

n2
=

n2 + 1

2
.

As a consequence,

∑

βi∈B1

βi = n1 +m− q̃ − 3 + n2
(m− 1)(n1 − 1)

2

For

B2 :=







σ =
(m+ n1)n2 + q + k

n2 (mn1n2 + q)
︸ ︷︷ ︸

D

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 ≤ k < n2D and n2σ,Dσ /∈ Z







. (3.2)

we decompose
∑

βi∈B2
βi again in four terms. For the first one, we have

(m+ n1)n2 + q +
n2(mn1n2 + q)− 1

2
.

For the next terms we proceed as in the case of the first exponent. The limits of the
second term are:

⌈
(m+ n1)n2 + q

n2

⌉

= m+ n1 + h+ 1,

⌊
(m+ n1)n2 + q + n2(mn1n2 + q)− 1

n2

⌋

= mn1n2 + q +m+ n1 + h;
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the second term is

−

mn1n2+q+m+n1+h
∑

s=m+n1+h+1

s

mn1n2 + q
= −

mn1n2 + q + 2(m+ n1 + h) + 1

2

The limits of the third term are:
⌈
(m+ n1)n2 + q

mn1n2 + q

⌉

= 1,

⌊
(m+ n1)n2 + q + n2(mn1n2 + q)− 1

mn1n2 + q

⌋

= n2;

the third term is

−

n2∑

s=1

s

n2
= −

n2 + 1

2
.

Finally, the limits for the fourth term are

⌈
(m+ n1)n2 + q

n2(mn1n2 + q)

⌉

= 1,

⌊
(m+ n1)n2 + q + n2(mn1n2 + q)− 1

n2(mn1n2 + q)

⌋

= 1;

the fourth term is 1. Then,

∑

βi∈B2

βi = (m+ n1)n2 + q − (m+ n1 + h)− 1 +
(n2 − 1)(mn1n2 + q − 1)

2
.

Recall that

µ = n2(n1 − 1)(m− 1) + (n2 − 1)(mn1n2 + q − 1).

The sum of the exponents is

µ

2
+ (m+ n1)n2 + q − q̃ − h− 4

while the sum of the spectral numbers is µ. Then, its difference is

µ

2
− (m+ n1)n2 − q + q̃ + h+ 4

as stated.

Proposition 3.2. Let f be an irreducible germ of plane curve whose characteris-
tic sequence is CSn2,q

n1,m
satisfying (5). Then the following lower bound for dim H̃

′′

0 /H
′′

0

is obtained:

(n2 − 1)(m− 1)(n1 − 1) ≤ dim H̃
′′

0 /H
′′

0

Proof. We are going to count some spectral numbers α ∈ A⊥
1 ∪ A⊥

2 such that
α− 1 ∈ B11 ∪B21. This number is a lower bound for dim H̃

′′

0 /H
′′

0 .
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Let α ∈ A⊥
1 ; we have

α− 1 = 1−
1

n2

(
i

n1
+

j

m
+ r

)

,

with i
n1

+ j
m

< 1, r < n2. Assume that r < n2 − 1:

α− 1 =
n1m(n2 − r − 1) + n1m−mi− n1j

n1n2m
∈ B11

since the numerator is in Γ. Hence, we have found at least (n2 − 1) (m−1)(n1−1)
2 such

numbers.
Let α ∈ A⊥

2 :

α− 1 = 1−

(
i

n2
+

j

n1n2m+ q

)

=
(n2 − i− 1)(n1n2m+ q) + q + n2(n1m− j)

n2(n1n2m+ q)
.

A necessary (and by the way sufficient condition) for α − 1 ∈ B21 is the existence
of β1, β2 ∈ Z≥1 such that mn1 − j = mβ1 + n1β2. We found another set of (n2 −

1) (m−1)(n1−1)
2 such numbers.

Remark 3.3. In [11, Proposition 3.5], another bound for dim H̃
′′

0 /H
′′

0 is given
which depends on the analytical properties of the germ, namely, µ− τ ≤ dim H̃

′′

0 /H
′′

0

which yields the following bound for the Tjurina number:

τ ≥
µ

2
+ n2(m+ n1) + q − q̃ − h− 4

4. Examples. The following examples illustrate our results. Example 4.1 con-
firms Yano’s conjecture and we show that τ is constant along the generic Berstein
stratum. For Example 4.3 and 4.4 we are not able to confirm Yano’s conjecture but
we show that in both cases the Tjurina number is not constant on the generic Berstein
stratum.

Example 4.1. We consider the case studied by Tamaki Yano, that is the char-
acteristic sequence (4, 6, 6 + q), i.e. n1 = 2, m = 3, n2 = 2 and q = q. T. Yano in
1983 claimed the proof of his conjecture in this case, but referred to a non published
article. The set of spectral numbers is

Spec(f) =

A1
︷ ︸︸ ︷
{

5

12
,
11

12

}

∪

A⊥
1

︷ ︸︸ ︷
{
19

12
,
13

12

}

∪

A2
︷ ︸︸ ︷
{
12 + q + 2j

2(12 + q)

∣
∣
∣
∣
0 < j ≤ 6 +

⌊ q

2

⌋}

∪

A⊥
2

︷ ︸︸ ︷
{
3(12 + q)− 2j

2(12 + q)

∣
∣
∣
∣
0 < j ≤ 6 +

⌊ q

2

⌋}

;

it is not hard to see that

A2 ∪ A⊥
2 =

{
14 + q

2(12 + q)
,

16 + q

2(12 + q)
, . . . ,

34 + 3q

2(12 + q)

}
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is a gap-free arithmetic sequence with step 1
12+q

. The set of spectral numbers α such

that α− 1 ≥ 5/12 is

Spec(f) \ E =

{
19

12

}

∪

{
12 + q + 2j

2(12 + q)

∣
∣
∣
∣

⌈
11(12 + q)

12

⌉

≤ j < 12 + q

}

.

Recall that we cannot ensure for these spectral numbers to be exponents. We also
have

B1=B11=

{
5

12
,
7

12
,
11

12
,
13

12

}

, B2=B21=

{
10 + q + 2k

2(12 + q)

∣
∣
∣
∣
0 ≤ k ≤ 11 + q, k 6= 1

}

.

Note also that 7
12 and 10+q

2(12+q) are the only b-exponents which are not spectral numbers.

As a consequence, we derive the following result.

Theorem 4.2. For any f with characteristic sequence (4, 6, 6+ q), B1 ∪B2 is its
set of b-exponents (and also the set of roots of the Bernstein polynomial). Moreover,
dim H̃

′′

0 /H
′′

0 = 2.

Note that the bounds of Propositions 3.1 and 3.2 are equal for any f . From
Hertling-Stahlke bound of Remark 3.3 we get that τ ≥ µ− 2. The value of τ equals
12 + 2q and it is constant in the whole stratum, see [17].

Example 4.3. We consider the case of characteristic sequence (6, 9, 9 + q) with
q = 1 + 3k, k ∈ N. In this case n1 = 2, m = 3 and n2 = 3. We have

A1 =

{
5

18
,
11

18
,
17

18

}

, A⊥
1 =

{
31

18
,
25

18
,
19

18

}

,

A2 =

{
19 + 3k + 3j

3(19 + 3k)

∣
∣
∣
∣
0 < j ≤ 12 + 2k

}

∪

{
2(19 + 3k) + 3j

3(19 + 3k)

∣
∣
∣
∣
0 < j ≤ 6 + k

}

,

A⊥
2 =

{
5(19 + 3k)− 3j

3(19 + 3k)

∣
∣
∣
∣
0 < j ≤ 12 + 2k

}

∪

{
4(19 + 3k)− 3j

3(19 + 3k)

∣
∣
∣
∣
0 < j ≤ 6 + k

}

.

In fact

A2 ∪ A⊥
2 =

{
22 + 3k

3(19 + 3k)
, . . . ,

73 + 12k

3(19 + 3k)

}

∪

{
41 + 6k

3(19 + 3k)
, . . . ,

92 + 15k

3(19 + 3k)

}

is the union of two step- 1
19+3k arithmetic sequences. The set E is determined by

Spec(f) \ E =

{
25

18
,
31

18

}

∪

{
2(19 + 3k) + 3j

3(19 + 3k)

∣
∣
∣
∣

⌈
11(19 + 3k)

18

⌉

≤ j < 19 + 3k

}

∪

{
19 + 3k + 3j

3(19 + 3k)

∣
∣
∣
∣

⌈
17(19 + 3k)

18

⌉

≤ j < 19 + 3k

}

.

The sets of generic b-exponents are

B1 = B11 =

{
5

18
,
7

18
,
11

18
,
13

18
,
17

18
,
19

18

}

B2 =

{

16 + 3k + 3j

3(19 + 3k)

∣
∣
∣
∣
0 ≤ j < 19 + 3k

j 6=1

}

∪

{

17 + 3k + 3j

3(19 + 3k)

∣
∣
∣
∣
0 ≤ j < 19 + 3k

j 6=k+7

}

,

B22 =

{
17 + 3k + 3j

3(19 + 3k)

∣
∣
∣
∣
0 ≤ j < k + 6

}

.



202 E. ARTAL, PI. CASSOU-NOGUÈS, I. LUENGO & A. MELLE

Note that 7
18 ,

13
18 are the generic b-exponents in B1 which are not spectral numbers.

For B2 this is the case for
{

16 + 3k

3(19 + 3k)

}

∪

{
17 + 3k + 3j

3(19 + 3k)

∣
∣
∣
∣
0 ≤ j < k + 7

}

. (4.1)

In particular, generically dim H̃
′′

0 /H
′′

0 = 10+ k. Among them, note that 7
18 ,

13
18 ∈ B11

and

16 + 3k

3(19 + 3k)
,

35 + 6k

3(19 + 3k)
∈ B21;

moreover they are the only common roots which are not spectral numbers, and hence
dim H̃

′′

0 /H
′′

0 ≥ 4. We do not know if the equality can be reached.
The elements of Spec(f) \ E that can jump to give generic roots of the Bernstein

polynomial are
{
25

18
,
31

18

}

∪

{
2(19 + 3k) + 3j

3(19 + 3k)

∣
∣
∣
∣

⌈
11(19 + 3k)

18

⌉

≤ j < 19 + 3k

}

∪

{
73 + 12k

3(19 + 3k)

}

.

Consider

ft := (x2 − y3)3 + x5+ky2 + t(x2 − y3)x5yk−1

where t is chosen such that such that ft is of type (6, 9, 10 + 3k)−. Let β =
3(3β1+2β2)+3k+2

3(19+3k) ∈ B2 and in (4.1), i.e.

3(3β1 + 2β2) + 3k + 2

3(19 + 3k)
=

17 + 3k + 3j

3(19 + 3k)
⇔ 3β1 + 2β2 = 5 + j.

Since we need β1, β2 ≥ 1, all the cases are included but j = 1. We are going to prove
−β is a root of ft if t 6= 0, and as a consequence, for t 6= 0 we have dim H̃

′′

0 /H
′′

0 ≥ 9+k.

We consider the polynomials f̃ , ˜̃f , f̂ ,
ˆ̂
f , f1, f2:

f̃(x, y) = (x6 − y6)3 + x15+3ky4 + t(x6 − y6)x15y2k−2,

˜̃f(x, y) = (1− y6)3 + x1+3ky4 + t(1− y6)x1+2ky2k−2,

f̂(x, y) = (1− (1 − y)6)3 + x1+3k(1 − y)4 + t(1 − (1− y)6)x1+2k(1− y)2k−2 =

y3(63 + . . . ) + x1+3k(1− . . . ) + tx1+2ky(6 + . . . ),

ˆ̂
f(x, y) = y3(1+3k)(63 + . . . ) + x3(1+3k)(1 − . . . ) + tx3(1+2k)y1+3k(6 + . . . ),

f1(x, y) = y3(1+3k)(63 + . . . ) + (1− . . . ) + txy1+3k(6 + . . . ),

f2(x, y) = (63 + . . . ) + x3(1+3k)(1− . . . ) + tx3(1+2k)y(6 + . . . ).

We have

Res
s=−β

I−(f, β1, β2, 0)(s) =
1

3(1 + 3k)
(Gh1

1,−β,x
(1+3k)+Gh2

1,−β,y
(2(−18β+3β1+2β2)),

where

h1
1,−β,x(y) =

∂f−β
1

∂x
(0, y) = −6βty1+3k(63y3(1+3k) + 1)−β−1,

h2
1,−β,y(x) =

∂f−β
2

∂y
(x, 0) = −6βtx3(1+2k)(63 + x(1+3k)3)−β−1.
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If t is algebraic (and t 6= 0), the above residue is transcendental. Hence, we deduce
that these values are roots of the Bernstein polynomial for these values of t. Moreover,
since the Bernstein-polynomial stratification is algebraic, we deduce that this is the
case for t 6= 0. Note that in this case, for k = 0, and for random values of t, the
Tjurina number equals 40, while for t = 0, the value is 41. Hence the Tjurina number
is not constant in the µ-constant stratum.

Example 4.4. Consider the characteristic sequence (8, 10, 10+q), where (q, 2) =
1, (q, 5) = 1. In this case n1 = 4, m = 5 and n2 = 2. We have

A1 =

{
9

40
,
13

40
,
14

40
,
17

40
,
18

40
,
19

40
,
29

40
,
33

40
,
34

40
,
37

40
,
38

40
,
39

40

}

A⊥
1 =

{
71

40
,
67

40
,
66

40
,
63

40
,
62

40
,
61

40
,
51

40
,
47

40
,
46

40
,
43

40
,
42

40
,
41

40

}

A2 =

{
40 + q + 2j

2(40 + q)

∣
∣
∣
∣
0 < j ≤ 20 +

⌊ q

2

⌋}

A⊥
2 =

{
3(40 + q)− 2j

2(40 + q)

∣
∣
∣
∣
0 < j ≤ 20 +

⌊ q

2

⌋}

.

Note that

A2 ∪ A⊥
2 =

{
42 + q

2(40 + q)
,

44 + q

2(40 + q)
, . . . ,

118 + 3q

2(40 + q)

}

is a step- 1
40+q

arithmetic sequence.

Then Spec(f) \ E is
{
51

40
,
61

40
,
62

40
,
63

40
,
66

40
,
67

40
,
71

40

}

∪

{
40 + q + 2j

2(40 + q)

∣
∣
∣
∣
29 +

⌈
29

40
q

⌉

≤ j ≤ 20 +
⌊ q

2

⌋}

.

With this data

B1 =

{
9 + 4ℓ

40

∣
∣
∣
∣
0 ≤ ℓ ≤ 8

ℓ 6=4

}

∪

{
10 + 4ℓ

40

∣
∣
∣
∣
1 ≤ ℓ ≤ 9

ℓ 6=5

}

∪

{
11 + 4ℓ

40

∣
∣
∣
∣
0 ≤ ℓ ≤ 9

ℓ 6=1,6

}

,

where B12 = { 11
40}, and

B2 =

{
18 + q + 2ℓ

2(40 + q)

∣
∣
∣
∣
0 ≤ ℓ < 40 + q, ℓ 6= 11

}

,

B22 =

{
20 + q

2(40 + q)
,

22 + q

2(40 + q)
,

24 + q

2(40 + q)
,

30 + q

2(40 + q)
,

32 + q

2(40 + q)

}

.

To get the Bernstein polynomial for any function with characteristic sequence
(8, 10, 10 + q), we only have to check for the 6 elements of B12 ∪ B22 if they are
roots (recall that the Milnor number is 63+ q). Let us study the generic b-exponents
which are not spectral numbers:

{
21

40
,
22

40
,
26

40
,
11

40
,
23

40
,
27

40
,
31

40

}

∪

{
18 + q + 2ℓ

2(40 + q)

∣
∣
∣
∣
0 ≤ ℓ ≤ 10

}

⊃ B12 ∪B22.

We get 12 ≤ dim H̃
′′

0 /H
′′

0 ≤ 18. We shall show, for q = 7, that there exists an f with
characteristic sequence (8, 10, 10 + q) such that 12 = dim H̃

′′

0 /H
′′

0 . Consider

f±(x, y) = (x4 ± y5)2 + x7y3 + tx6y6.
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We assume that f± has type (8, 10, 10 + q)±. Let

f̃+(x, y) = f+(x
4, y5) = (x20 + y20)2 + x35y12 + tx30y24

f+1(x, y) = (1 + y20)2 + x7y12 + tx14y24

f+2(x, y) = (x20 + 1)2 + x35y7 + tx30y14.

Let β = 11
40 = (5+4)+2

40 . The residue is

Res
s=−β

I(f+, 1, 1)(s) =
1

80
(Gh1

2,−β,x
(4) +Gh2

2,−β,y
(5)),

where

h1
2,−β,x(y) =

∂2f−β
1

∂x2
(0, y) = 0, h2

2,−β,y(x) =
∂2f−β

2

∂y2
(x, 0) = 0.

Then Ress=−β I(f+, 1, 1)(s) = 0; moreover, with the same ideas as in the proof of
Claim 2.8 we have that ∀(β1, β2),Ress=−β I(f+, β1, β2)(s) = 0.

Consider now β = 51
40 = 5·3+4·9

40 . We know that I(f+, 3, 9)(s) has a pole for s = −β
with transcendental residue. Combining the two facts, by Theorem 1.13, − 51

40 is a zero
of the Bernstein polynomial of f+ and − 11

40 is not. Since f+(x, y) = f−(−x,−y), we
deduce the same property for f−.

It remains to study the cases in B22, i.e., the set
{

27
94 ,

29
94 ,

31
94 ,

37
94 ,

39
94

}
, for k =

2, 4, 6, 12, 14. Since the generators of Γ are 8, 10, 47, only the following suitable com-
binations of β1, β2, β3, ν (see proof of Claim 2.10) are available:

k β1 β2 β3 ν i νi
2 1 1 0 2 1 2
4 1 1 0 4 1 4
6 1 1 0 6 1 6
12 1 1 0 12 1 12
12 1 1 0 12 2 5
12 2 1 0 4 1 4
12 1 2 0 2 1 2
14 1 1 0 14 1 14
14 1 1 0 14 2 7
14 1 1 0 14 3 0
14 2 1 0 6 1 6
14 1 2 0 4 1 4

Let us compute the polynomials appearing in the different steps of the process:

f(x, y) = (x4 − y5)2 + x7y3 + tx6y6,

f̃(x, y) = (x20 − y20)2 + x35y12 + tx30y24,

˜̃f(x, y) = (1 − y20)2 + x7y12 + tx14y24,

f̂(x, y) = y2H20(y)
2 + x7(1− y)12 + tx14(1− y)24,

ˆ̂
f(x, y) = y14H20(y

7)2 + x14(1− y7)12 + tx28(1− y7)24,

f1(x, y) = y14H20(x
7y7)2 + (1− x7y7)12 + tx14(1 − x7y7)24,

f2(x, y) = H20(y
7) + x14(1− y7)12 + tx28y14(1− y)24.
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where yHn(y) = (1− (1− y)n), Hn(0) = n. From these data it is easy to check that

∂Nf1
∂xN

(0, y) =







202y14 + 1, if N = 0

−20160y7(1900y14 + 3), if N = 7

87178291200(81700y28+ 66y14 + t), if N = 14

0 if N
7 /∈ Z,

and

∂Nf2
∂yN

(x, 0) =







202 + x14, if N = 0

−20160(1900+ 3x14), if N = 7

87178291200(81700+ 66x14 + tx28), if N = 14

0 if N
7 /∈ Z.

With the same ideas

∂Nf−β
1

∂xN
(0, y) =































(202y14 + 1)−β, if N = 0

20160βy7(1900y14 + 3)(202y14 + 1)−β−1, if N = 7

−87178291200β(81700y28+66y14+t)(202y14+1)−β−1+

697426329600β(β+1)y14 (1900y14+3)2(202y14+1)−β−2 if N = 14

0 if N
7

/∈ Z.

(4.2)

and

∂Nf−β
2

∂yN
(x, 0) =































(202 + x14)−β, if N = 0

20160β(1900 + 3x14)(202 + x14)−β−1, if N = 7

−87178291200β(81700+66x14+tx28)(202+x14)−β−1+

697426329600β(β+1)(1900+3x14 )2(202+x14)−β−2 if N = 14

0 if N
7

/∈ Z.

(4.3)

It becomes obvious that all the residues vanish for k = 2, 4, 6, 12. The residue also
vanishes for k = 14 and (β1, β2) = (2, 1), (1, 2). Let us study the case k = 14, i.e.,
β = 39

94 , with (β1, β2) = (1, 1). Note that for β2 = 1,

h4(y) = (1− y)3 = 1− 3y + 3y2 − y3.

Hence,

14 Res
s=−β

I−(f, 1, 1, 0)(s) =
1

14!

(

Gh1
14,−β,x

(7) +Gh2
14,−β,y

(

−
714

47

))

−
3

7!

(

Gh1
7,−β,x

(14) +Gh2
7,−β,y

(

−
714

47

))

+ 3

(

Gh1
0,−β,x

(21) +Gh2
0,−β,y

(

−
714

47

))

.

We find the values of h1(k,−β, x) and h2(k,−β, y) in (4.2) and (4.3).
We can prove that the pole at s = −β of I−(f, 1, 1)(s) is a polynomial of degree

1 in t and hence there is a value of t for which the residue vanishes. Moreover

Res
s=−β

I−(f, 1, 1, 0)(s) =
(136 t− 63)

447440
B

(

−
4

47
,
1

2

)

.

In particular, none of the above elements are roots of the Bernstein polynomial of
f− for t = 63

136 . For t 6= 63
136 , − 39

94 is such a root but not for t = 63
136 . This can



206 E. ARTAL, PI. CASSOU-NOGUÈS, I. LUENGO & A. MELLE

be confirmed using checkRoot of [14] in Singular [9], inside [26]. Moreover, it can
be proved that for general t (including 63

136 ) the Tjurina number equals the expected
value for Hertling-Stahlke bound, i.e., 58; using [17] the values of Tjurina number
are constant in these µ-constant strata, namely they equal 51 + q. This computation
provides an example with two Puiseux pairs and different Tjurina and Bernstein
stratifications.

The second author gave, in [4, Example 9] page 28, examples with one Puiseux
pair and different Tjurina and Bernstein stratifications.

Appendix A. Technical proofs.

Proof of Claim 2.8. Let us recall that β = m+n1+k
mn1n2

and k /∈ Γ1.

Let (β1, β2) ∈ Z2
≥1. If β1m+β2n1 > m+n1+k, the greatest pole of I(f, β1, β2)(s)

is smaller than −β and the statement holds trivially for any f .
We want to fix our attention on the couples (β1, β2) ∈ Z2

≥1 such that β1m+β2n1 ≤
m + n1 + k. There is a finite number of such couples which will be characterized in
the following paragraphs.

Since k /∈ Γ1, and from its properties, we know that k ≤ mn1−m−n1. We write

k = mi0 + n1j0 −mn1, 1 ≤ i0 < n1, 1 ≤ j0 < m. (A.1)

Moreover the pair of positive integers (i0, j0) is unique. Let us assume the existence of
another solution (i1, j1), such that i1 > i0; then i1 = i0 + n1v, v ∈ Z>0, i.e., i1 > n1,
leading to a contradiction.

We are going to prove also that β1 ≤ i0 and β2 ≤ j0. Let us assume that β1 > i0.
Then

(i0 + 1)m+ β2n1 < β1m+ β2n1 ≤ m+ n1 + k = m(i0 + 1) + n1(j0 + 1)−mn1

=⇒ β2 +m ≤ j0 + 1 < m+ 1,

which is a contradiction. We are going to enumerate these couples (β1, β2).
Let us define ℓij := mi+ n1j − n1m and consider

{ℓij | ℓij ≥ 1, 1 ≤ i ≤ i0, 1 ≤ j ≤ j0} = {ℓ1, . . . , ℓr}, ℓ1 < · · · < ℓr = k.

Let

ℓp = mip + n1jp −mn1, ip, jp well-defined, for 1 ≤ p ≤ r. (A.2)

For each p we can write

β =
m

β1p

︷ ︸︸ ︷

(1 + i0 − ip)+n1

β2p

︷ ︸︸ ︷

(1 + j0 − jp) +ℓp
n1n2m

;

note that β1r = β2r = 1 and 1 ≤ β1p ≤ i0, 1 ≤ β2p ≤ j0. It is easy to prove that
{(β1p, β2p) | 1 ≤ p ≤ r} = {(β1, β2) ∈ Z≥1 × Z≥1 | β1m+ β2n1 ≤ m+ n1 + k}. These
r pairs are exactly the ones for which we need to prove the statement.

Define

ft(x, y) :=

(

xn1 + ym +

r∑

p=1

tpx
ipyjp

)n2

+ xayb.
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with ma+ n1b = q +mn1n2 and t = (t1, . . . , tr) ∈ Rr such that the polynomial ft is
of type (n1n2,mn2,mn2 +q)+. By Proposition 1.8 one has

f̃t(x, y) = (xmn1 + ymn1 +

r∑

p=1

tpx
mipyn1jp)n2 + xmayn1b.

ft,1(x, y) = (1 + ymn1 +

r∑

p=1

tpx
ℓpyn1jp)n2 + xqyn1b.

ft,2(x, y) = (xmn1 + 1 +
r∑

p=1

tpx
mipyℓp)n2 + xmayq.

Let us fix p ∈ {1, . . . , r}. To compute the residue of I+(ft, β1p, β2p)(s) at s = −β
we apply equation (1.6) and we get

ρp := Res
s=−β

I+(ft, β1p, β2p)(s) =
1

ℓp!mn1n2

(

Gh1
ℓp,−β,x

(n1β2p) +Gh2
ℓp,−β,y

(mβ1p)
)

where

h1
ℓp,−β,x(y) =

∂ℓpf−β
t,1

∂xℓp
(0, y) and h2

ℓp,−β,y(x) =
∂ℓpf−β

t,2

∂yℓp
(x, 0),

recall that Gf (s) is meromorphic continuation of
∫ 1

0
f(t)ts dt

t
.

We have

∂ℓpf−β
t,1

∂xℓp
(0, y) =

∑

V =(uw)
|V |
w=1∈P(ℓp)

DV





|V |
∏

w=1

∂uwft,1
∂xuw

(0, y)



 (1 + ymn1)−n2(β+|V |)

where

P(ℓp) =






V = (uw)

|V |
w=1

∣
∣
∣
∣
∣

|V |
∑

w=1

uw = ℓp, u1 ≤ · · · ≤ u|V |






, (A.3)

and DV ∈ Q. In the same way,

∂ℓpf−β
t,2

∂yℓp
(x, 0) =

∑

V =(uw)
|V |
w=1∈P(ℓp)

DV





|V |
∏

w=1

∂uwft,2
∂yuw

(x, 0)



 (1 + xmn1)−n2(β+|V |).

Let us study now the uth x-derivative of ft,1 evaluated at (0, y), i.e., we need to
look for the monomials of the type xuyj, for any j. Hence,

∂uft,1
∂xu

(0, y) = δuq q!y
n1b+

∑

K=(kh)rh=1,u=
∑

khℓh

CK

(
r∏

h=1

tkh

h yn1khjh

)

(1+ymn1)n2−
∑r

h=1 kh ,
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for some CK ∈ Q, where δuq is the Kronecker symbol. A similar formula holds for
derivatives with respect to y:

∂uft,2
∂yu

(x, 0) = δuq q!x
ma +

∑

K=(kh)r
h=1

,u=
∑

khℓh

CK

(

r
∏

h=1

tkh
h xmkhih

)

(1 + xmn1)n2−
∑r

h=1 kh ,

Let us compute the residue ρp. It is a linear combination with coefficients in Q

of terms depending on couples (V, (Kw)w) where V = (uw) ∈ P(ℓp) and for each
w ∈ {1, . . . , |V |}, Kw = (kh,w)

r
h=1 satisfies either

r∑

h=1

kh,wℓh = uw; (A.4)

or the term involved is yn1b or xma, i.e.,

uw = q, kh,w = 0; (A.5)

let rV be the number of terms of this type for V then, the term is obtained as

∫ 1

0

|V |
∏

w=1

(

r
∏

h=1

t
kh,w

h yn1kh,wjh

)

yrV n1b(1+ ymn1)
∑

w(n2−
∑r

h=1 kh,w)−n2(β+|V |+rV )yn1(1+j0−jp) dy

y
+

∫ 1

0

|V |
∏

w=1

(

r
∏

h=1

t
kh,w

h xmkh,wih

)

xrV ma(1 + xmn1)
∑

w(n2−
∑r

h=1 kh,w)−n2(β+|V |+rV )xm(1+i0−ip) dx

x
.

This is a monomial in t1, . . . , tr, namely,

r∏

h=1

t
∑

w kh,w

h

whose coefficient is

ρV,(Kw) :=

∫ 1

0

yn1(
∑

w,h kh,wjh+1+j0−jp+rV b)(1 + ymn1)−n2(β+rV )−
∑

w,h kh,w
dy

y
+

∫ 1

0

xm(
∑

w,h kh,wih+1+i0−ip+rV a)(1 + xmn1)−n2(β+rV )−
∑

w,h kh,w
dx

x
=

G(1+ymn1)α



n1




∑

w,h

kh,wjh + 1 + j0 − jp + rV b







+

G(1+xmn1)α



m




∑

w,h

kh,wih + 1 + i0 − ip + rV a









where

α := −n2(β + rV )−
∑

w,h

kh,w.

We need to compute the sum of the arguments

σ := n1





∑

w,h

kh,wjh + 1 + j0 − jp + rV b



+m





∑

w,h

kh,wih + 1 + i0 − ip + rV a



 . (A.6)
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From the equalities (A.4), (A.5) and the definition (A.2), we have

uw = m
r∑

h=1

kh,wih + n1

r∑

h=1

kh,wjh −mn1

r∑

h=1

kh,w

if the first term is not involved and uw = q if it is; recall also that

q = ma+ n1b−mn1n2. (A.7)

Then

ipm+n1jp−mn1 = ℓp =
∑

w

uw = (A.8)

m




∑

w,h

kh,wih + rV a



+n1




∑

w,h

kh,wjh + rV b



−mn1




∑

w,h

kh,w + rV n2



.

We obtain several properties from this equality. In particular

σ = mn1




∑

w,h

kh,w + rV n2



+

m+n1+k=mn1n2β
︷ ︸︸ ︷

n1 (1 + j0) +m (1 + i0)−mn1

= mn1



n2(β + rV ) +
∑

w,h

kh,w



 = −mn1α.

By Lemma 1.5, we have that

ρV,(Kw)=
1

mn1
B

(∑

w,h kh,wjh + 1 + j0 − jp + rV b

m
,

∑

w,h kh,wih + 1 + i0 − ip + rV a

n1

)

.

As another consequence from (A.8), we have that

∑

w,h kh,wjh − jp + rV b

m
,

∑

w,h kh,wih − ip + rV a

n1
∈ Z.

Let us prove it. Since gcd(m,n1) = 1, it is enough to show that the product of n1

and the first denominator is congruent to 0 mod m:

n1




∑

w,h

kh,wjh+rV b−jp



=m



ip−n1−
∑

w,h

kh,wih−rV a



+mn1




∑

w,h

kh,w + rV n2



 .

From the properties of the beta function, ρV,(Kw) is a product of a non-zero

rational number and B

(
1+i0
n1

, 1+j0
m

)

. As a consequence Ress=−β I+(ft, β1i, β2i)(s) is,

up to the factor B
(

1+i0
n1

, 1+j0
m

)

a polynomial Qp in the ti’s with coefficients in Q; the

coefficient of tp does not vanish. The only option to have the monomial tp is when
V = (ℓp) and K = (ℓp), rV = 0 and for these values

ρV,(Kw) =
1

mn1
B

(
1 + i0
n1

,
1 + j0
m

)

.
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Since ℓ1 is the minimum, Q1 is a polynomial in t1 of degree 1. Then we can
choose t1 such that Ress=−β I+(ft, β11, β21)(s) = 0, since this residue is independent
of tp, for p > 1. From now on ft is a polynomial in t2, . . . , tr, with t1 fixed as above.
In the same way, we choose t2 such that

Res
s=−β

I+(ft, β12, β22)(s) = 0,

and recursively we can find t3, . . . , tr such that Ress=−β I+(ft, β1p, β2p)(s) = 0, for all
1 ≤ p ≤ r and all the t’s are in Q. Using Proposition 1.7 it is easy to proof that ft is
of type (n1n2,mn2,mn2 + q)+.

Proof of Claim 2.10. Let (β′
1, β

′
2, β3) be as in the statement. If n2(β

′
1m+ β′

2n1)+
β3(n1n2m + q) > n2(m + n1) + k, it is not hard to check that the statement holds
trivially for any f of type (n1n2,mn2,mn2 + q)−.

We are going to characterize the triples not satisfying the above inequality and
to find an fβ satisfying the conditions of the statement. Let

Mβ =
{

(β̃1, β̃2, β3, ν) ∈ Z3
≥0 × Z≥1 | k = n2(mβ̃1 + n1β̃2) + (mn1n2 + q)β3 + ν

}

.

It is not hard to prove the following properties:

• if (β̃1, β̃2, β3, ν) ∈ Mβ, then β3 < n2;

• if moreover (β̃′
1, β̃

′
2, β

′
3, ν) ∈ Mβ then β3 = β′

3.

We denote by Nβ the set of ν which are the fourth coordinate of some element of

Mβ and we order Nβ . For ν ∈ Nβ , choose β̃1, β̃2, β3 such that (β̃1, β̃2, β3, ν) ∈ Mβ; if

we denote βi = β̃i + 1, i = 1, 2, we have:

n2(m+ n1) + k = n2(mβ1 + n1β2) + (mn1n2 + q)β3 + ν.

Note that β3 is determined by ν; it may not be the case for β1, β2. Let ℓν such that
0 ≤ ℓν < n2, and aν , bν ∈ Z≥0 such that

(mn1n2 + q)ℓν + (maν + n1bν)n2 = (mn1n2 + q)n2 + ν.

Let

fβ(x, y) = (xn1 − ym)n2 + xayb +
∑

ν∈Nβ

tν(x
n1 − ym)ℓνxaνybν

We choose fβ of type (n1n2,mn2,mn2 + q)−. Let us recall the change of variables
that allows to compute the poles of the proper integrals. Note that in this case, one
can choose gY = xn1 − ym. We have:

f̃β(x, y) = (xmn1 − ymn1)n2 + xmayn1b +
∑

ν∈Nβ

tν(x
mn1 − ymn1)ℓνxmaνyn1bν

˜̃
fβ(x, y) = (1 − ymn1)n2 + xqyn1b +

∑

ν∈Nβ

tν(1− ymn1)ℓνx
ν+q(n2−ℓν )

n2 yn1bν



BERNSTEIN POLYNOMIAL OF AN IRREDUCIBLE GERM OF PLANE CURVE 211

f̂β(x, y) = yn2h1(y) + xqh2(y) +
∑

ν∈Nβ

tνy
ℓνh3,ν(y)x

ν+q(n2−ℓν)
n2

ˆ̂
fβ(x, y) = yn2qh1(y

q) + xn2qh2(y
q) +

∑

ν∈Nβ

tνy
ℓνqh3,ν(y

q)xν+q(n2−ℓν)

f1β(x, y) = yn2qh1(x
qyq) + h2(x

qyq) +
∑

ν∈Nβ

tνy
ℓνqh3,ν(x

qyq)xν

f2β(x, y) = h1(y
q) + xn2qh2(y

q) +
∑

ν∈Nβ

tνy
νh3,ν(y

q)xν+q(n2−ℓν)

where h1(0) = (mn1)
n2 , h2(0) = 1 and h3,ν(0) = (mn1)

ℓν , deg h3(y) = (mn1 − 1)ℓν +
n1bν . For further use, cij is the coefficient of yj in hi, i = 1, 2 and c3,ν,j for h3,ν .

Let

g̃(x, y) = xmn1 − ymn1 , ˜̃g(x, y) = 1− ymn1

and define h4(y) by the property

yβ3h4(y) = (1− (1− y)mn1)β3(1− y)n1β2−1,

where h4(0) = (mn1)
β3 , and write

h4(y) =

(mn1−1)β3+n1β2∑

i=1

biy
i−1.

We want to compute Ress=−β I−(fβ, β1, β2, β3)(s). For 1 ≤ i ≤ (mn1 − 1)β3 + n1β2,
set νi such that

β =
n2(mβ1 + n1β2 +mn1β3) + q(β3 + i) + νi

n2(mn1n2 + q)
;

we dismiss the cases where νi < 0; note that ν = iq+ νi. The formula for the residue,
see (1.9), is:

Res
s=−β

I−(fβ , β1, β2, β3)(s) =

1

n2q

∑

i

1

νi!
bi(Gh1

νi,−β,x
(q(β3 + i)) +Gh2

νi,−β,y
(n2(mβ1 + n1β2 +mn1β3 −mn1n2β))

where

h1
νi,−β,x(y) =

∂νif−β
1β

∂xνi
(0, y), h2

νi,−β,y(x) =
∂νif−β

2β

∂yνi
(x, 0).

We proceed as in the proof of Claim 2.8:

∂νif−β
1β

∂xνi
(0, y) =

∑

V =(νw)∈P(νi)

DV





|V |
∏

w=1

∂νwf1β
∂xνw

(0, y)



 ((mn1)
n2yn2q + 1)−β−|V |

∂νif−β
2β

∂yνi
(x, 0) =

∑

V=(νw)∈P(νi)

DV





|V |
∏

w=1

∂νwf2β
∂yνw

(x, 0)



 ((mn1)
n2 + xn2q)−β−|V |
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with DV ∈ Q. The derivatives without powers are computed as follows. For u ∈ Z≥0,

let qu :=
⌊
u
q

⌋

and set

C(u) := {h ∈ {0, 1, . . . , qu} | u− qh = νh ∈ Nβ}

1

u!

∂uf1β
∂xu

(0, y) =
∑

h∈C(u)

c3,νh,htνhy
(ℓνh+h)q + χZ(Ku)(cKu1y

n2q + cKu2)y
u

1

u!

∂uf2β
∂yu

(x, 0) =
∑

h∈C(u)

c3,νh,htνhx
νh+q(n2−ℓνh) + χZ(Ku)(cKu1 + cKu2x

n2q)

where Ku = u
q
and χZ is the characteristic function of Z.

The terms of the derivatives involved in the computation of the residues are

parametrized by V = (νw)
|V |
w=1 ∈ P(νi); given V we decompose its set of indices in

three parts:

• w ∈ W1, which determines hw ∈ C(νw), corresponding to a term with coeffi-
cient c3,νhw ,hw

;
• w ∈ W2, where νw ≡ 0 mod q, corresponding to a term with coefficient cKνw1;
• w ∈ W3, where νw ≡ 0 mod q, corresponding to a term with coefficient cKνw2,

where W = W1

∐
W2

∐
W3. For such a 4-uple (V,W1,W2,W3) the integrands are

(

∏

w∈W1

tνhw
y
(ℓνhw

+hw)q

)(

∏

w∈W2

yνw+n2q

)(

∏

w∈W3

yνw

)

((mn1)
n2yn2q+1)−β−|V |yq(β3+i) =

(

∏

w∈W1

tνhw

)

y
q(

∑
w∈W1

(ℓνhw
+hw)+

∑
w∈W2∪W3

Kνw+n2|W2|+β3+i)
((mn1)

n2yn2q + 1)−β−|V |

and
(

∏

w∈W1

tνhw
x
νhw

+q(n2−ℓνhw
)

)(

∏

w∈W3

xn2q

)

((mn1)
n2+xn2q)−β−|V |xn2(mβ1+n1β2+mn1β3−mn1n2β)=

(

∏

w∈W1

tνhw

)

x
∑

w∈W1
(νhw

+q(n2−ℓνhw
))+n2(q|W3|+mβ1+n1β2+mn1β3−mn1n2β)

((mn1)
n2+xn2q)−β−|V |

If α = −β − |V |, we need to compute

G((mn1)n2yn2q+1)α

(

q

(
∑

w∈W1

(ℓνhw
+ hw) +

∑

w∈W2∪W3

Kνw + n2|W2|+ β3 + i)

))

+

G((mn1)n2+xn2q)α

(
∑

w∈W1

(νhw
+q(n2−ℓνhw

))+n2(q|W3|+mβ1+n1β2+mn1β3−mn1n2β)

)

The sum of the two entries equals −nq2α, and by Lemma 1.5, we have that this
contribution equals

(mn1)
∑

w∈W1
(ℓνhw

+hw)+
∑

w∈W2∪W3
Kνw+n2|W2|+β3+i

n2q
B (u, v)
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where

u :=
1

n2

(
∑

w∈W1

(ℓνhw
+ hw) +

∑

w∈W2∪W3

Kνw + n2|W2|+ β3 + i

)

v :=
1

n2q

∑

w∈W1

(νhw
+ q(n2 − ℓνhw

)) +
1

q
(q|W3|+mβ1 + n1β2 +mn1β3 −mn1n2β).

Note that u+ v = β + |V |, i.e., it is congruent with β mod Z.
On the other side, since qℓν ≡ ν mod n2 the following congruences modn2 hold:

q(n2u−(ℓν+β3))≡
∑

w∈W1

q(ℓνhw
+ hw) +

∑

w∈W2∪W3

νw + qi− qℓν ≡

∑

w∈W1

(νhw
+ qhw) +

∑

w∈W2∪W3

νw + qi− ν ≡

|V |
∑

w=1

νw + qi− ν = νi + qi− ν = 0;

since gcd(q, n2) = 1, we deduce that

u−
ℓν + β3

n2
∈ Z.

In particular, the corresponding contribution is, up to a factor in Q,

B

(
ℓν+β3

n2
, β − ℓν+β3

n2

)

. Hence, the total result is the product of this value and a

polynomial in t with coefficients in Q and the coefficients of degree 1 do not vanish.
Let us denote Nβ = {(ν(1), . . . , ν(r)} where ν(1) < · · · < ν(r). For ν(1), let us

consider the corresponding β
(1)
1 , β

(1)
2 , β

(1)
3 . Then,

Res
s=−β

I−(fβ , β
(1)
1 , β

(1)
2 , β

(1)
3 )(s) = B

(
ℓν(1) + β3

n2
, β −

ℓν(1) + β3

n2

)

q(1)(t1)

where q(1) is of degree 1. Hence, we can choose t1 ∈ R such that the above
residue vanishes. Recursively, we can choose t1, . . . , tr ∈ R such that fβ is of type
(n1n2,mn2,mn2 + q)− and

Res
s=−β

I−(fβ, β
(j)
1 , β

(j)
2 , β

(j)
3 )(s) = 0, 1 ≤ j ≤ r.

This result does not depend on the particular choice of (β
(j)
1 , β

(j)
2 ).
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