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Abstract. In this paper infinite families of irreducible either free divisors or

nearly free divisors in the complex projective plane, which are not rational

curves, are given. Moreover, there corresponding local singularites can have an

arbitrary number of branches. All these examples contradict to some of the

conjectures proposed by A. Dimca and G. Sticlaru in [14]. Our examples say

nothing about the most remarkable conjecture by A. Dimca and G. Sticlaru,

which predicts that every rational cuspidal plane curve is either free or nearly

free.

1. Introduction

The notion of free divisor was introduced by K. Saito [22] in the study of dis-

criminants of versal unfoldings of germs of isolated hypersurface singularites. Since

then many interesting and unexpected applications to Singularity Theory and Al-

gebraic Geometry have been appearing. In this paper we are mainly focused on

complex projective plane curves and we adapt the corresponding notions and re-

sults to this set-up. The results contained in this paper have needed a lot of

computations in order to get the correct statements. All of them have been done

using the computer algebra system Singular [9] through Sagemath [25]. We thank

Singular’s team for such a great mathematical tool and especially to Gert-Martin

for his dedication to Singular developement.

Let S := C[x, y, z] be the polynomial ring endowed with the natural graduation

S =
⊕∞

m=0 Sm by homogeneous polynomials. Let f ∈ Sd be a homogeneous
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polynomial of degree d in the polynomial ring, let C ⊂ P2 be defined by f = 0.

Assume that C is reduced. We denote by Jf the Jacobian ideal of f , which is the

homogeneous ideal in S spanned by fx, fy, fz. We denote by M(f) = S/Jf the

corresponding graded ring, called the Jacobian (or Milnor) algebra of f .

Let If be the saturation of the ideal Jf with respect to the maximal ideal (x, y, z)

in S and let N(f) = If/Jf be the corresponding graded quotient. Recall that the

curve C : f = 0 is called a free divisor if N((f) = If/Jf = 0, see e.g. [24].

A. Dimca and G. Sticlaru introduced in [14] the notion of nearly free divisor

which is a sligth modification of the notion of free divisor. The curve C is called

nearly free divisor if N(f) 6= 0 and dimCN(f)k ≤ 1 for any k.

The main results in [13, 14] and many series of examples motivate the following

conjecture.

Conjecture 1.1. [14]

(i) Any rational cuspidal curve C in the plane is either free or nearly free.

(ii) An irreducible plane curve C which is either free or nearly free, is rational.

In [14], the authors provide some interesting results supporting the statement

of Conjecture 1.1(i); in particular, Conjecture 1.1(i) holds for rational cuspidal

curves of even degree [14, Theorem 4.1]. They need a topological assumption

on the cusps which is not fulfilled all the time when the degree is odd, see [14,

Theorem 4.1].

They proved also that this conjecture holds for a curve C with an abelian

fundamental group π1(P2 \C) or for those curves having as degree a prime power,

see [14, Corollary 4.2] and the discussion in [2].

Using the classification given in [16] of unicuspidal rational curve with a unique

Puiseux pair, Dimca and Sticlaru proved in [14, Corollary 4.5] that all of them are

either free divisor or nearly free divisor, except the curves of odd degree in one

case of the classification.

As for Conjecture 1.1(ii), note that reducible nearly free curves may have ir-

reducible components which are not rational, see [14, Example 2.8]: a smooth

cubic with three tangents at aligned inflection points is nearly free (note that,

the condition of alignment can be removed, at least in some examples computed

using [9]). For free curves, examples can be found using [30, Theorem 2.7] e.g.

(x3 − y3)(y3 − z3)(x3 − z3)(ax3 + by3 + cz3) for generic a, b, c ∈ C such that

a + b + c = 0. The conjectures in [30] give some candidate examples of smaller
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degree; it is possible to prove that (y2z − x3)(y2z − x3 − z3) = 0 is free (also

computed with [9]). Dimca and Sticlaru also proposed the following conjecture.

Conjecture 1.2. [14]

(i) Any free irreducible plane curve C has only singularities with at most two

branches.

(ii) Any nearly free irreducible plane curve C has only singularities with at

most three branches.

In this paper we give some examples of irreducible free and nearly free curves in

the complex projective plane which are not rational curves giving counterexamples

to Conjecture 1.1(ii). Using these counterexamples we have found an example of

irreducible free curve whose two singular points have any odd number of branches,

giving counterexamples to Conjecture 1.2(i). Moreover an irreducible nearly free

curve with just one singular point which has 4 branches giving counterexamples

to Conjecture 1.2(ii) are provided too.

Section 2 is devoted to collect well known results in the theory of free divisors

and nearly free divisors mainly from their original papers of A. Dimca and G.

Sticlaru in [13, 14]. Also a characterization for being nearly-free reduced plane

curve from A. Dimca in [10] is recorded. This characterization is similar to the

characterization of being free given by du Plessis and Wall in [21].

From Section 3.2 it can be deduced that, for every odd integer k ≥ 1, the

irreducible plane curve C5k of degree d = 5k defined by

C5k : f5k := (ykzk − x2k)2yk − x5k = 0,

has 1) geometric genus g(C5k) = (k−1)(k−2)
2

, 2) its singularities consists of two

points and the number of branches of C5k at each of them is exactly k, 3) C5k is

a free divisor, see Theorem 3.9. This is a counterexample to both the free divisor

part of Conjecture 1.1(ii) and Conjecture 1.2(i).

From Section 3.3 it can also be deduced that, for any odd integer k ≥ 1, the

irreducible plane curve C4k of degree d = 4k defined by

C4k : f4k := (ykzk − x2k)2 − x3kyk = 0,

has 1) genus g(C4k) = (k−1)(k−2)
2

, 2) its singular set consists of two singular points

and the number of branches of C4k at each of them is k, 3) C4k is a nearly free
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divisor, see Theorem 3.11. This is a counterexample to both the nearly free divisor

part of Conjecture 1.1(ii) and Conjecture 1.2(ii) too.

In the families studied above the number of singular points of the curves is

exactly two. In Section 3.4, we are looking for curves giving a counterexample

to the nearly free divisor part of Conjecture 1.1(ii) with unbounded genus and

number of singularities. In particular, for every odd integer k ≥ 1, the irreducible

curve C2k of degree d = 2k defined by

C2k : f2k := x2k + y2k + z2k − 2(xkyk + xkzk + ykzk) = 0,

has 1) genus g(C2k) = (k−1)(k−2)
2

, 2) its singular set Sing(C2k) consists of exactly

3k singular points, each of them of type Ak−1, 3) C2k is a nearly free divisor, see

Theorem 3.12.

One of the main tools to find such examples is the use of Kummer covers. A

Kummer cover is a map πk : P2 → P2 given by

πk([x : y : z]) := [xk : yk : zk].

Since Kummer covers are finite Galois unramified covers of P2 \ {xyz = 0} with

Gal(πk) ∼= Z/kZ × Z/kZ, Kummer covers are a very useful, using them one can

construct complicated algebraic curves starting from simple ones. We meanly refer

to [4, §5] for a systematic study of Kummer covers.

In particular, these families of examples {C5k} (which are free divisors), {C4k}
and {C2k} (which are nearly free divisors) are constructed as the pullback under

the Kummer cover πk of the corresponding rational cuspidal curves: the quintic

C5 which is a free divisor, and the corresponding nearly free divisors defined by

either, the cuartic C4, or by the conic C2.

In the last section, Section 4, an irreducible curve C49 of degree 49 is given

which has 1) genus g(C49) = 0, 2) its singular set consists of just one singular

point which has 4 branches, 3) C49 is a nearly free divisor. These example can be

constructed as a general element of the unique pencil associated to any rational

unicuspidal plane curve, see [8].

2. Free and nearly free plane curves after Dimca and Sticlaru

Let S := C[x, y, z] be the polynomial ring endowed with the natural graduation

S =
⊕∞

m=0 Sm by homogeneous polynomials. Let f ∈ Sd be a homogeneous

polynomial of degree d in the polynomial ring Let C be the plane curve in P2
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defined by f = 0 and assume that C is reduced. We have denoted by Jf the

Jacobian ideal of f , which is the homogeneous ideal in S spanned by fx, fy, fz. Let

M(f) = S/Jf be the corresponding graded ring, called the Jacobian (or Milnor)

algebra of f .

The minimal degree of a Jacobian relation for f is the integer mdr(f) defined

to be the smallest integer m ≥ 0 such that there is a nontrivial relation

(2.1) afx + bfy + cfz = 0, (a, b, c) ∈ S3
m \ (0, 0, 0).

When mdr(f) = 0, then C is a union of lines passing through one point, a situation

easy to analyse. We assume from now on that mdr(f) ≥ 1.

2.1. Free plane curves.

We have denoted by If the saturation of the ideal Jf with respect to the maximal

ideal (x, y, z) in S. Let N(f) = If/Jf be the corresponding homogeneous quotient

ring.

Consider the graded S-submodule

AR(f) = {(a, b, c) ∈ S3 | afx + bfy + cfz = 0} ⊂ S3

of all relations involving the partial derivatives of f , and denote by AR(f)m its

homogeneous part of degree m.

Notation 2.1. We set ar(f)k = dim AR(f)k, m(f)k = dimM(f)k and n(f)k =

dimN(f)k for any integer k.

We use the definition of freeness given by Dimca [10].

Definition 2.2. The curve C : f = 0 is a free divisor if the following equivalent

conditions hold.

(1) N(f) = 0, i.e. the Jacobian ideal is saturated.

(2) The minimal resolution of the Milnor algebra M(f) has the following form

0→ S(−d1 − d+ 1)⊕ S(−d2 − d+ 1)→ S3(−d+ 1)
(fx,fy ,fz)−−−−−→ S

for some positive integers d1, d2.

(3) The graded S-module AR(f) is free of rank 2, i.e. there is an isomorphism

AR(f) = S(−d1)⊕ S(−d2)

for some positive integers d1, d2.
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When C is a free divisor, the integers d1 ≤ d2 are called the exponents of C.

They satisfy the relations

(2.2) d1 + d2 = d− 1 and τ(C) = (d− 1)2 − d1d2,

where τ(C) is the total Tjurina number of C, see for instance [11, 13]. Using

deformation results in [24], Sticlaru [26] defines a curve C ⊂ P2 to be projectively

rigid if (If )d = (Jf )d. In particular, if C is free then it is projectively rigid.

Remark 2.3. This notion of projectively rigid differs from the classical one, see

e.g. [17], where a curve is projectively rigid if its equisingular moduli space is

discrete. Note that four lines passing through a point define a free divisor but its

equisingular moduli space is defined by the cross-ratio.

2.2. Nearly free plane curves.

Dimca and Sticlaru introduced a more subtle notion for a divisor to be nearly

free, see [14].

Definition 2.4. [14] The curve C : f = 0 is a nearly free divisor if the following

equivalent conditions hold.

(1) N(f) 6= 0 and n(f)k ≤ 1 for any k.

(2) The Milnor algebra M(f) has a minimal resolution of the form

(2.3) 0→ S(−d−d2)→ S(−d−d1+1)⊕S2(−d−d2+1)→ S3(−d+1)
(f0,f1,f2)−−−−−→ S

for some integers 1 ≤ d1 ≤ d2, called the exponents of C.

(3) There are 3 syzygies ρ1, ρ2, ρ3 of degrees d1, d2 = d3 = d− d1 which form

a minimal system of generators for the first-syzygy module AR(f).

If C : f = 0 is nearly free, then the exponents d1 ≤ d2 satisfy

(2.4) d1 + d2 = d and τ(C) = (d− 1)2 − d1(d2 − 1)− 1,

see [14]. For both a free and a nearly free curve C : f = 0, it is clear that

mdr(f) = d1.

Remark 2.5. In [14] it is shown that to construct a resolution (2.3) for a given

polynomial f , the following conditions must be satisfied:

(i) the integer b := d2 − d+ 2,
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(ii) three syzygies ri = (ai, bi, ci) ∈ S3
di

, i = 1, 2, 3, for (fx, fy, fz), i.e.

aifx + bify + cifz = 0,

necessary to construct the morphism

3⊕
i=1

S(−di − (d− 1))→ S3(−d+ 1), (u1, u2, u3) 7→ u1r1 + u2r2 + u3r3.

(iii) One relation R = (v1, v2, v3) ∈
⊕3

i=1 S(−di − (d − 1))b+2(d−1) among

r1, r2, r3, i.e. v1r1 + v2r2 + v3r3 = 0, necessary to construct the morphism

S(−b− 2(d− 1))→
⊕
i=1,3

S(−di − (d− 1))

by the formula w 7→ wR. Note that vi ∈ Sb−di+d−1.

Corollary 2.6. [14] Let C : f = 0 be a nearly free curve of degree d with exponents

(d1, d2). Then N(f)k 6= 0 for d+d1−3 ≤ k ≤ d+d2−3 and N(f)k = 0 otherwise.

The curve C is projectively rigid if and only if d1 ≥ 4.

2.3. Characterization of free and nearly free reduced plane curves.

Just recently Dimca provides in [10] the following characterization of free and

nearly free reduced plane curves. For a positive integer r,

τ(r)max := (d− 1)(d− r − 1) + r2,

is defined.

Theorem 2.7 ([10]). Let C ⊂ P2 be a reduced curve of degree d defined by f = 0,

and let r := mdr(f).

(1) If r < d
2
, then τ(C) = τ(r)max if and only if C : f = 0 is a free curve.

(2) If r ≤ d
2
, then τ(C) = τ(r)max − 1 if and only if C is a nearly free curve.

As it is recalled in [10], Theorem 2.7(1) is Corollary of [21, Theorem 3.2] by du

Plessis and Wall.

3. High-genus curves which are free or nearly free divisors

3.1. Transformations of curves by Kummer covers.

A Kummer cover is a map πk : P2 → P2 given by πk([x : y : z]) := [xk : yk : zk].

Kummer covers are a very useful tool in order to construct complicated algebraic

curves starting from simple ones. Since Kummer covers are finite Galois unramified
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covers of P2 \ {xyz = 0} with Gal(πk) ∼= Z/kZ × Z/kZ, topological properties of

the new curves can be obtained,for instance: Alexander polynomial, fundamental

group, characteristic varieties and so on (see [1, 3, 5, 29, 18, 6, 4, 19] for papers

using these techniques).

Example 3.1. In [29], Uludağ constructs new examples of Zariski pairs using

former ones and Kummer covers. He also uses the same techniques to construct

infinite families of curves with finite non-abelian fundamental groups.

Example 3.2. In [18, 5], the Kummer covers allow to construct curves with many

cusps and extremal properties for their Alexander invariants. These ideas are

pushed further in [6] where the authors find Zariski triples of curves of degree 12

with 32 ordinary cusps (distinguished by their Alexander polynomial). Within the

same ideas Niels Lindner [19] constructed an example of a cuspidal curve C ′ of

degree 12 with 30 cusps and Alexander polynomial t2− t+ 1. For this, he started

with a sextic C0 with 6 cusps, admitting a toric decomposition. He pulled back

C0 under a Kummer map π2 : P2 → P2 ramified above three inflectional tangents

of C0. Since the sextic is of torus type, then same holds for the pullback. Lindner

showed that the Mordell-Weil lattice has rank 2 and that the Mordell-Weil group

contains A2(2).

A systematic study of Kummer covers of projective plane curves has been done

by J.I. Cogolludo , J. Ortigas and the first named author in [4, §5]. Some of their

results are collected below.

Let C be a (reduced) projective curve of degree d of equation Fd(x, y, z) = 0

and let C̄k be its transform by a Kummer cover πk, k ≥ 1. Note that C̄k is a

projective curve of degree dk of equation Fd(x
k, yk, zk) = 0.

Definition 3.3. [4] We define P ∈ P2 such that P := [x0 : y0 : z0]. We say that P

is a point of type (C∗)2 (or simply of type 2) if x0y0z0 6= 0. If x0 = 0 but y0z0 6= 0

the point is said to be of type C∗x (types C∗y and C∗z are defined accordingly). Such

points will also be referred to as type 1 points. The corresponding line (either

LX := {X = 0}, LY := {Y = 0}, or LZ := {Z = 0}) the type-1 point lies on will

be referred to as its axis. The remaining points Px := [1 : 0 : 0], Py := [0 : 1 : 0],

and Pz := [0 : 0 : 1] will be called vertices (or type 0 points) and their axes are

the two lines (either LX , LY , or LZ) they lie on.
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Remark 3.4. [4] Note that a point of type `, ` = 0, 1, 2 in P2 has exactly k`

preimages under πk. It is also clear that the local type of C̄k at any two points on

the same fiber are analytically equivalent. The singularities of C̄k are described in

the following proposition.

Proposition 3.5. [4] Let P ∈ P2 be a point of type ` and Q ∈ π−1
k (P ). The

following conditions hold:

(1) If ` = 2, then (C,P ) and (C̄k, Q) are analytically isomorphic.

(2) If ` = 1, then (C̄k, Q) is a singular point of type 1 if and only if m > 1,

where m := (C · L̄)P and L̄ is the axis of P .

(3) If ` = 0, then (C̄k, Q) is a singular point.

Remark 3.6. Using Proposition 3.5 (1), if Sing(C) ⊂ {xyz = 0} then Sing(C̄k) ⊂
{xyz = 0}.

Example 3.7. [4] In some cases, we can be more explicit about the singularity

type of (C̄k, Q). If P is of type 1, (C,P ) is smooth and m := (C · L̄)P then (C̄k, Q)

has the same topological type as uk0−vm0 = 0. In particular, if m = 2, then (C̄k, Q)

is of type Ak−1.

In order to better describe singular points of type 0 and of type 1 of C̄k we

will introduce the following notation. Let P ∈ P2 be a point of type ` = 0, 1 and

Q ∈ π−1
k (P ) a singular point of C̄k. Denote by µP (resp. µQ) the Milnor number

of C at P (resp. C̄k at Q). Since ` = 0, 1, then P and Q belong to either exactly

one or two axes. If P and Q belong to an axis L̄, then mL̄
P := (C · L̄)P (analogous

notation for Q). More specific details about singular points of types 0 and 1 can

be described as follows.

Proposition 3.8. [4] Under the above conditions and notation, the following con-

ditions hold:

(1) For ` = 1, P belongs to a unique axis L̄ and

(a) µQ = kµP + (mL̄
P − 1)(k − 1),

(b) and, if (C,P ) is locally irreducible and r := gcd(k,mL̄
P ), then (C,Q)

has r irreducible components which are analytically isomorphic to each

other.

(2) For ` = 0, P belongs to exactly two axes L̄1 and L̄2

(a) µQ = k2(µP − 1) + k(k − 1)(mL̄1
P + mL̄2

P ) + 1 (There is a typo in the

printed formula in [4]: k − k2 must be added).
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(b) and, if (C,P ) is locally irreducible and r := gcd(k,mL̄1
P ,m

L̄2
P ), then

(C,Q) has kr irreducible components which are analytically isomor-

phic to each other.

3.2. Irreducible free curves with many branches and high genus.

Let us consider the quintic curve C5, see Figure 1, defined by f5 := (yz−x2)2y−
x5 = 0. It has two singular points, p1 = [0 : 1 : 0] of type A4 and p2 = [0 : 0 : 1]

of type E8. Therefore, it is a rational and cuspidal plane curve. This curve is

free, see [13, Theorem 4.6]. Let us consider the Kummer cover πk : P2 → P2 given

by πk([x : y : z]) := [xk : yk : zk] and its Kummer transform C5k, defined by

f5k := (ykzk − x2k)2yk − x5k = 0.

Lx : x = 0

Lz : z = 0 Ly : y = 0

u3 = v5 u2 = v5

p2 p1

C5

(C5 · Lz)Q = 4

Figure 1. Curve C5

Theorem 3.9. For any k ≥ 1, the curve C5k of degree d = 5k defined by

(3.1) C5k : f5k := (ykzk − x2k)2yk − x5k = 0,

verifies the following properties:

(1) Sing(C5k) = {p1, p2}. The number of branches of C5k at p2 is k, and at p1,

it equals k (if k is odd) or 2k (if k is even).

(2) C5k is a free divisor with exponents d1 = 2k, d2 = 3k − 1 and τ(C5k) =

19k2 − 8k + 1.

(3) C5k has two irreducible components of genus (k−2)2

4
if k is even and irre-

ducible of genus (k−1)(k−2)
2

otherwise.

Proof. Part (1) is an easy consequence of [4, Lemma 5.3, Proposition 5.4 and

Proposition 5.6]. The singularites Sing(C5) = {p1, p2} are of type 0, in the sense

of the Kummer cover πk (see Definition 3.3) and C5 has no singularities outside the

intersection points of the axes. Moreover C5 intersects the line Lz transversally at
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a point of type 1; then by Proposition 3.5 (2) and by Remark 3.6, the singularities

of C5k are exactly the points p1 and p2.

Since p1 and p2 are of type 0 we deduce the structure of C5k at these points.

using Proposition 3.8 (2) (b). At p1 one has (C5, Lz)p1 = 5, (C5, Lx)p1 = 2 and

rp1 = gcd(k, 2, 5) = 1 for all k , and so that the number of branches of C5k at

p1 is equal to k. On the other hand, to study the number of branches at p2, we

compute the intersection numbers (C5, Lx)p2 = 2 and (C5, Ly)p2 = 4 and therefore

rp2 = gcd(k, 2, 4) = gcd(k, 2). Ik k is odd, rp2 = 1 and the number of branches of

C5k at p2 is equal to k. Otherwise rp2 = 2 and the number of branches of C5k at

p2 is equal to 2k.

In order to prove (2), we follow the ideas of [13, Theorem 4.6]. Let us study first

the syzygies of the free curve C5. Let us denote by Du,v,w, the diagonal matrix

with entries u, v, w, and define the vectors

R1 =
(
0, 2y, x2 − 3yz

)
, R2 =

(
2(x2 − yz), 2(5x2 − 4xy + 15yz), 8x− 45z

)
.

Let us denote by J the Jacobian ideal J of f5. Let us denote by Jx the ideal

generated by (xf5x, f5y, f5z). In the same way, we consider the ideals Jy, Jz, Jxy,

Jxz, Jyz, Jxyz. The Table 1 shows bases for the syzygies of these ideals, computed

with Singular [9]. Note that

Ideal First generator Second generator

J R1 ·D1,y,1 R2 ·D1,1,z

Jx R1 ·D1,y,1 R2 ·D1,x,xz

Jy R1 R2 ·Dy,1,yz

Jz R1 ·D1,yz,1 R2

Jxy R1 R2 ·Dy,x,xyz

Jxz R1 ·D1,yz,1 R2 ·D1,x,x

Jyz R1 ·D1,z,1 R2 ·Dy,1,y

Jxyz R1 ·D1,z,1 R2 ·Dy,x,xy

Table 1. Bases of syzygies

f5kx=kxk−1f5x(x
k, yk, zk), f5ky = kyk−1f5y(x

k, yk, zk), f5kz = kzk−1f5z(x
k, yk, zk).
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Let Sk := C[xk, yk, zk]. We have a decomposition

(3.2) S =
⊕

(i,j,l)∈{0,...,k−1}

xiyjzlSk.

By construction, f5kx ∈ xk−1Sk, f5ky ∈ yk−1Sk and f5kz ∈ zk−1Sk. Hence, in order

to compute the syzygies (a, b, c) among the partial derivatives of f5k, we need to

characterize the triples (a, b, c) such that each entry belongs to a factor of the

decomposition (3.2).

Let us assume that a ∈ xixyjxzjxSk, b ∈ xiyyjyzjySk and c ∈ xizyjzzjzSk. We

deduce that

ix + k − 1 ≡ iy ≡ iz mod k =⇒ i = iy = iz and ix =

i+ 1 if i < k − 1

0 if i = k − 1.

Analogous relations hold for the other indices. We distinguish four cases:

Case 1. i = j = l = k − 1.

In this case a(x, y, z) = yk−1zk−1α(xk, yk, zk), b(x, y, z) = xk−1zk−1β(xk, yk, zk)

and c(x, y, z) = xk−1yk−1γ(xk, yk, zk). Hence (α, β, γ) is a syzygy for the partial

derivatives of f5. We conclude that (a, b, c) is a combination of:

R1(xk, yk, zk) ·D1,xk−1ykzk−1,xk−1yk−1 = xk−1yk−1R1(xk, yk, zk) ·D1,yzk−1,1

and

R2(xk, yk, zk) ·Dyk−1zk−1,xk−1zk−1,xk−1yk−1zk = zk−1R2(xk, yk, zk) ·Dyk−1,xk−1,xk−1yk−1z.

Divided by common factors we obtain syzygies of degree 2k and 3k − 1.

Case 2. i < k − 1, j = l = k − 1.

In this case a(x, y, z) = xi+1yk−1zk−1α(xk, yk, zk), b(x, y, z) = xizk−1β(xk, yk, zk)

and c(x, y, z) = xiyk−1γ(xk, yk, zk). Hence (α, β, γ) is a syzygy for the generators

of the ideal Jx. It is easily seen that we obtain combination of generators of the

above syzygies. The other cases are treated in the same way.

We conclude that C5k is free with d1 = mdr(f5k) = 2k and d2 = d − 1 − d1 =

5k − 1− 2k = 3k − 1. By equation (2.2) τ(C5k) = 19k2 − 8k + 1 for all k.

In order to prove (3), we study the branched cover π̃k : C̃5k → C̃5 between the

normalizations of the curves. The monodromy of this map as an unramified cover
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of P2 \ {xyz = 0} is determined by an epimorphism

H1(P2 \ {xyz = 0};Z)→ Zk × Zk =: Gk

such that the meridians of the lines are sent to ax, ay, az, a system of generators of

Gk such that ax + ay + az = 0. Since the singularities of C5 are locally irreducible,

then C5 and C̃5 are homeomorphic, and the covering π̃k is determined by the

monodromy map

H1(C̃5 \ {xyz = 0};Z)→ Zk × Zk =: Gk

obtained by composing using the map defined by the inclusion. Hence C̃5\{xyz =

0} is isomorphic to P1 \ {three points}). The image of a meridian corresponding

to a point P in the axes is given by

mLx
P ax +m

Ly

P ay +mLz
P az.

Hence, we obtain az (the smooth point), 3ax+5ay (the E8-point) and 2ax+4az (the

A4-point). In terms of the basis ay, az they read as az, 2ay − 3az,−2ay + 2az, i.e.,

the monodromy group is generated by 2ay, az. If k is even, the monodromy group

is of index 2 in Gk, and hence C̃5k has two connected components. Otherwise, if

it is equal to Gk when k is odd and C̃5k is connected. These properties give us the

statement about the number of irreducible components.

The genus can be computed using the singularities of C5k or via Riemann-

Hurwitz’s formula. Note that the covering π̃k is of degree k2 with three ramification

points; at p2 and the smooth point in the axis where we find k preimages, while

at p1 we find k preimages if k is odd and 2k preimages if it is even, because of (1).

Hence, for k odd, the Euler characteristic of the normalization is

χ(C̃5k) = −k2 + 3k =⇒ g(C̃5k) =
(k − 1)(k − 2)

2
.

And for k even, where C̃5k = C̃1
5k ∪ C̃2

5k, the Euler characteristic is

χ(C̃5k) = −k2 + 4k =⇒ g(C̃i
5k) =

2− χ(C̃5k)
2

2
=

(k − 2)2

4
. �

So, for odd k ≥ 3, the curve C5k is an irreducible free curve of positive genus

whose singularities have k branches each. This is a counterexample to both the

free divisor part of Conjecture 1.1(ii) and Conjecture 1.2(i).
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Remark 3.10. Up to projective transformation, there are two quintic curves with

two singular points of type A4 and E8. One is C5 : (yz − x2)2y − x5 = 0, which

is free; the other one is defined by D5 : g = y3z2 − x5 = 0 (the contact of the

tangent line to the A4-point distinguishes both curves). Moreover, the curve D5

is nearly free; it can be computed that mdr(g) = 1. Since both singular points

are quasihomogeneous, 12 = τ(C5) = µ(C5) = µ(D5) = τ(D5), and we may

apply Theorem 2.7(2); the pair (C5,D5) is a kind of counterexample to Terao’s

conjecture [20, Conjecture 4.138] for irreducible divisors (with constant Tjurina

number), compare with [23].

3.3. Irreducible nearly free curves with many branches and high genus.

The quartic curve C4 defined by f4 := (yz − x2)2 − x3y = 0 has two singular

points, p1 = [0 : 1 : 0] of type A2 and p2 = [0 : 0 : 1] of type A4. Therefore it

is rational and cuspidal. We will consider the Kummer transform C4k, defined by

f4k := (ykzk − x2k)2 − x3kyk = 0, of the curve C4.

Theorem 3.11. For any k ≥ 1, the curve C4k of degree d = 4k defined by

C4k : f4k := (ykzk − x2k)2 − x3kyk = 0,

verifies the following properties

(1) Sing(C4k) = {p1, p2}. The number of branches of C4k at each p2 is k, and

at p1, it equals k (if k is odd) or 2k (if k is even).

(2) C4k is a nearly free divisor with exponents d1 = d2 = d3 = 2k and τ(C4k) =

6k(2k − 1).

(3) C4k has two irreducible components of genus (k−2)2

4
if k is even and it is

irreducible of genus (k−1)(k−2)
2

otherwise.

Proof. Since Sing(C4)(= {p1, p2}) are points of type 0, C4 meets {xyz = 0} at

three points p1, p2 and transversally at p3 which is of type 1, therefore Sing(C4k) =

{p1, p2}. To prove Part (1) its enough to find the number of branches of C4k

at these points using Proposition 3.8 (2) (b). At p1 one has (C4, Lz)p1 = 3,

(C4, Lx)p1 = 2 and rp1 = gcd(k, 2, 3) = 1 for all k , and so that the number

of branches of C4k at p1 is equal to k. In the same way, at p2, the intersection

(C4, Lx)p2 = 2, (C4, Ly)p2 = 4 and rp2 = gcd(k, 2, 4) = gcd(k, 2). If k is odd,

rp2 = 1 and the number of branches of C4k at p2 is equal to k. Otherwise rp2 = 2

and the number of branches of C4k at p2 is equal to 2k.
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The proof of Part (2) follows the same guidelines as Theorem 3.9. With the

notations of that proof, a generator system for the syzygies of J (Jacobian ideal

of f4) is given by:

(3.3)

R1 := (y(3x− 4z), 3y(4x− 3y), z(9y − 20x)) ,

R2 :=
(
−x(x+ 2z), −4x2 + 3xy + 10yz, −z(3x+ 10z)

)
,

R3 :=
(
xy, −3y2, 2x2 + 3yz

)
.

These syzygies satisfy the relation xR1+3yR2+10zR3 = 0. And by Dimca Steclaru

Remark (2.5) C4 is a nearly free divisor with exponents d1 = d2 = d3 = 2.

For the ideal Jz, we have a similar situation. For the other ideals, their syzygy

space is free of rank 2. Using these results it is not hard to prove that the syzygies

of f4k are generated by

Rk,1 :=
(
yk(3xk − 4zk), 3xk−1y(4xk − 3yk), xk−1z(9yk − 20xk)

)
,

Rk,2 :=
(
−xyk−1(xk + 2zk), −4x2k + 3xkyk + 10ykzk, −yk−1z(3xk + 10zk)

)
,

Rk,3 :=
(
xykzk−1, −3yk+1zk−1, 2x2k + 3ykzk

)
.

The results follow as in the proof of Theorem 3.9.

These syzygies satisfy the relation xRk,1 + 3yRk,2 + 10zRk,3 = 0 and by Dimca

Steclaru Remark (2.5) C4k is a nearly free divisor with exponents d1 = d2 = d3 =

2k and by equation (2.4) τ(C4k) = 6k(2k − 1).

The proof of Part (3) follows the same ideas as Theorem 3.9 (3). �

So, for odd k ≥ 3, the curve C4k is an irreducible nearly free curve of positive

genus whose singularities have k branches each. This is a counterexample to both

the nearly free divisor part of Conjecture 1.1(ii) and Conjecture 1.2(ii).

3.4. Positive genus nearly-free curves with many singularities.

Let us consider the conic C2 given by f2 = x2 + y2 + z2 − 2(xy + xz + yz) = 0.

This conic is tangent to three axes and it is very useful to produce interesting

curves using Kummer covers.

Theorem 3.12. For any k ≥ 1, the curve C2k of degree d = 2k defined by

C2k : f2k := x2k + y2k + z2k − 2(xkyk + xkzk + ykzk) = 0,

verifies the following properties

(1) Sing(C2k) are 3k singular points of type Ak−1.
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Figure 2. Conic C2.

(2) C2k is a nearly free divisor with exponents d1 = d2 = d3 = k and τ(C2k) =

3k(k − 1).

(3) C2k is irreducible of genus (k−1)(k−2)
2

if k is odd and it has four irreducible

smooth components of degree k
2

if k is even.

Proof. To prove (1) it is enough to take into the account that C2 is nonsingular and

by Remark 3.6 the singularites of C2k satisfy Sing(C2k) ⊂ {xyz = 0}. Moreover

C2 is tangent to the three axes at 3 points {p1, p2, p3} of type 1 with (C2, Lx)p1 =

(C2, Ly)p2 = (C2, Lz)p3 = 2 at these points. For i = 1, . . . , 3, the points pi are of

type 1 and by Remark 3.4 all the k preimages under πk are analytically equivalent.

By Example 3.7, over each pi, one has k singular points of type Ak−1.

Let us study (2). A generator system for the syzygies of J (Jacobian ideal of

f2) is given by:

(3.4)

R1 := (y − z, y, −z) ,

R2 := (−x, z − x, z) ,

R3 := (x, −y, x− y) .

These syzygies satisfy the relation xR1 + yR2 + zR3 = 0. The other ideals have

free 2-rank syzygy modules. A simple computation gives the following syzygies

for f2k:

Rk,1 :=
(
yk − zk, xk−1y, −xk−1z

)
,

Rk,2 :=
(
−xyk−1, zk − xk, yk−1z

)
,

Rk,3 :=
(
xzk−1, −yzk−1, xk − yk

)
.
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These syzygies satisfy the relation xRk,1 + yRk,2 + zRk,3 = 0 and therefore, C2k

is a nearly free divisor with exponents d1 = d2 = d3 = k and τ(C2k) = 3k(k − 1).

To prove (3) we follow as in the proof of Theorem 3.9 (3); the main difference

is that π2 has no ramification over C2 and in fact C4 is the union of four lines in

general position; their preimages. If k = 2`, since πk = π` ◦ π2, each irreducible

component is a smooth Fermat curve.

�

For odd k ≥ 3, these curves have positive genus and give a counterexample

to the nearly free divisor part of Conjecture 1.1(ii) (with unbounded genus and

number of singularities). Furthermore, if k ≥ 5, since d1 = 5 ≥ 4 then by Corollary

2.6 C2k is projectively rigid. Note that it is not the case for C6, where we find it is

the dual of a smooth cubic which is a nearly free divisor. A simple computation

shows that the dual of a generic smooth cubic is also a nearly free divisor.

4. Pencil associated to unicuspidal rational plane curves

In this section we are going to show that it is possible to construct a rational

nearly free curve whose singular points has more than three branches, that is the

condition to have high genus is not needed.

Given a curve C ⊂ P2, let π : P̃2 → P2 be the minimal, (not the “embedded”

minimal) resolution of singularities of C. Let C̃ ⊂ P̃2 be the strict transform of

C, and let ν̃(C) = C̃ · C̃ denote the self-intersection number of C̃ on P̃2.

A unicuspidal rational curve is a pair (C,P ) where C is a curve and P ∈ C

satisfies C\{P} ∼= A1. We call P the distinguished point of C. Given a unicuspidal

rational curve (C,P ), D. Daigle and the last named author proved the existence

of a unique pencil ΛC on P2 satisfying C ∈ ΛC and Bs(ΛC) = {P} where Bs(ΛC)

denotes the base locus of ΛC on P2, see [7, 8].

Let πm : P̃2
m → P2 be the minimal resolution of the base points of the pencil. By

Bertini theorem, the singularities of the general member Cgen of ΛC are contained

in Bs(ΛC) = {P}.
For a unicuspidal rational curve C ⊂ P2, we show (cf. [8, Theorem 4.1]) that

the general member of ΛC is a rational curve if and only if ν̃(C) ≥ 0. In this case

(1) the general element Cgen of ΛC satisfies that the weighted cluster of infin-

itely near points of Cgen and C are equal (see [7, Proposition 2.7]).

(2) ΛC has either 1 or 2 dicriticals, and at least one of them has degree 1.
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In view of these results, it is worth noting that all currently known unicuspidal

rational curves C ⊂ P2 satisfy ν̃(C) ≥ 0, see [8, Remark 4.3] for details.

Let C ⊂ P2 be a unicuspidal rational curve of degree d and with distinguished

point P . In [8, Proposition 1] it is proved that ΛC is in fact the set of effective

divisors D of P2 such that deg(D) = d and iP (C,D) ≥ d2. Since iP (C,C) =∞ >

d2, then the curve C ∈ ΛC .

The main idea here is to take the general member Cgen of the pencil ΛC for a

nonnegative curve, i.e ν̃(C) ≥ 0. Doing this one gets a rational cuve Cgen whose

singularities is Sing(Cgen) = {P} and the branches of Cgen at P equals to the sum

of the degrees of the dicriticals divisors.

The clasification of unicuspidal rational plane curve with κ̄(P2 \ C) = 1 was

started by Sh. Tsunoda [28] and finished by K. Tono [27] (see also p. 125 in [15]).

Our next example starts with C49 with κ̄(P2 \ C49) = 1. Secondly we take the

pencil ΛC49 , and finally its general member C49,gen has degree 49 and is rational

nearly-free with just one singular point which has 4 branches.

The curve C49 is given by

f49 = ((f s1y +
s+1∑
i=2

aif
s+1−i
1 xia−a+1)a − fas+1

1 )/xa−1 = 0,

where f1 = x4−1z + y4, a = 4, s = 3, a2 = . . . = as ∈ C and as+1 ∈ C \ {0}.
We can take for instance a2 = . . . = as = 0 ∈ C and as+1 = 1. In this case,

d = a2s + 1 = 49, and the multiplicity sequence of (C49, P ) of the singular point

P := [0, 0, 1] is [36, 127, 46]. It is no-negative with ν̃(C49) = 1.

If we consider the rational curves C4 defined by f1 = 0 (resp. C13 defined by

f13 : (f1)3y + x13 = 0) then iP (C49, C4) = 4 · 49 (resp. iP (C49, C13) = 13 · 49).

Thus the curve C13C
s(a−1)
4 belongs to the pencil ΛC49 if s(a− 1) = 9.

If we take the curve C49,gen defined by f49,gen := f49 + 13f13f
9
4 = 0. This curve

is irreducible, rational and Sing(C49,gen) = {P} and the number of branches of

C49,gen at P is 4.

It is a nearly free divisor, using the computations with Singular [9]. A minimal

resolution (2.3) for f49,gen is determined by three syzygies of degrees d1 = 24

and d2 = d3 = 25. Therefore, mdr(f49,gen) = 24. The computations yield a

relation between these syzygies of multidegree (2, 1, 1). Then C49,gen is a rational

nearly free curve. Let us note that a direct computation using Singular [9]
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of the Tjurina number of the singular point of the curve fails, but the nearly-

free condition makes the computation possible via Theorem 2.7(2): τ(C49,gen) =

(49 − 1)(49 − 24 − 1) + 242 − 1 = 1727 which is the result in Singular using

characteristic p = 1666666649.
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