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On the pre-λ-ring structure on the Grothendieck ring of stacks
and the power structures over it

S. M. Gusein-Zade, I. Luengo and A. Melle-Hernández

To the memory of Prof. Torsten Ekedahl

Abstract

We describe a pre-λ-structure on the Grothendieck ring of stacks (originally studied by Torsten
Ekedahl) and the corresponding power structures over it, discuss some of their properties and
give some explicit formulae for the Kapranov zeta-function for some stacks. In particular, we
show that the nth symmetric power of the class of the classifying stack BGL(1) of the group
GL(1) coincides, up to a power of the class L of the affine line, with the class of the classifying
stack BGL(n).

1. Introduction

Let K0(Vk) be the Grothendieck ring of quasi-projective varieties over an algebraically closed
field k. This is the Abelian group generated by the classes [X] of all quasi-projective k-varieties
X modulo the relations:

(1) if varieties X and Y are isomorphic, then [X] = [Y ];
(2) if Y is a Zariski closed subvariety of X, then [X] = [Y ] + [X \ Y ].

The multiplication in K0(Vk) is defined by the Cartesian product of varieties: [X1] · [X2] =
[X1 ×X2]. The class [A1

k] ∈ K0(Vk) of the affine line is denoted by L.
In [8], there was defined a notion of a power structure over a ring and there was described

a natural power structure over the Grothendieck ring K0(VC) of complex quasi-projective
varieties. This means that, for a series A(T ) = 1 + a1T + a2T

2 + . . . ∈ 1 + T ·K0(VC)[[T ]] and
for an element m ∈ K0(VC), one defines a series (A(T ))m ∈ 1 + T ·K0(VC)[[T ]] so that all the
usual properties of the exponential function hold. Here, we assume the base field k to be an
arbitrary algebraically closed field and therefore we indicate changes required for that.

A special property of this power structure which is important for applications is its
effectiveness. This means that if all the coefficients ai of the series A(T ) and the exponent m
are represented by classes of quasi-projective varieties (that is, ai = [Ai] and m = [M ]), then all
the coefficients of the series A(T )m are represented by classes of quasi-projective varieties too,
not by classes of virtual varieties. (This is connected with the fact that the power structure
can be defined over the Grothendieck semiring of quasi-projective varieties.) The geometric
description given in (1.2) has been used, in particular, in [1, 2, 9, 10]. This property looks
somewhat mysterious. A power structure over a ring R can be also defined by a pre-λ-structure
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on R. The pre-λ-structure on the Grothendieck ring K0(VC) which induces the power structure
described in [8] is defined by the Kapranov zeta-function introduced in [13]:

ζX(T ) := 1 + [S1X] · T + [S2X] · T 2 + [S3X] · T 3 + . . . , (1.1)

where SkX := Xk/Sk is the kth symmetric power of the variety X. Indeed the use of another
(natural) pre-λ-structure on the Grothendieck ring K0(VC) (opposite to the one defined
by (1.1)) induces a power structure over it which is not effective (see Statement 1 in Section 3).

For a field k of positive characteristic, the Kapranov zeta-function (1.1) also defines a pre-
λ-structure on the Grothendieck ring K0(Vk) (see [6, Proposition 1.1(i)]) and therefore a power
structure over it. However, in [6] it is explained that (over a field of positive characteristic) one
should consider the following, a little bit different, pre-λ-structure on K0(Vk).

Let Xk =
∐

{ki}X
k
{ki} be the natural representation of the Cartesian power Xk of X as the

union of the strata corresponding to all the partitions of k. The stratum corresponding to the
partition {ki} :

∑
iki = k consists of the k-tuples (x1, . . . , xk) with (exactly) ki groups with

(exactly) i equal elements. For the partition {ki}, let
∏

iX
ki \ Δ be the complement of the

large diagonal which consists of
∑

i ki-tuples of points of X with at least two coinciding ones.
The group

∏
i Ski

acts freely on
∏

iX
ki \ Δ. One has Xk

{ki}/Sk
∼= (
∏

iX
ki \ Δ)/

∏
i Ski

. One
should use [SkX]∗ =

∑
{ki}[(

∏
iX

ki) \ Δ)/
∏

i Ski
] instead of [SkX] in definition (1.1). For the

base field k of characteristic zero, the classes [SkX] and [SkX]∗ coincide. Moreover, one can
see that the geometric definition of the power structure in [8], being literally extended to a
field of an arbitrary characteristic, corresponds, in fact, to this modification of the Kapranov
zeta-function. Indeed in [8], the series (A(T ))[X] for A(T ) = 1 +

∑∞
i=1[Ai]T i where [Ai] are

quasi-projective varieties and for a quasi-projective variety X is defined as

(A(T ))[X] := 1 +
∞∑

k=1

⎧⎨
⎩ ∑

{ki}:
∑

iki=k

[((∏
i

Xki

)∖
Δ

)
×
∏

i

Aki
i

/∏
i

Ski

⎤
⎦
⎫⎬
⎭ · T k, (1.2)

where the group Ski
acts by permuting corresponding ki factors in

∏
iX

ki ⊃ (
∏

iX
ki) \ Δ and

the spaces Ai simultaneously. If all Ai are points (that is, [Ai] = 1), the coefficient at T k in
(1 + T + T 2 + . . .)[X] = (1 − T )−[X] is just

∑
{ki}[(

∏
iX

ki \ Δ)/
∏

i Ski
] = [SkX]∗.

There are natural generalizations of the pre-λ-structure on the Grothendieck ring K0(Vk) to
other situations, say to the Grothendieck ring K0(StckC) of algebraic stacks of finite type over
C all of whose automorphism group schemes are affine. This pre-λ-structure was defined in [6].
The proof there was implicit. Moreover, it contained a certain inaccuracy (the equation for
the symmetric power of a product in Corollary 4.4 used in the construction) which had to be
corrected. It was corrected in a new extended version of [6]. (It was sent by Prof. T. Ekedahl
to the authors in a personal communication.) It is a matter of regret that this version did not
appear in the arXiv and was not published (at least up to now). The pre-λ-structure described
in [6] and, in particular, Corollary 4.4. are used, for instance, in [4].

In this paper, we discuss the pre-λ-structure on the Grothendieck ring K0(Stckk) of stacks
and the corresponding power structure over it, describe some of their properties and give some
explicit formulae for the Kapranov zeta-function for some stacks. In particular, we show that
the kth symmetric power of the class of the classifying stack BGL(1) of the group GL(1)
coincides, up to a power of the class L of the affine line, with the class of the classifying stack
BGL(k). This leads to the statement that in a natural sense the kth symmetric power of the
infinite-dimensional projective space CP∞ is piecewise isomorphic to the infinite-dimensional
Grassmannian Gr(k,∞). Though the corresponding pre-λ-structure on the Grothendieck ring
K0(Stckk) is effective (that is, all the coefficients of the series ζX(T ) are represented by effective
stacks), the corresponding power structure fails to be effective (see Statement 2 in Section 3).
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2. Kapranov zeta-function for some stacks

A pre-λ-structure on a ring R is given by a series λa(T ) ∈ 1 + T ·R[[T ]] defined for each a ∈ R
so that

(1) λa(T ) = 1 + aT mod T 2;
(2) λa+b(T ) = λa(T )λb(T ) for a, b ∈ R.

A natural pre-λ-structure on the Grothendieck ring K0(Vk) of quasi-projective varieties is
defined by the Kapranov zeta-function:

ζX(T ) := 1 + [S1X] · T + [S2X] · T 2 + [S3X] · T 3 + . . .

(where SkX := Xk/Sk is the kth symmetric power of the variety X) modified, for fields of
positive characteristic, in the above-described way. The Kapranov zeta-function possesses the
property ζLsX(T ) = ζX(LsT ). In [7, Lemma 4.4, 8, Statement 3], this property was proved
for k = C. The proof is based on Statement 2 therein: for any integer s � 0, (A(LsT ))[X] =
(A(T )[X])|t�→Lst. One considers the corresponding parts

V =

((∏
i

Xki

)∖
Δ

)
×
∏

i

Aki
i

/∏
i

Ski

and

Ṽ =

((∏
i

Xki

)∖
Δ

)
×
∏

i

(Lsi ×Ai)ki

/∏
i

Ski

of the coefficients of the series (A(T ))[X] and (A(LsT ))[X]. The natural map Ṽ → V is a Zariski
locally trivial vector bundle of rank sk. In [8], this is deduced from [15]. For the base field k
of positive characteristic, one can use [14, Section 7, Proposition 7].

The property ζLsX(T ) = ζX(LsT ) permits to ‘extend’ the pre-λ-structure to the localization
K0(Vk)[L−1] of the Grothendieck ring K0(Vk) in the multiplicative set {Ln}. Thus, for an
element M ∈ K0(Vk)[L−1] its Kapranov zeta-function is defined as ζM (T ) := ζLsM (L−sT ) for
s large enough so that LsM ∈ K0(Vk). In particular,

ζL−s(T ) = 1 + L−s · T + L−2s · T 2 + L−3s · T 3 + . . . =
1

1 − L−sT
.

In the Grothendieck ring K0(Vk), one has [GL(n)] = (Ln − 1)(Ln − L) . . . (Ln − Ln−1).
Let K0(Stckk) be the Grothendieck group of algebraic stacks of finite type over k all of

whose automorphism group schemes are affine with relations:

(1) [X] depends only on the isomorphism class of X;
(2) [X] = [Y ] + [U ] if Y is a closed substack of X and U is its complement;
(3) if E → X is a vector bundle of constant rank n, then [E] = Ln[X], where L also denotes

the class [A1
k] ∈ K0(Stckk) of the affine line.

The multiplication in K0(Stckk) is defined by the fibred product of stacks: [X1] · [X2] = [X1 ×
X2]. The following property holds in K0(Stckk); see [5]. Let Zk be the class of connected
group schemes for which torsors (principal G-bundles in the étale topology) are trivial in the
Zariski topology (for example, GL(n) and SL(n) are in Zk). For a group G ∈ Zk, G is affine
and connected. Then, for any group G ∈ Zk, [G][BG] = 1 where BG is the classifying stack of
the group G (for example, [BGL(1)] = 1/(L − 1)). Thus, in particular, L and Ln − 1 for any
n � 1 are invertible in K0(Stckk).
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There is a natural ring homomorphism fromK0(Vk) toK0(Stckk) by considering an algebraic
variety as an algebraic stack. In [5, Theorem 1.2] (see also [3, 16]), it was shown that the natural
ring homomorphism

K0(Vk)[L−1][(Ln − 1)−1,∀n � 1] −→ K0(Stckk) (2.1)

is an isomorphism between the Grothendieck ring K0(Stckk) of algebraic stacks with affine
stabilizers and the Grothendieck ring K0(Vk) of varieties localized by the elements L := [A1

k]
and Ln − 1 for all n � 1. (The fact that these rings tensored by the field Q of rational numbers
are isomorphic was proved in [12].)

Here, we shall give somewhat more explicit formulae for the pre-λ-structure defined in [6]
(that is, for the corresponding generalization of the Kapranov zeta-function) and compute it
for some examples.

Let Rk(q1, . . . , qk) be the rational function in q1, . . . , qk defined by its Taylor expansion

Rk(q1, . . . , qk) :=
∑

i=(i1,...,ik)∈Zk
�0: is �=ir for s �=r

qi1
1 q

i2
2 . . . qik

k . (2.2)

Fact 1. One can see that

Rk(q1, . . . , qk) =
∑

σ∈Sk

qk−1
σ1

qk−2
σ2

. . . qσk−1

(1 − qσ1)(1 − qσ1qσ2) . . . (1 − qσ1 . . . qσk
)
.

Here qk−1
1 qk−2

2 . . . qk−1/(1 − q1)(1 − q1q2) . . . (1 − q1 . . . qk) is the part of the sum in (2.2) over
i = (i1, . . . , ik) with i1 > i2 > . . . > ik � 0.

Fact 2. For
∑s

j=1 nj = k, define

Rn1,n2,...,ns
(q1, . . . , qs) :=

∑
{i

(j)
r }

q
i
(1)
1

1 . . . q
i(1)n1
1 q

i
(2)
1

2 . . . q
i(2)n2
2 . . . qi

(s)
1

s . . . q
i(s)
ns

s ,

where the sum is over all collections of {i(j)r } with 1 � j � s, 1 � r � nj , i
(j)
1 < i

(j)
2 < . . . < i

(j)
nj ,

i
(j1)
r1 �= i

(j2)
r2 for (j1, r1) �= (j2, r2). One can see that

Rn1,n2,...,ns
(q1, . . . , qs) = Rk(q1, . . . , q1︸ ︷︷ ︸

n1

, q2, . . . , q2︸ ︷︷ ︸
n2

, . . . , qs, . . . , qs︸ ︷︷ ︸
ns

)/
s∏

j=1

nj !.

Because of the isomorphism (2.1), an element of the Grothendieck ring K0(Stckk) of stacks is
of the form a = ML−m/

∏�
i=1(1 − L−ni), where M ∈ K0(Vk), m ∈ Z, ni ∈ Z \ {0}. (Without

loss of generality one may assume that m ∈ Z�0, ni ∈ Z>0; however, for the formulae below
this is not essential.)

In [6, Lemma 2.2], the corresponding series ζa(T ), or rather (ζa(−T ))−1(= ζ−a(−T )),
was described by a functional equation. A closed formula for ζa(T ) is somewhat involved.
Therefore, we shall give a formula for the Kapranov zeta-function of an element a of the
form bL−m/(1 − L−n), where b ∈ K0(Stckk) (in terms of the series ζb(T )). Let us denote the
coefficients of the series ζb(T ) by σkb ∈ K0(Stckk) :

ζb(T ) = 1 +
∞∑

k=1

σkb · T k,

σ1b = b. For b = [X], where X is a quasi-projective variety, σkb is the class [SkX] of its
symmetric power SkX (modified, for a field k of positive characteristic, in the described way).
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Remark 1. Note that, for
∑s

j=1 nj = k and for arbitrary �1, . . . , �s, the corresponding
element Rn1,n2,...,ns

((L−1)�1 , . . . , (L−1)�s) ∈ K0(Stckk) is effective, in the sense that it is equal
to the class of a quasi-projective variety divided by Lr

∏
i[GL(ri)]. This follows directly from

the formula for Rk(q1, . . . , qk).

Proposition 1. For an element a = bqm/(1 − qn), where b ∈ K0(Stckk) (and q = L−1),
one has

ζa(T ) = 1 +
∞∑

k=1

⎛
⎝ ∑

k:
∑s

j=1 jkj=k

Rk1,2k2,...,sks
(qn, q2n, . . . , qsn)

∏
j

(σjb)kj

⎞
⎠ qkmT k,

where the second sum runs over all partitions k = (k1, . . . , ks) :
∑s

j=1 jkj = k of the integer k.

Corollary 1. For an element a = 1/(1 − qn) ∈ K0(Stckk) (and q = L−1), one has

ζ1/(1−qn)(T ) = 1 +
∞∑

k=1

⎛
⎝ ∑

k:
∑s

j=1 jkj=k

Rk1,2k2,...,sks
(qn, q2n, . . . , qsn)

⎞
⎠T k,

where the second sum runs over all partitions k = (k1, . . . , ks) :
∑s

j=1 jkj = k of k.

Proof. According to [6], the series ζa(T ) is defined by the following functional equation
ζa(T )/ζa(qnT ) = ζb(qmT ) and the coefficients of this series are polynomials in σib, q±1 and
(1 − qj)−1 for all j > 0. Polynomials in q±1 and (1 − qj)−1 can be defined by their Laurent
expansion at q = 0. Consider the series in T , whose coefficients are elements of Z[q±1, σib][[q]],
of the form

ψ(T ) :=
∞∏

i=0

ζb(qm+inT ).

One can see that

ψ(T )/ψ(qnT ) =
∞∏

i=0

ζb(qm+inT )

( ∞∏
i=0

ζb(qm+(i+1)nT )

)−1

= ζb(qmT ).

Also one can show (see below) that the coefficients of the series ψ(T ) are Laurent expansions
in q of polynomials in σkb, q±1 and (1 − qj)−1. Therefore, ψ(T ) = ζa(T ).

Thus, one has

ζa(T ) =
∞∏

i=1

(1 + qm+inσ1b T + q2(m+in)σ2b T 2 + . . .).

The coefficient of T k in this series is the sum over all partitions k = (k1, . . . , ks) of k with∑s
j=1 jkj = k of the series∏

j

(σjb)kj

∑
{i

(j)
r }

qm+i
(1)
1 n . . . qm+i

(1)
k1

nqm+2i
(2)
1 n . . . qm+2i

(2)
k2

n . . . . . . qm+si
(2)
1 n . . . qm+si

(s)
ks

n,

where the sum is over all collections of {i(j)r } with 1 � j � s, 1 � r � nj , i
(j)
1 < i

(j)
2 < . . . < i

(j)
nj ,

i
(j1)
r1 �= i

(j2)
r2 for (j1, r1) �= (j2, r2). This implies the statement.

Corollary 2. The Kapranov zeta-function for stacks is effective in the sense that, for a
stack X, the coefficients of ζ[X](T ) are represented by classes of stacks in K0(Stckk).
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This was shown by Ekedahl [6] who identified the coefficients of ζ[X](T ) with the classes of
the stack symmetric products of X.

Example 1. The Kapranov zeta-function of the element a = qm/(1 − qn) ∈ K0(Stckk) is
equal to

ζqm/(1−qn)(T ) = 1 +
∞∑

k=1

qmk

(1 − qn)(1 − q2n) . . . (1 − qkn)
T k. (2.3)

In particular,

ζ[BGL(1)](T ) = ζ1/(L−1)(T ) = 1 +
∞∑

k=1

Lk2−k

(Lk − Lk−1) . . . (Lk − 1)
T k. (2.4)

Thus,

σk[BGL(1)] = Lk2−k[BGL(k)]. (2.5)

As in the proof of the proposition with b = 1 consider

ψ(T ) = 1 +
∞∑

k=1

qmk

(1 − qn)(1 − q2n) . . . (1 − qkn)
T k,

and we have to show that the following functional equation ψ(T )/ψ(qnT ) = ζ1(qmT ) holds.
Thus, equation (2.3) follows from the equalities(

1 +
∞∑

k=1

q(m+n)k

(1 − qn)(1 − q2n) . . . (1 − qkn)
T k

)( ∞∑
k=0

qmkT k

)

= 1 +
∞∑

k=1

k∑
j=0

q(m+n)j+m(k−j)

(1 − qn)(1 − q2n) . . . (1 − qjn)
T k

= 1 +
∞∑

k=1

k∑
j=0

qnj

(1 − qn)(1 − q2n) . . . (1 − qjn)
qmkT k

= 1 +
∞∑

k=1

qmk

(1 − qn)(1 − q2n) . . . (1 − qkn)
T k.

Remark 2. Note that the classifying space for the group GL(1) = C∗ in the topological
sense is CP∞, whence the topological classifying space for the group GL(k) is the (infinite-
dimensional) Grassmannian Gr(k,∞). If one defines ζCP∞(T ) as

ζCP∞(T ) := lim
N→∞

ζCPN (T ) =
∞∏

j=0

ζLj (T )

(whatever this means) and [Gr(k,∞)] as a series in L equal to [Gr(k,∞)] =
limN→∞[Gr(k,N)], then one gets

ζCP∞(T ) = 1 +
∞∑

k=1

[Gr(k,∞)]T k, (2.6)

which is similar to (2.4) up to dimensional factors L in some powers in the coefficients.
Equation (2.6) means that [SkCP∞] = [Gr(k,∞)]. Moreover, SkCP∞ and Gr(k,∞) have
decompositions into quasi-projective varieties (compatible with the inclusions SkCPN ⊂
SkCP∞ and Gr(k,N) ⊂ Gr(k,∞)) such that components of SkCP∞ and of Gr(k,∞)
are pairwise isomorphic. This uses the fact that SkCn and Ckn have decompositions into
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quasi-projective varieties such that their components are pairwise isomorphic. See a proof of
these statements in [11].

3. A power structure over K0(Stckk)

Definition 1. A power structure over a (semi)ring R with a unit is a map (1 + T ·R[[T ]]) ×
R→ 1 + T ·R[[T ]]: (A(T ),m) 
→ (A(T ))m, which possesses the following properties:

(1) (A(T ))0 = 1;
(2) (A(T ))1 = A(T );
(3) (A(T ) ·B(T ))m = (A(T ))m · (B(T ))m;
(4) (A(T ))m+n = (A(T ))m · (A(T ))n;
(5) (A(T ))mn = ((A(T ))n)m;
(6) (1 + T )m = 1 +mT + terms of higher degree;
(7) (A(T k))m = (A(T ))m|T �→T k .

Remark 3. Note that one does not require, in general, that (A(−T ))m = (A(T ))m|T �→−T :
see the remark after Statement 1 below.

As it was explained in [9], a pre-λ-structure λa(T ) ∈ 1 + T ·R[[T ]] on a ring R defines a power
structure over it. To define the series (A(T ))m for A(T ) = 1 + a1T + a2T

2 + . . ., ai ∈ R,m ∈ R,
one has to represent (in a unique way) A(T ) as a product of the form A(T ) =

∏∞
k=1 λbk

(T k),
with bi ∈ R, and then

(A(T ))m :=
∞∏

k=1

λmbk
(T k). (3.1)

To each pre-λ-structure λa(T ) on a ring R, there corresponds the so-called opposite pre-
λ-structure λop

a (T ) := (λa(−T ))−1. Note that the power structures defined by these two pre-
λ-structures are in general different. One can easily see this fact for the standard pre-λ-structure
on the polynomial ring Z[u1, . . . , uk] described, for example, in [9].

One can say that there are at least four ‘natural’ pre-λ-structures over the Grothendieck ring
K0(Vk) of quasi-projective varieties. They are those defined by the Kapranov zeta-function

ζM (T ) := 1 + [S1M ] · T + [S2X] · T 2 + [S3M ] · T 3 + . . . ,

and by the generating series of the configuration space Mk = (Mk \ Δ)/Sk of unordered
k-tuples of different points of a quasi-projective variety M ,

ϕM (T ) := 1 + [M ] · T + [M2] · T 2 + [M3] · T 3 + . . . ,

and their corresponding opposites.
One can see that the power structures corresponding to the first two pre-λ-structures

coincide (this is a consequence of the equation ϕM (T ) = (1 + T )M ; see example in [8], where
in this equality the power structure is defined by ζM (T )), whence those corresponding to
their opposites are different from this one (and coincide with each other). The advantage
of the power structure defined by the Kapranov zeta-function (or by the series ϕM (T )) is
the fact that it is defined over the Grothendieck semiring of quasi-projective varieties (whose
elements are represented by ‘genuine’ varieties and not by virtual ones). We shall say that this
power structure is effective. This follows from the above-mentioned geometric description of
the coefficient of the series (A(T ))M for A(T ) = 1 + [A1] · T + [A2] · T 2 + [A3] · T 3 + . . . , with
Ak and M being quasi-projective varieties. We do not know how one can prove the effectiveness
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of this power structure from the definition via ϕM (T ). With their opposite power structure,
one has the following statement.

Statement 1. The power structure over the Grothendieck ring K0(Vk) defined by the
pre-λ-structure λX(T ) := (ζX(−T ))−1 is not effective.

For a class [M ] of a quasi-projective variety M , λ[M ](T ) (equal to (λ1(T ))[M ] = (1 + T )[M ]

in the power structure defined by the pre-λ-ring structure λX(T )) is the inverse of the
series (1 − [M ]T + [S2M ]T 2 − [S3M ]T + . . .), that is, λ[M ](T ) = 1 + [M ]T + ([M ]2 − [S2M ])
T 2 + . . . . If M is a non-singular elliptic curve C, then the Hodge–Deligne polynomial
e([C]2 − [S2C]) is equal to −u2v − uv2 + u2 + v2 + 2uv − u− v, since e([C]) = 1 − u− v + uv
and e([S2C]) is the coefficient at T 2 in the series (1/(1 − T ))(1 − uT )(1 − vT )(1/(1 − uvT )).
Such polynomial cannot be the Hodge–Deligne polynomial of a quasi-projective variety since
its homogeneous part of highest degree is not of the form �(uv)n with a non-negative integer �.

Remark 4. The computations above show that

(1 + T )[M ] = 1 + [M ] · T + [M2] · T 2 + . . .

is not equal, in general, to

(1 − T )[M ]|T �→−T = 1 + [M ]T + ([M ]2 − [S2M ])T 2 + . . . .

Statement 2. The power structure over the Grothendieck ring K0(Stckk) defined by the
Kapranov zeta-function is not effective.

We shall show that the series (1 + T )[BGL(1)] = (1 + T )1/(L−1) is not effective, in the sense
that it contains some coefficients which are not represented by varieties. Namely, we will show
that the second coefficient of such a series is not effective. One has

(1 + T )1/(L−1) =
(1 − T )−1/(L−1)

(1 − T 2)−1/(L−1)
=

ζ1/(L−1)(T )
ζ1/(L−1)(T 2)

.

According to (2.4)

(1 + T )1/(L−1) mod T 3 =
(

1 +
1

L − 1
T +

L2

(L2 − 1)(L2 − L)
T 2

)(
1 − 1

L − 1
T 2

)
mod T 3.

The coefficient at T 2 is equal to

L2

(L2 − 1)(L2 − L)
− 1

L − 1
=

−L3 + L2 + L

[GL(2)]
.

It cannot be represented by a variety since the term of highest degree in the Hodge–Deligne
polynomial of the numerator has a negative coefficient.

For a quasi-projective variety X, the coefficient at Tn in the series (1 + T )[X] is represented
by the configuration space (Xn \ Δ)/Sn of n different points in X. Statement 2 gives a hint for
the conjecture that the notion of the configuration spaces of different points cannot be defined
for stacks (at least in a form close to that for varieties).
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