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1. Introduction

Let P be a complex polynomial in(n+ 1) variables. It defines a map
from Cn+1 to C which also will be denoted byP . It is known [13] that
there exists a finite setB(P ) ⊂ C such that the mapP is aC∞ locally
trivial fibration over its complement. The monodromy transformationh

of this fibration corresponding to the loopz0 · exp(2πiτ) (06 τ 6 1)
with ‖z0‖ big enough is called thegeometric monodromy at infinityof
the polynomialP . Let h∗ be its action in the homology groups of the
fibre (the level set){P = z0}.

DEFINITION. – Thezeta-function of the monodromy at infinityof the
polynomialP is the rational function

ζP (t)=
∏
q>0

{
det
[
id− th∗|Hq({P=z0};C)

]}(−1)q
.

Remark1. – We use the definition from [2], which means that the zeta-
function defined this way is the inverse of that used in [1].

The degree of the zeta-function (the degree of the numerator minus the
degree of the denominator) is equal to the Euler characteristicχP of the
(generic) fibre{P = z0}. Formulae for the zeta-functions at infinity for
certain polynomials were given in particular in [6,9].

The main aim of the paper is to express the zeta-function of the mon-
odromy at infinity in local terms. At points of the infinity hyperplane,
a polynomial defines germs of meromorphic functions. We use invari-
ants of meromorphic germs [8] to describe the zeta-function of the mon-
odromy at infinity. We also apply this techniques to monodromy transfor-
mations corresponding to finite atypical values of the polynomial.

2. Zeta-function of a polynomial via zeta-functions of meromorphic
germs

A polynomial functionP :Cn+1→ C defines a meromorphic func-
tion P on the projective spaceCPn+1. At each pointx of the infinity
hyperplaneCPn∞ the germ of the meromorphic functionP has the form
F(u, x1, . . . , xn)/u

d whereu, x1, . . . , xn are local coordinates such that
CPn∞ = {u= 0}, F is the germ of a holomorphic function, andd is the
degree of the polynomialP.
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In [8], for a meromorphic germf = F/G, there were defined
two Milnor fibres (the zero and the infinity ones), two monodromy
transformations, and thus two zeta-functionsζ 0

f (t) andζ∞f (t). Let ζ •P,x(t)
(• = 0 or ∞) be the corresponding zeta-function of the germ of the
meromorphic functionP at the pointx ∈CPn∞.

For the aim of convenience, in [8] we considered only meromorphic
germsf = F/G with F(0)=G(0)= 0. At a generic point of the infinity
hyperplaneCPn∞ the meromorphic functionP has the form 1/ud. For a
germ of the formf = 1/G with G(0) = 0, it is reasonable to give the
following definition: its infinity Milnor fibre coincides with the (usual)
Milnor fibre of the holomorphic germG and its zero Milnor fibre is
empty. Thusζ 0

f (t) = 1 andζ∞f (t)= ζG(t). According to this definition,
for the germ 1/ud, its infinity zeta-function is equal to(1− td ).

Let S = {Ξ} be a prestratification of the infinity hyperplaneCPn∞
(that is a partitioning ofCPn∞ into semi-analytic subspaces without any
regularity conditions) such that, for each stratumΞ of S, the infinity
zeta-functionζ∞P,x(t) does not depend onx, for x ∈Ξ . Let us denote this
zeta-function byζ∞Ξ (t) and byχ∞Ξ its degree degζ∞Ξ (t).

THEOREM 1. –

ζP (t)=
∏
Ξ∈S

[
ζ∞Ξ (t)

]χ(Ξ)
, χP =

∑
Ξ∈S

χ∞Ξ · χ(Ξ).

Theproof is similar to that of Theorem 1 in [7]. (The formulae in this
two theorems looks very similar to each other. However the Theorem
from [7] described the zeta-function of aholomorphic germin terms of
the germs (alsoholomorphic) of its lifting to the space of a modification,
while the Theorem here describes the zeta-function of a polynomial at
infinity in terms of new invariants: Milnor fibres and zeta-functions of
meromorphic germs. These notions were elaborated in [8] mainly in order
to treat this situation.)

Remark2. – One can write the formula forχP in the form of an
integral with respect to the Euler characteristic

χP =
∫
CPn∞

χ∞P,x dχ

in the sense of Viro [14].
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Remark3. – LetPd be the (highest) homogeneous part of degreed of
the polynomialP. Then at each pointx ∈ CPn∞\{Pd = 0} the germ of the
meromorphic functionP is of the form 1/ud. The setΞn =CPn∞\{Pd =
0} can be considered as then-dimensional stratum of a partition. It brings
the factor(1− td )χ(Ξn) into the zeta-functionζP (t).

3. Examples

3.1. Yomdin-at-infinity polynomials

This name was introduced in [4]. For a polynomialP ∈ C[z0, z1, . . . ,

zn], let Pi be its homogeneous part of degreei. Let a polynomialP be of
the formP = Pd +Pd−k+ terms of lower degree,k > 1. Let us consider
hypersurfaces inCPn defined by{Pd = 0} and{Pd−k = 0}. Let Sing(Pd)
be the singular locus of the hypersurface{Pd = 0} (including all points
where{Pd = 0} is not reduced). One says thatP is aYomdine-at-infinity
polynomial if Sing(Pd) ∩ {Pd−k = 0} = ∅ (in particular it implies that
Sing(Pd) is finite).

Y. Yomdin [15] has considered critical points of holomorphic functions
which are local versions of such polynomials. He gave a formula for their
Milnor numbers. The generic fibre (level set) of a Yomdin-at-infinity
polynomial is homotopy equivalent to the bouquet ofn-dimensional
spheres [5]. Its Euler characteristicχP (or rather the (global) Milnor
number) has been determined in [4]. Fork = 1, the zeta-function of such
a polynomial has been obtained in [6].

Let P(z0, z1, . . . , zn) = Pd + Pd−k + · · · be a Yomdin-at-infinity
polynomial. Let Sing(Pd) consist ofs pointsQ1, . . . ,Qs. One has the
following natural stratification of the infinity hyperplaneCPn∞:

(1) then-dimensional stratumΞn =CPn∞ \ {Pd = 0};
(2) the(n−1)-dimensional stratumΞn−1= {Pd = 0} \ {Q1, . . . ,Qs};
(3) the 0-dimensional strataΞ0

i (i = 1, . . . , s), each consisting of one
pointQi.

The Euler characteristic of the stratumΞn is equal to

χ
(
CPn∞

)− χ({Pd = 0})= (n+ 1)− χ(n, d)+ (−1)n−1
s∑
i=1

µi,
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where

χ(n, d)= (n+ 1)+ (1− d)
n+1− 1

d

is the Euler characteristic of a non-singular hypersurface of degreed in
the complex projective spaceCPn∞, µi is the Milnor number of the germ
of the hypersurface{Pd = 0} ⊂ CPn∞ at the pointQi. At each point of
the stratumΞn, the germ of the meromorphic functionP has (in some
local coordinatesu, y1, . . . , yn) the form 1/ud (CPn∞ = {u= 0}) and its
infinity zeta-functionζ∞Ξn(t) is equal to(1− td).

At each point of the stratumΞn−1, the germ of the polynomialP has
(in some local coordinatesu, y1, . . . , yn) the formy1/u

d. Its infinity zeta-
function ζ∞

Ξn−1(t) is equal to 1 and thus it does not contribute a factor to
the zeta-function of the polynomialP.

At a pointQi (i = 1, . . . , s), the germ of the meromorphic functionP
has the form

ϕ(u, y1, . . . , yn)= gi(y1, . . . , yn)+ uk
ud

,

wheregi is a local equation of the hypersurface{Pd = 0} ⊂ CPn∞ at the
pointQi. Thusµi is its Milnor number.

To compute the infinity zeta-functionζ∞ϕ (t) of the meromorphic
germϕ, let us consider a resolutionπ : (X ,D)→ (Cn,0) of the singu-
larity gi, i.e., a proper modification of(Cn,0) which is an isomorphism
outside the origin inCn and such that, at each point of the exceptional
divisorD, the lifting gi ◦π of the functiongi to the spaceX of the mod-
ification has (in some local coordinates) the formym1

1 · · · · · ymnn (mi > 0).
Let us consider the modification

π̃ = id× π : (Cu×X ,0×D)→ (
Cn+1,0

)= (Cu ×Cn,0)
of the space(Cn+1,0) — the trivial extension:(u, x) 7→ (u,π(x)). Let
ϕ̃ = ϕ ◦ π̃ be the lifting of the meromorphic functionϕ to the space
Cu×X of the modificatioñπ. LetM∞

ϕ̃
= π̃−1(M∞ϕ ) (M∞

ϕ̃
is the infinity

Milnor fibre of the germϕ) be the local level set of the meromorphic
function ϕ̃ (close to the infinity one). In the natural way one has the
(infinity) monodromyh∞

ϕ̃
acting onM∞

ϕ̃
and its zeta-functionζ∞

ϕ̃
(t).
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THEOREM 2. –

ζ∞
ϕ̃
(t)= (1− td−k)χ(D)−1

ζ∞ϕ (t).

Proof. –The infinity monodromy transformation of the functioñϕ can
be described in the following way. Leth∞ϕ :M∞ϕ →M∞ϕ be the infinity
monodromy transformation of the germϕ. One can suppose that it
preserves the intersection of the Milnor fibreM∞ϕ with the lineCu×{0}.
There it coincides with the infinity monodromy transformation of the
restrictionϕ|Cu×{0} = uk/ud of the germϕ to this line, i.e., with a cyclic
permutation of(d − k) points. The zeta-function of a cyclic permutation
of (d − k) points is equal to(1− td−k). The projectionπ̃ :M∞

ϕ̃
→M∞ϕ

is an isomorphism outsideM∞ϕ ∩ (Cu×{0}), the preimage of each point
fromM∞ϕ ∩ (Cu × {0}) is isomorphic to the exceptional divisorD. This
means that the transformation (the diffeomorphism)h∞

ϕ̃
:M∞

ϕ̃
→M∞

ϕ̃

can be constructed in such a way that it preservesπ̃−1(M∞ϕ ∩ (Cu×{0}))
and acts on it by a cyclic permutation of(d − k) copies ofD. The
zeta-function of this transformation of{(d − k) points} × D is equal to
(1− td−k)χ(D). The result follows from themultiplication propertyof the
zeta-function of a transformation (see [2] p. 94).2

For m̄ = (m1,m2, . . . ,mn) with integerm1 > m2 > · · · > mn > 0, let
Sm̄ be the set of points of the exceptional divisorD of the resolutionπ at
which the lifting of the germgi has the formym1

1 · · · · · ymnn ; for m> 1,
let Sm beS(m,0,...,0). By the formula of A’Campo [1]

ζgi (t)=
∏
m>1

(
1− tm)χ(Sm).(1)

At a pointx ∈ {0}×Sm̄ ⊂ {0}×D, the lifting ϕ̃ = ϕ ◦ π̃ of the functionϕ
has the local form(ym1

1 · · · · · ymnn + uk)/ud. Thus, for fixedm̄, the infinity
zeta-functionζ∞

ϕ̃,x
(t) of the germ of the meromorphic functioñϕ at a

point x from {0} × Sm̄ is one and the same. It can be determined by the
Varchenko type formula from [8]. If there are more than one integersmi
different from zero,ζ∞

ϕ̃,x
(t)= (1− td−k). Forx ∈ {0} × Sm,

ζ∞
ϕ̃,x
(t)= (1− td−k)(1− t m(d−k)

g.c.d.(m,k)
)−g.c.d.(m,k)

.
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According to Theorem 1

ζ∞
ϕ̃
(t)= (1− td−k)χ(D) ∏

m>1

(
1− t m(d−k)

g.c.d.(m,k)
)−g.c.d.(m,k)·χ(Sm)

and by Theorem 2

ζ∞ϕ (t)=
(
1− td−k) ∏

m>1

(
1− t m(d−k)

g.c.d.(m,k)
)−g.c.d.(m,k)·χ(Sm)

.(2)

The zeta-functionζh(t) of a transformationh :X→ X of a spaceX
into itself determines the zeta-functionζ kh (t) of the kth powerhk of the
transformationh. In particular, ifζh(t)=∏m>1(1− tm)am, then

ζ kh (t)=
∏
m>1

(
1− t m

g.c.d.(k,m)
)g.c.d.(k,m)·am

.

The formulae(1) and(2) mean that

ζ∞ϕ (t)=
(
1− td−k)(ζ kgi (td−k))−1

.(3)

Combining the computations for the stratification{Ξn,Ξn−1,Ξ0
i } of the

infinity hyperplaneCPn∞, one has

THEOREM 3. –For a Yomdin-at-infinity polynomialP = Pd +Pd−k+
· · · , its zeta-function at infinity is equal to

ζP (t)= (1− td)χ(Ξn)(
1− td−k)s( s∏

i=1

ζ kgi (t
d−k)

)−1

,

where

χ
(
Ξn
)= 1− (1− d)n+1

d
+ (−1)n−1

s∑
i=1

µ(gi)

and gi is a local equation of the hypersurface{Pd = 0} ⊂ CPn∞ at its
singular pointQi.



220 S.M. GUSEIN-ZADE ET AL. / Bull. Sci. math. 124 (2000) 213–224

3.2

Let (n + 1) be equal to 3,P = Pd + Pd−k + · · · , {Pd = 0} is a
curve inCP2∞. LetCq1

1 + · · · +Cqrr be its decomposition into irreducible
components. Let{Pd = 0}red be the reduced curveC1+ · · · +Cr and let
Sing({Pd = 0}red) consist ofs points{Q1, . . . ,Qs}. Suppose that:

(1) the curve{Pd−k = 0} is reduced;
(2) Qi /∈ {Pd−k = 0}, (i = 1, . . . , s);
(3) for eachj with qj > 1, the curvesCj and {Pd−k = 0} intersect

transversally, i.e., the setCj ∩ {Pd−k = 0} consists ofdj (d − k)
different points(dj = degCj).

The generic fibre of the polynomialP is homotopy equivalent to
the bouquet of 2-dimensional spheres. In this case the number of these
spheres is equal toµ(P )= dimCC[x, y, z]/Jac(P ) and is equal to

(d − 1)3− k · (χ({Pd = 0})+ d(2d − d̃ − 3)
)+ k2 · (d − d̃),

where d̃ = d1 + · · · + dr is the degree of the (reduced) curve{Pd =
0}red, [4]. Let us consider the following partitioning of the infinity
hyperplaneCP2∞ :

(1) the 0-dimensional stratumΞ0
i consisting of one pointQi each

(i = 1, . . . , s);
(2) the 0-dimensional stratumΛ0

j = Cj ∩ {Pd−k = 0}, for eachj =
1, . . . , r;

(3) the 1-dimensional stratumΞ1
j = Cj \ ({Qi} ∪Λ0

j ), for eachj =
1, . . . , r;

(4) the 2-dimensional stratumΞ2=CP2∞ \ {Pd = 0}.
At each point of the stratumΞ2, the germ of the meromorphic functionP
has the form(1/ud) (CP2∞ = {u= 0}). Its infinity zeta-function is equal
to (1− td ). The Euler characteristicχ(Ξ2) of the stratumΞ2 is equal to

χ
(
CP2
∞
)− χ({Pd = 0})= 3− 3d̃ + d̃2−

s∑
i=1

µi,

whereµi is the Milnor number of the (reduced) curve{Pd = 0}red at the
pointQi.

At each point of the stratumΞ1
j , the germ of the meromorphic

functionP has the form(y
qj
1 + uk)/ud. Its infinity zeta-function can be
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determined by the Varchenko type formula from [8] and is equal to

(
1− td−k)(1− t qj (d−k)

g.c.d.(qj ,k)
)−g.c.d.(qj ,k)

.

The Euler characteristic of the stratumΞ1
j is equal to

χ(Cj )− dj (d − k)− ]{Cj ∩ {Qi: i = 1, . . . , s}}.
At each point of the stratumΛ0

j , the germ of the meromorphic

function P has the form(y
qj
1 + uky2)/u

d . Its infinity zeta-function is
equal to 1.

At a pointQi, the germ of the meromorphic functionP has the form
(gi(y1, y2)+ uk)/ud, where{gi = 0} is the local equation of the (non-
reduced) curve{Pd = 0} at the pointQi. Its infinity zeta-function is equal
to (

1− td−k)(ζ kgi (td−k))−1
.

Remark4. – We can not apply the formula(3) directly since the
singularity of the germgi is, in general, not isolated. However, it is not
difficult to see that, actually, the proof of this formula uses only the fact
that the singularity of the germgi can be resolved by a modification
which is an isomorphism outside the origin. This is so for a curve
singularity.

Thus one obtains

ζP (t)= (1− td)χ(Ξ2)(
1− td−k)(3d̃−d̃2−d̃(d−k)+∑µi)

×
r∏
j=1

(
1− t

qj (d−k)
g.c.d.(qj ,k)

)−g.c.d.(qj ,k)·χ(Ξ1
j
) ·

s∏
i=1

(
ζ kgi

(
td−k

))−1
.

4. On the bifurcation set of a polynomial map

As we have mentioned, a polynomial mapP :Cn+1→ C defines a
locally trivial fibration over the complement to a finite set inC. The
minimal setB(P ) with this property is called the bifurcation set ofP.
The bifurcation set consists of critical values of the polynomialP (in the
affine part) and of atypical (“critical”) values at infinity.
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In order to consider a level set{P = c}, one can substitute the
polynomial P by the polynomial(P − c) and consider the zero level
set. Thus let us consider the zero level setV0 = {P = 0} ⊂ Cn+1 of the
polynomialP. Let us suppose that the level setV0 of the polynomialP
has only isolated singular points (in the affine partCn+1). For ρ > 0,
let Bρ be the open ball of radiusρ centered at the origin inCn+1 and
Sρ = ∂Bρ be the(2n+ 1)-dimensional sphere of radiusρ with the centre
at the origin. There existsR > 0 such that, for allρ > R, the sphere
Sρ is transversal to the level setV0 = {P = 0} of the polynomial map
P. The restrictionP |Cn+1\BR :Cn+1 \ BR → C of the functionP to the
complement of the ballBR defines aC∞ locally trivial fibration over a
punctured neighbourhood of the origin inC. The loopε0 · exp(2πiτ)
(06 τ 6 1, ‖ε0‖ small enough) defines the monodromy transformation
h :Vε0 \ BR→ Vε0 \ BR. Let us denote its zeta-functionζh(t) by ζ 0

P (t).

We use the following definition

DEFINITION. – The value0 is atypical at infinityfor the polynomialP
if the restrictionP |Cn+1\BR of the functionP to the complement of the
ball BR is not aC∞ locally trivial fibration over a neighbourhood of the
origin in C.

Remark5. – This definition does not depend on a choice of coordi-
nates, i.e., it is invariant with respect to polynomial diffeomorphisms of
the spaceCn+1. One can see that an atypical at infinity value is atypical,
i.e. it belongs to the bifurcation setB(P ) of the polynomialP. Moreover
the bifurcation setB(P ) is the union of the set of critical values of the
polynomialP (in Cn+1) and of the set of values atypical at infinity in the
described sense. If the singular locus of the level setV0= {P = 0} is not
finite, the value 0 hardly can be considered as typical at infinity. Thus,
one should consider this definition as a (possible) general definition of a
value atypical at infinity. In fact the same definition was used in [10] for
polynomial functions of two variables.

Let S be a prestratification of the infinity hyperplaneCPn∞ such that,
for each stratumΞ of S, the zero zeta-functionζ 0

P,x(t) of the germ of
the meromorphic functionP at a pointx ∈ CPn∞ does not depend on the
point x, for x ∈Ξ (let it beζ 0

Ξ(t) and let its degree beχ0
Ξ ).
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THEOREM 4. –

ζ 0
P (t)=

∏
Ξ∈S

[
ζ 0
Ξ(t)

]χ(Ξ)
, χ(Vε0 \BR)=

∑
Ξ∈S

χ0
Ξ · χ(Ξ).

Theproof is essentially the same as that of Theorem 1. Since the Euler
characteristic of the setV0 \BR is equal to 0, one has

COROLLARY 1. – If ζ 0
P (t) 6≡ 1, then the value0 is atypical at infinity

for the polynomialP.

In several papers (see, e.g., [3,11,12]) there was considered an integer
λP (c)(c ∈C) such that

χ
({P = c})= χ({P = c+ ε})+ (−1)n+1

(∑
µi + λP (c)

)
,

whereµi are the Milnor numbers of the (isolated) singular points of the
level set{P = c} ⊂Cn+1. Theorem 4 gives the following formula for this
invariant:

COROLLARY 2. –
λP (0)= (−1)n degζ 0

P (t)

= (−1)n
∑
Ξ∈S

χ0
Ξ · χ(Ξ)

(
= (−1)n

∫
CPn∞

χ0
P,x dχ

)
.

Example. – LetP(x, y, z) = xayb(xcyd − zc+d)+ z, (ad − bc) 6= 0,
and letD = deg(P ) = a + b + c + d. The curve{PD = 0} ⊂ CP2∞
consists on three components: the lineC1= {x = 0} with multiplicity a,
the line C2 = {y = 0} with multiplicity b, and the reduced curve
C3 = {xcyd − zc+d = 0}. Let Q1 = C2 ∩ C3 = (1 : 0 : 0), Q2 = C1 ∩
C3 = (0 : 1 : 0), Q3 = C1 ∩ C2 = (0 : 0 : 1). At each point x of the
infinity hyperplaneCP2∞ exceptQ1 andQ2, one hasζ 0

P,x(t) = 1. At
the pointQ1, the germ of the meromorphic functionP has the form
(yb(yd − zc+d)+ zuD−1)/uD. Its zero zeta-function can be obtained by
the Varchenko type formula from [8]. If(ad−bc) < 0, thenζ 0

P,Q1
(t)= 1.

If (ad − bc) > 0, then

ζ 0
P,Q1

(t)= (1− t ad−bcG.C.D.
)G.C.D.

,

whereG.C.D.= g.c.d.(c, d) · g.c.d.( ad−bc
g.c.d.(c,d)

,D− 1). At the pointQ2,
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we have just the symmetric situation. Finally

ζ 0
P (t)=

(
1− t |ad−bc|G.C.D.

)G.C.D.
.

It means that the value 0 is atypical at infinity. In the same wayζ 0
P−c(t)=

1, for c 6= 0.
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