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ABSTRACT. — A polynomial function defines a locally trivial fibre bundle over the
complement to a finite set in the targét Objects connected with this fibration (say,
monodromy operators and, in particular, the monodromy operator of the polynomial
at infinity) are in some sense global. The idea of the paper is to localize computations
of the zeta-functions of monodromy transformations for a polynomial, i.e., to express
them in local terms. It is done with the use of the notion of Milnor fibres of the germ
of a meromorphic function and the methods of calculation of the corresponding zeta-
functions elaborated by the authors. It gives effective methods of computation of the
zeta-function for a number of cases and a criterium for a value to be atypical at infinity.
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1. Introduction

Let P be a complex polynomial i + 1) variables. It defines a map
from C"*! to C which also will be denoted by. It is known [13] that
there exists a finite se®(P) c C such that the map is a C* locally
trivial fibration over its complement. The monodromy transformafion
of this fibration corresponding to the loap - exp(27it) (0 <t < 1)
with ||zol| big enough is called thgeometric monodromy at infinityf
the polynomial P. Let i, be its action in the homology groups of the
fibre (the level set] P = zg}.

DEFINITION. — Thezeta-function of the monodromy at infinitf the
polynomial P is the rational function

. (=14

Cp(t) = H {detfid — th*lHq({P=zo};<C)]} .

20

Remark 1. — We use the definition from [2], which means that the zeta-
function defined this way is the inverse of that used in [1].

The degree of the zeta-function (the degree of the numerator minus the
degree of the denominator) is equal to the Euler charactepistiof the
(generic) fibre{ P = zo}. Formulae for the zeta-functions at infinity for
certain polynomials were given in particular in [6,9].

The main aim of the paper is to express the zeta-function of the mon-

odromy at infinity in local terms. At points of the infinity hyperplane,
a polynomial defines germs of meromorphic functions. We use invari-
ants of meromorphic germs [8] to describe the zeta-function of the mon-
odromy at infinity. We also apply this techniques to monodromy transfor-
mations corresponding to finite atypical values of the polynomial.

2. Zeta-function of a polynomial via zeta-functions of meromorphic
germs

A polynomial function P:C"** — C defines a meromorphic func-
tion P on the projective spac€P"+!. At each pointx of the infinity
hyperplaneCP”  the germ of the meromorphic functiah has the form
F(u,x1,...,x,)/u’ whereu, x4, ..., x, are local coordinates such that
CPZ = {u =0}, F is the germ of a holomorphic function, aafdis the
degree of the polynomiaP.
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In [8], for a meromorphic germf = F/G, there were defined
two Milnor fibres (the zero and the infinity ones), two monodromy
transformations, and thus two zeta—functiqﬁst) and¢ye(r). Letgp (1)

(e = 0 or co) be the corresponding zeta-function of the germ of the
meromorphic function? at the pointx € CP%_.

For the aim of convenience, in [8] we considered only meromorphic
germsf = F/G with F(0) = G(0) = 0. At a generic point of the infinity
hyperplaneCP”, the meromorphic functio® has the form 1u¢. For a
germ of the formf = 1/G with G(0) = O, it is reasonable to give the
following definition: its infinity Milnor fibre coincides with the (usual)
Milnor fibre of the holomorphic gernG and its zero Milnor fibre is
empty. Thusg}?(t) =1 and¢ (1) = ¢ (t). According to this definition,
for the germ Ju¢, its infinity zeta-function is equal tal — ¢4).

Let S = {Z} be a prestratification of the infinity hyperplad&P”
(that is a partitioning ofCPPZ, into semi-analytic subspaces without any
regularity conditions) such that, for each stratnof S, the infinity
zeta-functiongz° (r) does not depend on for x € &. Let us denote this
zeta-function by 2°(r) and by x 2 its degree deg°(¢).

THEOREM 1. —

= [[1eE0,  xp=> xT x(@&).

ZeS ZeS

The proofis similar to that of Theorem 1 in [7]. (The formulae in this
two theorems looks very similar to each other. However the Theorem
from [7] described the zeta-function oftelomorphic germin terms of
the germs (alsbolomorphig of its lifting to the space of a modification,
while the Theorem here describes the zeta-function of a polynomial at
infinity in terms of new invariants: Milnor fibres and zeta-functions of
meromorphic germs. These notions were elaborated in [8] mainly in order
to treat this situation.)

Remark2. — One can write the formula fogp in the form of an
integral with respect to the Euler characteristic

xXp = / XpadXx
cPr,

in the sense of Viro [14].
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Remark 3. — Let P, be the (highest) homogeneous part of degred
the polynomialP. Then at each point € CP%_ \ { P, = O} the germ of the
meromorphic functiorP is of the form Yu“. The setz" = CP", \ {P,; =
0} can be considered as thedimensional stratum of a partition. It brings
the factor(1 — t%)*Z") into the zeta-functiop (¢).

3. Examples
3.1. Yomdin-at-infinity polynomials

This name was introduced in [4]. For a polynomiak Clzo, z1, .. .,
z.1, let P; be its homogeneous part of degieket a polynomialP be of
the formP = P, + P,_; + terms of lower degred, > 1. Let us consider
hypersurfaces i€€P" defined by{ P, = 0} and{P,_, = 0}. Let Sing P,)
be the singular locus of the hypersurfaid®, = 0} (including all points
where{ P, = 0} is not reduced). One says th&tis a Yomdine-at-infinity
polynomialif Sing(P,;) N {P;_, = 0} = ¥ (in particular it implies that
Sing(P,) is finite).

Y. Yomdin [15] has considered critical points of holomorphic functions
which are local versions of such polynomials. He gave a formula for their
Milnor numbers. The generic fibre (level set) of a Yomdin-at-infinity
polynomial is homotopy equivalent to the bouquetetiimensional
spheres [5]. Its Euler characteristjc (or rather the (global) Milnor
number) has been determined in [4]. kot 1, the zeta-function of such
a polynomial has been obtained in [6].

Let P(z0,21,..-,22) = P; + P, + --- be a Yomdin-at-infinity
polynomial. Let SingP,) consist ofs points Q;, ..., Q. One has the
following natural stratification of the infinity hyperplad&P” :

(1) then-dimensional stratun®” = CP%_\ { P; = 0};

(2) the(n — 1)-dimensional stratun®” ! = {P; =0}\ {Q1, ..., O};

(3) the 0-dimensional stra‘n’al.O (i=1,...,s), each consisting of one

point Q;.
The Euler characteristic of the stratug is equal to

X(CPL) —x({Pa=0) =(n+1) — x(n,d) + (=1)"D

i=1
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where
(1 _ d)n+l -1
d

is the Euler characteristic of a non-singular hypersurface of defjiee
the complex projective spad&P” , u; is the Milnor number of the germ
of the hypersurfacg¢ P, = 0} C CPPZ, at the pointQ;. At each point of
the stratumZz", the germ of the meromorphic functiaP has (in some
local coordinates:, yy, ..., y,) the form Yu? (CP", = {u = 0}) and its
infinity zeta-functionz 3 (¢) is equal to(1 — 7).

At each point of the stratun@”—*, the germ of the polynomiaP has
(in some local coordinates y, ..., y,) the formy,/u?. Its infinity zeta-
function¢Z; 1 (1) is equal to 1 and thus it does not contribute a factor to
the zeta-function of the polynomid.

AtapointQ; i=1,...,s), the germ of the meromorphic functiah
has the form

x(n,d)y=n+1+

gi(yls---syn)-"_uk
I/ld

(0(14,)’1s---,)’n)= s
whereg; is a local equation of the hypersurfagg;, = 0} ¢ CP%, at the
point Q;. Thusy; is its Milnor number.

To compute the infinity zeta-function;°(r) of the meromorphic
germe, let us consider a resolutian: (X, D) — (C", 0) of the singu-
larity g;, i.e., a proper modification ofC", 0) which is an isomorphism
outside the origin inC" and such that, at each point of the exceptional
divisor D, the lifting g; o  of the functiong; to the spacet’ of the mod-
ification has (in some local coordinates) the foyfft - - - - - yin(m; > 0).

Let us consider the modification

7=idxm:(C, x X,0x D) — (C"**,0)=(C, xC",0)

of the spacgC"**, 0) — the trivial extensioni(u, x) — (u, w(x)). Let
¢ = ¢ o 7 be the lifting of the meromorphic functiop to the space
C, x X of the modificationr. Let/\/lOO = n*l(M‘X’) (M= is the infinity

4
Milnor fibre of the germg) be the Iocal level set of the meromorphic
function ¢ (close to the infinity one). In the natural way one has the
(infinity) monodromyh > acting on M and its zeta-functiog *°(z).
¢ ¢ 14
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THEOREM 2. —

7k)X(D)—l

(20 =1-1 £2(@).

Proof. —The infinity monodromy transformation of the functigrcan
be described in the following way. Léf®: M2 — M be the infinity
monodromy transformation of the gerg. One can suppose that it
preserves the intersection of the Milnor fibké with the lineC, x {0}.
There it coincides with the infinity monodromy transformation of the
restrictiong|c, «j0; = u* /u‘ of the germy to this line, i.e., with a cyclic
permutation ofld — k) points. The zeta-function of a cyclic permutation
of (d — k) points is equal tgl — t¢~*). The projectionz :M%o — M

is an isomorphism outsid&17° N (C, x {0}), the preimage of each point
from MZ° N (C, x {0}) is isomorphic to the exceptional divis@r. This
means that the transformation (the diffeomorphigiff): M — M

¢ ¢ ¢

can be constructed in such a way that it preseﬁvés{/\/lgo N(C, x{0))

and acts on it by a cyclic permutation & — k) copies of D. The
zeta-function of this transformation ¢td — k) pointg x D is equal to
(1— 1% x(™ _ The result follows from thenultiplication propertyof the
zeta-function of a transformation (see [2] p. 941

Form = (my,my, ..., m,) with integerm, >m, > --- >m, > 0, let
Sz be the set of points of the exceptional divigdiof the resolutionr at
which the lifting of the germg; has the formy;"* - --- - y»; for m > 1,
let S,, be Sin.0....0- By the formula of ACampo [1]

@) Co ) = [T (@ -1,

m>1

At a pointx € {0} x S,; C {0} x D, the lifting ¢ = ¢ o 7 of the functiong
has the local forngyy™ - - - - - y™ + u*) /u?. Thus, for fixedn, the infinity
Zeta- fun(:tlong“fiO (r) of the germ of the meromorphic functiagp at a

point x from {O} x S; is one and the same. It can be determined by the
Varchenko type formula from [8]. If there are more than one integers
different from zeroz > (1) = (1 —t?%). Forx € {0} x S,,,,

@, x

md—k)_\ _q cd.(m,k)

£ (1) = (1—197%) (1 — rredmn)
»,x
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According to Theorem 1

k1) T (1 (i) o b2

;) =

m>=1

and by Theorem 2

) () = (1— =) H (1- t%)—g.c.dxm,k)x(sm).

m>=1

The zeta-functior, (¢) of a transformatiom: : X — X of a spaceX
into itself determines the zeta-functigy(z) of the kth powerh* of the
transformatiom. In particular, ifg, (t) = [],,>,(1 — "), then

5h() = ] (1 rsefiom) et

m=1

The formulag(1) and(2) mean that

3 620 = (L= ") (6h (7))

Combining the computations for the stratificatig@”, "1, £°} of the
infinity hyperplaneCP%_, one has

THEOREM 3. —For a Yomdin-at-infinity polynomiaP = P, + P;_; +
, its zeta-function at infinity is equal to

tp() = (1= 1)V (1 - 1) (Hc ' ")) ,

where

_ (1 _ d)nJrl

)= T DY )

i=1

&

x(

and g; is a local equation of the hypersurfag®, = 0} ¢ CPZ, at its
singular pointQ;.
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3.2

Let w + 1) be equal to 3P =P, + P,y +---, {P,=0}is a
curve inCPZ,. Let C{* + - -- + C% be its decomposition into irreducible
components. LetP; = 0},eq be the reduced curv€; + --- + C, and let
Sing({ P; = O}eq) coONsist ofs points{Q4, ..., O,}. Suppose that:

(1) the curve{P,_; = 0} is reduced;

(2) Qi ¢{Psx=0}, (i=1,...,5):

(3) for eachj with ¢; > 1, the curvesC; and{P;_, = 0} intersect
transversally, i.e., the s&; N {P;_; = 0} consists ofd;(d — k)
different points(d; = degC;).

The generic fibre of the polynomiaP is homotopy equivalent to

the bouquet of 2-dimensional spheres. In this case the number of these
spheres is equal to(P) = dim¢ Clx, y, z]/Jad(P) and is equal to

d—-1°%—k-(x({P1=0}) +d(2d —d —3)) +k*- (d — d),

whered = dy + --- + d, is the degree of the (reduced) curyg, =
O}ed, [4]. Let us consider the following partitioning of the infinity
hyperplaneCP2, :
(1) the O-dimensional stratung? consisting of one poin; each
(i=1,...,9);
(2) the O-dimensional stratum? =C; N{P;_; =0}, for eachj =
1,....r;
(3) the 1-dimensional strature} = C; \ ({Q;} U A9), for eachj =
1,....r; ' '
(4) the 2-dimensional stratu@? = CP2, \ {P; = 0}.
At each point of the strature?, the germ of the meromorphic functiagh
has the form1/u?) (CP2, = {u = 0}). Its infinity zeta-function is equal
to (1 — t4). The Euler characteristig (£2) of the stratumz? is equal to

x(CP%) = x((Pa=0}) =3—3d +d*~ > .
i=1
wherey; is the Milnor number of the (reduced) cur¢g; = O}.eq4 at the

point Q;.
At each point of the stratunEjl, the germ of the meromorphic

function P has the form(y{’ + u*)/u?. Its infinity zeta-function can be
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determined by the Varchenko type formula from [8] and is equal to

q;[d—k)

(1- td—k) (1- tm)—ﬂﬁdﬂh’»k)‘

The Euler characteristic of the stratL['EU1 is equal to

X(CH—did—k) —4{C;N {0 i=1,...,s}}.

At each point of the stratumA?, the germ of the meromorphic

function P has the form(y;’ + u*y,)/u?. lts infinity zeta-function is
equal to 1.

At a point Q;, the germ of the meromorphic functiah has the form
(g:(y1, y2) +u*)/u¢, where{g; = 0} is the local equation of the (non-
reduced) curvéP, = 0} at the pointQ;. Its infinity zeta-function is equal
to

(1= 1) (g ()

Remark4. —We can not apply the formulé&3) directly since the
singularity of the germy; is, in general, not isolated. However, it is not
difficult to see that, actually, the proof of this formula uses only the fact
that the singularity of the gerrg; can be resolved by a modification
which is an isomorphism outside the origin. This is so for a curve
singularity.

Thus one obtains

£r0) = (1 #)1 (1 ooy - T

q(rlk

H tgul(tljk) ng(q/k)X(ul) ﬂ (- k))—l‘

j=1 i=1

4. On the bifurcation set of a polynomial map

As we have mentioned, a polynomial ma&x C"+! — C defines a
locally trivial fibration over the complement to a finite set@ The
minimal setB(P) with this property is called the bifurcation set £f
The bifurcation set consists of critical values of the polynon#idin the
affine part) and of atypical (“critical”) values at infinity.
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In order to consider a level sgtP = ¢}, one can substitute the
polynomial P by the polynomial(P — ¢) and consider the zero level
set. Thus let us consider the zero level Bgt= { P = 0} c C"*! of the
polynomial P. Let us suppose that the level 3&t of the polynomialP
has only isolated singular points (in the affine p@ftt'). For p > 0,
let B, be the open ball of radius centered at the origin i€ and
S, = 9B, be the(2n + 1)-dimensional sphere of radigswith the centre
at the origin. There exist® > 0 such that, for allo > R, the sphere
S, is transversal to the level s&, = {P = 0} of the polynomial map
P. The restrictionP |cn+1 g, :C"*1\ Br — C of the functionP to the
complement of the balB; defines aC> locally trivial fibration over a
punctured neighbourhood of the origin @ The loopeg - exp2rit)
(0< T <1, |leoll small enough) defines the monodromy transformation
h:Ve, \ B — Ve, \ Bg. Let us denote its zeta-functiog () by c3(t).
We use the following definition

DEFINITION. — The valuel is atypical at infinityfor the polynomialP
if the restriction P|cn+1, 5, Of the functionP to the complement of the
ball B is not aC* locally trivial fibration over a neighbourhood of the
origin in C.

Remark5. — This definition does not depend on a choice of coordi-
nates, i.e., it is invariant with respect to polynomial diffeomorphisms of
the spaceC"*1. One can see that an atypical at infinity value is atypical,
i.e. it belongs to the bifurcation sét( P) of the polynomialP. Moreover
the bifurcation setB(P) is the union of the set of critical values of the
polynomial P (in C"*1) and of the set of values atypical at infinity in the
described sense. If the singular locus of the levelget { P = 0} is not
finite, the value 0 hardly can be considered as typical at infinity. Thus,
one should consider this definition as a (possible) general definition of a
value atypical at infinity. In fact the same definition was used in [10] for
polynomial functions of two variables.

Let S be a prestratification of the infinity hyperpla&”_ such that,
for each stratun® of S, the zero zeta—functio@}}’x(t) of the germ of
the meromorphic functio® at a pointx € CP does not depend on the
pointx, for x € Z (letit be¢2(r) and let its degree bg?).
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THEOREM 4. —
20 =T[120]"F,  x (Ve \Br) = x%-x(&).
EeS EeS

Theproofis essentially the same as that of Theorem 1. Since the Euler
characteristic of the séfy \ By is equal to Qone has

COROLLARY 1. —If ¢8(r) # 1, then the valud is atypical at infinity
for the polynomialP.

In several papers (see, e.g., [3,11,12]) there was considered an integer
Ap(c)(c € C) such that

x({P=c))=x({P=c+e})+ (—1)"“(2#1' +)»P(C)),

wherey; are the Milnor numbers of the (isolated) singular points of the
level set{ P = ¢} ¢ C"*1. Theorem 4 gives the following formula for this
invariant:

COROLLARY 2. -—
Ap(0) = (—=1)" degep (1)

=" Y 12 x@(= 0" [ x8.dx).

EeS (Cpgo

Example—Let P(x, y,z) = x*y*(xy? — z°t%) + z, (ad — bc) # 0,
and let D = degP) =a + b + ¢ +d. The curve{Pp = 0} Cc CP2,
consists on three components: the Ilfe= {x = 0} with multiplicity «,
the line C; = {y = 0} with multiplicity », and the reduced curve
Ca={xy! — 7z =0}. Let Q1 =CoNC3=(1:0:0, Q, =C1 N
C3=(0:1:0, O3=C1NCy=1(0:0:2. At each pointx of the
infinity hyperplaneCPZ, exceptQ; and Q,, one hasp (1) = 1. At
the point Q,, the germ of the meromorphic functioA has the form
P4 =zt + zuP~Y /uP. Its zero zeta-function can be obtained by
the Varchenko type formula from [8]. (E:d — bc) < O, thengg’Ql(t) =1
If (ad — bc) > 0, then
glg,Q1(t) — (1 — tgl,lcf,lg‘, )G'C'D',

whereG.C.D.=g.c.d.(c,d) - g.c.d.(g_‘c’_‘i[(‘;“d), D — 1). At the pointQ»,
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we have just the symmetric situation. Finally

(90 = (1 155500

It means that the value 0 is atypical at infinity. In the same gfay (1) =
1, forc#0.
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