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EQUIVARIANT VERSIONS OF HIGHER ORDER ORBIFOLD

EULER CHARACTERISTICS

S.M. GUSEIN-ZADE, I. LUENGO, AND A. MELLE-HERNÁNDEZ

Abstract. There are (at least) two different approaches to define an
equivariant analogue of the Euler characteristic for a space with a finite
group action. The first one defines it as an element of the Burnside ring
of the group. The second approach emerged from physics and includes
the orbifold Euler characteristic and its higher order versions. Here we
give a way to merge the two approaches together defining (in a certain
setting) higher order Euler characteristics with values in the Burnside
ring of a group. We give Macdonald type equations for these invariants.
We also offer generalized (“motivic”) versions of these invariants and
formulate Macdonald type equations for them as well.
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1. Introduction

Let X be a topological space (good enough, say, a real subanalytic variety)
with an action of a finite group G. There are (at least) two different approaches
to define an equivariant analogue of the Euler characteristic for the pair (X, G).
The first one

˜̃
[29]

˜̃
defines the equivariant Euler characteristic χG(X) as an element

of the Burnside ring A(G) of the group G. The second approach emerged from
physics (the string theory of orbifolds: [10], [11]). The orbifold Euler characteristic
χorb(X, G) is defined through the fixed point sets of some subgroups of G and is an
integer. Higher order (orbifold) Euler characteristics were introduced in [1] and [8]
(also as integers). They can be defined through the fixed point sets of collections
of commuting elements in G. Here we give a way to merge the two approaches
together.

Through this paper we consider the Euler characteristic χ(·) defined as the al-
ternating sum of the dimensions of the cohomology groups with compact support.
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This Euler characteristic is not a homotopy invariant in the usual sense, but an
invariant of the homotopy type defined in terms of proper maps. It is an ad-
ditive function on the algebra of (“good”) spaces (say, on the algebra of (real)
constructible sets.). For complex quasi-projective varieties this Euler characteristic
coincides with the “usual” one, i.e., with the alternating sum of the dimensions of
the usual cohomology groups.

There is the universal additive invariant on the algebra of complex constructible
sets. It takes values in the Grothendieck ring K0(VarC) of complex quasi-projective
varieties and can be regarded as a generalized (“motivic”) Euler characteristic
χg(X). There were defined generalized (“motivic”) analogues of the orbifold Euler
characteristic and of its higher order generalizations. First it was essentially made
in [2] (for the Hodge–Deligne polynomial) and then formulated precisely in [17]
and [19]. These higher order generalized Euler characteristics take values in a cer-
tain modification of the Grothendieck ring K0(VarC) of complex quasi-projective
varieties.

The Euler characteristic satisfies the Macdonald type equation

1 +

∞∑
k=1

χ(SkX) · tk = (1− t)−χ(X), (1)

where SkX = Xk/Sk is the kth symmetric power ofX (see, e.g., [24]). A Macdonald
type equation for a given invariant expresses the generating series of the values of
the invariant for the symmetric powers of a space (or for their analogues) as a
series not depending on the space (in this case (1− t)−1) with the exponent equal
to the value of the invariant for the space itself. If the invariant takes values in
a ring R different from a number ring (i.e., from Z, Q, R or C), Macdonald type
equations can be formulated in terms of a so-called power structure over the ring.
There are Macdonald type equations for the orbifold Euler characteristic and for its
higher order analogues ([30], [28]) and also for the equivariant Euler characteristic
with values in the Burnside ring A(G) of G (see Lemma 1 below). An analogue of
these equations for the generalized (“motivic”) higher order Euler characteristics
was obtained in [19]. It was formulated in terms of the (natural) power structure
over the Grothendieck ring K0(VarC) of complex quasi-projective varieties: [15].
(Its version for the orbifold Hodge–Deligne polynomial was proved in [31].)

Here we define higher order Euler characteristics with values in the Burnside ring
of a group. This is made in the setting when there are two commuting finite group
actions. Namely, let a topological space X be endowed with commuting actions of
two finite groups GO and GB (or equivalently with an action of the direct product
GO × GB). Then the action of GO can be treated in the way similar to “the
orbifold approach” and the action of GB in the way which leads to invariants (say,
equivariant Euler characteristic) with values in the Burnside ring of the group.
This gives a possibility to define higher order Euler characteristics of the triple
(X; GO, GB) with values in the Burnside ring of the group GB .

This situation can be met, for example, in the following considerations. Assume
that (f, G) is a pair consisting of a quasi-homogeneous polynomial f and an abelian
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group G of its (diagonal) symmetries. Such pairs are subjects of analysis, in partic-
ular, in the Berglund–Hübsch–Henningson mirror symmetry [4], [3]. The classical
monodromy transformation of f is a map of a finite order from the Milnor fibre of f
into itself. It commutes with the G-action. Thus one has the action of two groups:
the group G and the (cyclic) group generated by the monodromy transformation.
A study of the orbifold monodromy zeta function of f leads to the situation when
one should apply “the orbifold approach” to the first action whence the other one
should be treated in another way, see, e.g., [12].

We give Macdonald type equations for the constructed invariants (Theorem 1).
We also offer generalized (“motivic”) versions of these invariants and formulate
Macdonald type equations for them as well (Theorem 2).

The authors are very grateful to E. A. Gorsky for carefully reading the paper and
making a number of useful suggestions.

2. Power Structures over Rings

As it was indicated above, a Macdonald type equation for an invariant can be
formulated in terms of a power structure over the ring of values of the invariant. Let
R be a commutative associative ring with unity. A power structure over the ring
R gives sense to expressions of the form (A(t))m, where A(t) = 1 + a1t+ a2t

2 + · · ·
is a power series with the coefficients ai from R and m is an element of R.

Definition [15]. A power structure over the ring R is a map

(1 + tR[[t]])×R→ 1 + tR[[t]] ((A(t), m) 7→ (A(t))
m

)

possessing the following properties:

(1) (1 + a1t+ · · · )m = 1 +ma1t+ · · · ;
(2) (A(t)B(t))m = (A(t))m(B(t))m;
(3) (A(t))m+n = (A(t))m(A(t))n;
(4) (A(t))mn = ((A(t))m)n.

Let m be the ideal tR[[t]] in the ring R[[t]].

Definition. A power structure over the ring R is finitely determined if, for any
k > 1, the fact that A(t) ∈ 1 + mk implies that (A(t))m ∈ 1 + mk.

The natural power structure over the ring Z of integers is defined by the standard
formula for a power of a series (see, e.g., [27]):

(1 + a1t+ a2t
2 + · · · )m =

= 1 +

∞∑
k=1

( ∑
{ki}:

∑
iki=k

m(m− 1) · · · (m−
∑
i ki + 1) ·

∏
i a
ki
i∏

i ki!

)
· tk.

An important example of a power structure over the Grothendieck ring of quasi-
projective varieties was introduced in [15].

A quasi-projective variety is the complement of a projective variety in a pro-
jective one. The Grothendieck ring K0(VarC) of complex quasi-projective varieties
is the abelian group generated by the classes of complex quasi-projective varieties
modulo the relations:
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(1) if X and X ′ are isomorphic, then [X] = [X ′];
(2) if Y ⊂ X is a Zariski closed subset, then [X] = [Y ] + [X \ Y ].

The multiplication in K0(VarC) is defined by the cartesian product. The class
L = [A1

C] of the complex affine line plays a special role in a number of constructions
connected with the Grothendieck ring K0(VarC).

A power structure over the ring K0(VarC) is defined in [15] by the formula

(1 + [A1]t+ [A2]t2 + · · · )[M ] =

= 1 +

∞∑
k=1

( ∑
{ki}:

∑
iki=k

[((
M

∑
i ki \∆

)
×
∏
i

Akii

)/∏
i

Ski

])
· tk, (2)

where Ai, i = 1, 2, . . . , and M are quasi-projective varieties ([Ai] and [M ] are
their classes in the ring K0(VarC)), ∆ is the large diagonal in M

∑
i ki , i.e., the set

of (ordered)
(∑

i ki
)
-tuples of points of M with at least two coinciding ones, the

group Ski of permutations on ki elements acts by the simultaneous permutations
on the components of the corresponding factor Mki in M

∑
i ki =

∏
iM

ki and on

the components of Akii .
One can see that the coefficient at tk in the right hand side of (2) has the check the reference

following interpretation. Let I :
∞∐
i=1

Ai → Z be the “tautological function” on the

disjoint union
∞∐
i=1

Ai sending Ai to i. The coefficient at tk in the right hand side

of (2) is represented by the configuration space of pairs (K, ψ), where K is a check the reference

finite subset of M and ψ is a map K →
∞∐
i=1

Ai such that
∑
x∈K

I(ψ(x)) = k. This

interpretation makes it much easier to prove that the equation (2) really defines check the reference

a power structure (i.e., to verify the properties 2
˜̃
–4

˜̃
from the definition) and also

permits to prove some formulae for generating series of classes of Hilbert schemes
of “fat points” (zero-dimensional subschemes) on quasi-projective manifolds (see,
e.g., [16]). Less formally, see [14], [9], one can say that on the variety M there live
particles equipped with some natural numbers (multiplicities, masses, charges, . . . ).
A particle of multiplicity n has a complicated space of internal states

˜̃
which is

parametrized by points of a quasi-projective variety An and the coefficient at tk is
the configuration space of tuples of particles with the total multiplicity k.

The notion of a power structure over a ring is closely related with the notion
of a λ-ring structure. A λ-ring structure (or a pre-λ-ring structure in a certain
terminology, see, e.g., [23]) is an additive-to-multiplicative homomorphism R →
1 + tR[[t]], a 7→ λa(t) (λa+b(t) = λa(t) · λb(t)) such that λa(t) = 1 + at+ · · · . A λ-
ring structure over a ring defines a finitely determined power structure over it in
the following way. Any series A(t) ∈ 1 + tR[[t]] can be in a unique way represented
as
∏∞
i=1 λbi(t

i), for some bi ∈ R. Then one defines (A(t))m :=
∏∞
i=1 λmbi(t

i). On
the other hand, in general, there are many λ-ring structures corresponding to one
power structure over a ring. One can show that the power structure (2) is defined
by the λ-ring structure on the Grothendieck ring K0(VarC) given by the Kapranov
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zeta function

ζ[M ](t) := 1 +

∞∑
k=1

[SkM ] · tk,

where SkM is the kth symmetric power of the variety M . This follows from the
following equation

ζ[M ] = (1− t)−[M ] = (1 + t+ t2 + · · · )[M ].

Burnside ring A(G) of a finite group G is the Grothendieck ring of finite G-sets,
i.e., finite sets with left actions of the group G: see, e.g., [7]. As an abelian group
the Burnside ring A(G) is freely generated by the classes [G/H] of the quotients
G/H for representatives H of the conjugacy classes h of subgroups of G. The
multiplication is defined by the cartesian product with the diagonal action of G.
There is a natural power structure over the Burnside ring A(G): see, e.g., [18].
This power structure is defined in a way similar to that one over the ring K0(VarC).
Namely, if Ai, i = 1, 2, . . . , and M are finite G-sets, the same equation (2) defines check the reference

the series (1 + [A1]t + [A2]t2 + · · · )[M ], where the action of the group G on the
summands is the natural (

˜̃
diagonal) one. In particular, for a finite G-set X one has

(1− t)−[X] = 1 + [X]t+ [S2X]t2 + [S3X]t3 + · · · ,

where SkX = Xk/Sk is the kth symmetric power of the G-set X with the diagonal
action of G.

Let X be a G-space, i.e., a space with a left action of the group G. For a point
x ∈ X, let Gx = {g ∈ G : g · x = x} be the isotropy subgroup of the point x.
For a subgroup H ⊂ G, let XH = {x ∈ X : Hx = x} be the fixed point set of H
(XH = {x ∈ X : H ⊂ Gx}) and let X(H) = {x ∈ X : Gx = H} be the set of points
with the isotropy group H. Let ConjsubG be the set of the conjugacy classes of
subgroups of G. For a conjugacy class h ∈ ConjsubG, let Xh = {x ∈ X : x ∈ XH

for a subgroup H ∈ h}, X(h) = {x ∈ X : Gx ∈ h}.
The equivariant Euler characteristic of a (good enough) G-space X is defined by

χG(X) :=
∑

h∈ConjsubG

χ(X(h)/G)[G/H] ∈ A(G), (3)

where H is a representative of the conjugacy class h (see, e.g., [29]).

3. Higher Order Euler Characteristics
& Macdonald Type Equations

The orbifold Euler characteristic χorb(X, G) of the G-space X is defined, e.g.,
in [1], [20]:

χorb(X, G) =
1

|G|
∑

(g0,g1)∈G×G:
g0g1=g1g0

χ(X〈g0,g1〉) =
∑

[g]∈G∗

χ(X〈g〉/CG(g)) ∈ Z, (4)

where G∗ is the set of the conjugacy classes of elements of G, g is a representative
of the class [g], CG(g) = {h ∈ G : h−1gh = g} is the centralizer of g, and 〈g〉 and
〈g0, g1〉 are the subgroups of G generated by the corresponding elements.
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The higher order Euler characteristics of (X, G) are defined by:

χ(k)(X, G) =
1

|G|
∑

g∈Gk+1:
gigj=gjgi

χ(X〈g〉) =
∑

[g]∈G∗

χ(k−1)(X〈g〉, CG(g)), (5)

where g = (g0, g1, . . . , gk), 〈g〉 is the subgroup generated by g0, g1, . . . , gk, and
(for the second, recurrent, definition) χ(0)(X, G) is defined as the usual Euler char-
acteristic χ(X/G) of the quotient. The orbifold Euler characteristic χorb(X, G) is
the Euler characteristic χ(1)(X, G) of order 1.

For a G-space X, the cartesian power Xn carries the natural action of the wreath
product Gn = GnoSn generated by the natural action of the symmetric group Sn
(permuting the factors) and by the natural (component-wise) action of the cartesian
power Gn. The pair (Xn, Gn) should be (or can be) considered as an analogue of
the symmetric power of the pair (X, G). Let

X(k)
(X,G)(t) := 1 +

∑
n>1

χ(k)(Xn, Gn) · tn.

One has the following Macdonald type equation (see [28, Theorem A])

∑
n>0

χ(k)(Xn, Gn) · tn =

( ∏
r1,...,rk>1

(1− tr1r2···rk)r2r
2
3 ···r

k−1
k

)−χ(k)(X,G)

. (6)

When k = 0, one gets the equation (1) for the quotient X/G.
The equation (6) can be interpreted in the following way. For the natural (left)

action of the group G on G (by the multiplication) one has χ(k)(G, G) = 1 for any
k > 1. (This follows from the fact that the only element g ∈ G with a non-empty
fixed point set G〈g〉 is g = e and G〈e〉 = G.) Therefore

X(k)
(G,G)(t) =

( ∏
r1,...,rk>1

(1− tr1r2···rk)r2r
2
3 ···r

k−1
k

)−1

and thus

X(k)
(X,G)(t) =

(
X(k)

(G,G)(t)
)χ(k)(X,G)

.

Let K0(VarC)[Ls]s∈Q (or K0(VarC)[Ls] for short) be the modification of the
Grothendieck ring K0(VarC) obtained by adding all rational powers of L. The
elements of K0(VarC)[Ls] are in one-to-one correspondence with the finite sums
of the form

∑
i ciLri , where ci are elements of the localization K0(VarC)(L) of the

ring K0(VarC) by the class L, ri are different rational numbers inbetween 0 and
1: 0 6 ri < 1. Thus the ring K0(VarC)[Ls] contains the localization K0(VarC)(L).
It was shown that L is a zero divisor in K0(VarC) ([6]) and therefore the nat-
ural map K0(VarC) → K0(VarC)(L) is not injective. Therefore the natural map
K0(VarC)→ K0(VarC)[Ls] is not injective as well.

A power structure on the ring K0(VarC)[Ls] can be defined through a λ-structure
on it using the equation:

ζLs[M ](t) = ζ[M ](Lst), (7)
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which holds for the Kapranov zeta function on the Grothendieck ring K0(VarC).
This equation (used for integer values of s) defines a λ-structure on the localization
K0(VarC)(L): see [15]. For an element c =

∑
i ciLri ∈ K0(VarC)[Ls] one defines

ζc(t) by

ζc(t) :=
∏
i

ζci(Lrit).

The λ-structure on the ring K0(VarC)[Ls] defines a power structure over it in the
standard way

˜̃
[15]

˜̃
: a series A(t) ∈ 1+tK0(VarC)[Ls][[t]] has a unique representation

in the form A(t) =
∏∞
i=1 ζbi(t

i) with bi ∈ K0(VarC)[Ls] and one defines (A(t))m,
m ∈ K0(VarC)[Ls], by

(A(t))m :=

∞∏
i=1

ζmbi(t
i).

This definition together with the equation (7) implies that

(A(Lst))m = (A(t))m|t7→Lst.

Remark. If, in the considerations below, one uses only non-negative weights ϕi,
one can work with the ring K0(VarC)[Ls]s∈Q>0

. The natural map K0(VarC) →
K0(VarC)[Ls]s∈Q>0

is injective.

Now let X be a smooth quasi-projective variety of dimension d with an (alge-
braic) action of the group G. To define the higher order generalized (orbifold) Euler
characteristics of the pair (X, G), one has to use the so called age (or fermion shift)
F gx of an element g ∈ G at a fixed point x of g defined in [32], [21]. The element
g acts on the tangent space TxX as an automorphism of finite order. This action
on TxX can be represented by a diagonal matrix diag(exp(2πiθ1), . . . , exp(2πiθd))
with 0 6 θj < 1 for j = 1, 2, . . . , d (θj are rational numbers). The age of the

element g at the point x is defined by F gx =
∑d
j=1 θj ∈ Q>0.

For g ∈ G, let the number of CG(g)-orbits in the the set of connected components

of the fixed point set X〈g〉 be equal to Ng, and let X
〈g〉
1 , X

〈g〉
2 , . . . , X

〈g〉
Ng

be the

unions of the components of each of the orbits. For 1 6 αg 6 Ng, let F gαg be the

age F gx at a point of X
〈g〉
αg (this age does not depend on the point x ∈ X〈g〉αg ).

For a rational number ϕ1 ∈ Q, the generalized orbifold Euler characteristic of
weight ϕ1 of the pair (X, G) is defined by

[X, G]ϕ1
:=

∑
[g]∈G∗

Ng∑
αg=1

[X〈g〉αg /CG(g)] · Lϕ1F
〈g〉
αg ∈ K0(VarC)[Ls]. (8)

For ϕ1 = 1 one gets the definition of the generalized orbifold Euler characteris-
tic from [17] inspired by the definition of the orbifold Hodge–Deligne polynomial
from [2]. (This generalized orbifold Euler characteristic maps to the orbifold Hodge–
Deligne polynomial by the natural ring homomorphism e : K0(VarC) → Z[u, v].)
For ϕ1 = 0 one gets the so called inertia stack class: see, e.g., [13].
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For a subgroup H ⊂ G, and for an H-invariant submanifold Y ⊂ X, let us define
the relative generalized orbifold Euler characteristic of the pair (Y, H) by

[Y, H]X,ϕ1
:=

∑
[g]∈H∗

Ng∑
αg=1

[Y 〈g〉αg /CH(g)] · Lϕ1F
〈g〉
αg ∈ K0(VarC)[Ls], (9)

where Y
〈g〉
αg := X

〈g〉
αg ∩Y , F

〈g〉
αg is the age of g at a point of X

〈g〉
αg . (Pay attention that

the age of an element g is determined from its action on TxX.)
Let ϕ = (ϕ1, ϕ2, . . . ) be a fixed sequence of rational numbers. The relative

generalized (orbifold) Euler characteristics of order k of weight ϕ of the pair (Y, H)
is defined recursively by

[Y, H]kX,ϕ :=
∑

[g]∈H∗

Ng∑
αg=1

[Y 〈g〉αg , CH(g)]k−1
X,ϕ · L

ϕkF
〈g〉
αg ∈ K0(VarC)[Ls], (10)

where [Y, H]1X,ϕ := [Y, H]X,ϕ1
is defined by (9). (Alternatively one can start from

k = 0 using the definition [Y, H]0X,ϕ = [Y, H]0 = [Y/H].) The generalized (orbifold)

Euler characteristics of order k of weight ϕ of the pair (X, G) is

[X, G]kϕ := [X, G]kX,ϕ.

One has the following Macdonald type equations ([19])

∑
n>0

[Xn, Gn]kϕ · tn =

( ∏
r1,...,rk>1

(
1− LΦk(r)d/2 · tr1r2···rk

)r2r23 ···rk−1
k

)−[X,G]kϕ

, (11)

where

Φk(r1, . . . , rk) = ϕ1(r1 − 1) + ϕ2r1(r2 − 1) + · · ·+ ϕkr1r2 · · · rk−1(rk − 1).

4. Equivariant Higher Order Euler Characteristics

Assume that X is a (good enough) topological space with commuting actions of
two finite groups GO and GB (or equivalently with an action of the direct product
GO × GB). The quotient X/GO carries the natural GB-action and thus one can
define χ(0,GB)(X; GO, GB) as χGB (X/GO) ∈ A(GB).

For an element g ∈ GO, the fixed point set X〈g〉 is GB-invariant and the quotient
X〈g〉/CGO (g) by the centralizer CGO (g) carries the natural GB-action.

Definition. The equivariant orbifold Euler characteristics of (X; GO, GB) is

χ(1,GB)(X; GO, GB) :=
∑

[g]∈GO∗

χGB (X〈g〉/CGO (g))

=
∑

[g]∈GO∗

χ(0,GB)(X〈g〉; CGO (g), GB) ∈ A(GB). (12)

The equivariant higher order Euler characteristics are defined recursively in the
same way as the non-equivariant one.
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Definition. The equivariant Euler characteristics of order k of (X; GO, GB) is

χ(k,GB)(X; GO, GB) :=
∑

[g]∈GO∗

χ(k−1,GB)(X〈g〉; CGO (g), GB) ∈ A(GB). (13)

Definition (13) is convenient for the proof of Theorem 1. Iterating (13) one gets
the following equation for the equivariant higher order Euler characteristics:

χ(k,GB)(X; GO, GB) =
∑

[φ]∈Hom (Zk,GO)/GO

χGB (X〈φ〉/CGO (φ)), (14)

where the group GO acts on Hom (Zk, GO) by conjugation, X〈φ〉 is the fixed point
set of the image of φ, CGO (φ) = {g ∈ GO : g−1φg = φ}.

Examples. 1. Let X = GO be endowed with the left action of the group GO
defined by the multiplication and with the trivial action of the group GB . Since

the only element g ∈ GO with a non-empty fixed point set G
〈g〉
O is the unit g = e

and G
〈e〉
O = GO, one has χ(k,GB)(GO; GO, GB) = 1 for any k > 0.

2. Let X = GB and let GO be a subgroup of GB . Define the action of the group
GB (respectively of the group GO) on X by ga = g · a (ag = a · g−1 respectively)
for a ∈ X, g ∈ GB (g ∈ GO respectively). Since the only element g ∈ GO
with a non-empty fixed point set G

〈g〉
O is the unit g = e and G

〈e〉
B = GB , one has

χ(k,GB)(GB ; GO, GB) = [GB/GO] ∈ A(G) for any k > 0.

Let
X(k)

(X;GO,GB)(t) := 1 +
∑
n>1

χ(k,GB)(Xn; GOn, GB) · tn.

Theorem 1. One has

X(k)
(X;GO,GB)(t) =

( ∏
r1,...,rk>1

(1− tr1r2···rk)
r2r

2
3 ···r

k−1
k

)−χ(k,GB)(X;GO,GB)

, (15)

where the exponent in the right hand side is defined by the power structure over the
Burnside ring A(GB).

Proof. The proof essentially repeats, e.g., the one in [28] (see also[19]). One has
to pay attention to two facts. First, all subsets participating in the course of the
proof in [28] are G-invariant. Second, one has to use the Macdonald type equation
for the equivariant Euler characteristic χG(·): see (16) below. �

The Macdonald type equation for the equivariant Euler characteristic must be
known. However, we have not found it in the literature. Therefore we put its proof
here.

Lemma 1. For a G-space X one has

1 +

∞∑
n=1

χG(SnX) · tn = (1− t)−χ
G(X) ∈ 1 + tA(G)[[t]], (16)

where the right hand side is defined by the power structure over the Burnside ring
A(G) (or by the λ-structure on it).
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Remark. Note that, for a finite G-set X, the equation (16) is just the definition
of its right hand side through the power structure over the Burnside ring described
in Section 2. (In this case χG(X) = [X] ∈ A(G).)

Proof. Let us denote the left hand side of (16) by χGζX,G(t). If X = X1tX2 is a
decomposition of X into two G-subspaces, one has

χGζX,G(t) = χGζX1,G(t) · χGζX2,G(t).

(This follows from the identities SnX =
n∐

m=0
(SmX1) × (Sn−mX2), χG(X × Y ) =

χG(X)χG(Y ).) Therefore it is sufficient to prove (16) for the elements of a decom-
position of X into G-invariant subspaces. A “good enough” G-space X (say, a real
subanalytic space with a subanalytic action of the group G) can be represented as
the disjoint union of subspaces of the form σd × (G/H), where H is a subgroup
of G, G/H is the corresponding G-set (the quotient), and σd is the open cell of
dimension d with the trivial G-action. (This follows, e.g., from the fact that the
quotient X/G has a triangulation coordinated by the stratification of this quotient
by the types of the G-orbits.) Let σ̄d ⊃ σd be the closed d-dimensional ball. Since
σ̄d can be contracted to a point, Sk(σ̄d×(G/H)) can be G-equivariantly contracted
to Sk(G/H). Therefore

χG(Sk(σ̄d × (G/H))) = χG(Sk(G/H)) = [Sk(G/H)]

(see, e.g., [29], where this is formulated for finite G-CW -complexes) and thus

χGζSk(σ̄d×(G/H))(t) = 1 +

∞∑
i=1

[Si(G/H)]ti = (1− t)−[G/H] = (1− t)−χ
G(σ̄d×(G/H)).

The equation (16) obviously holds for X = σd × (G/H) with d = 0 (when σd is
a point). Assume that it holds for X = σd × (G/H) with d < d0. One has a
decomposition σd0 = σd0tσd0tσd0−1. Therefore

χGζσd0×(G/H)(t) =
(
χGζσd0×(G/H)(t)

)2 · χGζσ(d0−1)×(G/H)(t),

χGζσd0×(G/H)(t) =
(
χGζσ(d0−1)×(G/H)(t)

)−1
=
(
(1− t)−(−1)(d0−1)[G/H]

)−1

= (1− t)−(−1)d0 [G/H] = (1− t)−χ
G(σd0×(G/H)). �

The equation (15) has an interpretation similar to the one for “usual” (non-
equivariant) higher order Euler characteristics in Section 3. Set Set what?

Let GO (regarded as a zero-dimensional finite space) be endowed with the nat-
ural action of the group GO and with the trivial action of the group GB . Then
one has χ(k,GB)(GO; GO, GB) = 1. Let (GO; GO, GB) be the set GO with the ac-
tions described in Example 1 after the definition of higher order equivariant Euler
characteristics. One has

X(k)
(GO;GO,GB)(t) =

( ∏
r1,...,rk>1

(1− tr1r2···rk)
r2r

2
3 ···r

k−1
k

)−1

and thus

X(k)
(X;GO,GB)(t) =

(
X(k)

(GO;GO,GB)(t)
)χ(k,GB)(X;GO,GB)

.
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5. Equivariant Generalized Higher Order Euler Characteristics

For a finite group G, let KG
0 (VarC) be the Grothendieck ring of complex quasi-

projective G-varieties (i.e., varieties with left algebraic actions of the group G). By
that we mean the free abelian group generated by the G-isomorphism classes [X, G]
(or [X] for short) of complex quasi-projective varieties X with G-actions modulo
the relation: [X, G] = [Y, G]+[X \Y, G] for a Zariski closed G-invariant subvariety
Y of X. The multiplication in KG

0 (VarC) is defined by the cartesian product with
the diagonal G-action. Let L ∈ KG

0 (VarC) be the class of the affine line A1
C with

the trivial G-action.

Remark. Usually, in the definition of the Grothendieck ring of complex quasi-
projective G-varieties, one adds one more relation: if E → X is a G-equivariant
vector bundle of rank n, then [E] = [AnC × X]. We do not need this relation
for the construction. One can say that we use the Grothendieck ring denoted by

K
′,G
0 (VarC) in [5]. The same definition was used in [25]. An equation which holds in

the equivariant Grothendieck ring KG
0 (VarC) defined here, holds in the “traditional”

one as well.

There is a natural power structure over the (equivariant) Grothendieck ring
KG

0 (VarC). Its geometric definition is given in the same way as the usual power
structure over the (non-equivariant) Grothendieck ring K0(VarC) in [15]: for com-
plex quasi-projective G-varieties Ai, i = 1, 2, . . . , and M one has the same equa-
tion (2). One has to take into account that all summands in the right hand side
of the equation (2) are G-invariant spaces. The proof of the necessary properties
of the power structure is the same as in [15]. This power structure is induced
by the λ-structure on KG

0 (VarC) defined by the Kapranov zeta-function. For a
quasi-projective G-variety X, the series (1 − t)−[X] is the equivariant Kapranov
zeta-function of X: ζ[X](t) := 1 + [X] · t+ [S2X] · t2 + [S3X] · t3 + · · · = (1− t)−[X],

where SkX = Xk/Sk is the kth symmetric power of the G-variety X with the
natural G-action (see, e.g., [22], [25] for the non-equivariant case). The map
χG : KG

0 (VarC)→ A(G) is a λ-ring homomorphism.
In what follows we need the following statement.

Lemma 2. Let p : E → X be a G-equivariant vector bundle of rank n such that
for each x ∈ X the action of the isotropy subgroup Gx on the fibre Ex = p−1(x) is
trivial. Then [E] = Ln[X].

Proof. Factorizing by the action of G one gets the map p̌ : E/G→ X/G, which is a
vector bundle (due to the triviality of the action of Gx on Ex ). According to [26]
the quotient X/G can be covered by Zariski open subsets Ui such that over each
Ui the fibre bundle p̌ is trivial. Therefore

p̌−1(Ui) ∼= Ui × AnC. (17)

If Vi = π−1(Ui), where π : X → X/G is the canonical factorization map, then the
trivialization (17) gives a trivialization of the bundle p over Vi, i.e., an isomorphism
between p−1(Vi) and Vi × AnC with the trivial G-action on AnC. This gives the
statement. �
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In what follows we need the following properties of the power structure over the
equivariant Grothendieck ring KG

0 (VarC).

Proposition 1. Let Ai and M be G-varieties, and let A(t) := 1 + [A1]t+ [A2]t2 +
· · · ∈ KG

0 (VarC). Then, for s > 0,

(A(Lst))[M ] = (A(t))[M ]|t 7→Lst. (18)

Proof. The coefficient at the monomial tk in the power series (A(t))[M ] is a sum of
the classes of the varieties of the form

V =

((∏
i

Mki
)
\∆

)
×
∏
i

Akii
/∏

i

Ski

with
∑
iki = k. The corresponding summand Ṽ in the coefficient at the monomial

tk in the power series (A(Lst))M has the form

Ṽ =

((∏
i

Mki
)
\∆

)
×
∏
i

(LsiAi)ki
/∏

i

Ski .

There exists a natural map Ṽ → V which is a G-equivariant vector bundle of rank
sk satisfying the conditions of Lemma 2 (just because the action of the group

∏
i Ski

is free). By (2) one has [Ṽ ] = Lsk[V ], what implies (18). �

Proposition 1 and the multiplicative property
˜̃
(A(t))[M ][N ] = (A(t)[M ])[N ] of the

power structure imply the following statement.

Proposition 2. For a complex quasi-projective G-variety X one has

ζL[X](t) = ζ[X](Lt). (19)

Here, in a setting similar to the considered above, we suggest an equivariant
version of the generalized higher order Euler characteristic with values in the modi-
fication KGB

0 (VarC)[Ls] = KGB
0 (VarC)[Ls]s∈Q of the equivariant Grothendieck ring

of complex quasi-projective varieties.
Let X be a smooth quasi-projective variety of dimension d with commuting

(algebraic) actions of two finite groups GO and GB (or equivalently with an action
of the product GO ×GB).

Define the zero order equivariant generalized Euler characteristic of (X; GO, GB)
by

[X; GO, GB ]0,GB := [X/GO] ∈ KGB
0 (VarC). (20)

For g ∈ GO, let the set of the connected components of the fixed point set X〈g〉

consist of Ng (CGO (g)×GB)-orbits and let X
〈g〉
1 , X

〈g〉
2 , . . . , X

〈g〉
Ng

be the unions of

the components of each of the orbits. For 1 6 αg 6 Ng let F gαg be the age F gx at a

point of X
〈g〉
αg (this age does not depend on the point x ∈ X〈g〉αg ).
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Definition. For a rational number ϕ1 ∈ Q, the generalized orbifold Euler charac-
teristic of weight ϕ1 of (X; GO, GB) is defined by

[X; GO, GB ]1,GBϕ1
:=

∑
[g]∈(GO)∗

Ng∑
αg=1

[X〈g〉αg /CGO (g)] · Lϕ1F
〈g〉
αg

=
∑

[g]∈(GO)∗

Ng∑
αg=1

[X; GO, GB ]0,GB · Lϕ1F
〈g〉
αg ∈ KGB

0 (VarC)[Ls]. (21)

For a subgroup HO ⊂ GO and for an HO × GB-invariant submanifold Y ⊂ X,
let us define the relative generalized orbifold Euler characteristic of (Y ; HO, GB)
by

[Y ; HO, GB ]1,GBX,ϕ1
:=

∑
[g]∈(HO)∗

Ng∑
αg=1

[Y 〈g〉αg /CHO (g)] · Lϕ1F
〈g〉
αg ∈ KGB

0 (VarC)[Ls] s∈Q,

(22)

where Y
〈g〉
αg := X

〈g〉
αg ∩ Y , F

〈g〉
αg is the age of g at a point of X

〈g〉
αg .

Let ϕ = (ϕ1, ϕ2, . . . ) be a fixed sequence of rational numbers.

Definition. The relative equivariant generalized Euler characteristics of order k of
weight ϕ of (Y ; HO, GB), as an element of KGB

0 (VarC)[Ls], is defined recursively
by

[Y ; HO, GB ]k,GBX,ϕ :=
∑

[g]∈(GO)∗

Ng∑
αg=1

[Y 〈g〉αg ; CHO (g), GB ]
(k−1),GB
X,ϕ · LϕkF

〈g〉
αg ,

where [Y ; HO, GB ]0,GBX,ϕ = [Y ; HO, GB ]0,GB is the zero order equivariant general-

ized Euler characteristic given by (20).
The equivariant generalized Euler characteristics of order k of weight ϕ of the

triple (X; GO, GB) is

[X; GO, GB ]k,GBϕ := [X; GO, GB ]k,GBX,ϕ ∈ K
GB
0 (VarC)[Ls].

Remark. Iterating this definition one can write an equation for [X; GO, GB ]k,GBϕ

analogous to (14). For a homomorphism φ : Zk → GO, let the set of the connected
components of the fixed point set X〈φ〉 consist of Nφ (CGO (g) × GB)-orbits and

let X
〈φ〉
1 , X

〈φ〉
2 , . . . , X

〈φ〉
Nφ

be the unions of the components of each of the orbits.

For x ∈ X〈φ〉, let the shift Fφx be defined as
∑k
i=1 ϕiF

φ(ei)
x , where e1, . . . , ek is the

standard basis of Zk. For 1 6 αφ 6 Ng let Fφαφ be the shift Fφx at a point of X
〈φ〉
αφ .

One has:

[X; GO, GB ]k,GBϕ =
∑

[φ]∈Hom(Zk,GO)/GO

Nφ∑
αφ=1

[X〈φ〉/CGO (φ)] · LF
φ
αφ .
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Theorem 2. Let X be a (smooth) quasi-projective variety of dimension d with
commuting actions of two finite groups GO and GB. Then∑

n>0

[Xn; (GO)n, GB ]k,GBϕ · tn =

=

( ∏
r1,...,rk>1

(
1− LΦk(r)d/2 · tr1r2···rk

)r2r23 ···rk−1
k

)−[X;G0,GB ]kϕ

,

where

Φk(r1, . . . , rk) = ϕ1(r1 − 1) + ϕ2r1(r2 − 1) + · · ·+ ϕkr1r2 · · · rk−1(rk − 1).

Proof. The proof in [19] was by induction started from k = 1, i.e., from the gen-
eralized orbifold case. The latter one was treated in [17]. One can easily see that
the both proofs admit an action of an additional group GB , i.e., all the subspaces
are GB-invariants. In particular, symmetric products participating in the proof of
[17] carry the natural action of GB . Using Propositions 1 and 2 the correspond-
ing generating series can be written as exponents in terms of the power structure
over the modification KGB

0 (VarC)[Ls] of the equivariant Grothendieck ring of quasi-
projective varieties. �
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[20] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold, Math. Ann. 286 (1990),

no. 1–3, 255–260. MR 1032933
[21] Y. Ito and M. Reid, The McKay correspondence for finite subgroups of SL(3, C), Higher-

dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 221–240.

MR 1463181
[22] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac–Moody

groups, preprint arXiv:math/0001005 [math.AG].

[23] D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes in
Mathematics, Vol. 308, Springer-Verlag, Berlin-New York, 1973. MR 0364425
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