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Abstract A power structure over a ring is a method to give sense to expressions of
the form (1 + a1t + a2t2 + · · · )m , where ai , i = 1, 2, . . ., and m are elements of
the ring. The (natural) power structure over the Grothendieck ring of complex quasi-
projective varieties appeared to be useful for a number of applications. We discuss
new examples of λ-and power structures over some Grothendieck rings. The main
example is for the Grothendieck ring of maps of complex quasi-projective varieties.
We describe two natural λ-structures on it which lead to the same power structure.
We show that this power structure is effective. In the terms of this power structure we
write some equations containing classes of Hilbert–Chow morphisms. We describe
some generalizations of this construction for maps of varieties with some additional
structures.
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1 Introduction

A λ-structure (called sometimes a pre-λ-structure) on a ring R is an additive-to-
multiplicative homomorphism R → 1 + t R[[t]] ([15]). A power structure over a
ring R ([10]) is a method to give sense to expressions of the form (1 + a1t + a2t2 +
· · · )m as a series in 1 + t R[[t]], where ai , i = 1, 2, . . ., and m are elements of the
ring R. The notions of λ-structures and power structures are closely related to each
other, but are not equivalent. In particular, each λ-structure on a ring defines a power
structure over it, but there are, in general, many λ-structures corresponding to one
and the same power structure. A “natural” power structure over the Grothendieck ring
K0(VarC) of complex quasi-projective varieties (see, e.g., [7]) was described in [10].
Its version for the relative case (that is, over the Grothendieck ring of complex quasi-
projective varieties over a fixed variety) was defined in [12]. A power structure over
the Grothendieck ring of complex quasi-projective varieties over an Abelian monoid
was defined in [16]. (A particular case of the Grothendieck ring of varieties over an
Abelian monoid when the monoid is the Abelian group C was considered in [4,6,18]
under the name Grothendieck rings of varieties with exponentials.) Power structures
over Grothendieck rings of varieties appear to be useful, in particular, for formulation
and proof of formulae for the generating series of classes of some configuration spaces
or of their invariants, see, e.g., [1,3,11,16].

An important property of the power structure over the Grothendieck ring K0(VarC)

which makes it useful for the mentioned applications is its effectiveness. This means
that if all the coefficients ai of the series A(t) = 1+a1t+a2t2+· · · and the exponent
m are classes of complex quasi-projective varieties (not of virtual varieties: differences
of such classes), then all the coefficients of the series (1 + a1t + a2t2 + · · · )m are
also represented by classes of complex quasi-projective varieties. This is a somewhat
special property of this power structure. Another natural power structure over the
Grothendieck ring K0(VarC) (in fact up to now only two power structures over this
ring are known) and also its natural “extension” to the Grothendieck ring of stacks
([13]) are not effective.

Here we discuss new examples of λ-and power structures over some Grothendieck
rings. The main example is for the Grothendieck ring of regular maps of complex
quasi-projective varieties. We describe two natural λ-structures on it which lead to
the same power structure. We show that this power structure is effective. In the terms
of this power structure we write some equations containing classes of Hilbert–Chow
morphisms.Wedescribe somegeneralizations of this construction formaps of varieties
with some additional structures.

We are thankful to the referee of the initial version of this paper submitted to
another journal for finding a crucial mistake in it and to all the referees for useful
remarks/suggestions.
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Power structure over the Grothendieck ring of maps 597

2 Power structures and λ-structures

A power structure over a ring R is a method to give sense to expressions of the form
(1 + a1t + a2t2 + · · · )m , where the coefficients ai and the exponent m are elements
of R.

Definition ([10]) A power structure over a ring R with unity 1 is a map

(1 + t R[[t]]) × R → 1 + t R[[t]]
(
(A(t),m) �→ (A(t))m

)
, A(t) = 1+a1t +a2t2 +· · · which possesses the properties

of the exponential function, namely:

1. (A(t))0 = 1,
2. (A(t))1 = A(t),
3. (A(t) · B(t))m = (A(t))m · (B(t))m ,
4. (A(t))m+n = (A(t))m · (A(t))n ,
5. (A(t))mn = (

(A(t))n
)m ,

6. (1 + a1t + · · · )m = 1 + ma1t + · · · ;
7.

(
A(tk)

)m = (A(t))m |t �→tk .

Definition A power structure over a ring R is finitely determined if the fact that
two series A1(t) and A2(t) from 1 + t R[[t]] differ by terms of order ≥ k (that is
A1(t)−A2(t) ∈ mk , wherem = 〈t〉 ⊂ R[[t]]) implies that (A1(t))m−(A2(t))m ∈ mk .

A natural power structure over the ringZ of integers is defined by the usual equation
for an exponent of a series (see, e.g., [17], page 40)

(1 + a1t + a2t
2 + · · · )m

= 1 +
∞∑

k=1

⎛

⎝
∑

{ki }:∑i iki=k

m(m − 1) . . . (m − ∑
i ki + 1) × ∏

i a
ki
i∏

i ki !

⎞

⎠ · tk . (1)

The sum in the parenthesis is over all partitions of k. (Obviously this power structure
is finitely determined. It is easy to show that this power structure is the only finitely
determined power structure over the ring Z.)

The Grothendieck ring K0(VarC) of complex quasi-projective varieties is the
Abelian group generated by the classes [X ] of all quasi-projective varieties X (with
the reduced scheme structures) modulo the relations

1. if varierties X and Y are isomorphic, then [X ] = [Y ];
2. if Y is a Zariski closed subset of a variety X , them [X ] = [Y ] + [X\Y ].
The multiplication in K0(VarC) is defined by the Cartesian product of varieties.

The power structure over the Grothendieck ring K0(VarC) of complex quasi-
projective varieties defined in [10] is given by the equation
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598 S. M. Gusein-Zade et al.

(1 + [A1]t + [A2]t2 + · · · )[M]

= 1 +
∞∑

k=1

⎛

⎝
∑

{ki }:∑i iki=k

[((
M

∑
i ki \�

)
×

∏

i

Aki
i

) /∏

i

Ski

]⎞

⎠ · tk, (2)

where [Ai ], i = 1, 2, . . ., and [M] are classes in K0(VarC) of complex quasi-projective
varieties, � is the “large diagonal” in M

∑
i ki , that is the set of (ordered) collections of∑

i ki points fromM with at least two coinciding ones, the group Ski of permutations on
ki elements acts by simultaneous permutations on the components of the corresponding
factor Mki in M

∑
i ki = ∏

i M
ki and on the components of the factor Aki

i .
Apart from theGrothendieck ring of complexquasi-projective varieties one can con-

sider the Grothendieck semiring S0(VarC). It is defined in the same way as K0(VarC)

with the word group substituted by the word semigroup. Elements of the semiring
S0(VarC) are represented by “genuine” complex quasi-projective varieties, not by
virtual ones (that is formal differences of varieties). One can show that two com-
plex quasi-projective varieties X and Y represent the same element of the semiring
S0(VarC) if and only if they are piece-wise isomorphic, that is if there exist decompo-
sitions X = ⊔s

i=1 Xi and Y = ⊔s
i=1 Yi into Zariski locally closed subsets such that

Xi and Yi are isomorphic for i = 1, . . . , s. There is a natural map (a semiring homo-
morphism) from S0(VarC) to K0(VarC). (According to [2] this map is not injective.)

A power structure over the Grothendieck ring K0(VarC) is called effective if the
fact that all the coefficients ai of the series A(t) and the exponent m are represented
by classes of complex quasi-projective varieties (i.e., belong to the image of the map
S0(VarC) → K0(VarC)) implies that all the coefficients of the series (A(t))m are also
represented by such classes. Roughly speaking this means that the power structure
can be defined over the Grothendieck semiring S0(VarC). The same concept is used
for Grothendieck rings of complex quasi-projective varieties with additional struc-
tures. The effectiveness of the described power structure over the Grothendieck ring
K0(VarC) is clear from Eq. (2).

An equation similar to (2) was given in [16] for a power structure over the
Grothendieck ring of complex quasi-projective varieties over an Abelian monoid used
there.

Power structures over a ring are related to λ-structures on it. Let R be a ring with
a λ-structure, that is, for each a ∈ R there is defined a series λa(t) = 1 + at + · · · ∈
1 + t R[[t]] so that λa+b(t) = λa(t)λb(t) (in other words one has an additive-to-
multiplicative homomorphism R → 1 + t R[[t]]; see, e.g., [15]). A λ-structure λa(t)
defines a (finitely determined) power structure over R in the following way. Any
power series A(t) = 1 + a1t + a2t2 + · · · ∈ 1 + t R[[t]] can be in a unique way
represented as the product A(t) = ∏∞

i=1 λbi (t
i ) with bi ∈ R. (Indeed, one can see

that b1 = a1, b2 is the coefficient of t2 in A(t)
(
λb1(t)

)−1, b3 is the coefficient of t3

in A(t)
(
λb1(t)

)−1 (
λb2(t

2)
)−1

, …). Then one defines the series (A(t))m by

(A(t))m :=
∞∏

i=1

λmbi (t
i ), (3)

which induces a power structure over R.
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Power structure over the Grothendieck ring of maps 599

Remark A λ-structure on a ring R defines maps Exp : t R[[t]] → 1 + t R[[t]] and
Log : 1 + t R[[t]] → t R[[t]] (inverse to each other) in the following way:

Exp(b1t + b2t
2 + · · · ) :=

∏

k≥1

λbk (t
k) ;

if 1 + a1t + a2t2 + · · · = ∏∞
k=1 λbk (t

k), then

Log(1 + a1t + a2t
2 + · · · ) :=

∞∑

k=1

bkt
k .

The map Exp is an additive-to-multiplicative homomorphism. The map Log is a
multiplicative-to-additive homomorphism. Each of these maps determines the λ-
structure on the ring, see, e.g., [10].

One can show that the power structure (2) over the Grothendieck ring K0(VarC)

corresponds to the λ-structure on it defined by the Kapranov motivic zeta function
([14])

ζ[X ](t) = 1 + [X ]t + [S2X ]t2 + [S3X ]t3 + · · · ,

where Sk X = Xk/Sk is the kth symmetric power of the variety X . In terms of the
power structure one has ζ[X ](t) = (1 + t + t2 + · · · )[X ] = (1 − t)−[X ].

There are many λ-structures corresponding to the same power structure over a ring
R. For any series λ1(t) = 1 + t + a2t2 + · · · the equation

λa(t) := (λ1(t))
a

gives a λ-structure on the ring R. For example, the power structure (2) over K0(VarC)

can be defined both by the Kapranov motivic zeta function and by the λ-structure

λ[X ](t) := (1 + t)[X ] = 1 + [X ]t + [B2X ]t2 + [B3X ]t3 + · · · ,

where Bk X := (Xk\�)/Sk is the configuration space of k distinct unordered points
of X (see [10]).

Another “natural” λ-structure on the Grothendieck ring K0(VarC) (opposite to
the one defined by the Kapranov motivic zeta function ζ[X ](t)) is defined by the
series ζ−[X ](−t). One can show that the corresponding power structure over the ring
K0(VarC) is not effective (see [13]). (The authors know no power structure over the
ring K0(VarC) except the described two.)

Let R1 and R2 be rings with power structures over them. A ring homomorphism
ϕ : R1 → R2 induces the natural ring homomorphism R1[[t]] → R2[[t]] (also
denoted by ϕ) by ϕ

(∑
i ai t

i
) = ∑

i ϕ(ai ) t i . One has the following statement.

Proposition 1 ([11]) If a ring homomorphism ϕ : R1 → R2 is such that
ϕ

(
(1 − t)−a

) = (1 − t)−ϕ(a), then ϕ
(
(A(t))m

) = (ϕ (A(t)))ϕ(m).
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600 S. M. Gusein-Zade et al.

Equations written in terms of the power structure (2) give equations for the Euler
characteristics with compact support χ(•) and for the Hodge–Deligne polynomial
e•(u, v) via the natural homomorphisms χ : K0(VarC) → Z and e : K0(VarC) →
Z[u, v]. These homomorphisms are compatible with the power structures over the
rings Z (see Eq. (1)) and Z[u, v], where the power structure over the latter is defined
as follows.

Let Z[u1, . . . , ur ] be the ring of polynomials in r variables. Let P(u1, . . . , ur ) =∑
k∈Zr≥0

pkuk ∈ Z[u1, . . . , ur ], where k = (k1, . . . , kr ), u = (u1, . . . , ur ), uk =
uk11 · . . . · ukrr , pk ∈ Z. Let

λP (t) :=
∏

k∈Zr≥0

(1 − ukt)−pk ,

where the power (with an integer exponent −pk) means the usual one. The series
λP (t) defines a λ-structure on the ring Z[u1, . . . , ur ] and therefore a power structure
over it (with λP (t) = (1 − t)−P ).

Let r = 2, u1 = u, u2 = v. Let e : K0(VarC) → Z[u, v] be the ring homomor-
phism which sends the class [X ] of a quasi-projective variety X to its Hodge–Deligne
polynomial eX (u, v) = ∑

i, j h
i j
X (−u)i (−v) j . One can see that the homomorphism e

respects the λ-and therefore the power structures over the source and over the target.
This is shown in [5,11]: in terms of the power structures Proposition 1.2 in [5] can be
rewritten as

e
(
(1 − t)−[X ]) = (1 − t)−eX (u,v).

3 Grothendieck ring of maps

Let us consider (regular) maps f : X → Y between complex quasi-projective vari-
eties.

Definition Maps f : X → Y and f ′ : X ′ → Y ′ between complex quasi-projective
varieties are equivalent if there exist isomorphisms h1 : X → X ′ and h2 : Y → Y ′
such that h2 ◦ f = f ′ ◦ h1.

The definition of the Grothendieck ring of maps is inspired by the one for the
Grothendieck ring of varieties K0(VarC).

Definition The Grothendieck ring K0(MapC) of maps between complex quasi-

projective varieties is the free Abelian group generated by the classes [X f→ Y ]
of maps between varieties with the reduced scheme structures modulo the relations:

1. if two maps f : X → Y and f ′ : X ′ → Y ′ are equivalent, then

[X f→ Y ] = [X ′ f ′
→ Y ′];
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Power structure over the Grothendieck ring of maps 601

2. if f : X → Y is a map and Z is a Zariski closed subset of Y , then

[X f→ Y ] = [ f −1(Z)
f | f −1(Z)−→ Z ] + [ f −1(Y\Z)

f | f −1(Y\Z)−→ Y\Z ];

3. if f : X → Y is a map and Z is a Zariski closed subset of X , then

[X f→ Y ] = [Z f |Z−→ Y ] + [X\Z f |X\Z−→ Y ].

Thedefinitionmeans that the summation in K0(MapC) can be defined by the disjoint
union, that is

[X1
f1→ Y2] + [X2

f2→ Y2] := [X1 � X2
f1� f2−→ Y1 � Y2].

The multiplication in K0(MapC) is defined by the Cartesian product:

[X1
f1→ Y2] · [X2

f2→ Y2] := [X1 × X2
f1× f2−→ Y1 × Y2].

The unit 1 in K0(MapC) is represented by the identity map form a point to itself.

Remark The relation 3) applied to Z = ∅ gives that [∅ → Y ] = 0. This implies that
if F : X → Y is a map between varieties and X is a subvariety of X , then the class
of a map f : X → Y , where Y ⊂ Y , f = F|X does not depend on Y if Y ⊃ F(X).

Therefore, in a situation of this sort, to define the class [X f→ Y ], one has to describe
only the source X . This will be used, in particular, in the proof of Theorem 1.

There is a natural homomorphism π from K0(MapC) to the Grothendieck ring

K0(VarC) of complex quasi-projective varieties which sends [X f→ Y ] to [X ]. (The
correspondence [X f→ Y ] �→ [Y ] is notwell defined: see theRemark above.) Thismap
has two natural “sections”: injective ring homomorphisms σ1 and σ2 from K0(VarC)

to K0(MapC) defined by[X ] �→ [X→ pt] and [X ] �→ [X id→ X ] respectively, where
pt is a one point set. The relations 2) and 3) in the Definition of K0(MapC) show that
σi ◦ π = id for i = 1, 2.

Remarks 1. In the same way (substituting the word group by the word semigroup)
one can define the Grothendieck semiring S0(MapC) of maps between complex
quasi-projective varieties. The elements in S0(MapC) are represented by classes
of genuine maps, not by virtual ones (that is formal differences of maps). One
can show that the classes in S0(MapC) of regular maps f1 : X1 → Y1 and
f2 : X2 → Y2 are equal if and only if they are piece-wise isomorphic, that
is if there exist partitions X1 = ⊔n

i=1 X1,i and X2 = ⊔n
i=1 X2,i such that the

maps f1 : X1,i → f1(X1,i ) and f2 : X2,i → f2(X2,i ) are equivalent for all
i = 1, . . . , n.
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602 S. M. Gusein-Zade et al.

2. One can see that the subring of the Grothendieck ring of K0(MapC) generated
by the classes of maps between zero-dimensional varieties (that is between finite
sets) is isomorphic to Z. This follows from the fact that, due to the relations 2) an

3) in the Definition of K0(MapC), each class [X f→ Y ], where X and Y are finite
sets, is a multiple of the class [pt → pt].

4 λ-structures over the Grothendieck ring of maps

Let us describe two natural λ-structures over the ring K0(MapC).
For a map f : X → Y , one has the natural map Sk f : Sk X → SkY between the

kth symmetric powers of X and Y . (Pay attention that the map f does not define a
map between the configuration spaces Bk X = (

Xk\�)
/Sk and BkY = (

Y k\�)
/Sk

of k distinct points on X and Y respectively.)

Definition The Kapranov motivic zeta function of a map f : X → Y is defined by

ζ[X f→Y ](t) := 1 +
∑

k≥1

[Sk X Sk f−→ SkY ] · tk ∈ 1 + t K0(MapC)[[t]]. (4)

Proposition 2 The Kapranov motivic zeta function defines a λ-structure on the ring
K0(MapC).

Proof It is necessary to show that, for two maps f1 : X1 → Y1 and f2 : X2 → Y2,
one has

ζ[X1�X2
f1� f2−→ Y1�Y2]

(t) = ζ[X1
f1→Y1]

(t) · ζ[X2
f2→Y2]

(t).

This follows from the relation

Sk(X1 � X2)
Sk ( f1� f2)−→ Sk(Y1 � Y2) =

k⊔

i=0

(
Si X1

Si ( f1)−→ SiY1

)

×
(
Sk−i X2

Sk−i ( f2)−→ Sk−i Y2

)
.

This relation is a consequence of the fact that Sk(X1 � X2) = ⊔k
i=0 S

i X1 × Sk−i X2.
��

Let Bk X := (Xk\�)/Sk be the configuration space of collections of k different
points in X (� is the big diagonal in Xk consisting of k-tuples of points of X with at
least two coinciding ones). For a map f : X → Y , one has the corresponding map
Bk f : Bk X → SkY from the configuration space of k distinct points on X to the kth
symmetric power of the variety Y . Let

λ[X f→Y ](t) := 1 +
∑

k≥1

[Bk X
Bk f−→ SkY ] · tk ∈ 1 + t K0(MapC)[[t]]. (5)
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Power structure over the Grothendieck ring of maps 603

Proposition 3 The series λ[X f→Y ](t) defines a λ-structure on the ring K0(MapC).

Proof Just as in Proposition 2, for two maps f1 : X1 → Y1 and f2 : X2 → Y2, one
has

Bk (X1 � X2)
Bk ( f1� f2)−→ Sk (Y1 � Y2)

=
k⊔

i=0

(Bi X1
Bi f1−→ SiY1) × (Bk−i X2

Bk−i f2−→ Sk−i Y2).

��

5 A power structure over the ring K0(MapC)

Let us define a power structure over the ring K0(MapC).
For a series

A(t) := 1 + [X1
f1→ Y1]t + [X2

f2→ Y2]t2 + · · · ∈ 1 + t K0(MapC)[[t]],

and for an element m = [M f→ N ] ∈ K0(MapC), let us define (A(t))m as

1 +
∞∑

k=1

⎛

⎝
∑

k:∑i iki=k

⎡

⎣

⎛

⎝

(

M
∑

i ki \� f
∑

i ki→ N
∑

i ki

)

×
∏

i

(Xi
fi→ Yi )

ki

⎞

⎠
/ ∏

i

Ski

⎤

⎦

⎞

⎠ · tk ,

(6)
where k = {ki : i ∈ Z>0, ki ∈ Z≥0}, � is the “large diagonal” in M

∑
i ki which

consists of (
∑

i ki )-tuples of points of M with at least two coinciding ones, the per-
mutation group Ski acts simultaneously on the components of the factors Mki and Nki

in M
∑

i ki \� and in N
∑

i ki and on the components of (Xi
fi→ Yi )ki .

In Eq. (6), by

((
M

∑
i ki \� f

∑
i ki→ N

∑
i ki

)
×

∏

i

(Xi
fi→ Yi )

ki

)/ ∏

i

Ski ,

we mean the map

((
M

∑
i ki \�

)
×

∏

i

Xki
i

) /∏

i

Ski →
(

N
∑

i ki ×
∏

i

Y ki
i

)/ ∏

i

Ski

induced by f and fi . (Pay attention that the action of the group
∏

i Ski on the source(
M

∑
i ki \�

)
× ∏

i Xi is free.)

Let us give an interpretation of the coefficients at tk in Eq. (6) similar to the one
in [10]. Let X0 = pt , let 	 be the disjoint union

⊔∞
i=0 Xi and let I : 	 → Z be the
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604 S. M. Gusein-Zade et al.

tautological function on 	 which sends the component Xi to i . A representative of
the coefficient at tk in the source part of (6) can be identified with the configuration
space of maps ψ : M → 	 such that

∑
x∈M I (ψ(x)) = k. This means that there are

finitely many x ∈ M such thatψ(x) /∈ X0. Taking into account only the points x ∈ M
with ψ(x) /∈ X0, it is possible to say that we consider collections of (non-coinciding)
particles on M with positive integer charges and with the space of internal states of a
particle with charge i parametrized by the variety Xi , i = 1, 2, . . . The coefficient of
tk in (6) is represented by the configuration space of collections of particles with the
total charge k (cf. [8]). These data correspond to the source of the map. The target is
represented by a similar configuration space of particles on N (images of the particles
on M under the map f ) whose locations are permitted to coincide and whose spaces
of internal states are parametrized by the varieties Yi . The map from the source to the
target is defined in the obvious way (and is determined by the maps f and fi ).

Theorem 1 Equation (6) defines a power structure over the ring K0(MapC).

Proof We have to prove the properties (3)–(5) from the definition of a power structure
(cf. [10]). Due to the Remark after the definition of the ring K0(MapC) in Sect. 3, we
have to controle only the source parts of the relations.

(3) Let

A(t) := 1 + [X1
f1→ Y1]t + [X2

f2→ Y2]t2 + · · · ,

B(t) := 1 + [X ′
1

f ′
1→ Y ′

1]t + [X ′
2

f ′
2→ Y ′

2]t2 + · · · ,

and m = [M f→ N ]. The coefficient of t s in A(t)B(t) is equal to

s∑

i=0

[Xi × X ′
s−i → Yi × Y ′

s−i ].

The coefficient of tk in (A(t)B(t))m is represented by the configuration space of maps
ψ from M to

∞⊔

s=0

s⊔

i=0

(Xi × X ′
s−i ) =

∞⊔

i, j=0

(Xi × X ′
j ) =

( ∞⊔

i=0

Xi

)

×
⎛

⎝
∞⊔

j=0

X ′
j

⎞

⎠

such that

∑

x∈M

(
I (π1 ◦ ψ(x)) + I ′(π2 ◦ ψ(x))

) = k.

Here π1 and π2 are the projections of
(⊔∞

i=0 Xi
) ×

(⊔∞
j=0 X

′
j

)
to the first and to the

second factors respectively. This is the union for � = 0, 1, . . . , k of the products of the
configuration spaces of maps ψ1 : M → ⊔∞

i=0 Xi and of maps ψ2 : M → ⊔∞
j=0 X

′
j
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with
∑

x∈M I (ψ1(x)) = � and
∑

x∈M I ′(ψ2(x)) = k − � respectively. This is just a
description of the coefficient of tk in (A(t))m · (B(t))m .

(4) Let n = [P g→ Q]. We have m + n = [M � P
f �g→ N � Q]. The coefficient

of tk in (A(t))m+n is represented by the configuration space of maps ψ from M � P
to

⊔∞
i=0 Xi such that

∑
x∈M ⊔

P I (ψ(x)) = k. This is the union for � = 0, 1, . . . , k
of the products of the configuration spaces of maps ψ1 : M → ⊔∞

i=0 Xi and of
maps ψ2 : P → ⊔∞

i=0 Xi with
∑

x∈M I (ψ1(x)) = � and
∑

x∈P I (ψ2(x)) = k − �

respectively. This is just a description of the coefficient of tk in (A(t))m · (A(t))n .

(5) Let, as above, n = [P g→ Q]. We have mn = [M × P
f ×g→ N × Q]. The

coefficient of t s in (A(t))n is represented by the configuration space of maps ψ :
P → ⊔∞

i=0 Xi such that
∑

x∈P I (ψ(x)) = s (s is the total charge of the map ψ).
The coefficient of tk in

(
(A(t))n

)m is represented by the configuration space of maps

ψ̌ from M to the union of the configuration spaces described above with the sum
of weights equal to k. Such maps are in one-to-one correspondence with the maps
ψ̂ : M × P → ⊔∞

i=0 Xi such that
∑

x∈M×P I (ψ̂(x)) = k. This is just a description
of the coefficient of tk in (A(t))mn . ��

The power structure (6) is obviously effective.

Theorem 2 The power structure (6) is defined by each of the λ-structures given by
the series ζ[X f→Y ](t) and λ[X f→Y ](t).

Proof We have to show that Eq. (6) gives:

(1 + t + t2 + · · · )[M
f→N ] = ζ[M f→N ](t), (7)

(1 + t)[M
f→N ] = λ[M f→N ](t). (8)

The coefficient of tk in (1+t+t2+· · · )[M f→N ] is represented by the configuration space
of finite subsets of points in M with (positive) multiplicities (since the map from M to⊔∞

i=0 pti is defined by the subset of points x ∈ M such that I (ψ(x)) �= 0 and by their

multiplicities I (ψ(x))). This means that this coefficient is equal to [SkM Sk f→ Sk N ].
This proves (7).

The only non-empty summand in the coefficient of tk in (1+ t)[M
f→N ] corresponds

to the partition k1 = k, ki = 0 for i > 1, and is represented by the map

(Mk\�)/Sk = BkM → Nk/Sk = Sk N .

This proves (8). ��
Remark One can see that the both injections σ1 and σ2 defined in Sect. 3 respect
the power structures over the source and the target. For a fixed variety S one has the
Grothendieck ring K0(VarC|S) of varieties over S (generated by the classes of maps
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606 S. M. Gusein-Zade et al.

f : X → S) and a natural map K0(VarC|S) → K0(MapC). This map is not a ring
homomorphism.

6 Generating series of Hilbert–Chow morphisms

Let Lv ∈ K0(MapC) be the class of the map A
1
C

→ pt from the complex affine line
to a one point set: the image of L under the inclusion σ1 : K0(VarC) ⊂ K0(MapC)

defined by [X ] �→ [X → pt]. (Do not mix Lv with the the image Lh of the element

L ∈ K0(VarC) under the other embedding defined by [X ] �→ [X id→ X ].)
For a non-singular d-dimensional quasi-projective variety X , let HilbkX be the

Hilbert scheme of zero-dimensional subschemes of length k in X . One has the Hilbert-
Chow morphism πk : HilbkX → Sk X to the kth symmetric power of X . Let Hilbk

Cd ,0

be the Hilbert scheme of zero-dimensional subschemes of length k in C
d supported

at the origin.

Theorem 3 Let X be a non-singular d-dimensional quasi-projective variety. In the
Grothendieck ring K0(MapC) one has

1 +
∞∑

k=1

[HilbkX
πk→ Sk X ] · tk =

(

1 +
∞∑

k=1

[Hilbk
Cd ,0 → pt] · tk

)[X id→X ]
. (9)

Proof The arguments of [11] show that there exists a (finite) Zariski open cover-
ing {Ui } of X (X = ⋃

i∈I0 Ui ) such that a zero-dimensional subscheme of length k
in Ui is determined by a (finite) collection of points of Ui with a subscheme from⊔∞

q=0 Hilb
q
Cd ,0

associated to each of them so that the sum of their lengths q is equal to
k. The same holds for zero-dimensional subschemes of any Zariski open subset ofUi ,
in particular, for zero-dimensional subschemes of the intersectionUI = ⋂

i∈I Ui with
I ⊂ I0, I �= ∅. Alongside with the geometric description (6) of the power structure
over K0(MapC) this gives

1 +
∞∑

k=1

[HilbkUI

πk→ Sk X ] · tk =
(

1 +
∞∑

k=1

[Hilbk
Cd ,0 → pt] · tk

)[UI
id→UI ]

.

Using the inclusion-exclusion formula one gets

1 +
∞∑

k=1

[HilbkX
πk→ Sk X ] · tk

=
∏

I⊂I0, I �=∅

(

1 +
∞∑

k=1

[HilbkUI

πk→ Sk X ] · tk
)(−1)|I |−1
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=
(

1 +
∞∑

k=1

[Hilbk
Cd ,0 → pt] · tk

) ∑

I⊂I0, I �=∅
(−1)|I |−1[UI

id→UI ]

=
(

1 +
∞∑

k=1

[Hilbk
Cd ,0 → pt] · tk

)[X id→X ]
.

This proves (9). ��
For d = 2 one has

1 +
∞∑

k=1

[Hilbk
C2,0 → pt] · tk =

∞∏

i=1

(1 − L
i−1
v t i ) ∈ 1 + K0(MapC)[[t]].

(This is a trivial reformulation of the equation

1 +
∞∑

k=1

[Hilbk
C2,0] · tk =

∞∏

i=1

(1 − L
i−1t i ) ∈ 1 + K0(VarC)[[t]]

proved in [9]). This implies the following statement.

Corollary For a non-singular quasi-projective surface X, one has

1+
∞∑

k=1

[HilbkX
πk→ Sk X ]·tk =

( ∞∏

i=1

(1 − L
i−1
v t i )

)[X id→X ]
∈ 1+K0(MapC)[[t]]. (10)

7 Versions of the described power structure

One can see that analogues of the power structure on the Grothendieck ring of maps
K0(MapC) defined by Eq. (6) exist in the following settings.

1. The relative setting The Grothendieck group K0(MapC/ϕ) of maps over a fixed
map ϕ : S1 → S2 is defined as the Grothendieck group generated by the classes
of commutative diagrams of the form

X
f−−−−→ Y

⏐⏐�
⏐⏐�

S1
ϕ−−−−→ S2

with thenatural analogues of the relations 1)–3).Themultiplication in K0(MapC/ϕ)

is defined by the fibre products over S1 and S2. An analogue of Eq. (6) defines an
(effective) power structure over K0(MapC/ϕ). In this analogue all the products
(including M

∑
ki and N

∑
ki considered as products of

∑
ki copies of M and of

N respectively) are fibre products over S1 or S2.
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608 S. M. Gusein-Zade et al.

2. The equivariant setting For a finite group G, the Grothendieck ring KG
0 (MapC) of

G-equivariant maps is defined as the Grothendieck ring generated by the classes

[X f→ Y ], where X and Y are complex quasi-projective G-varieties and f is a
G-equivariant map. All the maps in (6) are G-equivariant.

3. The relative setting over an Abelian monoid Let M be an Abelian monoid with
zero. As in the relative setting above, the Grothendieck group K0(MapC/M) of
maps over the monoid M is defined as the Grothendieck group generated by the
classes of commutative diagrams of the form

X
f−−−−→ Y

⏐⏐
�PX

⏐⏐
�pY

M
id−−−−→ M

The difference is in the definitions of the multiplication in K0(MapC/M) and of
the maps to M of the summands in Eq. (6). The multiplication is defined via the
mapM×M → M applied to the usual Cartesian product (with the targetM×M).
To define the map toM on the summands of (6), it is useful to use consider them
as configuration spaces of particles on M with some charges and some weights.
The weights of a particle s ∈ M of charge n (and thus of the internal state φ from
the variety Xn) is defined as npM (s) + pXn (φ), where pM and pXn are the maps
from the corresponding varieties to M. The weight of a collection of particles is
defined as the sum of the weights of the individual particles. Cf. [16].

4. The relative setting over a morphism of Abelian monoids One can see that the
definition of the Grothendieck ring and of the power structure over it from 3 can
be extended to maps over a fixed morphism of Abelian monoids ϕ : M1 → M2.
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