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1 Introduction

The Euler characteristic χ(·) (defined as the alternating sum of cohomology
groups with compact support) is an additive invariant of topological spaces
(sufficiently nice, e. g., quasi-projective varieties). It can be considered as
a homomorphism from the Grothendieck ring K0(VarC) of quasi-projective
varieties to the ring Z of integers. There exists a simple formula for the
generating series of the Euler characteristics of the symmetric powers SnX =
Xn/Sn of a variety X:

1 + χ(X)t+ χ(S2X)t2 + χ(S3X)t3 + . . . = (1− t)−χ(X) (1)

(the Macdonald formula). (One can interpret this formula as the fact that the
Euler characteristic is a λ-ring homomorphism between the rings K0(VarC)
and Z endowed with natural λ-structures: see Section 3).

For a topological space X with an action of a finite group G, one has the
notions of the orbifold Euler characteristic χorb(X,G) (coming from physics)
and of Euler characteristics χ(k)(X,G) of higher orders (χorb(X,G) = χ(1)(X,G)).
They can be considered as (Z-valued) functions on the Grothendieck ring
KG

0 (VarC) of G-varieties. However, they are not ring homomorphisms from
KG

0 (VarC) to Z.
In [7], there were defined generalized (“motivic”) versions of the orbifold

Euler characteristic and of Euler characteristics of higher orders with val-
ues in the Grothendieck ring K0(VarC) of varieties extended by the rational
powers of the class L of the complex affine line. They are defined for a non-
singular (!) variety with an action of a finite group G. They are not defined
as functions on a certain ring (say, on the Grothendieck ring of G-varieties).
There was obtained a Macdonald type formula for the generating series of
generalized higher order Euler characteristics of the Cartesian powers of a
G-manifold with the actions of the wreath products Gn on them. It is formu-
lated in terms of the so-called power structure over the ring K0(VarC)[Ls].
(A power structure over a ring R is a method to give sense to an expression
of the form (1 + a1t+ a2t

2 + . . .)m, where ai and m are elements of the ring
R: [5], see also Section 3.)

Here we define a Grothendieck ring K fGr
0 (VarC) of varieties with finite

groups actions. Elements of K fGr
0 (VarC) are classes of varieties with actions

of finite groups (different, in general) on subvarieties constituting partitions
of them. The most important ingredient of the definition is the identification
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of the class of a variety with a group action with the class of the variety
obtained by the induction operation (with an action of a bigger group).

We show that the orbifold Euler characteristic and the Euler character-
istics of higher orders can be defined as homomorphisms from K fGr

0 (VarC)
to the ring Z of integers. We describe two natural λ-structures on the ring
K fGr

0 (VarC). These λ-structures define different power structures over this
ring. We show that one of this power structures is not effective (see the defi-
nition in Section 3) and the other one is. We give a geometric description of
the effective power structure. We define a Grothendieck ring K fGr

0 (VectC) of
varieties with equivariant vector bundles and show that the generalized Eu-
ler characteristics of higher orders can be defined as homomorphisms from
K fGr

0 (VectC) to K0(VarC)[Ls]. We give an analogue of the formula from [7]
for the generating series of the generalized higher order Euler characteristics
of wreath products.

The authors are very thankful to the referee for a number of useful re-
marks/suggestions.

2 Orbifold Euler characteristics and their gen-

eralized versions

For a finite group G, let ConjG be the set of the conjugacy classes of elements
of G, for an element g ∈ G let CG(g) = {h ∈ G : h−1gh = g} be the
centralizer of g. For a G-space X and for a subgroup H ⊂ G, let XH = {x ∈
X : gx = x for all g ∈ H} be the fixed point set of the subgroup H. The
orbifold Euler characteristic χorb(X,G) of the G-space X is defined, e. g., in
[1], [9]:

χorb(X,G) =
1

|G|
∑

(g0,g1)∈G×G:
g0g1=g1g0

χ(X〈g0,g1〉) =
∑

[g]∈ConjG

χ(X〈g〉/CG(g)) ∈ Z , (2)

where g is a representative of a class [g], 〈g〉 and 〈g0, g1〉 are the subgroups
of G generated by the corresponding elements.

The higher order Euler characteristics of (X,G) were defined in [1] and
[3] by:

χ(k)(X,G) =
1

|G|
∑

g∈Gk+1:
gigj=gjgi

χ(X〈g〉) =
∑

[g]∈ConjG

χ(k−1)(X〈g〉, CG(g)) , (3)
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where k is a positive integer (the order of the Euler characteristic), g =
(g0, g1, . . . , gk), 〈g〉 is the subgroup generated by g0, g1, . . . , gk, and (for the
second, recurrent, definition) χ(0)(X,G) is defined as the usual Euler charac-
teristic χ(X/G) of the quotient. The orbifold Euler characteristic χorb(X,G)
is the Euler characteristic χ(1)(X,G) of order 1.

For a G-variety X, the cartesian power Xn carries an action of the wreath
productGn = GnoSn generated by the natural action of the symmetric group
Sn (permuting the factors) and by the natural (component-wise) action of
the Cartesian power Gn. The pair (Xn, Gn) should be (or can be) considered
as an analogue of the symmetric power for the pair (X,G).

For k ≥ 0 one has the following Macdonald type formula (see [14, Theo-
rem A])

1 +
∞∑
n=1

χ(k)(Xn, Gn) · tn =

( ∏
r1,...,rk≥1

(1− tr1r2···rk)r2r
2
3 ···r

k−1
k

)−χ(k)(X,G)

. (4)

When k = 0, one gets the standard Macdonald formula (Equation (1)) for
the quotient X/G.

There is a (more or less) natural notion of the Grothendieck ringKG
0 (VarC)

of (complex quasi-projective) G-varieties such that the orbifold Euler charac-
teristic χorb(·) and the Euler characteristics of higher orders χ(k)(·) are func-
tions on it. The Grothendieck ring KG

0 (VarC) of complex quasi-projective
G-varieties is the Abelian group generated by the G-isomorphism classes
[X,G] of complex quasi-projective varieties X with G-actions modulo the re-
lation: [X,G] = [Y,G]+ [X \Y,G] for a Zariski closed G-invariant subvariety
Y of X. The multiplication in KG

0 (VarC) is defined by the Cartesian product
with the diagonal G-action.

Remark. Usually, in the definition of the Grothendieck ring of complex
quasi-projective G-varieties, one adds the following relation: if E → X is a
G-equivariant vector bundle of rank n, then [E] = Ln · [X,G], where L is
the class of the complex affine line with the trivial G-action. We use the
definition given, e. g., in [12]. In [2] this Grothendieck ring was also defined

(alongside with the “traditional one”) and was denoted by K
′,G
0 (VarC).

One can easily understand that χ(k) are additive functions on KG
0 (VarC),

however, they are not multiplicative. This can be seen, e. g., from the fact
that, for an Abelian G, χ(k)(1) = |G|k (1 ∈ KG

0 (VarC) is the class of the
one-point variety with the only G-action on it). Thus they are not ring
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homomorphisms from KG
0 (VarC) to Z. In what follows we, in particular,

define a Grothendieck ring (so-called Grothendieck ring of varieties with finite
groups actions) such that χorb and χ(k) are ring homomorphisms from it to
Z.

LetK0(VarC)[Ls]s∈Q (orK0(VarC)[Ls] for short) be the modification of the
Grothendieck ring K0(VarC) of quasi-projective varieties obtained by adding
all rational powers of the class L of the complex affine line. The elements
of K0(VarC)[Ls] are in a bijective correspondence with the finite sums of the
form

∑
i ciLri , where ci are elements of the localization K0(VarC)(L) of the

ring K0(VarC) by the class L, ri are different rational numbers inbetween 0
and 1: 0 ≤ ri < 1. Thus the ring K0(VarC)[Ls] contains the localization
K0(VarC)(L). It was shown (L. Borisov) that L is a zero divisor in K0(VarC)
and therefore the natural map K0(VarC) → K0(VarC)(L) is not injective.
Therefore the natural map K0(VarC) → K0(VarC)[Ls] is not injective as
well.

Let X be a non-singular complex quasi-projective variety of dimension
d with an (algebraic) action of the group G. To define the higher order
generalized (“motivic”) Euler characteristics of the pair (X,G), one has to
use the so called age (or fermion shift) agex(g) of an element g ∈ G at a fixed
point x of g defined in [16], [10]. The element g acts on the tangent space TxX
as an automorphism of finite order. This action on TxX can be represented
by a diagonal matrix diag(exp(2πiθ1), . . . , exp(2πiθd)) with 0 ≤ θj < 1 for
j = 1, 2, . . . , d (θj are rational numbers). The age of the element g at the

point x is defined by agex(g) =
∑d

j=1 θj ∈ Q≥0. For a rational number q, let

X
〈g〉
q be the set of points x ∈ X〈g〉 such that agex(g) = q.

For a rational number ϕ1 ∈ Q, the generalized orbifold Euler character-
istic of weight ϕ1 of the pair (X,G) is defined by

[X,G]ϕ1 :=
∑

[g]∈ConjG

∑
q∈Q

[X〈g〉q /CG(g)] · Lϕ1q ∈ K0(VarC)[Ls] . (5)

(See an explanation for introducing the weight ϕ1 in [7]. Generalized orbifold
Euler characteristic is meaningful for at least two values of the weight ϕ1: 0
and 1.) Equation (5) is a reformulation of the definition from [15] given in
terms of the orbifold Hodge–Deligne polynomial.

The generalized Euler characteristics of higher orders are defined recur-
sively by an equation which is a sort of “a motivic version” of the second
equality in (3) taking into account ages of elements: see [7] for the details or

5



Section 7 for a somewhat more general definition. Since all of them are de-
fined only for smooth varieties, they are not functions on a certain ring (say,
on a Grothendieck ring of G-varieties). In Section 7 we define a Grothendieck
ring (the Grothendieck ring of varieties with equivariant vector bundles) such
that (appropriately defined) generalized Euler characteristics of higher orders
are ring homomorphisms from this Grothendieck ring to K0(VarC)[Ls].

A Macdonald type formula for the generalized Euler characteristics of
higher orders (a “motivic” version of (4)) is written in terms of the power
structure over the ring K0(VarC)[Ls]).

3 λ-structures and power structures

A Macdonald type equation for an invariant taking values in a certain ring
can be formulated in terms of a power structure over the ring of values of
the invariant. Let R be a commutative ring with unity. A power structure
over the ring R is a method to give sense to expressions of the form (A(t))m,
where A(t) = 1 + a1t + a2t

2 + . . . is a power series with the coefficients ai
from R and m is an element of R.

Definition 1 [5] A power structure over the ring R is a map

(1 + tR[[t]])×R→ 1 + tR[[t]] ((A(t),m) 7→ (A(t))m)

possessing the properties of the exponential function, namely:

(1) (A(t))0 = 1;

(2) (A(t))1 = A(t);

(3) (A(t) ·B(t))m = (A(t))m · (B(t))m;

(4) (A(t))m+n = (A(t))m · (A(t))n;

(5) (A(t))mn = ((A(t))n)
m

;

(6) (1 + a1t+ . . .)m = 1 +ma1t+ . . .;

(7)
(
A(tk)

)m
= (A(t))m |t7→tk .
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Remark. In another (more short and more formal) way this definition can
be formulated as follows: see [13] for details. A power structure over R is an
R-module structure on the additive group of the ring of (big) Witt vectors
W (R) := 1 + tR[[t]] such that the natural map W (R) → R,

∑
ait

i 7→ a1, is
a morphism of R-modules and the R-module structure commutes with the
Verschiebung maps Vn : W (R)→ W (R), A(t) 7→ A(tn).

Let m be the ideal tR[[t]] in the ring R[[t]]. A power structure over the ring
R is finitely determined if, for any k ≥ 1, the fact that A(t) ∈ 1 +mk implies
that (A(t))m ∈ 1 + mk, i. e., if it respects the natural filtration F nW (R) =
1+tnR[[t]] on the ring of Witt vectors. (Because of the Verschiebung property,
this is equivalent to being continuous with respect to the filtration F nW (R).)

The natural power structure over the ring Z of integers is defined by the
standard formula for a power of a series:

(1 + a1t+ a2t
2 + . . .)m =

= 1 +
∞∑
k=1

 ∑
{ki}:

∑
iki=k

m(m− 1) · · · (m−
∑

i ki + 1) ·
∏

i a
ki
i∏

i ki!

 · tk.
A power structure over the Grothendieck ring K0(VarC) of complex quasi-

projective varieties was defined in [5] by the formula

(1 + [A1]t+ [A2]t2 + . . .)[M ] =

= 1 +
∞∑
k=1

 ∑
{ki}:

∑
iki=k

[((
M

∑
i ki \∆

)
×
∏
i

Akii

)/∏
i

Ski

] · tk,(6)

where Ai, i = 1, 2, . . ., and M are quasi-projective varieties ([Ai] and [M ]
are their classes in the ring K0(VarC)), ∆ is the large diagonal in M

∑
i ki ,

that is, the set of (ordered) (
∑

i ki)-tuples of points of M with at least two
coinciding ones, the group Ski of permutations on ki elements acts by the
simultaneous permutations on the components of the corresponding factor
Mki in M

∑
i ki =

∏
iM

ki and on the components of Akii .
Except the Grothendieck ring of complex quasi-projective varieties one

can consider the Grothendieck semiring S0(VarC). It is defined in the same
way as K0(VarC) with the word group substituted by the word semigroup.
Two complex quasi-projective varieties X and Y represent the same element
of the semiring S0(VarC) if and only if they are piece-wise isomorphic, that is
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if there exist decompositions X =
⊔s
i=1 Xi and Y =

⊔s
i=1 Yi into Zariski lo-

cally closed subsets such that Xi and Yi are isomorphic for i = 1, . . . , s. There
is a natural map (a semiring homomorphism) from S0(VarC) to K0(VarC).
(It is not known whether or not this map is injective.)

A power structure over the Grothendieck ring K0(VarC) is called effective
if the fact that all the coefficients ai of the series A(t) and the exponent m are
represented by classes of complex quasi-projective varieties (i. e., belong to
the image of the map S0(VarC)→ K0(VarC)) implies that all the coefficients
of the series (A(t))m are also represented by such classes. (Roughly speaking
this means that the power structure can be defined over the Grothendieck
semiring S0(VarC).) The same concept can be considered for Grothendieck
rings of complex quasi-projective varieties with additional structures. The
effectiveness of the described power structure over the Grothendieck ring
K0(VarC) is clear from Equation (6).

The notion of a power structure over a ring is closely related with the
notion of a λ-ring structure. A λ-ring structure (or a pre-λ-ring structure
in a certain terminology, see, e. g., [11]) is an additive-to-multiplicative ho-
momorphism R → 1 + tR[[t]], a 7→ λa(t) (λa+b(t) = λa(t) · λb(t)) such that
λa(t) = 1 +at+ . . . A λ-ring structure on a ring defines a finitely determined
power structure over it in the following way. Any series A(t) ∈ 1+ tR[[t]] can
be in a unique way represented as

∏∞
i=1 λbi(t

i), for some bi ∈ R. Then one
defines (A(t))m :=

∏∞
i=1 λmbi(t

i). This gives a surjective map from the set of
λ-structures to the set of finitely determined power structures. The preim-
age of a power structure consists of all λ-structures given by the formula
λa(t) = (λ1(t))a with an arbitrary λ1(t) = 1 + t+

∑∞
i=2 ait

i.
One can show that the power structure (6) is defined by the λ-ring struc-

ture on the Grothendieck ring K0(VarC) given by the Kapranov zeta function

ζ[M ](t) := 1 +
∞∑
k=1

[SkM ] · tk,

where SkM = Mk/Sk is the kth symmetric power of the variety M . This
follows from the following equation

ζ[M ](t) = (1− t)−[M ] = (1 + t+ t2 + . . .)[M ].

The power structure (6) over the Grothendieck ring K0(VarC) is also defined
by the following λ-ring structure on it. Let BkM = (Mk \ ∆)/Sk be the
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configuration space of k-point subsets of M (∆ is the big diagonal in Mk

consisting on k-tuples of points of M with at least two coinciding ones). The
series

λ[M ](t) := 1 +
∞∑
k=1

[BkM ] · tk

gives a λ-ring structure on the Grothendieck ring K0(VarC) which defines the
same power structure (6) over it. In terms of the power structure one has
λ[M ](t) = (1 + t)[M ].

Alongside with a λ-structure on a ring (defined by a series λa(t)) one has
the so-called opposite λ-structure defined by the series λ′a(t) := (λa(−t))−1.
For example, on a ring with a power structure, the λ-structure opposite to
(1 + t)a is the result of the substitution t 7→ −t in the series (1 + t)−a,
which differs from (1− t)−a, because, in general, a power structure does not
commute with the substitution t 7→ −t. In particular this is the case for
the power structure over the Grothendieck ring K0(VarC) described above.
Two λ-structures define the same finitely determined power structure if and
only if this holds for the opposite λ-structures. One can show that the power
structure over the ring K0(VarC) defined by the λ-structures opposite to
ζ[M ](t) and λ[M ](t) is not effective: [6].

4 Grothendieck ring of varieties with finite

groups actions

Definition 2 A quasi-projective variety X with a finite groups action is a
variety represented as the disjoint union of (locally closed) subvarieties Xi,
i = 1, . . . , s, with (left) actions of finite groups Gi on them.

This means that X can be decomposed into parts with actions of (dif-

ferent, in general) finite groups on them. We shall write X =
s⊔
i=1

(Xi, Gi).

A partition of X means partitions of its components Xi as Gi-varieties. In
particular a G-variety (G is a finite group) is a variety with a finite groups
action. For short we will call varieties of this sort varieties with pure actions.

Definition 3 Two varieties with pure actions (Z,G) and (Z ′, G′) are isomor-
phic if there exist isomorphisms ϕ : G→ G′ (of finite groups) and ψ : Z → Z ′
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(of quasi-projective varieties) such that ψ is equivariant relative to ϕ, that
is, ψ(gx) = ϕ(g)ψ(x) for x ∈ Z, g ∈ G.

Definition 4 Two varieties with finite groups actions X and Y are called

equivalent if there exist partitions X =
N⊔
i=1

(X(i), G(i)) and Y =
N⊔
i=1

(Y(i), G
′
(i))

such that (X(i), G(i)) is isomorphic to (Y(i), G
′
(i)) for i = 1, . . . , N .

There exist a somewhat natural notion of the Grothendieck ring of va-
rieties with a finite groups actions: see below. However, it does not really
correspond to our aim. Because of that here we will use the name pre-
Grothendieck ring.

Definition 5 The pre-Grothendieck ring of quasi-projective varieties with fi-
nite groups actions is the Abelian group K̃ fGr

0 (VarC) generated by the classes
[X ] of (quasi-projective) varieties with finite groups actions modulo the fol-
lowing relations:

(1) if quasi-projective varieties with finite groups actions X and Y are
equivalent, then [X ] = [Y ];

(2) if Y is a Zariski closed subvariety invariant with respect to the groups
actions of X , then [X ] = [Y ] + [X \ Y ].

The multiplication in K̃ fGr
0 (VarC) is defined by the Cartesian product of va-

rieties with the natural finite groups action on it.

Remark. One can see that, in this definition, one can consider the group
generated by the classes of varieties with pure actions, obtaining the same
ring.

In particular, for varieties with pure actions, one has

[(Z1, G1)] · [(Z2, G2)] = [(Z1 × Z2, G1 ×G2)]

with the natural (diagonal) action ofG1×G2. The unit element in K̃ fGr
0 (VarC)

is 1 = [(Spec(C ), (e))], the class of the one-point variety with the action of

the group with one element. The ring K̃ fGr
0 (VarC) (as an Abelian group) is

generated by the classes [(Z,G)] of varieties with pure actions.
It is easy to see that the orbifold Euler characteristic χorb and the Eu-

ler characteristics χ(k) of higher order can be defined as functions on the
Grothendieck ring K̃ fGr

0 (VarC). Moreover, the following statement implies

that they are (ring) homomorphisms from K̃ fGr
0 (VarC) to Z.
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Proposition 1 (see, e. g., [14, Proposition 2–1]) For two varieties with pure
actions (Z,G) and (Z ′, G′) one has

χ(k)(Z × Z ′, G×G′) = χ(k)(Z,G) · χ(k)(Z ′, G′) .

Nevertheless it is not clear whether the ring K̃ fGr
0 (VarC) can be endowed

with a (natural) λ-structure and therefore it is not possible to try to consider
χorb and χ(k) as λ-ring homomorphisms. To make this possible we have to
introduce a sort of a reduction of the ring K̃ fGr

0 (VarC).
Let Z be a G-variety and let H be a finite group such that G ⊂ H. There

is a natural induction operation which produces an H-variety. Consider the
following equivalence relation on H ×Z: (h1, x1) ∼ (h2, x2) (xi ∈ Z, hi ∈ H)
if and only if there exists g ∈ G such that h2 = h1g

−1, x2 = gx1. The quotient
indHGZ := (H × Z)/ ∼ carries a natural H-action. The map x 7→ (1, x) is an
embedding of Z into indHGZ (as a G-variety).

Definition 6 The Grothendieck ring of quasi-projective varieties with finite
groups actions is the Abelian group K fGr

0 (VarC) generated by the classes [X ]
of (quasi-projective) varieties with finite groups actions modulo the relations:

(1) and (2) from Definition 5.

(3) if (Z,G) is a G-variety and G is a subgroup of a finite group H, then[
(indHGZ,H)

]
= [(Z,G)] .

The multiplication in K fGr
0 (VarC) is defined by the Cartesian product of va-

rieties with the natural finite groups action on it.

Remarks. 1. There exist two natural ring homomorphisms i : K0(VarC)→
K fGr

0 (VarC) sending [Z] to [(Z, {e})] and p : K fGr
0 (VarC)→ K0(VarC) sending

[(Z,G)] to [Z/G]. One has p ◦ i = id.
2. In [4], E. Getzler and R. Pandharipande considered the Grothendieck
group of varieties with so-called S-actions, where S =

⊔∞
n=0 Sn (Sn is the

group of permutations of n elements):

K0(VarC,S) =
∞∏
n=0

KSn
0 (VarC)
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with the multiplication � induced by

[(X,Sm)] � [(Y, Sn)] = [(ind
Sm+n

Sm×Sn
(X × Y ), Sm+n)].

One can see that modulo relation (3) this multiplication coincides with the
Cartesian one. Therefore there exists a natural homomorphism

K0(VarC,S)→ K fGr
0 (VarC).

For a finite group H, let K fGr
0 (VarC

([H])) be the Grothendieck group (not
ring!) generated by the classes of quasi-projective varieties with finite groups
actions such that the isotropy group of each point is isomorphic to H modulo
the same relations (1)–(3) as in Definition 6 of K fGr

0 (VarC).

Proposition 2 As an Abelian group, K fGr
0 (VarC) is the direct sum over the

isomorphism classes [H] of finite groups of the groups K fGr
0 (VarC

([H])).

Proof . One has a natural (group) homomorphism j[H] : K fGr
0 (VarC

([H])) →
K fGr

0 (VarC). Let X =
⊔s
i=1(Xi, Gi) be a variety with a finite groups action.

Let X
([H])
i be the set of points x ∈ Xi such that the isotropy group Gix of

the Gi-action is isomorphic to H. The subset X
([H])
i is locally Zariski closed

in Xi. Indeed,

X
([H])
i =

⊔
K⊂Gi:K∈[H]

XK
i \

⊔
K⊂Gi|∃K′∈[H]:K′ K

XK
i ,

where XK
i = {x ∈ Xi : ∀g ∈ K, gx = x} (the set of fixed points of a subgroup

K) is Zariski closed in Xi. Let p[H] be the homomorphism K fGr
0 (VarC) →

K fGr
0 (VarC

([H])) defined by

p[H]([X ]) =
s∑
i=1

[(X
([H])
i , Gi)].

One can see that the homomorphism p[H] is well-defined, p[H] ◦ j[H] = id,
p[H] ◦ j[H′] = 0 for H ′ 6∼= H, and

∑
[H] j[H] ◦ p[H] = id. This proves the

statement. �

In the same way K fGr
0 (VarC) is the direct sum over n = 1, 2, . . . of the

Grothendieck groups of quasi-projective varieties with finite groups actions
with the isotropy subgroups of points of order n.
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Substituting the words “group generated by the classes” by the words
“semigroup generated by the classes” in Definition 6, one gets the notion of
the Grothendieck semiring SfGr

0 (VarC) of quasi-projective varieties with finite
groups actions. There is a natural (semiring) homomorphism SfGr

0 (VarC) →
K fGr

0 (VarC). This notion permits to introduce the notion of effectiveness of
a power structure defined over the ring K fGr

0 (VarC).
As in Section 2, let ConjG be the set of conjugacy classes of elements of

a group G. The conjugacy class of an element g ∈ G is denoted by [g]. If
there are several groups containing g, we will indicate the group using the
notation [g]G. The centralizer of an element g ∈ G is denoted by CG(g).

Let Z be a G-variety, let G be a subgroup of a finite group H, and let
indHGZ be the induced H-variety. If an element h ∈ H has a non-empty fixed

point set
(
indHGZ

)〈h〉
(say, (h0, x0) ∈

(
indHGZ

)〈h〉
), then there exists g ∈ G

such that (hh0g
−1, gx0) = (h0, x0), i.e., h−1

0 hh0 = g, gx0 = x0. This means
that g ∈ [h]H . Since in the definitions of the orbifold Euler characteristic
and of the higher order Euler characteristics the summation runs over repre-
sentatives of the conjugacy classes of elements of the group, we can assume
that applying them to the H-variety indHGZ we always take a representative
of a conjugacy class of elements of H belonging to the subgroup G.

Lemma 1 Let G, H, and Z be as above. Then, for g ∈ G, the spaces with fi-

nite groups actions
((

indHGZ
)〈g〉

, CH(g)
)

and
⊔

[g′]∈ConjG:

[g′]H=[g]H

(
ind

CH(g′)
CG(g′)Z

〈g′〉, CH(g′)
)

are equivalent.

Proof . Let (h0, x0) ∈ indHGZ be a fixed point of the action of g : this

means that (h0, x0) ∈
(
indHGZ

)〈g〉
. As above, there exist g′ ∈ G such that

(gh0(g′)−1, g′x0) = (h0, x0), i.e. h−1
0 gh0 = g′, g′x0 = x0. In particular g′ ∈

[g]H . In each conjugacy class [g′] ∈ ConjG : such that [g′]H = [g]H , let us
choose a representative g′.

Let (indHGZ)[g′]G be the set of points of
(
indHGZ

)〈g〉
represented by pairs

(h, x) with h−1gh ∈ [g′]G. For h ∈ H, let {h} be the class of h in H/G, let
Z{h} be the subvariety of indHGZ consisting of points of the form (h, x), x ∈ Z.
(This subvariety depends only on the class {h} of h.) Then (indHGZ)[g′]G is

the union of the subvarieties Z{h} with h−1gh ∈ [g′]G. One has
(
indHGZ

)〈g〉 ⊂⊔
[g′]∈ConjG:

(indHGZ)[g′]G . For each chosen g′ (g′ ∈ [g′]G, [g′]H = [g]H), let h(g′)

13



be an element of H such that (h(g′)−1gh(g) = g′. (We can choose g itself as
a representative of the conjugacy class [g] and h(g) = e.) The intersection
of (indHGZ)[g′]G with Z{h(g′)} is, in a natural way, isomorphic to Z〈g

′〉. The

centralizer CH(g′) acts on
(
indHGZ

)〈g〉 ∩ (indHGZ)[g′]G , the later is the union

of the orbits of points from
(
indHGZ

)〈g〉 ∩ Z{h(g′)}. Moreover the subgroup

of CH(g′) preserving
(
indHGZ

)〈g〉 ∩ Z{h(g′)} coincides with CG(g′). There-

fore
(
indHGZ

)〈g〉 ∩ (indHGZ)[g′]G and ind
CH(g′

CG(g′)Z
〈g′〉 are isomorphic as CH(g′)-

varieties. Since(
indHGZ

)〈g〉
=

⊔
[g′]∈ConjG

[g′]H=[g]H

(
indHGZ

)〈g〉 ∩ (indHGZ)[g′]G ,

one has the statement. �

It is easy to see that indHGZ/H = Z/G and therefore χ(indHGZ/H) =
χ(Z/G). This means that

χ(0)(indHGZ,H) = χ(0)(Z,G) . (7)

Theorem 1 Let Z be a G-variety, G ⊂ H. Then for k ≥ 0 one has

χ(k)(indHGZ,H) = χ(k)(Z,G) . (8)

Proof . Equation (7) gives the statement for k = 0. Assume that Equa-
tion (8) is proven for the values of k smaller than the one under consideration.
One has

χ(k)(indHGZ,H) =
∑

[h]∈ConjH

χ(k−1)
(
(indHGZ)〈h〉, CH(h)

)
.

It was shown that the fixed point set (indHGZ)〈h〉 is not empty only if there
exists g ∈ G such that [h]H = [g]H . Lemma 1 implies

χ(k)(indHGZ,H) =
∑

[g]∈ConjG

χ(k−1)
(

(ind
CH(g)
CG(g)Z)〈g〉, CH(g)

)
.

The induction gives

χ(k)(indHGZ,H) =
∑

[g]∈ConjG

χ(k−1)
(
Z〈g〉, CG(g)

)
= χ(k)(Z,G).

14



�

Together with Proposition 1 this gives the following statement.

Corollary. The maps χ(k) : K fGr
0 (VarC)→ Z are ring homomorphisms.

Remark. One can see that Lemma 1 implies that there is a well-defined
ring homomorphism

α : K fGr
0 (VarC)→ K fGr

0 (VarC)

sending [(X,G)] to
∑

[g]∈ConjG

[(X〈g〉, CG(g))] and the homomorphism χ(k) is

equal to χ ◦ p ◦ αk.

5 λ-structures on K fGr
0 (VarC)

Let (Z,G) be a complex quasi-projective variety with a pure action (of a
finite group G). The Cartesian power Zn of the variety Z is endowed with
the natural actions of the group Gn (acting component-wise) and of the group
Sn (acting by permutations of the components) and therefore with the action
of their semidirect product Gn o Sn = Gn: the wreath product.

Definition 7 The Kapranov zeta function of (Z,G) is

ζ(Z,G)(t) := 1 +
∞∑
n=1

[(Zn, Gn)] tn ∈ 1 + tK fGr
0 (VarC)[[t]].

The fact that the Kapranov zeta function is well-defined on K fGr
0 (VarC)

follows form the following statement.

Proposition 3 Let (Z,G) be a G-variety and let G ⊂ H. Then

ζ(Z,G)(t) = ζ(indH
GZ,H)(t).

Proof . The coefficient of tn in ζ(indH
GZ,H)(t) is represented by (indHGZ)n with

the corresponding Hn-action. One obviously has (indHGZ)n = indH
n

GnZn with
the corresponding action of Hn and therefore (indHGZ)n = indHn

Gn
Zn with the

corresponding action of Hn. The relation (3) in the Definition of K fGr
0 (VarC)

gives [(indHn
Gn
Zn, Hn)] = [(Zn, Gn)] what is the coefficient of tn in ζ(Z,G)(t). �

The Kapranov zeta function possesses the following multiplicativity prop-
erty.
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Proposition 4 Let (Z1, G) and (Z2, G) be quasi-projective varieties with ac-
tions of a finite group G. Then one has

ζ(Z1tZ2,G)(t) = ζ(Z1,G)(t) · ζ(Z2,G)(t).

Proof . The coefficient of tn in ζ(Z1∪Z2,G)(t) is represented by variety (Z1 ∪
Z2)n with the corresponding Gn action. One can see that

((Z1 ∪ Z2)n, Gn) =
n⊔
k=0

(
indGn

Gk×Gn−k
(Zk

1 × Zn−k
2 ), Gn

)
.

The relation (3) in Definition 6 means that

[((Z1 ∪ Z2)n, Gn)] =
n∑
k=0

[
(
Zk

1 × Zn−k
2 , Gk ×Gn−k

)
]

=
n∑
k=0

[(Zk
1 , Gk)][(Z

n−k
2 , Gn−k)] . (9)

The right hand side of Equation (9) is just the coefficient of tn in ζ(Z1,G)(t) ·
ζ(Z2,G)(t). �

Propositions 3 and 4 imply the following statement.

Corollary. The Kapranov zeta function ζ•(t) defines a λ-structure on the
ring K fGr

0 (VarC).

Remark. In the terms of Definition 2 the Kapranov zeta function of a variety
X =

⊔s
i=1(Xi, Gi) with a finite groups action is

ζX (t) =
s∏
i=1

ζ(Xi,Gi)(t) ∈ 1 + tK fGr
0 (VarC)[[t]].

For a G-variety Z, let ∆G ⊂ Zn (the big G-diagonal) be the set of n-tuples
(x1, . . . , xn) ∈ Zn with at least of two of xi from the same G-orbit. One has
a natural action of the wreath product Gn on Zn \ ∆G (inherited from the
action on Zn).

Definition 8 Let the series λ(Z,G)(t) ∈ 1 + tK fGr
0 (VarC)[[t]] be defined by

λ(Z,G)(t) := 1 +
∞∑
n=1

[(Zn \∆G, Gn)] tn ∈ 1 + tK fGr
0 (VarC)[[t]].
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Just as above the facts that the series λ•(t) is well-defined and defines a
λ-structure on the ring K fGr

0 (VarC) follows from the following statements.

Proposition 5 Let (Z1, G) and (Z2, G) be quasi-projective varieties with ac-
tions of a finite group G. Then one has

λ(Z1∪Z2,G)(t) = λ(Z1,G)(t) · λ(Z2,G)(t).

Let (Z,G) be a G-variety and let G ⊂ H. Then

λ(Z,G)(t) = λ(indH
GZ,H)(t).

Proof . The coefficient of tn in λ(Z1∪Z2,G)(t) is represented by variety (Z1 ∪
Z2)n \∆G with the corresponding Gn action. One has

((Z1 ∪ Z2)n \∆G, Gn) =
n⊔
k=0

(
indGn

Gk×Gn−k
(Zk

1 \∆G)× (Zn−k
2 \∆G), Gn

)
.

The relation (3) in the Definition 6 of K fGr
0 (VarC) gives

[((Z1 ∪ Z2)n \∆G, Gn)] =
n∑
k=0

[(Zk
1 \∆G)× (Zn−k

2 \∆G), Gk ×Gn−k)]

=
n∑
k=0

[(Zk
1 \∆G, Gk)][(Z

n−k
2 \∆G, Gn−k)].

The right hand side is the coefficient of tn in λ(Z1,G)(t) · λ(Z2,G)(t).
The arguments for the second part of the Proposition are literally the

same as for the Kapranov zeta function in Proposition 3. �

6 Power structures over K fGr
0 (VarC)

The λ-structures on K fGr
0 (VarC) introduced above define power structures

over the ring. In all cases up to now (say in K0(VarC)) the power structures
defined by the analogues of the series ζ•(t) and λ•(t) are the same. This is
not the case here.

Proposition 6 The power structures over the ring K fGr
0 (VarC) defined by

the series ζ•(t) and λ•(t) differ from each other.
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Proof . In terms of the corresponding power structures (which we denote by
(A(t))mζ and (A(t))mλ respectively) one has

ζ(Z,G)(t) = (ζ(Spec(C ),(e))(t))
[(Z,G)]
ζ = (1 +

∞∑
n=1

[(Spec(C ), Sn)] tn)
[(Z,G)]
ζ ,

λ(Z,G)(t) = (λ(Spec(C ),(e))(t))
[(Z,G)]
λ = (1 + [(Spec(C ), S1)] t)

[(Z,G)]
λ .

We shall show that these two series are different.
Let us compute the first terms of the series (1 + [(Spec(C ), S1)] t)

[(Z,G)]
ζ .

We have

1 + [(Spec(C ), S1)] t = (1 + [(Spec(C ), S1)] t+ [(Spec(C ), S2)] t2 + . . .)×
×(1− [(Spec(C ), S2)] t2 + . . .) = ζ(Spec(C ),S1)(t) · ζ−[(Spec(C ),S2)](t

2) · . . .

where the dots mean terms do not influencing the part of degree ≤ 2. There-
fore

(1 + [(Spec(C ), S1)] t)
[(Z,G)]
ζ = (ζ[(Z,G)](t)) · (ζ[(Z,G×S2)](t

2))−1 · . . .
= (1 + [(Z,G)]t+ [(Z2, G2)]t2 + . . .)(1− [(Z,G× S2)]t2 + . . .) · . . .
= 1 + [(Z,G)]t+ ([(Z2, G2)]− [(Z,G× S2)])t2 + . . . (10)

where S2 acts on Z trivially. Thus one has

(1 + [(Spec(C ), S1)] t)
[(Z,G)]
ζ − (1 + [(Spec(C ), S1)] t)

[(Z,G)]
λ

= ([(∆G, G2)]− [(Z,G× S2)])t2 mod t3

where ∆G is the big G-diagonal in Z2. The coefficient of t2 is not equal to
zero in K fGr

0 (VarC) even for the trivial action of the group G on Z. This
follows from Proposition 2 and the fact that the isotropy groups of points of
the two terms have different orders. �

Proposition 7 The power structure over the ring K fGr
0 (VarC) defined by the

Kapranov zeta function ζ•(t) is not effective.

Proof . Equation (10) gives that the coefficient of t2 in (1+[(Spec(C ), S1)] t)
[(Spec(C ),G)]
ζ

is equal to [(Spec(C ), G2)]− [(Spec(C ), G×S2)]. Proposition 2 implies that
it does not belong to the image of the Grothendieck semi-ring SfGr

0 (VarC)
(since −[((Spec(C ), G× S2)] does not belong to it). �
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Theorem 2 The power structure over K fGr
0 (VarC) defined by the series λ•(t)

is effective.

Proof . To prove the statement, we will give a formula for (A(t))m, where
A(t) = 1 + [(A1, G1)]t + [(A2, G2)]t2 + . . ., m = [(M,G)], that is, for the
case when the coefficients of the series A(t) and the exponent are classes of
varieties with pure actions. It is given by the equation

(A(t))m =

= 1 +
∞∑
k=1

 ∑
{ki}:

∑
i iki=k

[((
M

∑
i ki \∆G

)
×
∏
i

Akii , G{ki}

)] · tk , (11)

where the variety
(
M

∑
i ki \∆G

)
×
∏

iA
ki
i is endowed with a finite group

action in the following way. It carries the natural action of the product

G
∑

i ki ×
∏
i

Gki
i

of the finite groups acting on the components of M and Ai. Besides that there
is a natural action of the product

∏
i Ski of permutation groups, where Ski

acts simultaneously on the components of Mki and of Akii (that is it acts by
permutation on the components of (M×Ai)ki). The variety

(
M

∑
i ki \∆G

)
×∏

iA
ki
i is endowed with the action of the group G{ki} generated by these two

actions: the semidirect product(
G

∑
i ki ×

∏
i

Gki
i

)
o

(∏
i

Ski

)
=
∏
i

(
(G×Gi)

ki o Ski

)
of the groups indicated above.

It is enough to prove that Equation (11) defines a power structure over
the ring K fGr

0 (VarC) and that λ(M,G)(t) = (1 + t)[(M,G)]. After that its ef-
fectiveness is obvious. We have to verify the properties (3), (4) and (5)
of Definition 6: all other properties obviously hold. For that let us give a
geometric interpretation of the coefficient of tk in Equation (11).

Let ΓA :=
∐k

i=1 Ai and let IA : ΓA → Z be the tautological function on ΓA
which sends the component Ai to i. The coefficient of tk in Equation (11) is
the configuration space of pairs (K,Ψ), where K is an ordered finite subset
of M and Ψ is a map from K to ΓA such that IA(Ψ(x)) ≤ IA(Ψ(y)) for
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x < y (that is several first points of K (let us denote their number by k1)
are mapped to A1, several subsequent ones (number of then being k2) are
mapped to A2, . . . ) and∑

x∈K

IA(Ψ(x)) =
∑
i

iki = k.

The group G
∑

i ki×
∏

iG
ki
i acts on this configuration space: G

∑
i ki acts on the

source and
∏

iG
ki
i acts on the image. The group S∑

i ki
acts by simultaneous

permutations on points of K sent to Ai and on there images. This gives an
action of the group G{ki}.

Property (3). Let B(t) = 1 + [(B1, G
′
1)]t + [(B2, G

′
2)]t2 + . . . Let Cj =⊔j

i=0(Ai×Bj−i) be the variety with a finite groups action representing the co-
efficient of tj in the productA(t)B(t). (HereA0 = B0 = 1 = [(Spec(C ), (e))]).

The coefficient of tk in (A(t)B(t))m is represented by the configuration
space Lk (L for “left”) of pairs (K,Ψ), where K is an ordered finite subset of
M and Ψ is a map fromK to ΓC =

⊔
i,j Ai×Bj such that

∑
x∈K IC(Ψ(x)) = k.

Such pair is defined by two pairs (K ′,Ψ′), Ψ′ : K ′ → ΓA, and (K ′′,Ψ′′),
Ψ′′ : K ′′ → ΓB, where K = K ′∪K ′′. The coefficient of tk in (A(t))m ·(B(t))m

is represented by the configuration space Rk (R for “right”) of quadruples
((K ′,Ψ′), (K ′′,Ψ′′)), where K ′ and K ′′ are finite ordered subsets of M , Ψ′ :
K ′ → ΓA, Ψ′′ : K ′′ → ΓB and

∑
x∈K′ IA(Ψ′(x)) +

∑
x∈K′′ IB(Ψ′′(x)) = k.

Modulo orderings of the sets K, K ′ and K ′′ (i. e. after factorization by
the corresponding permutations) the varieties Lk and Rk are equal. However
them themselves differ from each other and even the groups acting on them
are different. In order to prove the property, we shall distinguish parts of Lk
and Rk which can be identified (without factorization by permutations) and
such that Lk and Rk are (disjoint) unions of varieties obtained from these
parts by induction operations. The relation (3) in Definition 6 will imply
that the classes of Lk and Rk in K fGr

0 (VarC) coincide.
We have Lk =

⊔
k̄:
∑
iki=k

Lk̄. Let ki`(` = 1, 2, . . .) be integers such that∑
` ki` = ki. Let L{ki`} be the subvariety of Lk̄ consisting of pairs (K,Ψ) such

that among ki points of K mapped into Ci there are ki` points x the first
components π1 ◦ Ψ(x) of whose image under Ψ belong to A` (and thus the
second component belongs to Bi−`).

Let L̂{ki`} be the subvariety of L{ki`} consisting of pairs (K,Ψ) ⊂ L{ki`}
such that the points of K (of fixed multiplicity i) are ordered, say, in the
following way: if `1 < `2, then those points x for whom π1(Ψ(x)) ∈ A`1
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precede those for whom π1(Ψ(x)) ∈ A`2 , (the order of the points whose
images under π1 ◦Ψ lie in the same A` is arbitrary).

Also we have Rk = tk̄:
∑

i iki=k
Rk̄. For a collection {ki`}, let R{ki`} be

the corresponding subvariety of Rk̄. Let R̂{ki`} be the subvariety of R{ki`}
of the quadruples ((K ′,Ψ′), (K ′′,Ψ′′)) such that the points of K ′ (of K ′′

respectively) of fixed multiplicity ` are ordered, say, in the following way: if
i1 < i2, then those for whom Ψ(x) ∈ Ci1 precede those for whom Ψ(x) ∈ Ci2 ,
the order of the points whose images under Ψ lie in the same Ci is arbitrary.

The varieties L̂{kil} and R̂{kil} carry natural actions of the group∏
i,`

Ski`

and they are isomorphic as
∏

i,` Ski` -varieties.
Moreover, as a

∏
i Ski-variety:

L{ki`} = ind
∏

i Ski∏
i,` Ski`

L̂{ki`}.

Let m` :=
∑

i ki` ,m
′
` :=

∑
i kii−`

. The group Ski` is embedded into (
∏

` Sm`
)×

(
∏

`′ Sm`′
) permuting the corresponding ki` elements among those permuted

by Sm`
and the corresponding ki` elements among those permuted by Sm`′

simultaneously. Then as a (
∏

` Sm`
)× (

∏
`′ Sm`′

)-variety

R{ki`} = ind
(
∏

` Sm`
)×(

∏
`′ Sm`′ )∏

i,` Ski`

R̂{ki`}.

The actions of the products of the groups G, Gi and G′i are obviously coor-
dinated.

Modulo the relation (3) in Definition 6 this means that [L{ki`}] = [R{ki`}]
and therefore [Lk] = [Rk].

Property (4). Let n = (N,G). The coefficient of tk in (A(t))m+n is
represented by the configuration space Lk of pairs (K,Ψ), where K is a finite
subset of M t N and Ψ : K → ΓA is a map such that

∑
x∈K IA(Ψ(x)) = k.

For a collection {ki}, i = 1, 2, . . .,
∑

i iki = k, (that is for a partition of
k), let k′i, i = 1, 2, . . ., be integers such that 0 ≤ k′i ≤ ki. Let L{ki}{k′i} be
the subvariety of Lk consisting of pairs (K,Ψ) such that among ki points of
K of multiplicity i, the number of points belonging to M is equal to k′i for
i = 1, 2, . . . (and thus (ki−k′i) points of K of multiplicity i belong to N). Let

L̂{ki}{k′i} be the subvariety of L{ki}{k′i} consisting of pairs (K,ψ) ∈ L{ki}{k′i}

21



such that the points of K of fixed multiplicity i are ordered in the following
way: first the points of M , then the points of N .

The coefficient of tk in (A(t))m(A(t))n is represented by the configuration
space Rk of quadruples ((K ′,Ψ′), (K ′′,Ψ′′)), where K ′ is an ordered finite
subset of M , K ′′ is an ordered finite subset of N , Ψ′ : K ′ → ΓA, Ψ′′ : K ′′ →
ΓA, ∑

x∈K′
IA(Ψ′(x)) +

∑
x∈K′′

IA(Ψ′′(x)) = k .

LetR{ki}{k′i} be the subvariety ofRk consisting of quadruples ((K ′,Ψ′), (K ′′,Ψ′′))
with the number of points of multiplicity i in K ′ equal to k′i and the number
of points of multiplicity i in K ′′ equal to (ki − k′i).

The
(∏

i Sk′i ×
∏

i Ski−k′i
)
-varieties L̂{ki}{k′i} and R{ki}{k′i} are isomorphic,

L{ki}{k′i} = ind
∏

i Ski∏
i Sk′

i
×
∏

i Ski−k′
i

L̂{ki}{k′i}

as a
∏

i Ski-variety. Again the actions of the products of the groups G, G′

and Gi on these varieties are obviously coordinated. Therefore

[L{ki}{k′i}] = [R{ki}{k′i}] .

This implies that [Lk] = [Rk].
Property (5). The coefficient of tk in (A(t))mn is represented by the

configuration space Lk of pairs (K,Ψ), where K is a finite subset of M ×
N , Ψ : K → ΓA is a map such that

∑
x∈K IA(Ψ(x)) = k. For a fixed

function k(s) (s = (s1, s2, . . .)) with non-negative integer values and with∑
s (k(s)

∑
i isi) = k, let Lk(•) be the subvariety of Lk consisting of the pairs

(K,ψ) such that the projection of K to M consists of
∑

s k(s) points and
k(s) of them are such that the preimage (in K) of each of them contains s1

points of multiplicity 1, s2 points of multiplicity 2, . . .
Let L̂k(•) be the subvariety of Lk(•) consisting of pairs (K,ψ) ∈ Lk(•) such

that the points of K of fixed multiplicity i are ordered in the following way.
One takes an arbitrary order of their projections to M and the order of points
with different projections is the one in M (the order of points with the same
projection can be arbitrary).

The coefficient of of tk in ((A(t))n)m is represented by the configuration
spaceRk of the following patterns: a finite subset of points ofM with different
multiplicities (with an order of them) with a finite subset of N (also ordered)
associated to each of them and a map of the latter to ΓA. Such a pattern
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defines a finite subset of M × N . For a function k(s) (s = (s1, s2, . . .)), let
Rk(•) be the subvariety of Rk consisting of the patterns with the composition
of the corresponding finite subset of M ×N of the type described above.

Both on L̂k(•) and on Rk(•) one has the natural action of a semidirect
product Sk(•) of the group

∏
s Sk(s) (acting on the projections to M) and

of the group
∏

s (
∏

i Ssi)
k(s) (acting on the preimages of points in M). The

group Sk(•) is embedded into
∏

i S
∑

s k(si)si . As Sk(•)-varieties L̂k(•) and Rk(•)
are isomorphic. Moreover,

Lk(•) = ind
∏

i S
∑

s k(si)si
Sk(•)

L̂k(•) .

Therefore [Lk(•) ] = [Rk(•) ] and thus [Lk] = [Rk].
To show that the power structure (11) is defined by the series λ(Z,G)(t),

we have to prove that (in terms of the power structure)

λ(Z,G)(t) = (λ1(t))[(Z,G)] = (1 + t)[(Z,G)] .

The only non-empty summand in the coefficient of tk in (11) corresponds
to k1 = k, ki = 0 for i > 1 and is represented by the variety Zk \ ∆G with
the action of the corresponding wreath product. This proves the statement.
�

Remark. The λ-structures on K fGr
0 (VarC) defined by the series ζ•(t) and

λ•(t) commute with the corresponding structures on K0(VarC) through the
ring homomorphism p : K fGr

0 (VarC)→ K0(VarC). As any λ-ring, K fGr
0 (VarC)

carries the λ-structures opposite to those defined by the series ζ•(t) and λ•(t).
The fact that the power structure over K0(VarC) defined by the λ-structures
opposite to those defined by the analogues of the series ζ•(t) and λ•(t) is not
effective ([6]) implies that the power structures over K fGr

0 (VarC) defined by
the λ-structures opposite to ζ•(t) and λ•(t) are not effective as well.

7 Grothendieck ring of varieties with equiv-

ariant vector bundles

An equivariant vector bundle over a complex quasi-projective G-variety Z is a
(C-)vector bundle p : E → Z with an action of the group G on E commuting
with the action on Z and preserving the vector bundle structure. We shall
denote it by (Z,E,G). The notion of an isomorphism of two varieties with
equivariant vector bundles similar to that in Definition 3 is clear.
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Definition 9 A quasi-projective variety X with an action of finite groups
and with an equivariant vector bundle E over it is a variety represented as the
disjoint union of subvarieties Xi, i = 1, . . . , s, with actions of finite groups
Gi on them and with equivariant vector bundles Ei over them (of different
ranks in general).

Definition 10 Two varieties X and Y with finite groups actions and with
equivariant vector bundles E and E ′ over them are equivalent if there ex-

ist partitions (X , E) =
N⊔
i=1

(X(i), E(i), G(i)) and (Y , E ′) =
N⊔
i=1

(Y(i), E
′
(i), G

′
(i))

of them such that (X(i), E(i), G(i)) is isomorphic to (Y(i), E
′
(i), G

′
(i)) for i =

1, . . . , N .

Definition 11 The Grothendieck ring of varieties with equivariant vector
bundles is the Abelian group K fGr

0 (VectC) generated by the classes [(X , E)]
of complex (quasi-projective) varieties with finite groups actions and with
equivariant vector bundles over them modulo the relations:

(1) if varieties (X , E) and (Y , E ′) with finite groups actions and with equiv-
ariant vector bundles E and E ′ over them are equivalent, then [(X , E)] =
[(Y , E ′)];

(2) if Y is a Zariski closed subvariety of X invariant with respect to the
groups action, then [(X , E)] = [(Y , E|Y)] + [(X \ Y , E|X\Y)];

(3) if (Z,E,G) is a G-variety with an equivariant vector bundle and G is
a subgroup of a finite group H, then[

(indHGZ, indHGE,H)
]

= [(Z,E,G)] .

The multiplication in K fGr
0 (VectC) is defined by the Cartesian product of va-

rieties with the natural finite groups action and with the sum of the corre-
sponding vector bundles over it.

In other words

[(Z1, E1, G1)] · [(Z2, E2, G2)] = [(Z1 × Z2, E1 × E2, G1 ×G2)] (12)

(with the natural action of G1 ×G2).
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Remark. There are natural ring homomorphisms iv : K fGr
0 (VarC)→ K fGr

0 (VectC)
sending the class of a G-variety Z to the same variety with the (trivial) vector
bundle of rank 0 and pv : K fGr

0 (VectC) → K fGr
0 (VarC): forgetting the vector

bundle. One obviously has pv ◦ iv = id.

Let (Z,E,G) be a G-variety with an equivariant vector bundle over it.
Let x ∈ Z be a point fixed by an element g ∈ G. The element g acts on
the fibre Ex of the vector bundle as an operator of finite order. Therefore its
action can be represented by a diagonal (dx×dx)-matrix (dx = dimEx) with
the diagonal entries exp(2πiqj), j = 1, . . . , dx, where 0 ≤ qj < 1.

Definition 12 (cf. [16], [10]) The age (or the fermion shift) agex(g) of the

element g at the point x is
dx∑
j=1

qj ∈ Q.

Let ϕ be a (rational) number. As above, for an element g ∈ G, let Z〈g〉

be the fixed point set of g. For a rational number q, let Z
〈g〉
q be the subset

of Z〈g〉 consisting of the points x with agex(g) = q. (The subset Z
〈g〉
q is the

union of some of the components of Z〈g〉.)
As above (Section 2), letK0(VarC)[Ls] be the modification of the Grothendieck

ring K0(VarC) of quasi-projective varieties by adding all rational powers of
the class L of the complex affine line. The (standard) power structure over
the ring K0(VarC)[Ls] can be defined through a λ-structure on it using the
equation:

ζLs[M ](t) = ζ[M ](Lst), (13)

which holds for the Kapranov zeta function on the Grothendieck ringK0(VarC).
This equation (used for integer values of s) defines a λ-structure on the lo-
calization K0(VarC)(L): see [5]. For an element c =

∑
i ciLri ∈ K0(VarC)[Ls]

one defines ζc(t) by

ζc(t) :=
∏
i

ζci(Lrit).

The λ-structure on the ring K0(VarC)[Ls] defines a power structure over it
in the standard way ([5]): a series A(t) ∈ 1 + tK0(VarC)[Ls][[t]] has a unique
representation in the form A(t) =

∏∞
i=1 ζbi(t

i) with bi ∈ K0(VarC)[Ls] and
one defines (A(t))m, m ∈ K0(VarC)[Ls], by

(A(t))m :=
∞∏
i=1

ζmbi(t
i).
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This definition together with the equation (13) implies that

(A(Lst))m = (A(t))m |t7→Lst .

Definition 13 The generalized orbifold Euler characteristic of (Z,E,G) of
weight ϕ1 is defined by

[Z,E,G]ϕ1 :=
∑

[g]∈ConjG

∑
q∈Q

[Z〈g〉q /CG(g)] · Lϕ1q ∈ K0(VarC)[Ls] . (14)

We have to show that the generalized orbifold Euler characteristic is well
defined by the class of (Z,E,G) in K fGr

0 (VectC). Essentially we have to show
that, for a G-variety Z with an equivariant vector bundle E and for a finite
group H such that G ⊂ H, we have

[Z,E,G]ϕ1 = [indHGZ, indHGE,H]ϕ1 .

We will show this a little bit later for higher order generalized Euler character-
istics introduced below as well. (The generalized orbifold Euler characteristic
is one of them.)

Let ϕ = (ϕ1, ϕ2, . . .) be a fixed sequence of rational numbers.

Definition 14 The generalized Euler characteristic of (Z,E,G) of order k
of weight ϕ is defined by

[Z,E,G]kϕ =
∑

[g]∈ConjG

∑
q∈Q

[Z〈g〉q , E|Z〈g〉q
, CG(g)]k−1

ϕ · Lϕkq ∈ K0(VarC)[Ls] ,

where [Z,E,G]1ϕ = [Z,E,G]ϕ is the generalized orbifold Euler characteristic.

Alternatively one can start from k = 0, defining [Z,E,G]0ϕ as [Z/G] ∈
K0(VarC)[Ls]. (It does not depend on the equivariant vector bundle E.) This
will be used in the proof of the Theorem 3 below.

Remark. One can see, that for k > 1 (that is for all the generalized Euler
characteristics except the orbifold one), the definition is shorter (and simpler)
than that in [8] for non-singular G-varieties. One can say that the described
setting is to some extend more natural for the definition.

Theorem 3 For a fixed ϕ, the generalized orbifold Euler characteristic and
the generalized Euler characteristics of higher orders are well-defined ring
homomorphisms K fGr

0 (VectC)→ K0(VarC)[Ls].
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Proof . In fact we have to prove only that the generalized Euler characteris-
tics of higher orders are well defined as functions on K fGr

0 (VectC). After that
their additivity and multiplicativity are obvious. (The latter is essentially
Lemma 1 in [7].) Thus we have to show that, for a G-variety Z with an
equivariant vector bundle E over it and for a finite group H ⊃ G, one has

[indHGZ, indHGE,H]kϕ = [Z,E,G]kϕ . (15)

For k = 0 this simply means that (indHGZ)/H = Z/G. Assume that (15) is
proven for all values of k smaller than the one under consideration. Using
Lemma 1 and the induction we get

[indHGZ, indHGE,H]kϕ =
∑

[g]∈ConjH

∑
q∈Q

[(indHGZ)〈g〉, indHGE,CH(g)]k−1
ϕ · Lϕkq =

∑
[g]∈ConjG

∑
q∈Q

[(ind
CH(g)
CG(g)Z)〈g〉q , ind

CH(g)
CG(g)E,CH(g)]k−1

ϕ · Lϕkq =

∑
[g]∈ConjG

∑
q∈Q

[Z〈g〉, E, CG(g)]k−1
ϕ · Lϕkq = [Z,E,G]kϕ.

�

Let (Z,E,G) be a G-variety with an equivariant vector bundle, and let
Z(d) = {x ∈ Z : dimEx = d}. (There are finitely many d with non-empty
Z(d).) One has [(Z,E,G)] =

∑
d[(Z(d), E|Z(d)

, G)] ∈ K fGr
0 (VectC).

Theorem 4 One has

1+
∞∑
n=1

[Zn, En, Gn]kϕ·tn =
∏
d

( ∏
r1,...,rk≥1

(
1− LΦk(r)d/2 · tr1r2···rk

)r2r23 ···rk−1
k

)−[(Zd,E|Zd
,G)]kϕ

,

where

Φk(r1, . . . , rk) = ϕ1(r1 − 1) + ϕ2r1(r2 − 1) + . . .+ ϕkr1r2 · · · rk−1(rk − 1).

Proof . Since [·]kϕ is a homomorphism from K fGr
0 (VectC) to K0(VarC)[Ls],

one has

1 +
∞∑
n=1

[(Zn, En, Gn)]kϕ · tn =
∏
d

(
1 +

∞∑
n=1

[Zn
d , E

n
|Zd
, Gn]kϕ · tn

)
.
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For the G-variety Zd with an equivariant vector bundle E|Zd
of constant rank

d the arguments of [7, Theorem 1] give

1+
∞∑
n=1

[(Zn
d , E

n
|Zd
, Gn)]kϕ·tn =

( ∏
r1,...,rk≥1

(
1− LΦk(r)d/2 · tr1r2···rk

)r2r23 ···rk−1
k

)−[(Zd,E|Zd
,G)]kϕ

.

(The only difference with [7, Theorem 1] consists in the fact that the age
F (g,s) of an element (g, s) ∈ Gn with s = (1, 2, . . . , n), g = (g1, g2, . . . , gn),

g1g2 · · · gn = c (taken from [15, Theorem 3.1] and equal to F c + (n−1)d
2

) is
computed not in the tangent space to a d-dimensional manifold, but in the
fibre of the vector bundle.) This proves the statement. �

8 λ-structures on K fGr
0 (VectC) and power struc-

tures over it

Similar to the case of the Grothendieck ring K fGr
0 (VarC), there are two natural

λ-structures on the Grothendieck ring K fGr
0 (VectC). They are defined by

analogues of the series ζ•(t) and λ•(t). Since each element of K fGr
0 (VectC)

can be represented by a G-variety with an equivariant vector bundles (with a
certain finite group G), we can define these series for them. Let (Z,E,G) be
a G-variety with an equivariant vector bundle E over it. Define the following
two series:

ζ(Z,E,G)(t) := 1 +
∞∑
n=1

[(Zn, En, Gn)] · tn,

λ(Z,E,G)(t) := 1 +
∞∑
n=1

[(Zn \∆G, E
n
|Zn\∆G

, Gn)] · tn.

Proposition 8 The series ζ(Z,E,G)(t) and λ(Z,E,G)(t) depend only on the classes
[(Z,E,G)] in K fGr

0 (VectC).

Proof . This follows from the equations (for H ⊃ G)

[(indHn
Gn
Zn, indHn

Gn
En, Hn)] = [(Zn, En, Gn)] ,

[(indHn
Gn
Zn \∆Hn , indHn

Gn
En
Zn\∆Gn

, Hn)] = [(Zn \∆Gn , E
n
Zn\∆Gn

, Gn)] ,
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whose proofs are almost the same as in Propositions 3 and 5. �

The fact that these series define λ-structures on the ring K fGr
0 (VectC)

follows from the following statement.

Proposition 9 One has

ζ(Z1tZ2,E1tE2,G)(t) = ζ(Z1,E1,G)(t) · ζ(Z2,E2,G)(t) ,

λ(Z1tZ2,E1tE2,G)(t) = λ(Z1,E1,G)(t) · λ(Z2,E2,G)(t) .

The proof is almost the same as in Propositions 4 and 5.
The reductions of the series ζ•(t) and λ•(t) under the natural homo-

morphism pv : K fGr
0 (VectC) → K fGr

0 (VarC) coincide with the λ-structures
on K fGr

0 (VarC) discussed in Section 5. Since these two λ-structures on the
ring K fGr

0 (VarC) lead to different power structures, the same holds for the
λ-structures defined by ζ•(t) and λ•(t) on the ring K fGr

0 (VectC). Again as
in the case of the Grothendieck ring K fGr

0 (VarC) the power structure defined
by ζ•(t) is not effective, and the one defined by λ•(t) is. (To show the ef-
fectiveness of the power structure defined by the series λ•(t), one can use an
analogue of Equation (11). Equivariant vector bundles over the summands
in the right hand side of it are defined in the obvious way.) The power struc-
tures over K fGr

0 (VectC) defined by the λ-structures opposite to ζ•(t) and λ•(t)
are not effective.
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