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Dedicated to the memory of S. S. Abhyankar

In this work we deal with dicritical divisors, curvettes and polynomials. These objects
have been one of the main research interests of Abhyankar during his last years. In
this work we provide some elementary proofs of some Abhyankar and Luengo results
for dicriticals in the framework of formal power series. Based on these ideas we give
a constructive way to find the atypical fibers of a special pencil and give bounds for

∗In this work we got a revival of our discussions about dicriticals with Ram.
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its number, which are sharper than the existing ones. Finally, we answer a question of
Gwoździewicz finding polynomials that reach his bound.
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0. Introduction

The study of the topology and geometry of polynomial maps is of great interest
in Affine Algebraic Geometry, for instance for the cancellation problem or affine
exotic spaces. The Jacobian problem is one of the main open problems in this area.
Recently, the local theory of algebraic dicritical divisors and curvettes has been
developed (see [8, 9, 13]) and applied to get some control on the fibers of a Jacobian
pair. Dicritical divisors have been studied by Abhyankar either alone, [2–7], or
with coauthors, [8–14]. He has developed an algebraic theory which starts from the
geometric intuition coming from analytic geometry and extends the result to the
more general setting: starting from C{x, y} he developed (with his collaborators) a
general theory valid for general regular local rings.

In this work we want to apply this theory to the study of special pencils, i.e.
elements of the quotient field of a regular ring whose denominator is a power of a
regular element of the ring. The fundamental reason to study these pencils is that
they appear naturally when working with polynomial maps at infinity. Moreover,
the strategy to study these pencils is through the resolution of the base points of the
pencil where dicriticals appear in a natural way. With their algebraic techniques,
several results about dicriticals are proved in [13, 14]: the restriction of the pull-
back of the pencil to each dicritical is a polynomial, dicriticals are in one-to-one
correspondence with the irreducible factors of the pencil, see Sec. 3 for details.

The core of the paper is to provide elementary algebraic proofs, valid also in
positive characteristic, for rings of power series over a field by high-school algebra
methods following the mathematical philosophy of Abhyankar. In order to achieve
the proof, we proceed with a variation of the Newton–Puiseux process realized by
birational transformations, see also [18] for similar approaches. Using Newton poly-
gon techniques we describe a finite recursive argument which presents in an explicit
case a toric resolution of the pencil which is combinatorially much less complex
than the resolution via standard blow-ups or quadratic transformations. With this
method, the dicritical divisors are in bijection with some edges of a sequence of
Newton polygons, from which we keep two important data: a 1-variable polyno-
mial coming from the edge and a positive integer which is related to a quotient
singularity coming from a toric blowing-up.

We will apply these techniques in order to improve some bounds for the number
of atypical values of special pencils given by Gwoźdiewicz in [22].

Theorem 1.1 ([22]). Let f(x, y), l(x, y) ∈ C{x, y}, f(0, 0) = l(0, 0) = 0, be con-
vergent power series without common factor. Assume that the curve l(x, y) = 0 is
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smooth and that the curve f(x, y) = 0 has d components counted without multiplic-
ities. Then, the pencil f(x, y)− tl(x, y)M = 0, where M is a positive integer, has at
most d nonzero atypical values.

Our main result provides a more accurately defined bound for the number of
atypical values for a special pencil which is given by the sum of the number of
dicriticals plus the number of nonzero roots of the derivatives of the polynomi-
als associated to the dicriticals, see Theorem 2.11. Moreover, this result is true
for formal power series over algebraically closed fields without restrictions on the
characteristic (except a mild separability hypothesis), following Abhyankar’s style.
Example 2.14 shows that our bound is sharp.

This local bound is also extended to the polynomial setting, see also [23]. Since
at each base point at infinity the polynomial defines a local special pencil then the
number of atypical values at infinity is bounded by the sum of the corresponding
local bounds we got in Theorem 2.11. Therefore, as a consequence, an algebraic
proof of the next theorem is given.

Theorem 1.2 ([22]). Assume that the complex algebraic curve f(x, y) = 0 has n

branches at infinity. Then the polynomial f has at most n critical values at infinity
different from 0.

We also provide examples showing that our bound is also sharper than the one
of [22, Theorem 1.2]. Notice that Gwoźdiewicz’s result is in the same spirit as the
following Moh’s Theorem [26] as quoted by Ephraim’s version [21].

Theorem 2.2 ([21]). Assume that the complex algebraic curve f(x, y) = 0 has
only one branch at infinity. Then f has no critical values at infinity. In particular,
all curves f(x, y) = t for t ∈ C are equisingular at infinity.

As Moh pointed out in [26], Abhyankar gave another proof of this result by
applying [15, (3.4)].

The number of branches at infinity is related with the Jacobian problem:

if f1, f2 ∈ K[x, y], char(K) = 0, is a Jacobian pair, i.e. its Jacobian deter-
minant is equal to 1, then K[f1, f2] = K[x, y].

Moh remarks in [26] that the following Engel’s statement was a main tool in
Engel’s attempted proof of the Jacobian conjecture, see [20]:

For a special member of the pencil f(x, y) + c = 0, the number of branches
at infinity cannot be greater than the corresponding number for the general
member.

In 1971 Abyhankar found a counterexample to Engel’s statement.
Abhyankar and Moh, see e.g. [1] for details, translated the Jacobian condition

into conditions on the resulting special expansions getting the following result.
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The Two Point Theorem ([1]). If f1 and f2 is a Jacobian pair, then f1 and f2

have at most two points at infinity. Moreover, it can be deduced that if the Jacobian
condition implies that f1 and f2 have at most one point at infinity then the Jacobian
problem has an affirmative answer.

In fact if f1 and f2 ∈ K[x, y] is a Jacobian pair with two points at infinity
it follows from Żo�lądek in [29] that f1 and f2 have some common dicriticals. In
fact, not all the dicritical components can be in common because in such a case
the degree of the polynomial map from C2 to C2 vanishes, hence the Jacobian is
identically zero (private communication to the authors of Pierrette Cassou-Noguès).

As we explain in Sec. 4, the conditions to reach this number of branches at
infinity are quite involved (in particular Moh–Ephraim result shows that it is
not possible when there is only one branch at infinity). The last part of Sec. 4
is devoted to construct two examples. Example 4.2 is the polynomial version of
Example 2.14. Example 4.1 answers positively the following question proposed by
Gwoźdiewicz [22].

Question. Does there exist a polynomial f(x, y) with n nonzero critical values at
infinity such that the curve f(x, y) = 0 has n branches at infinity?

Example 4.1 is a polynomial where the generic fiber has two branches at infinity.
Following a referee’s comment we provide in Example 4.3 a way to construct such
examples with an arbitrary number of branches at infinity for the generic fiber.

1. Toric-Newton Transforms of Special Meromorphic Functions

For convenience we work over an algebraically closed field K. Nevertheless, the
results are valid over any field since it is well known that one can get the resolution of
the base points of a pencil over a finite extension of the base field K. Let R = K[[x, y]]
be the formal power series ring over K; note that most of the results are also valid
for convergent power series in case of complex numbers and some of them will also
be valid for more general (almost complete) two-dimensional local rings (without
restriction on the characteristic and even in mixed characteristic) especially if they
have analytical properties, see [9]. Following Abhyankar we will study regular local
rings contained in L (the fraction field of R) and dominating R though we will
replace these rings by their completion for simplicity. We will denote M(R) the
maximal ideal of R.

A formal power series p(x, y) ∈ R can be evaluated at the only closed point
0 ∈ Spec R, giving an element p(0, 0) ∈ K. For an element r(x, y) := p(x,y)

q(x,y) the
evaluation at 0 can be defined on P1

K
= K ∪ {∞}, with one important exception.

If p, q ∈ M(R) are coprime, then r(0) is not defined, it is undetermined. It is also
useful to treat r as the pencil of curves {Ct : p = tq}, for t ∈ K ∪ {∞} having 0 as
base point.

It is well known that one can eliminate this indetermination via a birational map
π : S → Spec(R), which is the composition of a sequence of closed points blow-ups,
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also called quadratic transformations, such that π∗(r) : S → P1
K

is a well-defined
morphism. This means that from the point of view of pencils, the strict transforms
of the curves Ct are disjoint.

Let E = π−1(0) be the exceptional divisor of the map π, with irreducible com-
ponents E1, . . . , Es. A divisor Ei ⊂ E is called dicritical (or some authors called
them horizontal) if π∗(r)|Ei is not a constant map, that is π∗(r)(Ei) = P

1
K

.
Let us define

P (x, y, T ) := p(x, y) − Tq(x, y)

=
∑
i,j

Ai,jx
iyj ∈ K(T )[[x, y]] (T an indeterminate).

We have two main interests: To study the curve C̃ given by P ∈ K(T )[[x, y]] and
to study the curves Ct = {P (x, y, t) = 0} for t ∈ K, both generic and atypical.

Definition 1.1. The Newton polygon NP(r) of r is the Newton polygon of P ∈
K(T )[[x, y]], i.e. the compact faces of the convex closure of NR(P ) := Supp(P ) +
N2 ⊂ N2 ⊂ R2.

We are interested in giving several algebraic characterizations of dicritical divi-
sors in a particular class of pencils, especially important for polynomial maps.

Definition 1.2. A meromorphic germ r ∈ L (or its corresponding pencil) is called
special if r(x, y) = p(x,y)

xcU(x,y) for some local parameters x, y ∈ R, c > 0 and a unit
U(x, y) ∈ K[[x, y]] (we always assume that x does not divide p(x, y)).

Remark 1.3. Since x does not divide p, the y-order d of p(x, y) is well defined, i.e.
the unique positive integer such that p(0, y) is a series of order d.

Example 1.4. The pencil

px(x, z, T ) = (x3 − z5)2 − x6 + x(x5 − z2)5 + 5xz7

(
x − 3

4
z2

)
− Tz11

is special in K(T )[[z, x]].

These pencils are called Ephraim pencils in [22], based on [21]. It was shown in
[13, Theorem A] that for a special pencil r, the restriction of the pull-back π∗(r)
to any dicritical divisor is a polynomial, for arbitrary two-dimensional local regular
rings, not necessarily equicharacteristic. In this paper an elementary proof of this
result for R = K[[x, y]] is given; the tools used in the proof detect the so-called
atypical fibers of the pencil which are also studied in this work.

From now on we assume that r ∈ L is special. We are going to give a recursive
method to solve a special pencil r by means of toric transformations and translations
associated to NP(r).
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We introduce some notation. Fix an edge � of NP(r) which is contained in the line
nx + my = ω (m, n ∈ N coprime). We denote by ω� the weight ω�(i, j) := ni + mj.
This edge supports a ω�-quasihomogeneous polynomial of degree ω

P�(x, y) =
∑

ω�(i,j)=ω

Ai,jx
iyj = xuyvq�(xm, yn), (1.1)

where q�(s1, s2) ∈ K[T ][s1, s2] is a homogeneous polynomial of degree d� with at
least two monomials and coprime with s1s2. Note that

P (x, y, T ) = P�(x, y) + monomials with ω�-degree > ω.

The coefficients of q�(s1, s2) are in K with only one eventual exception: if v = 0 and
u = c, i.e. the vertex (c, 0) is in � ⊂ NP(r). Bezout identity allows to choose

a, b ∈ Z>0 such that bn − am = 1. (1.2)

Notation 1.5. The coprime weights (n, m) will be denoted if necessary as (n�, m�);
we will refer to n as the v-ratio and m as the h-ratio of the edge �.

The following concept appears also in [18].

Definition 1.6. An edge � of NP(r) is called a dicritical edge if (c, 0) is a vertex
of �.

Remark 1.7. We assume that if (n, m) = (1, m) then P� is not proportional to
(y − Axm)e, A ∈ K. If it is the case, the change of variables y = y1 + Axm makes
the edge � disappear. The polygon NP(r) has at most one dicritical edge.

Example 1.8. Let us consider px as in Example 1.4. Its Newton polygon is in
Fig. 1. There is only one edge � and P� = (x3 − z5)2 (x plays the role of y, we keep
these variables for further use in Sec. 4). The edge is not dicritical.

Proposition 1.9. Assume that � is not a dicritical edge. The monomial transfor-
mation

ϕM (x1, y1) := (xn
1 ya

1 , xm
1 yb

1), see (1.2),

is birational (i.e. it is a composition of quadratic transformations) and the polyno-
mial P� is transformed as

P�(xn
1 ya

1 , xm
1 yb

1) = βxω
1 yau+bv+amd�

1 q�(1, y1).

Proof. Note that

P�(xn
1 ya

1 , xm
1 yb

1) = βxnu+mv
1 yau+bv

1 q�(xmn
1 yam

1 , xmn
1 ybn

1 )

= βxω
1 yau+bv+amd�

1 q�(1, y1).

We use that ω = nu+mv+mnd�, bn−am = 1, and the fact that q� is homogeneous
of degree d�.
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Fig. 1. Newton polygon of px.

This means that the image of the NP(r) by the affinity

LM : Z
2 → Z

2,

(
u

v

)
�→
(

n m

a b

)(
u

v

)

has a vertical edge and Supp(ϕ∗
MP ), where ϕ∗

MP = P (xn
1ya

1 , xm
1 yb

1, T ) ∈ K(T )[[x1,

y1]], is contained in LM (NR(P )), see Fig. 2. Let us factor

q�(s1, s2) = β
e∏

j=1

(s2 − αjs1)mj , β, αj ∈ K\{0}, mj > 0, i.e. d� =
e∑

j=1

mj .

Definition 1.10. For � a non-dicritical edge and αj a root of q�(1, s), the toric-
Newton transformation associated to (�, αj) is the toric transformation ϕM followed
by the translation y1 = ȳ1 + αj .

A

B

C

D

Supp(P )

dm

dn

LM

A

B

C

D

ω

v
ṽ

v := au + bv + amd

Supp(ϕ∗
MP )

Fig. 2. LM for the edge BC.
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Definition 1.11. The strict transform P�,αj (x1, ȳ1, T ) of P by the toric-Newton
transformation associated to (�, αj) is

P�,αj (x1, ȳ1, T ) =
P (xn

1 (ȳ1 + αj)a, xm
1 (ȳ1 + αj)b, T )

xω
1 (ȳ1 + αj)ṽ

,

where ṽ ≤ au + bv + amd is the minimum of the powers of y1 which appear from
the pull-back by ϕM .

Example 1.12. Let us study the strict transform for the toric-Newton transfor-
mation of Example 1.4. The Newton polygon of this strict transform is shown in
Fig. 3(a); the quasihomogeneous polynomial is (x1 − 5

2z1)2 and we are in the sit-
uation of Remark 1.7. We perform the translation and we obtain a special pencil
whose Newton polygon, in Fig. 3(b) has only one edge and it is dicritical since the
quasihomogeneous polynomial is x2

2 − (T + 5
8 )z3.

Proposition 1.13. The strict transform P�,αj (x1, ȳ1, T ) is a special pencil in
K[[x1, ȳ1]] such that its ȳ1-order is mj.

Proof. The part of the strict transform corresponding to P� is

βȳ
mj

1

∏
k �=j

(ȳ1 + αj − αk)mk .

The rest of the strict transform is divided by x1. The monomial TxcU(x, y) is
transformed into

Txnc−ω(αj + ȳ1)ac−(au+bv+amd)U(xn
1 (ȳ1 + αj)a, xm

1 (ȳ1 + αj)b)

and the result follows.

We will study later what to do if � is a dicritical edge. Because of Proposi-
tion 1.13, this process can be also applied to the strict transforms of P by the
toric-Newton transformations.

Definition 1.14. The toric-Newton process of P is the sequence of special pencils
obtained by applying toric-Newton transformations recursively. The tree of Newton

0

1

2

0 1 2 3 4 5

T

x1

z1

0

1

2

0 1 2 3 4 5 6

T

x2

z2

(a) (b)

Fig. 3. Newton polygons for Example 1.12.
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polygons of P is the family of all Newton polygons in the toric-Newton process. An
edge of such a Newton polygon is called a dicritical edge if it is at the bottom of
the polygon and the coefficient for (∗, 0) depends on T .

Proposition 1.15. The toric-Newton process is finite.

Proof. Note that the y-order of the special pencils decreases unless we are in
the situation of Remark 1.7. Since the pencils are special only a finite number of
translations may arise until we reach the T -monomial. Note that while the term Txc

is not present in NP(r) one is following the resolution (of one branch) of the fiber
p(x, y) = 0. This means that after a finite number of toric maps and translations we
arrive to a point Q where the branch is non-singular and eventually non-reduced.
Then the local equation of the total transform of P is hk(x1, y1)u(x1, y1) + Txe1

1

with u(0, 0) 	= 0 and h(x1, y1) = (y1 + · · ·). It is now clear we can make a change of
coordinates y1 = y + a1x1 such that h(x1, y) = y + ae+1x

e+1.

Remark 1.16. Note that this is the case for the pencil in Example 1.4.

2. Dicritical Edges

Let us study now what happens with dicritical edges. We start with a simple proof
of [13, Theorem A] when the regular local ring is a formal power series ring.

Proposition 2.1. Let P (x, y, T ) := p(x, y) − TxcU(x, y) be a special pencil. Then
at each dicritical divisor E the function π∗(r(x, y))|E is a polynomial.

Proof. The previous process allows to resolve the base points of the pencil by toric
maps and translations and moreover pencils arising at the process are still special.
Let us study what happens at a dicritical edge �. We keep the notation of (1.1) and
we get that

q�(1, s) = a0s
d� + a1s

d�−1 + · · · + ad�−1s − (T − ad�
),

where aj ∈ K. We denote again π(x1, y1) = (xn
1 ya

1 , xm
1 yb

1) the toric transformation
associated to �. Then

P�(xn
1 ya

1 , xm
1 yb

1) = xω
1 yṽ

1(q�(1, y1) + x1G(x1, y1)),

and x1 = 0 is the equation of E and G(x1, y1) is some series. Notice that

π∗(p)
π∗(xcU(x, y))

=
xω

1 yṽ
1 (q�(1, y1) + x1G(x1, y1))

xω
1 yṽ

1(U(0, 0) + x1H(x1, y1))
= q�(1, y1) + x1G(x1, y1),

where U(0, 0) 	= 0 and H(x1, y1) is some series. Restricting to x1 = 0 we obtain the
desired result.

The computations above also prove that the corresponding polynomial map
qE : E → P1, where qE(z) := q�(1, z) − T , has degree dE := d�.
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It is not hard to check that the dicritical divisors of r are in one-to-one corre-
spondence with the dicritical edges of NP(r) and its transforms. We study now the
toric-Newton transformations for dicritical edges. Note that the toric part behaves
as in the non-dicritical case, as shown in the proof of Proposition 2.1, but the trans-
lation part depends on the particular values of t. Moreover, separability properties
of the polynomial qE(z) have a strong influence on the behavior of the fibers of the
pencil near the dicritical E.

Proposition 2.2. Let P (x, y, T ) be a special pencil as above and let E be a dicritical
divisor of r associated to a dicritical edge � of the toric-Newton process of P . Assume
that qE(z) is a separable polynomial, i.e. its derivative is not identically zero.

Let A∗
E := {qE(α) | q′E(α) = 0} and let t0,E := qE(0). Then, the strict trans-

form of the germ of the curve p(x, y)− txcU(x, y) contains exactly dE non-singular
transversal curvettes meeting at dE distinct points of E, in the following cases :

(1) if t /∈ A∗
E and t 	= t0,E ;

(2) if t = t0,E , t /∈ A∗
E and n = 1.

Proof. We start with the first case. Since t /∈ A∗
E and the polynomial qE(z) is

separable, we have that gcd(qE(z)− t, q′E(z)) = 1 and all the roots of qE(z)− t are
simple roots, i.e.:

qE(z) − t =
dE∏
i=1

(z − αi), αi 	= αj , if i 	= j.

Hence, the quasihomogeneous polynomial associated to the edge � for the suitable
strict transform of P (x, y, t) = 0 is

dE∏
i=1

(yn
1 − αix

m
1 ). (2.1)

Since αi 	= 0 and since t 	= t0,E, all the above factors look similar. Hence if we
consider the (nontrivial) translation y1 = ȳ1 + αi

qE(ȳ1 + αi) − t = b0ȳ
dE
1 + b1ȳ

dE−1
1 + · · · + bdE−1ȳ1, bdE−1 	= 0. (2.2)

If we compose the toric map of the proof of Proposition 2.1 with the above trans-
lation, we obtain then, up to terms of higher degree, that the strict transform is
written as

b0ȳ
dE
1 + b1ȳ

dE−1
1 + · · · + bdE−1ȳ1 + x1(· · ·)

and one gets dE non-singular curves intersecting transversally the dicritical divisor
E : {x1 = 0} at different points.

If t = t0,E is not a root of q′E(z) and n = 1, though the Newton polygon is
changing, the factor corresponding to αi = 0 is again a curvette.
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Remark 2.3. With this method, along the exceptional dicritical divisor there will
be no base points of the pull-back of the pencil. By this process we get a log-
canonical resolution (with quotient singularities) the base points of the pencil. Since
at each step we perform toric quadratic transformations we must be careful with
the behavior when no translation is needed.

From now on we assume that the map qE(z) is separable, i.e. either char(K) = 0
or char(K) = p and q′E(z) 	= 0.

Definition 2.4. A value t ∈ K is called a typical value for P (x, y, T ) at E if
the strict transform of the curve P (t, x, y) has exactly dE non-singular branches
(curvettes) intersecting E and is called an atypical value for P (x, y, T ) at E other-
wise.

If t ∈ K is a typical value for P (x, y, T ) at all dicritical divisors E then t ∈ K

will be called a typical value for P (x, y, T ), and an atypical one otherwise.

Example 2.5. In Fig. 3(b), we have the Newton polygon of the unique dicritical
edge for px in Example 1.4. If we fix t = t0,E = − 5

8 , the vertex (0, 3) disappears. The
corresponding Newton polygon is in Fig. 4. Since the general fiber is an ordinary
cusp and for t0,E we have a tacnode, we conclude that this value is atypical at E.

Remark 2.6. In char(K) = 0 this definition is equivalent to the standard defini-
tion, see, for instance, the first definition in [24, Sec. 3]. Note that the cases (i)
and (iii) in that definition are not possible for special pencils: (i) in this case is
only valid for t0 = qE(0) and (iii) is not possible because the first time ones get a
dicritical divisor, the linear system has no base points.

We are going to prove a sort of reciprocal of Proposition 2.2.

Theorem 2.7. Let P (x, y, T ) be a special pencil as in Proposition 2.2.

(1) If t ∈ A∗
E then t is an atypical value for P (x, y, T ) at E.

(2) If n > 1 (n the v-ratio) then t0,E is atypical at E regardless the value of q′�(t0,E).

0

1

2

0 1 2 3 4 5 6

x2

z2

Fig. 4. Final Newton polygon for the special fiber.
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Remark 2.8. From the interpretation of dicriticals of Lê–Weber, the case n > 1
corresponds exactly with the dicriticals which admit a bamboo, see [24], which will
be called dicriticals with bamboo.

Proof. For the proof of (1), we follow the ideas in Proposition 2.2. Let αi be a mul-
tiple root of qE(s)− t. In (2.2), the condition bdE−1 	= 0 fails and the corresponding
point cannot be a curvette.

For (2), the Newton polygon of P (x, y, t0,E) has a bottom edge which is non-
parallel to � and of height n > 1, so there are some branches of this curve which do
not meet E, see Fig. 5 for a typical behavior of Newton polygons.

Example 2.9. Let us describe some examples.

(1) Consider the special pencil P (x, y, T ) = y4 + y2x3 + yx7 + x12 − Tx6, see
NP(P ) in Fig. 6(a). The edge � = [(0, 4), (6, 0)] is a dicritical edge such that
P�(x, y) = y4 + y2x3 − Tx6, qE(z) = z2 + z − T and qE(z) is separable. Since
the v-ratio n equals 2 > 1, t = 0 is an atypical value, see its Newton polygon
in Fig. 6(b). On the other side − 1

2 is the only root of q′� and then t = − 1
4 is

the other atypical value at E, see the Newton polygon after the toric-Newton
transformation in Fig. 6(c). In this case a generic fiber has two branches at E

while there are three branches for t = 0 and only one branch for t = − 1
4 .

(2) For the special pencil P (x, y, T ) = y3 + y2x − x4 − Tx3 the edge � = [(0, 3),
(3, 0)] is dicritical and qE(z) = z3 + z2 − T , see NP(P ) in Fig. 7(a). The
derivative has two roots 0,− 2

3 , and then 0, 4
27 are the atypical values. Since the

v-ratio is 1, t = 0 is atypical only for being a critical value of qE , see its Newton
polygon in Fig. 7(b). In order to study the fiber for t = 4

27 , we can check that
the quasihomogeneous polynomial has one simple root and one double root. It is
enough to study what happens on the double root; instead of the toric-Newton
transformation we can do the change y = y1 − 2

3x, and we obtain again the
Newton polygon of Fig. 7(b). All the typical fibers have three branches while
the atypical ones have two branches.

T

y

x

y

x

Fig. 5. Left-hand side polygon for generic T , right-hand side for t0,E .
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Fig. 6. Newton polygons for Example 2.9(1).
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Fig. 7. Newton polygons for Example 2.9(2).

(3) For the special pencil P (x, y, T ) = y3 + yx2 − x4 − Tx3, the value t = 0 is
typical at the unique dicritical, even if the Newton polygons do not coincide,
see Fig. 8.

Remark 2.10. Note that Proposition 2.2 and Theorem 2.7 gives a complete char-
acterization of atypical values of a special pencil in terms of the polynomials qE(z) if
they are separable. In the inseparable case the atypical values cannot be computed
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Fig. 8. Newton polygons for Example 2.9(3).

just from qE as the following examples, in char(K) = p, show:

(a) yp + xp+1 − Txp, t = 0 behaves as the other values of K.
(b) yp + y2xp−1 + Txp, t = 0 does not behave as the other values of K.

In both cases the generic members of the pencil have the singularity type of
yp + xp+1. In particular it is not a curvette, as curvettes are smooth, and following
our definition all values would be atypical. A natural extension of our definition to
the non-separable case would imply that t = 0 is typical for (a) and atypical for
(b). See [25] for a more complete description of pencils in positive characteristic.

In the separable case, we can recover algebraically the results of [22]. More
precisely it is possible to recover the number of atypical fibers only in terms of the
Newton polygons. The type of the atypical fibers needs the part behind the Newton
polygons, but for the number, these Newton polygons are enough, compare with
Remark 2.10.

We would like to estimate the number of atypical values at a dicritical. Let
us collect the relevant information from the Newton process. We have E1, . . . , Er

dicriticals coming from dicritical edges �1, . . . , �r, each one carries a polynomial
qi(z) := qEi(z) of degree di and from the weight ω�i we keep the number ni. The
separability hypothesis asserts that qi(z) is separable.

Theorem 2.11. Let P (x, y, T ) be a special pencil satisfying the separability hypoth-
esis. Let E be a dicritical and let n be its v-ratio. Let AE be the set {qE(α) |
q′E(α) = 0}. Then, the set of atypical values for P (x, y, T ) at E is

{
AE ∪ {qE(0)} if n > 1,

AE if n = 1.
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In particular, the number of atypical values for P (x, y, T ) at E is at most

ME := #{nonzero roots of q′E} + 1,

and the number of atypical values for P (x, y, T ) is at most
∑

Edicritical ME.

Proof. This is a direct consequence of Theorem 2.7.

The following result is an easy consequence of Theorem 2.11.

Corollary 2.12 (Gwoździewicz [22]). Let P (x, y, T ) be a special pencil.

(1) If E is a dicritical divisor of degree dE , then there are at most dE atypical
values at E.

(2) If there is a value t0 such that Cred
t0 has r branches at a dicritical divisor E,

then there are at most r atypical values at E (besides eventually t0).
(3) The number of atypical values of the pencil is bounded by min(νgen, νmin + 1),

where νgen is the number of branches of the generic value and νmin is the
minimal number of branches of the fibers.

Remark 2.13. In order to reach the bound νgen, the following conditions must
happen. For every dicritical E, one has n > 1, q′E(t0,E) 	= 0, q′E has simple roots,
and these roots have distinct values by qE . Moreover, the sets of atypical values for
each dicritical are pairwise disjoint.

Example 2.14. Let us consider the special pencil

P (x, y, T ) = y4 − 2x2y2 + (y2 − x2)yx2 + x7 − Tx4

which, for all t ∈ K has four branches; the bound proposed in Corollary 2.12,
see [22], for the number of atypical values is at most 4. Let us compute the bound
of Theorem 2.11. The unique edge � of the Newton polygon is dicritical and for
its dicritical E we have qE(z) = z4 − 2z2 − T . The roots of q′E(z) are α = 0, 1,

0
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x

(a) (b)

Fig. 9. Newton polygons for Example 2.14.
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−1, hence the bound equals 3. Since qE(0) = 0 and qE(1) = qE(−1) = 1, there
are exactly two atypical values, t = 0, 1. Figure 9(a) shows NP(P (x, y, T )), while
Fig. 9(b) shows NP(p(x, y)). Note that Fig. 9(b) shows also NP(p(x, y ± x) − 1).

3. Factors of a Special Pencil Over K(T )

Let us interpret a result of [14] in this language, always in the special case of power
series, namely that the dicritical divisors of r are in one-to-one correspondence with
the factors of P (x, y, T ) in K(T )[[x, y]].

Fix a dicritical edge and keep the notations of Proposition 2.1.

Proposition 3.1. Let � be a dicritical edge of the NP(r) corresponding to a dicrit-
ical divisor E. Then there exists an irreducible factor Q�(x, y, T ) ∈ K(T )[[x]][y] ⊂
K(T )[[x, y]] of an element P (x, y, T ) such that its weighted initial form for ω� equals
q�(xm� , yn�).

Proof. Note first that using Weierstraß Preparation Theorem, P (x, y, T ) can be
decomposed as a product of a unit and a Weierstraß polynomial in y (recall that P

is y-regular of order d). We apply the version of Hensel’s Lemma in the Appendix
A to this Weierstraß polynomial and the result follows.

Remark 3.2. Instead of using Hensel’s Lemma one can follow the ideas in [17,
Sec. 2].

If the dicritical edge � is in another special pencil r1 of the toric-Newton process
with coordinates (x1, ȳ1), then Proposition 3.1 allow us to construct an irreducible
factor Q̃�(x1, ȳ1) of r1 in K(T )[[x1]][y1]; this factor is ȳ1-regular of order d�. Let
us see the effect of the inverse of the toric-Newton transformation in this element
which produced r1. The toric-Newton transformation has two parts; the inverse of
the translation is ȳ1 �→ ȳ1 + αj = y1 while ϕ−1

M (x1, y1) = (xb
1y

−m
1 , x−a

1 yn
1 ) = (x̄, ȳ).

Hence, the inverse of the toric-Newton transformation is

(x1, ȳ1) �→ (xb
1(ȳ1 + αj)−m, x−a

1 (ȳ1 + αj)n) = (x̄, ȳ).

Taking out denominators we obtain Q̄�(x̄, ȳ) which is a divisor of the special pencil
P̄ (x̄, ȳ, T ) at this level. It is not hard to see that Q̄�(x̄, ȳ) is ȳ-regular of order nd�.
The contribution of this factor to the ȳ-degree is the expected one. We continue till
we arrive to the first level; at each step the degree on the y-coordinate is multiplied
by the corresponding v-ratio. The final pull-back Q� of Q̃� (taking out denomina-
tors) to K(T )[[x, y]] is an irreducible factor of P (x, y, T ).

Let �1, . . . , �s be the dicritical edges of the toric-Newton process. For each dicrit-
ical edge �i we consider the sequence of v-ratios ni

1, . . . , n
i
hi

(hi is the number of
steps till �i appear) and its degree d�i . The factor Q�i has y-order

di := d�i ·
hi∏

j=1

ni
j .
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If d = ordy(P ), note that d =
∑s

j=1 dj and we conclude the next theorem, see [14]
in more generality.

Theorem 3.3. Let P (x, y, T ) be a special pencil. Then there is a one-to-one
correspondence between dicritical edges of the pencil and irreducible factors of
P ∈ K[T ][[x, y]]. By this correspondence to an edge �j we associate the factor Q�j .

For typical t ∈ K the irreducible components of C̃t := {P (x, y, t) = 0}, i.e.
Spec(R/(P (x, y, t))), are in one-to-one correspondence with the factors of P (x, y, T )
in K(T )[[x, y]] and the factors corresponding to a given factor in K[T ][[x, y] are the
curvettes of the corresponding dicritical (as many as the degree).

4. Special Pencils, Polynomials and Atypical Fibers

In this section we recall the well-known relationship between special pencils and
polynomials. The polynomial f(x, y) ∈ K[x, y], D := deg f , defines a polynomial
map f : A

2
K

→ A
1
K

, where A
j := A

j
K

is the affine space of dimension j over K.
We consider (x, y) the affine coordinates of A2 and [X : Y : Z] the homogeneous
coordinates of P2 := P2

K
with the inclusion (x, y) ↪→ [x : y : 1]. Let us consider the

rational extension of f to a map f̃ : P2 ��� P1 ≡ K ∪ {∞}. If f(x, y) =
∑D

j=0 fj(x, y)
is the decomposition in homogeneous components then

B := {[u : v : 0] | fD(u, v) = 0}
is the set of base points of f̃ . At every base point P0 ∈ B (at the line at infinity)
the corresponding pencil is an special pencil.

Assume that P0 := [1 : 0 : 0] is one of these points. In the affine chart X 	= 0
(with affine coordinates y, z) this map looks like

fy(y, z)
zD

, fy(y, z) := zDf

(
1
z
,
y

z

)

and the fibers of f̃ near P0 are of the form fy(y, z) − tzD = 0, for t ∈ K ∪ {∞},
hence a special pencil.

By definition the dicriticals of the polynomial f at infinity are the dicriticals of
the corresponding special pencils at all base points P0 ∈ B. We define accordingly
the atypical values at infinity at a dicritical of the polynomial f , see also [19].

In [22], Gwoździewicz finds that the number of atypical values at infinity of a
polynomial is bounded above by the minimum of the two following numbers:

• The number νgen∞ of the branches at infinity of a generic fiber.
• The number νmin

∞ + 1 where νmin
∞ is the minimal number of branches at infinity

for any fiber.

Therefore an algebraic proof of these results follows immediately from our algebraic
proof of Corollary 2.12.
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In the same work, Gwoździewicz asked if it is possible to reach the bound νgen
∞

(or νmin
∞ + 1). As we have observed in Remark 2.13, to reach this bound imposes

strong conditions on the special pencils over all the dicriticals E:

• nE > 1.
• q′E must have simple roots.
• qE must pairwise separate the values of 0 and the roots of q′E .
• The sets of atypical values are disjoint for any pair of dicriticals.

When we deal with polynomials the last condition must be applied to any dicritical
at infinity. Besides this difficulty the geometry of the polynomials imposes more
difficulties to find an example reaching the bound.

Namely, no polynomial with only one dicritical reaches the bound. Assume for
simplicity that the polynomial is primitive. Then, the only dicritical is of degree 1,
see e.g. [16]. Hence, by [27] all the fibers have only one branch at infinity and by
[21], there is no atypical value at infinity. It is not hard to find polynomials with
two dicriticals E1, E2 both of multiplicity one but ni > 1. These polynomials have
two branches at infinity and one atypical value for each dicritical. The problem is
that most obvious examples satisfy that the set of atypical values is the same for
both dicriticals.

Gwoździewicz’s question. Does there exist a polynomial f(x, y) with n nonzero
critical values at infinity such that the curve f(x, y) = 0 has n branches at infinity?

Example 4.1. No polynomial of degree ≤ 10 and two dicriticals reaches the bound.
The polynomial

p(x, y) = x6y5 − 5x5y4 + 10x4y3 − 2x3y3 − 10x3y2

+ 5x2y2 + 5x2y − 15
4

xy − x + y

does. We will show that this polynomial p(x, y) has two nonzero critical values at
infinity and the curve p(x, y) = 0 has two branches at infinity. This polynomial can
be written as

p(x, y) = (x3y2 − 1)
2
y + (xy − 1)5x − x6y5 + 5xy

(
xy − 3

4

)
.

In order to obtain the resolution of the polynomial we have to study the special
pencils located at the two points at infinity of p. The first one is given by

px(x, z) = (x3 − z5)2 + · · · − tz11

and it is the one in Example 1.4 (see also Example 2.5). We have seen that it has
only one dicritical which is of degree one and v-ratio 2. There is only one atypical
value for this dicritical, namely t = − 5

8 .
Let us study now the special pencil associated to the other point at infinity:

py(y, z) = (y − z2)5 + · · · − tz11.
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Fig. 11. Newton polygons after the toric-Newton transformation.

We are in the situation of Remark 1.7, hence we perform a translation as a
change of variables, y = y1 + z2

1 , z = z1. In Fig. 11(a) we see the new Newton
polygon where the coefficient of z11 equals −(t + 3

4 ). The Newton polygon for
t = − 3

4 is in Fig. 11(b). Hence, there is one atypical value for this polynomial
associated to this dicritical.

Then, the two atypical values for each dicritical are different and the polyno-
mial p reaches the bound: as many nonzero atypical fibers at infinity as branches
at infinity for the fiber p(x, y) = 0. The two atypical fibers at infinity have three
branches. The polynomial p has only one (affine) singular fiber p−1(− 20

27 ) which has
an ordinary double point at (−900,− 4

3375 ).

Example 4.2. In the same way as in the local case, see Example 2.14, the following
polynomial shows that our bounds are better than the ones in [22]. Consider the
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following polynomial of degree 10 (see its Newton polygon in Fig. 12(a)):

f(x, y) = y6 − 4(x2 + 1)y5 +
(

12x2 + 6x4 +
41
4

)
y4

−
(

4x6 +
25
2

+ 12x4 +
99
4

x2

)
y3 +

(
x8 + 4x6 +

75
4

x4 +
59
4

x2

)
y2

+
(
−17

4
x6 +

75
4

x2 + 4x4 +
25
4

)
y − 25

2
x2 − 25

4
x6 − 71

4
x4.

This polynomial has two points at infinity, that is P0 = [1 : 0 : 0] and P1 = [0 : 1 : 0].
Thus the corresponding special pencil at P0 is given by

fy(z, y) − Tz10 = y6z4 − 4y5z3 − 4y5z5 + 12y4z4 + 6y4z2 +
41
4

y4z6 − 4y3z

− 25
2

y3z7 − 12y3z3 − 99
4

y3z5 + 4y2z2 +
75
4

y2z4 +
59
4

y2z6 + y2

− 17
4

yz3 +
75
4

yz7 + 4yz5 +
25
4

yz9

− 25
2

z8 − 25
4

z4 − 71
4

z6 − Tz10.

Let us see that this special pencil has two branches for all t ∈ K and it has two
dicriticals E1 and E2 of degree 1. Its Newton polygon (see Fig. 12(b)) has only one
edge � which is not dicritical and such that

P� = y2 − 25
4

z4 =
(2y − 5z2)(2y + 5z2)

4
.

Thus q� has degree 2 and two simple roots ± 5
2 . Making the toric-Newton transfor-

mation associated to each root (�,± 5
2 ) one gets two dicriticals, each one of degree 1

(which are sections with no bamboo). Moreover, these two dicriticals have no atyp-
ical value associated.
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The other special pencil at P1 is given by

fx(z, x) − Tz10 = −25
4

z4x6 − 17
4

z3x6 + 4z2x6 − 4x6z − 12z3x4 + 6x4z2

− 71
4

z6x4 + 4z5x4 +
75
4

z4x4 − 25
2

z8x2 +
75
4

z7x2

+
59
4

z6x2 − 99
4

z5x2 + 12x2z4 − 4x2z3 + z4 − 4z5

+
41
4

z6 − 25
2

z7 +
25
4

z9 + x8 − Tz10.

Let us check that this special pencil has four branches for all t ∈ K and one
dicritical E. Its Newton polygon is in Fig. 13(a); there is only one edge �, which
is not dicritical and the quasihomogeneous polynomial associated to the edge is
P� = (x2 − z)4. We need only one toric-Newton transformation at this stage:

ϕM (z1, x1) = (z2
1x1, z1x1), x1 �→ x̄1 + 1.

The Newton polygon of the strict transform fx,1(z1, x̄1) is in Fig. 13(b). We have
only one edge �1, which is non-dicritical with P�1 = (x̄1 + z2

1)4. If we perform the
translation of Remark 1.7 we obtain a new special pencil fx,2(z2, x2). The Newton
polygon is in Fig. 14. We have only one edge �2, which is dicritical, since

P�2 = x4
2 − 2x2

2z
5
2 + (1 − T )z12

2 ,

i.e. its v-ratio equals 2, q�(z) = z4 − 2z2 + 1 − T and qE(z) = z4 − 2z2 + 1. The
roots of q′E(z) are α = 0, 1,−1, hence the bound equals 3. Since qE(0) = 0 and
qE(1) = qE(−1) = 1, there are exactly two atypical values, t = 0, 1.
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Fig. 14. Newton polygon of fx,2.

Example 4.3. The referee asked whether Gwoździewicz’s question has an affirma-
tive answer for other positive integer n ≥ 3. In this example we provide a polynomial
family which confirms the required positive answer.

For any d, we consider two monic polynomials q(t), Q(t) ∈ K[t] of degrees 2d

and 2d + 1, respectively, such that:

(C1) deg(Q(t) − tq(t)) ≤ d.
(C2) q(t) =

∏m
j=1(t − aj)mj ,

∑m
j=1 mj = 2d, mj ≥ 2.

(C3) Q(t) =
∏n

j=1(t − bj)nj ,
∑n

j=1 nj = 2d + 1, nj ≥ 2.

Let f(x, y) be the polynomial

f(x, y) = (y + 1)(xq(xy) + (y + 1)Q(xy)).

Its Newton polygon has four edges whose vertices are given by [(0, 0), (0, 1),
(2d + 1, 2d + 2), (2d + 1, 2d), (1, 0)]. Let �1 = [(0, 1), (2d + 1, 2d + 2)], �2 =
[(1, 0), (2d + 1, 2d)] and �3 = [(2d + 1, 2d), (2d + 1, 2d + 2)] be the edges not passing
through the origin.

The support polynomial f�1 is yQ(xy). Because of condition (C3), one can see
that each root bj induces a dicritical section with bamboo, producing exactly one
atypical value.

The support polynomial f�2 is xq(xy). As above, condition (C2) implies that
each root aj induces a dicritical section with bamboo, producing exactly one atyp-
ical value.

The support polynomial of the vertical edge �3 is f�3 = x2d+1y2d(y + 1)2. The
condition (C1) implies that the translation y = y1 − 1 produces a new edge �′3 =
[(0, 0), (2d+1, 2)]. Hence �′3 is a dicritical edge with bamboo (v�′3 = 2) and only one
atypical value.

Of course the conditions (C1), (C2) and (C3) impose restrictions but one can
see that solutions exist and for generic choices, the atypical values for each dicritical
are distinct, providing the required affirmative answer.
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For example, this is the case if

Q(t) = (t + 1)2d+1 and p(t) =


 d∏

j=1

(t − aj)




2

.

Then (C1) allows to give the coefficients of p(t). A tedious verification ensures that
f has d+2 dicritical sections with bamboo, and the generic fiber has d+2 branches
at infinity, its genus being d. The fact that they have d + 2 different atypical values
has been checked for small values of d (≤ 20) with SAGE [28].

Remark 4.4. Note that for d = 1, we can obtain a polynomial with three branches
and degree 7, while Example 4.1, with two branches, has degree 11. Surprisingly,
this is the smallest degree for a two-branch polynomial reaching the bound. Note
that all the examples have only dicritical sections.

Example 4.5. Both Examples 4.1 and 4.3 have only dicritical sections. We have
found also an example of degree 18, with two dicriticals (with bamboo), one of
them E with multiplicity 2, hence having also three branches at infinity for the
generic fiber and three atypical values. The fiber corresponding to the value in A∗

E

has only two branches at infinity, i.e. νmin
∞ + 1 = νgen

∞ .

Appendix A. Hensel’s Lemma

In order to be clear which flavor of Hensel’s Lemma we are going to use, we state
and prove the following elementary result.

Let K be a field and fix a weight ω(x, y) := nx + my for n, m ∈ N. Given
0 	= F ∈ K[[x, y]], we will consider its decomposition in ω-quasihomogeneous forms

F (x, y) = Fa+b(x, y) + Fa+b+1(x, y) + · · · , (A.1)

where the subindex means the ω-weight.

Lemma A.1 (Hensel’s Lemma). Assume that Fa+b(x, y) = fa(x, y)gb(x, y),
fa, gb ∈ K[x, y] quasihomogeneous and coprime Then, there exist

f, g ∈ K[[X, Y ]], f = fa + fa+1 + · · · , g = gb + gb+1 + · · ·
such that F = fg. Moreover, if fa is an irreducible polynomial, then f is an irre-
ducible power series.

Proof. We need to find recursively ω-quasihomogeneous polynomials fa+k, gb+k,
k ∈ N such that

fa(x, y)gb+k(x, y) + gb(x, y)fa+k(x, y) = F ∗
a+b+k(x, y), (A.2)

where gb+k, fa+k are the unknowns and F ∗
a+b+k is obtained from Fa+b+k and the

previous solutions for k′ < k.
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Let us decompose the above polynomials (where now the subindex corresponds
to the homogeneous degree for the weight ω0 defined by n = m = 1):

fa(x, y) = xaxyayfa′(xm, yn), a = nax + may + a′mn,

gb(x, y) = xbxybygb′(xm, yn), b = nbx + mby + b′mn,

fa+k(x, y) = xcxycy f̃c(xm, yn), a + k = ncx + mcy + cmn,

gb+k(x, y) = xdxydy g̃d(xm, yn), b + k = ndx + mdy + dmn,

F ∗
a+b+k(x, y) = xexyey F̃e(xm, yn), a + b + k = nex + mey + emn.

The decompositions of a, b, c, d, e are unique if we assume that all the indices are
non-negative; the coefficient of n is less than m and the coefficient of m is less
than n. We prove it in several steps.

Claim 1. The statement holds for ω0, i.e. the homogeneous case.

It is an immediate consequence of the properties of the resultant.

Claim 2. The statement holds if fa(x, y) is a power of x or y.

Assume that fa is a power of x. In this case, we have

• a = n(ax + ma′), 0 ≤ ax < m.
• gb(0, 1) 	= 0, i.e. bx = 0.

The following equalities hold:

n(ax + dx) + mdy + (a′ + d)mn = ncx + m(by + dy) + (b′ + c)mn

= nex + mey + emn.

We deduce that ex = cx = ax +dx−αm, ey = dy = by +dy−βn, where α, β ∈ {0, 1}
and

e = a′ + d + α = b′ + c + β.

Equation (A.2) is equivalent to

xα+a′
g̃d(x, y) + yβ g̃b′(x, y)f̃c(x, y) = F̃e(x, y),

which follows from Claim 1, and Claim 2 holds.

Claim 3. The statement holds if both fa and gb are coprime with x, y.

In this case ax = ay = bx = by = 0 and

dx = ex, dy = ey, a′ + d = b′ + c = e.

Hence (A.2) is transformed again in its homogeneous version and Claim 3 follows
from again from Claim 1. Combining these claims, the statement is proved.
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