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We generalize the notions of the orbifold Euler characteristic and of the higher-order
orbifold Euler characteristics to spaces with actions of a compact Lie group using
integration with respect to the Euler characteristic instead of the summation over
finite sets. We show that the equation for the generating series of the kth-order
orbifold Euler characteristics of the Cartesian products of the space with the wreath
products actions proved by Tamanoi for finite group actions and by Farsi and Seaton
for compact Lie group actions with finite isotropy subgroups holds in this case as well.
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1. Introduction

Let X be a topological space (good enough; say, a quasi-projective variety) with the
action of a finite group G. For a subgroup H of G, let XH = {x ∈ X : Hx = x} be
the fixed-point set of H. The orbifold Euler characteristic χorb(X, G) of the G-space
X is defined, for example, in [1, 8]:

χorb(X, G) =
1

|G|
∑

(g0,g1)∈G×G :
g0g1=g1g0

χ(X〈g0,g1〉) =
∑

[g]∈G∗

χ(X〈g〉/CG(g)), (1.1)

where G∗ is the set of the conjugacy classes of the elements of G, CG(g) = {h ∈
G : h−1gh = g} is the centralizer of g and 〈g〉 and 〈g0, g1〉 are the subgroups gen-
erated by the corresponding elements. Here and bellow we use the additive Euler
characteristic, i.e. the one defined through the cohomologies with compact support.

The higher-order Euler characteristics of (X, G) (alongside with some other gen-
eralizations) were defined in [1, 3, 10].
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Definition 1.1. The orbifold Euler characteristic χ(k)(X, G) of order k of the G-
space X is

χ(k)(X, G) =
1

|G|
∑

g∈Gk+1 :
gigj=gjgi

χ(X〈g〉) =
∑

[g]∈G∗

χ(k−1)(X〈g〉, CG(g)), (1.2)

where g = (g0, g1, . . . , gk), 〈g〉 is the subgroup generated by g0, g1, . . . , gk and
χ(0)(X, G) is defined as χ(X/G).

The usual orbifold Euler characteristic χorb(X, G) is the orbifold Euler charac-
teristic of order 1, χ(1)(X, G).

A generalization of this definition for the orbifold Hodge–Deligne polynomial (for
k = 1) was introduced by Batyrev in [2]. A ‘motivic version’ of it – the higher-order
generalized Euler characteristics with values in the ring K0(VarC)[L1/m], where
K0(VarC) is the Grothendieck ring of complex quasi-projective varieties, L is the
class of the complex affine line and m runs through positive integers – was defined
in [7].

Let Gn = G×· · ·×G be the Cartesian product of a group G. The symmetric group
Sn acts on Gn by permutation of the factors: s(g1, . . . , gn) = (gs−1(1), . . . , gs−1(n)).
The wreath product Gn = G � Sn is the semidirect product of the groups Gn and
Sn defined by the described action. Namely, the multiplication in the group Gn is
given by the formula (g, s)(h, t) = (g · s(h), st), where g,h ∈ Gn, s, t ∈ Sn. The
group Gn is a normal subgroup of the group Gn via the identification of g ∈ Gn

with (g, 1) ∈ Gn. For a space X with a G-action, the corresponding action of the
group Gn on the Cartesian product Xn is given by the formula

((g1, . . . , gn), s)(x1, . . . , xn) = (g1xs−1(1), . . . , gnxs−1(n)),

where x1, . . . , xn ∈ X, g1, . . . , gn ∈ G, s ∈ Sn. One can see that (at least for
compact G) the quotient Xn/Gn is naturally isomorphic to the symmetric power
Sn(X/G) = (X/G)n/Sn of the quotient X/G. A formula for the generating series
of the kth-order orbifold Euler characteristics of the pairs (Xn, Gn) in terms of
the kth-order orbifold Euler characteristic of the G-space X was given in [10] (see
also [3]); see theorem 3.3.

A generalization of this formula (for k = 1) for the orbifold Hodge–Deligne poly-
nomial (for finite G) was given in [12]. The corresponding ‘motivic’ version can be
found in [6]. A version of it for the generalized Euler characteristic of order k was
formulated in [7].

A ‘non-finite version’ of the sum over a finite set is the integral with respect to
the Euler characteristic [11] (see also [5]). Here we show that this notion permits us
to define an analogue of the orbifold Euler characteristics of order k for a space X
with an action of a compact Lie group G and prove that the equation from [10] for
the generating series of the orbifold Euler characteristics of order k of the wreath
products holds in this case as well. The case when all the isotropy subgroups of the
G-action are finite was studied in [4]. (Another definition was used therein, which is
not appropriate for actions with non-finite isotropy subgroups. It was also assumed
that the G-space was a manifold. However, this was connected with the fact that
the Farsi and Seaton worked in the framework of the orbifold theory.)
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It appeared that the first equations in the definitions (1.1) and (1.2) were less
convenient for the proofs of the formulae for the generating series in [10, 12] and
were not appropriate for the definition of their motivic version in [7]. In what follows
we shall use the second equations as the base for the generalization.

2. Orbifold Euler characteristic of order k for actions of
compact Lie groups

Let X be a topological space (good enough; say, a quasi-projective variety) endowed
with the action of a compact Lie group G. We assume that the action of G on X
has finitely many orbit types and, moreover, the space of orbits of a fixed orbit
type is good enough so that its Euler characteristic makes sense. For example, this
holds if the action (i.e. the map G×X → X) is algebraic. (Each compact Lie group
is a real algebraic manifold.) Let G∗ be the space of the conjugacy classes of the
elements of G. The space G∗ is a finite CW-complex.

Definition 2.1. The orbifold Euler characteristic of a G-space X (i.e. of the pair
(X, G)) is

χorb(X, G) :=
∫

G∗

χ(X〈g〉/CG(g)) dχ. (2.1)

Definition 2.2. The orbifold Euler characteristic of order k of a G-space X (i.e. of
the pair (X, G)) is

χ(k)(X, G) :=
∫

G∗

χ(k−1)(X〈g〉, CG(g)) dχ, (2.2)

where χ(0)(X, G) is χ(X/G).

The orbifold Euler characteristic (2.1) is the orbifold Euler characteristic of order
1: χ(1)(X, G).

For a closed subgroup H ⊂ G, let X(H) be the set of points x in X with the
isotropy subgroup Gx = {g ∈ G : gx = x} coinciding with H and let X([H]) be the
set of points x with the isotropy subgroup conjugate to H. The additivity of the
orbifold Euler characteristic of order k with respect to a partitioning of the space
into G-invariant parts implies the following statement.

Proposition 2.3. We have

χ(k)(X, G) =
∑

[H]∈Conjsub G

χ(X([H])/G)χ(k)(G/H, G).

Example 2.4. χ(k)(S1/Zm, S1) = mχ(k−1)(S1/Zm, S1) = mk; and, for each k > 0,
χ(k)(S1/S1, S1) = 0.

Example 2.5. The conjugacy classes of the elements of the group O(2) are [Tα],
0 � α � π, and [S], where Tα ∈ SO(2) is the rotation by the angle α, S ∈
O(2) \ SO(2) is the symmetry with respect to a line. The centralizer of Tα is O(2)
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for α = 0, π and SO(2) for 0 < α < π. Therefore, one has, for m odd,

χ(k)(O(2)/Zm, O(2)) = χ(k−1)(O(2)/Zm, O(2)) +
m − 1

2
χ(k−1)(O(2)/Zm, SO(2))

= χ(k−1)(O(2)/Zm, O(2)) + (m − 1)mk−1

= mk;

for m even,

χ(k)(O(2)/Zm, O(2)) = 2χ(k−1)(O(2)/Zm, O(2))

+
m − 2

2
χ(k−1)(O(2)/Zm, SO(2))

= 2χ(k−1)(O(2)/Zm, O(2)) + (m − 2)mk−1

= mk;

χ(k)(O(2)/SO(2), O(2)) = 2χ(k−1)(O(2)/SO(2), O(2))

− χ(k−1)(O(2)/SO(2), SO(2))

= 2χ(k−1)(O(2)/SO(2), O(2))

= 2k.

3. Generating series of the orbifold Euler characteristics of
the wreath products

To prove (3.2) for the generating series of the orbifold Euler characteristics of order
k for the Cartesian products of a G-space with the wreath products actions, we
shall use two technical lemmas (cf. [7, 10]).

Lemma 3.1. Let X and X ′ be two spaces with actions of compact Lie groups G′

and G′′, respectively. Then X ′ × X ′′ is a G′ × G′′-space and one has

χ(k)(X ′ × X ′′, G′ × G′′) = χ(k)(X ′, G′) · χ(k)(X ′′, G′′). (3.1)

The proof is obvious.

Lemma 3.2 (cf. [10, lemma 4-1]). Let X be a G-space and let c be an element of
the centre of G acting trivially on X. Let G · 〈a〉 be the group generated by G
and the additional element a commuting with all the elements of G and such that
〈a〉 ∩ G = 〈c〉, c = ar. The space X can be regarded as a (G · 〈a〉)-space if one
assumes that a acts trivially on X. In the situation described one has

χ(k)(X, G · 〈a〉) = rk · χ(k)(X, G).

Proof. We shall use the induction on k. For k = 0 this is obvious (since χ(0)(X, G) =
χ(X/G)). Each conjugacy class of the elements from G·〈a〉 is of the form [g]as, where
[g] ∈ G∗, 0 � s < r. The fixed-point set of gas coincides with X〈g〉, i.e. X〈gas〉 =
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X〈g〉 (since a acts trivially). The centralizer CG·〈a〉(gas) is CG(g) · 〈a〉. Therefore,

χ(k)(X, G · 〈a〉) =
∫

(G·〈a〉)∗

χ(k−1)(X〈gas〉, CG·〈a〉(gas)) dχ

= r

∫
G∗

χ(k−1)(X〈g〉, CG(g) · 〈a〉) dχ

= r · rk−1
∫

G∗

χ(k−1)(X〈g〉, CG(g)) dχ = rkχ(k)(X, G).

Theorem 3.3. We have

∑
n�0

χ(k)(Xn, Gn) · tn =
( ∏

r1,...,rk�1

(1 − tr1r2···rk)r2r2
3 ···rk−1

k

)−χ(k)(X,G)

. (3.2)

Proof. The proof will use the induction on the order k similar to those in [7, 10].
For k = 0 one has χ(0)(X, G) = χ(X/G), Xn/Gn

∼= Sn(X/G) and (3.2) is a
particular case (for Y = X/G) of the well-known Macdonald formula (see [9]):∑

n�0

χ(SnY ) · tn = (1 − t)−χ(Y ).

Suppose that the statement holds for the orbifold Euler characteristic of order
(k − 1).

Let Aq := {[g] ∈ G∗ : χ(k−1)(X〈g〉, CG(g)) = q}. One has G∗ =
⊔

q Aq. Due to
our assumptions, only finitely many subspaces Aq are not empty. According to the
definition (2.2), χ(k)(X, G) =

∑
q qχ(Aq).

We have
∑
n�0

χ(k)(Xn, Gn) · tn =
∑
n�0

∫
(Gn)∗

χ(k−1)((Xn)〈(g,s)〉
, CGn((g, s))) dχ · tn.

A description of the conjugacy classes [(g, s)] in Gn can be found, for example,
in [10]. The conjugacy class of an element a = (g, s) ∈ Gn (g = (g1, . . . , gn), s ∈ Sn)
is completely characterized by its type. Let z = (i1, . . . , ir) be one of the cycles in
the permutation s. The cycle product of the element a corresponding to the cycle
z is the product gir

gir−1 · · · gi1 ∈ G. (The conjugacy class of the cycle product is
well defined by the element g and the cycle z of the permutation s.) For [c] ∈ G∗
and r � 1, let mr(c) be the number of r-cycles in the permutation s whose cycle
products belong to [c]. (There are finitely many pairs (c, r) with mr(c) 	= 0.) One
has ∑

[c]∈G∗,r�1

rmr(c) = n.

The collection {mr(c)}r,c (or equivalently, the map G∗ → Z
∞
�0, [c] 
→ (m1(c),

m2(c), . . . )) is called the type of the element a = (g, s) ∈ Gn. Two elements of the
group Gn are conjugate to each other if and only if they are of the same type.

For an element a = (g, s) ∈ Gn, let the number of different c ∈ G∗ that are cycle
products of a be equal to �. One has a map from

⊔
n�0(Gn)∗ to

⊔
��0((G

�
∗ \ ∆)/S�),
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where ∆ is the ‘large diagonal’ in G�
∗, i.e. the space of points (c1, . . . , c�) ∈ G�

∗ with
at least two coinciding components. The restriction of this map to (Gn)∗ has finite
preimages of points. However, the preimage of each point is the set (Z∞ \ {0})�

consisting of all possible finite sequences (m1(ci), m2(ci), . . . ), for i = 1, . . . , �, such
that for each i the sequence m1(ci), m2(ci), . . . is different from 0 = (0, 0, . . . ). Let
us denote the set of inappropriate sequences {mr(ci)} by “0”. Thus,

∑
n�0

χ(k)(Xn, Gn) · tn

=
∑
��0

1
�!

∫
G�

∗\∆

∑
{mr(ci)}\“0”

χ(k−1)((Xn)〈(g,s)〉
, CGn

((g, s))) · t
∑

i,r rmr(ci) dχ,

where (g, s) is a representative of the conjugacy class of the elements of Gn (n =∑
i,r rmr(ci)) with the type defined by (c1, . . . , c�) ∈ G∗

� \ ∆ and by the sequences
{mr(ci)}. In [10] it was shown that the space (Xn)〈(g,s)〉 is canonically isomorphic
to the product

�∏
i=1

∏
r�1

(X〈ci〉)mr(ci) (3.3)

and the centralizer CGn((g, s)) is isomorphic to the product

�∏
i=1

∏
r�1

{(CG(ci) · 〈ar,ci
〉) � Smr(ci)},

where the factors in the group act on the product (3.3) componentwise, CG(ci) ·
〈ar,ci〉 is the group generated by CG(ci) and an element ar,ci ∈ Gn commuting with
all the elements of CG(ci) and such that ar

r,ci
= ci, 〈ar,ci

〉∩CG(ci) = 〈ci〉, ar,ci
acts

on (X〈ci〉)mr(ci) trivially. Therefore,∑
n�0

χ(k)(Xn, Gn) · tn

=
∑
��0

1
�!

∫
G�

∗\∆

∑
χ(k−1)

( �∏
i=1

∏
r�1

(X〈ci〉)
mr(ci)

,

�∏
i=1

∏
r�1

{(CG(ci) · 〈ar,ci〉) � Smr(ci)}
)

· t
∑

i,r rmr(ci) dχ

=
∑
��0

1
�!

∫
G�

∗\∆

∑ �∏
i=1

∏
r�1

χ(k−1)((X〈ci〉)
mr(ci)

, {(CG(ci) · 〈ar,ci〉) � Smr(ci)})

· t
∑

i,r rmr(ci) dχ

=
∑
��0

1
�!

∫
G�

∗\∆

�∏
i=1

[ ∏
r�1

( ∞∑
m=0

χ(k−1)((X〈ci〉)
m
, (CG(ci) · 〈ar,ci〉) � Sm)trm

)
−1

]
dχ,

where the sums without limits are over {mr(ci)} \ “0”, and for each i = 1, . . . , �
the summand 1 is subtracted since not all mr(ci) should be equal to zero. Using
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induction one has∑
n�0

χ(k)(Xn, Gn) · tn

=
∑
��0

1
�!

∫
G�

∗\∆

�∏
i=1[ ∏

r�1

(( ∏
r1,...,rk−1�1

(1 − trr1...rk−1)
)r2·r2

3 ···rk−2
k−1

)−χ(k−1)(X〈ci〉,CG(ci)·〈ar,ci
〉)

− 1
]

dχ

=
∑
��0

1
�!

∫
G�

∗\∆

�∏
i=1[ ∏

r�1

(( ∏
r1,...,rk−1�1

(1 − trr1...rk−1)
)r2·r2

3 ···rk−2
k−1

)−rk−1χ(k−1)(X〈ci〉,CG(ci))

− 1
]

dχ.

One has

G�
∗ \ ∆ =

∐
{�q} :

∑
�q=�

�!∏
�q!

∏
q

(A�q
q \ ∆),

where the coefficient �!/
∏

�q! is the number of possible decompositions of � elements
into groups of sizes �q. Therefore,
∑
n�0

χ(k)(Xn, Gn) · tn

=
∏
q

∑
�q�0

1
�q!

∫
A

�q
q \∆

�q∏
i=1[ ∏

r�1

(( ∏
r1,...,rk−1�1

(1 − trr1...rk−1)
)r2·r2

3 ···rk−2
k−1

)−rk−1χ(k−1)(X〈ci〉,CG(ci))

− 1
]

dχ

=
∏
q

( ∞∑
�q=0

χ(Aq)(χ(Aq) − 1) · · · (χ(Aq) − � + 1)
�q!

×
[ ∏

r1,...,rk�1

((1 − tr1...rk)r2·r2
3 ···rk−2

k−1 )−rk−1
k q − 1

]�q
)

=
∏
q

( ∏
r1,...,rk�1

(1 − tr1...rk)−r2·r2
3 ···rk−1

k q

)χ(Aq)

=
( ∏

r1,...,rk�1

(1 − tr1...rk)r2·r2
3 ···rk−1

k

)−
∑

q qχ(Aq)

=
( ∏

r1,...,rk�1

(1 − tr1...rk)r2·r2
3 ···rk−1

k

)−χ(k)(X,G)

.
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In the intermediate step we use the standard formula

∑
�

M(M − 1) · · · (M − � + 1)
�!

T � = (1 + T )M .
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