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LINKS AND ANALYTIC INVARIANTS OF SUPERISOLATED
SINGULARITIES

I. LUENGO-VELASCO, A. MELLE-HERNÁNDEZ, AND A. NÉMETHI

Abstract

Using superisolated singularities we present examples and counterexamples to some of the most

important conjectures regarding invariants of normal surface singularities. More precisely, we show
that the “Seiberg-Witten invariant conjecture”(of Nicolaescu and the third author), the “Universal

abelian cover conjecture” (of Neumann and Wahl) and the “Geometric genus conjecture” fail

(at least at that generality in which they were formulated). Moreover, we also show that for
Gorenstein singularities (even with integral homology sphere links) besides the geometric genus,

the embedded dimension and the multiplicity (in particular, the Hilbert-Samuel function) also fail
to be topological; and in general, the Artin cycle does not coincide with the maximal (ideal) cycle.

1. Introduction

1.1. In the last years we witness an intense effort to understand the following question: what kind of
analytic invariants of an analytic complex normal surface singularity can be determined from the topology
(i.e. from the link) of the singularity ? Is the link indeed sufficiently powerful to contain valuable information
which would help to recover analytic invariants (like multiplicity, Hilbert-Samuel function, geometric genus),
or equations (modulo equisingular deformations) ? See, e.g. [3, 4, 5, 6, 9, 11, 12, 13, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43]. In fact, in order to give a chance to these type of
questions, one has to assume two types of restrictions (see e.g. [13] and [25] for more details and examples):
a topological one – e.g. that the link is a rational homology sphere – and an analytic one – e.g. that the
singularity is Q–Gorenstein. Therefore, in the sequel we will assume that the link is a rational homology
sphere.

As a result of the above mentioned efforts, in the last years a large number of positive results and
conjectures have appeared. Some of the conjectures were verified for large nontrivial families of singularities,
a fact which created an increasing optimism. Nevertheless, some signs started to give the signal that there
are special families of singularities which might create some obstructions, and whose understanding would
be crucial for further progress. One of these families is the class of superisolated singularities.

The goal of this note is to present examples and counterexamples to some of the most important con-
jectures in this area regarding invariants of normal surface singularities (using superisolated singularities).
More precisely, we show that the “Seiberg-Witten invariant conjecture”(of Nicolaescu and the third author),
the “Universal abelian cover conjecture” (of Neumann and Wahl) and the “Geometric genus conjecture” fail
(at least at that generality in which they were formulated); see section 3 for a short review of these conjec-
tures. Moreover, these examples also show that for Gorenstein singularities (even with integral homology
sphere links) besides the geometric genus, the embedded dimension and the multiplicity (in particular, the
Hilbert-Samuel function) also fail to be topological. One of the examples also shows that, in general, the
Artin cycle does not coincide with the maximal (ideal) cycle (even for complete intersections with integral
homology sphere links). The main message is that all the present conjectures and knowledge must be recon-
sidered, rethought, reorganized in order to find the right and correct connections, directions and questions
which would guide the next steps.
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Surprisingly, some of our examples are not very complicated (compared with the list of – rather different
and sometimes rather complex – positive examples which verify the corresponding conjectures). E.g., they
are hypersurface singularities (or their universal abelian covers). Nevertheless, they have some other rather
specific properties which allow some room for anomalies.

We wish to emphasize that the failure of the conjectures (at the generality how they were formulated) puts
in a different new light all those families for which the conjectures were verified: their role and importance
become much stronger and dominant. Moreover, this is a clear invitation for clarification of some other new
families of singularities, out of which the superisolated singularities have the first priority.

In section 2 we will set our notations and we will present some results about the invariants of superisolated
hypersurface singularities. In section 3 we give the list of conjectures and problems for which we will provide
examples-counterexamples in the following sections. In section 4 our strategy is the following. We start
with the classification of the hypersurface superisolated singularities. By computing invariants one gets
directly counterexamples for the Seiberg-Witten invariant conjecture (cf. 4.1) and the Universal abelian
cover conjecture (cf. 4.3-4.4). More complicated, but more striking examples are found by considering the
universal abelian cover of singularities (cf. 4.5-4.6).

The authors thank E. Artal-Bartolo, I. Dolgachev, J. Kollár, J. Stevens and J. Wahl for valuable discus-
sions. This work was initiated in the 2003 conference on Singularity Theory in Oberwolfach, the authors
would like to thank people at the Institut for the ideal working and living conditions.

2. Hypersurface superisolated singularities

2.1. Hypersurface superisolated singularities achieved historically the reputation of being an interesting
class of singularities. This class “contains” in a canonical way the theory of complex projective plane curves,
which gives a series of nice examples and counterexamples. They were introduced in [16] by the first author in
order to show that the µ-constant stratum in the semiuniversal deformation space of an isolated hypersurface
singularity, in general, is not smooth. Later Artal-Bartolo in [1] used them to provide a counterexample for
S. S.-T. Yau’s conjecture (showing that, in general, the link of an isolated hypersurface surface singularity
and its characteristic polynomial not determine the embedded topological type of the singular germ). On
the other hand, A. Durfee’s conjecture and the monodromy conjecture of J. Denef and F. Loeser has been
proved for them, see [17] and [2].

2.2. Definitions-Notations. A hypersurface singularity f : (C3, 0) → (C, 0), f = fd+fd+1+· · · (where
fj is homogeneous of degree j) is superisolated if the projective plane curve C := {fd = 0} ⊂ P2 is reduced
with isolated singularities {pi}i, and these points are not situated on the projective curve {fd+1 = 0}. In
this case the embedded topological type (and the equisingular type) of f does not depend on the choice of
fj ’s (for j > d, as long as fd+1 satisfies the above requirement), e.g. one can take fj = 0 for any j > d + 1
and fd+1 = ld+1 where l is a linear form not vanishing at the points {pi}i. We will denote by µi (respectively
by ∆i, with the sign choice ∆i(1) = 1) the Milnor number (respectively, the characteristic polynomial) of
the local plane curve singularities (C, pi) ⊂ (P2, pi). For simplicity, in this note we will assume that C is
irreducible. (The interested reader can adopt the next discussion easily to the general situation.)

Let M be the link of {f = 0} (with its natural orientation), H := H1(M, Z); µ and pg be the Milnor
number and the geometric genus of f .

2.3. Invariants.

• [16] The minimal resolution of {f = 0} has only one irreducible exceptional divisor which is isomorphic
to C and has self intersection −d. In particular, the link M of f is a rational homology sphere if and only
if C is rational and all the plane curve singularities (C, pi) ⊂ (P2, pi) are (locally) irreducible (i.e., C is a
rational cuspidal plane curve). In particular,

P
i µi = (d− 1)(d− 2).

If Γi is the minimal embedded resolution graph of (C, pi) ⊂ (P2, pi) (with a unique −1 vertex vi which
supports the strict transform of (C, pi)), then the minimal good resolution graph of {f = 0} can be con-
structed in the following way: consider a “central vertex” v (which corresponds to the curve C), for each i
connect v with vi by an edge, keep all the decorations of Γi, and add a new decoration ev (self intersection)
to v as follows. In the graphs Γi insert the set of multiplicities of the (reduced) plane curve singularity (i.e.
the strict transform of (C, pi) goes with multiplicity one). Let ai be the multiplicity of the unique −1 curve
of Γi. Then ev = −d−

P
i ai.
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• Fix any resolution graph Γ of {f = 0}. Let K be the canonical cycle associated with Γ, and s the number
of vertices. Then K2 + s does not depend on the choice of Γ, it is a topological invariant of M . In our case,
it is easy to compute it at the level of the minimal resolution:

K2 + s = −d(d− 2)2 + 1.

• By (3.6.4) of [1], the Milnor number µ of f is the sum of the Milnor number of the singularity xd +yd +zd

and
P

i µi. Using the above mentioned identity
P

i µi = (d− 1)(d− 2), we get:

µ = (d− 1)3 + (d− 1)(d− 2).

Similarly, the characteristic polynomial ∆f of f is

∆f (t) =
td − 1

t− 1
·

Y
i

∆i(t
d+1).

Since ∆i(1) = 1, this implies that |H| = ∆f (1) = d. In fact, one can verify easily that H = Zd, and a
possible generator of H is an elementary loop in a transversal slice to C.

• Since 12pg = µ− (K2 + s) by [14], one obtains:

pg = d(d− 1)(d− 2)/6.

• One of the conjectures relates the Seiberg-Witten invariant sw(M) of M (associated with the canonical
spinc structure) with the analytic (or smoothing) invariants of the singularity. Here, by definition, sw(M)
is the sign-refined Reidemeister-Turaev torsion T (M) (associated with the canonical spinc structure) [38]
normalized by the Casson-Walker invariant λ(M) (using the convention of [15]) (cf. also with [26, 27, 28,
23, 25]). Namely, we consider:

sw(M) := −λ(M)

|H| + T (M).

Both invariants T (M) and λ(M) can be determined from the graph (for details, see [26] or [25]). In fact, in
our present case, the formula of [26] can be rewritten in the form:

T (M) =
1

d

X
ξd=1 6=ξ

1

(ξ − 1)2
·

Y
i

∆i(ξ).

Using similar method as in the proof of Theorem 4.5 of [28] (i.e. Fujita’s splicing formula for the Casson-
Walker invariant [10], and Walker-Lescop surgery formula [15], page 13) one can proof the following identity.
Let ∆̄(t) be the product

Q
i ∆i(t) symmetrized (i.e. its degree is 2δ and ∆̄(t) = t−δ ·

Q
i ∆i(t)). Then the

Casson-Walker invariant of the link is

λ(M) = (−1/2)∆̄(t)′′(1) + (d− 1)(d− 2)/24.

In fact, in this formula one can replace ∆̄(t)′′(1) by
P

i ∆̄i(t)
′′(1).

3. The conjectures and questions

Here we list the main conjectures and problems which have been guiding our investigation.
3.1. SWC. The Seiberg-Witten invariant conjecture. In [26] L. Nicolaescu and the third author

formulated the following conjecture.

(a) If the link of a normal surface singularity is a rational homology sphere then

pg ≤ sw(M)− (K2 + s)/8.

(b) Additionally, if the singularity is Q-Gorenstein, then in (a) the equality holds.

In the case of hypersurface singularities (more generally, for smoothings of Gorenstein singularities) the
identity (b) can be rewritten as −8sw(M) = σ, the signature of the Milnor fiber. If the singularity is an
isolated complete intersection with an integral homology sphere link, then the conjecture transforms into
the identity 8λ(M) = σ, which was conjectured by Neumann and Wahl [30] for smoothings of complete
intersections (this is called the “Casson invariant conjecture”, CIC).

The SWC-conjecture was verified e.g. for quotient singularities [26], for singularities with good C∗-
actions [27], hypersurface suspension singularities g(u, v) + wn with g irreducible [28]. Even more, in [23],
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the third author replaced sw(M) by the corresponding Ozsváth-Szabó invariant (which is defined via the
Ozsváth-Szabó Floer homology, and which conjecturally equals sw(M)), and verified the inequality (a) for
any singularity with almost rational (AR in short) resolution graph. (A graph is AR, if by replacing the
decoration of one of the vertices one gets a rational graph. E.g., all the rational, weakly elliptic, minimal
good star-shaped graphs are AR.)

In fact, for rational singularities, even the equivariant version of the SWC was verified: [24] shows the
identity of the set of Seiberg-Witten invariants of the link (parametrized by all the possible spinc-structures)
with the equivariant geometric genera of the universal abelian cover.

On the other hand, in [23] the author exemplifies some types of graphs which are not AR, and whose
understanding would be necessary for further progress regarding the result of [loc.cit.]. These are exactly
the type of graphs which are provided typically by superisolated singularities.

3.2. UACC. The universal abelian cover conjecture. The starting point of the next conjecture of
Neumann and Wahl is Neumann’s paper [29] which proves that the universal abelian cover of a singularity
with a good C∗-action and with b1(M) = 0 is a Brieskorn complete intersection whose weights can be
determined from the Seifert invariants of the link. This, and other examples worked out by Neumann and
Wahl (see e.g. [32] about quotient-cusps) lead them to a rather complex program and package of conjectures
[31]:

Assume that (X, 0) is Q-Gorenstein singularity with b1(M) = 0. Then there exists an equisingular and equi-
variant deformation of the universal abelian cover of (X, 0) to an isolated complete intersection singularity.
Moreover, the equations of this complete intersection, together with the action of H1(M, Z), can be recovered
from M via the “splice equations”.

The main point of the above conjecture, in its detailed version, provides a clear recipe for the equations of
the complete intersection singularity (the “splice equations”) and the action of H on these equations. This
is done in terms of the combinatorics of the resolution graph of (X, 0). In order to be able to write down
the equations, the graph should satisfy some arithmetical properties: the so-called semigroup conditions and
congruence conditions. Their validity is part of the conjecture. The reader is invited to see all the details in
[31].

In order to eliminate any confusion, we mention that in this note equisingular deformation means the
existence of a simultaneous equitopological resolution as discussed in [39].

3.3. GGC. The geometric genus conjecture. Both 3.1 and 3.2 are closely related with the following
more general conjecture, which was formulated as a very general guiding principle (cf. with Question (3.2)
in [30], see also Problem 9.2 in [25]).

In the case of a Q-Gorenstein singularity with b1(M) = 0, the geometric genus pg is topological (i.e. can be
recovered from the oriented link).

Here we mention the following positive result of Pinkham [35]: If a singularity with b1(M) = 0 has a
good C∗-action, then its geometric genus can be computed explicitly from the resolution graph. (Moreover,
by [29], such a singularity is Q-Gorenstein.)

The crucial testing case for the above GGC is the case of the star-shaped resolution graphs: is it true
that if the minimal good resolution graph of a Q-Gorenstein singularity is star-shaped, then its geometric
genus is the same as the number predicted by Pinkham’s formula ?

3.4. Other analytic invariants. Similar questions were raised for several other discrete analytic in-
variants as well:

For what family of Q-Gorenstein singularities (with b1(M) = 0) are the invariants like the multiplicity,
embedded dimension, Hilbert-Samuel function, maximal cycle (etc.) topological ?

For different positive cases and comments, see e.g. [25]. (The fact that the embedded dimension can
jump in a topological constant family – even in a positive-weight deformation of a weighted homogeneous
singularity – was known by experts.)

The examples of the next sections provide negative answers to all of the above conjectures (SWC, UACC
and GGC) and all the analytic invariants listed in 3.4 (already in Gorenstein case).
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4. Examples

4.1. Examples/counterexamples for the SWC-conjecture. Some of the next examples show that
the SWC-conjecture, in general, is not true. For this, we consider superisolated singularities f = fd +
ld+1. Below, any singular point (C, pi) will be identified by its multiplicity sequence. Since the number of
occurrences of the multiplicity 1 in the multiplicity sequence equals the last multiplicity greater than 1, we
omit the multiplicity 1: we denote such a sequence by [m0, . . . , ml] where m0 ≥ m1 ≥ · · · ≥ ml > ml+1 = 1
for a suitable l ≥ 0. In fact, we will write [m̂0r0

, . . . , m̂krk
] for a multiplicity sequence which means that the

multiplicity m̂i occurs ri times for i = 0, . . . , k. For example, [42, 23] means [4, 4, 2, 2, 2, 1, 1].
If C has only one singularity with sequence [d − 1], then f has the same invariants as the weighted

homogeneous singularity zxd−1 +yd +zd+1, hence it satisfies the conjecture by [27]. (Probably it is worth to
mention that not all the rational cuspidal curves of degree d with one cusp and multiplicity sequence [d−1] are
projectively equivalent. E.g., for d = 4 there are two projectively non-equivalent curves: {x4−x3y+y3z = 0}
and {x4 − y3z = 0}, cf. [18], page 135.)

If d = 3, then C has a unique singularity of type [2]. If d = 4, then there are four possibilities; the
corresponding multiplicity sequences of the singular points {pi}i of C are [3]; [23]; [22], [2] and [2], [2], [2]. By
a verification, in all these cases, the conjecture is again true. (For the classification of the cuspidal rational
curves with small degree, see e.g. the book of Namba [18].)

If d = 5, then pg = 10, K2 + s = −44. Let N be the number of singular points of C. The next table
shows for all the possible multiplicity sequences the validity of the conjecture. When the conjecture fails,
we put in parenthesis the value −λ/|H|+ T − (K2 + s)/8 (which can be compared with the value of pg).

(1) N = 1
type of cusp conj

C1 [4] True
C2 [26] True

(2) N = 2
type of cusps conj

C3 [3, 2] , [22] True
C4 [3] , [23] False (8)
C5 [22] , [24] False (8)

(3) N = 3
type of cusps conj

C6 [3] , [22] , [2] False (8)
C7 [22] , [22] , [22] False (4)

(4) N = 4
type of cusps conj

C8 [23] , [2] ,[2], [2] False (2)

If d = 6 then pg = 20. The classification of multiplicity sequences of rational cuspidal plane curves of degree
6 with N singular points is given by the following list, see e.g. Fenske’s paper [7].

(1) N = 1
type of cusp conj

C1 [5] True
C2 [4, 24] True
C3 [33, 2] True

(2) N = 2
type of cusps conj

C4 [33] , [2] True
C5 [32, 2] , [3] True
C6 [32] , [3, 2] True
C7 [4, 23] , [2] True
C8 [4, 22] , [22] True
C9 [4] , [24] False (18)

(3) N = 3
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type of cusps conj

C10 [4] , [23] , [2] True
C11 [4] , [22] , [22] True

For the convenience of the reader, we make the example d = 5, N = 2, case C4, more explicit. In this case
the minimal good resolution graph has the form

t t t t t t t tt t
−2 −2 −1 −31 −1 −3 −2 −2

−4 −2

By [26], or by the above formulae, −λ(M) = 21/2 and T (M) = 2/5, hence sw(M)− (K2 + s)/8 = 8.

Notice that above, in all the cases when part (b) of the SWC-conjecture fails (i.e. pg 6= sw(M)− (K2 +
s)/8), part (a) of 3.1 fails as well: the topological candidate becomes strict smaller than pg.

4.1.1. The authors analyzed even higher degree curves C present in the literature, but were not able
to find any counterexample with N = 1. Although this very paper shows how cautious one should be with
formulating conjectures, still, we predict that for N = 1 the SWC is actually true. This conjecture is also
supported by its verification for a series of non-trivial families, e.g. for irreducible curves C of Abhyankar-
Moh-Suzuki type. They are characterized by the existence of a line L ⊂ P2 such that C \ L is isomorphic
to C (or, C ∩ L is the unique singular point of C). (Notice that not any curve with N = 1 satisfies this
property, e.g. the Yoshihara quintic – C2 with [26] in our table in 4.1 – does not.) We also verified the above
conjecture for all the cases when the singular point has exactly one characteristic pair. Since the techniques
involved in these verifications are rather different from the spirit of the present note, they will be presented
in another article [8].

In fact, since any hypersurface superisolated singularity with N = 1 is AR (in the sense of [23]), the
inequality 3.1(a) is valid for them by [23], 9.5(a).

4.2. Remark. Analyzing the above examples 4.1, one can ask: why the class of superisolated singular-
ities is so special? In the spirit of [23] (i.e. thinking about non-AR graphs) we can notice that if we want
to transform the above superisolated graphs into rational graphs by replacing the original self intersection
numbers by more negative ones, then we have to do this for many vertices (at least for N vertices of type
vi). Is the presence of these “bad” vertices the reason for the above anomalies? The answer probably is that
not just this: one can produce easily suspension singularities (which verify the conjecture by [28]) with more
than one “bad” vertex. For example, let g(x, y) be the irreducible plane curve singularity with Newton pairs
(p1, q1) = (5, 6) and (p2, q2) = (2, 5). Then the resolution graph of the suspension hypersurface singularity
f(x, y, z) = g(x, y) + z5 is the following (for the corresponding algorithm, see [19], Appendix):

tt ttt
tt

tt
t
tt
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−6
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−2

−2

−2

−2

−2

−3 −3

In this case the graph has two “bad” vertices, H = Z4
6 ⊕ Z4

2, K2 + s = −244, µ = 416, pg = 55,
−λ/|H| = 61/18, T = 190/9, and sw = 49/2 = −σ/8 (for different formulas and details regarding sus-
pension singularities, see e.g. [28]).

4.3. Counterexamples for UACC. Working with superisolated singularities one sees easily that al-
ready the construction of the “splicing equations” is obstructed: in general, the semigroup condition is not
satisfied. More precisely, consider the splice diagram associated with the resolution graph of a hypersurface
superisolated singularity. Then, if N ≥ 3, that decoration of any edge of type [v, vi] which is closer to v is
1. This should be situated in the semigroup generated by the decorations of the leaves (which are all strict
greater than 1), a fact which is not true.

This means that the algorithm [31] which provides the equations of the complete intersection singularity
predicted by the UACC is not working, since to write the splice complete intersection equations one needs
the semigroup condition satisfied. In other words, that conjectured complete intersection singularity whose
deformation should contain the universal abelian cover, in general, does not exist.
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(But, of course, this does not imply that the universal abelian cover cannot be a complete intersection;
it might be, but not of splice type.)

The simplest counterexample appears when d = 4 and C is the Steiner quartic (the unique quartic in the
plane with three [2]-cusps).

4.4. A suspension type counterexample. In fact, the phenomenon 4.3 is not really specific to
superisolated singularities. One can construct hypersurface suspension singularities with the same property.
E.g. if one takes the hypersurface singularity {z2 = (y + x2)(y3 + x11)}, then its link is a rational homology
sphere (with first homology Z4), but its minimal plumbing graph does not satisfy the semigroup conditions
(since the E8-subgraph has determinant 1). The resolution graph is

−2 −2 −2 −2 −2 −2 −2 −4 −2

−2 −2

t t t t t t t t tt t
More sophisticated counterexamples are provided by considering universal abelian covers.

4.5. Counterexample: The case d = 4 with multiplicity sequence [23], and its universal
abelian cover. In this section, we make more explicit the invariants of the superisolated singularity with
d = 4 when C has only one singular point of type [23]. In this case C is projectively equivalent to the
projective curve (zy − x2)2 = xy3, with parametrization [t : s] 7→ [t2s2 : t4 : s4 + t3s] (see [18], page 146).
Hence a possible choice for f is

f = (zy − x2)2 − xy3 + z5.

As we already mentioned pg(X, 0) = 4. The resolution graph Γ is

t t t t ttΓ :
−2 −2 −3 −1 −18

−2

Since the graph is a star-shaped, the same resolution graph can be realized by a weighted homogeneous
singularity (Xw, 0) as well. In the present case this is an isolated complete intersection in (C4, 0) with two
equations:

(Xw, 0) =


yz = x2

z5 + t2 − xy3 = 0.

The corresponding weights of the coordinates (x, y, z, t) are: (16,18,14,35). By Pinkham’s formula [35] one
gets that pg(Xw, 0) = 4 as well.

Now, one can use the result of Neumann and Wahl (cf. [30] (3.3)) which guarantees that a Gorenstein
singularity (with the same link as a weighted homogeneous singularity (Xw, 0)) is an equisingular deformation
of (Xw, 0) if and only if its pg equals the number predicted by Pinkham’s formula. (In [30] (3.3) the result is
stated for integral homology spheres links, but the proof works without modification for rational homology
sphere links as well.)

In particular, the superisolated singularity (X, 0) is an equisingular deformation of (Xw, 0). In this
particular case this deformation can be written easily: the pair of equations yz−x2 = λt, and z5+t2−xy3 = 0
– for the parameter λ 6= 0 – is equivalent to (X, 0). (Here, if one wishes to emphasize the compatibility of
the weights with the deformation, one should notice that λ has weight −3).

Notice also that the two singularities (X, 0) and (Xw, 0) have the same multiplicity (which equals 4), but
clearly have different embedded dimensions – hence different Hilbert-Samuel functions.

Next, we wish to analyze the corresponding universal abelian covers.
The universal abelian cover (Xab

w , 0) of (Xw, 0) is easy (cf. also with [29]). It is a hypersurface Brieskorn
singularity {u7 = v18 + w2}. (Notice that this equation is exactly the “splice equation” predicted by the
Neumann-Wahl construction, cf. 3.2). The action of (a generator of) H = Z4 = {ζ ∈ C : ζ4 = 1} on the
coordinates (u, v, w) is u 7→ −u, v 7→ iv and w 7→ −iw. Taking the invarints x := uv2, y := u2, z := v4 and
t := vw, we get that {u7 = v18 + w2}/H has exactly those equations what we provided for (Xw, 0) above.

Notice that the resolution graphs of both universal abelian covers are the same (which is exactly the
plumbing diagram of the universal abelian cover of the common link M). In this case it is:
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Γab : t t t t t t ttt
−3 −2 −2 −2 −2 −2 −3

−2

−5

This graph has K2 + s = −18. Since the Brieskorn singularity u7 = v18 + w2 has Milnor number
6 · 17 = 102, we get by Laufer’s formula that its geometric genus is pg(−u7 + v18 + w2) = 10.

Next, we analyze the universal abelian cover of the superisolated singularity (X, 0) and estimate its
geometric genus.

In our original study of examples of 4.5 and 4.6, the authors had the faulty impression that the equisingular
deformation existing at the level of (X, 0) lifts to an equisingular and equivariant deformation at the level
of the universal abelian cover. But when we showed J. Wahl the example 4.6, he recognized that this could
indeed not occur, and outlined a proof: any equivariant positive weight deformation of the universal abelian
cover of (Xw, 0) gives a family of quotients of constant embedding dimension 6.

In the sequel we present an alternate proof of the non-existence of such deformation (using Fact B below,
which is interesting by its own, and hopefully can be applied in different similar situations as well).

Fact A. The universal abelian cover (Xab, 0) of (X, 0) is not in the µ-constant deformation space of
(Xab

w , 0) = {w2 + v18 − u7}. In particular, there is no equisingular deformation from (Xab, 0) to (Xab
w , 0).

In fact, what we will prove is the following:

Fact B. Assume that Z4 acts freely in codimension 1 on a hypersurface germ which in some coordinates has
the form w2 + (deg ≥ 5). Then if the quotient is a hypersurface with multiplicity greater than 2, then the
tangent cone of the quotient is reducible.

Proof. (1) Notice that any germ in the semiuniversal deformation of (Xab
w , 0) (modulo a coordinate change)

can be written in the form w2 + g(u, v). Assume that (Xab, 0) is given by ({fab = 0}, 0) ⊂ (C3, 0) and f is
in a µ-constant deformation of (Xab

w , 0). Hence fab itself, in some coordinates, has this form such that the
plane curve singularities u7 − v18 and g(u, v) have the same embedded topological types. Therefore, all the
monomials of g have degree at least 7.
(2) We consider the action of Z4 on {fab = 0}. Since {fab = 0} is singular with tangent space C3, the action
induces an action on this cotangent space m/m2 and on the exact sequence 0 → m2 → m → m/m2 → 0
(here m is the maximal ideal of C[u, v, w]/(fab)). Since Z4 is finite, this sequence equivariantly splits, hence
the singularity has an equivariant embedding into its tangent space. In other words, by a change of local
coordinates, we can assume that that the action extends to a linear action of C3. Since the group is cyclic
(with distinguished generator ε), we can even assume that the linear action on C3 is diagonal.

Since the space {fab = 0} is invariant to the action, fab is an eigenfunction of ε (coinvariant). Since
fab (in any coordinates) has the form l2 + (deg ≥ 3), where l is a linear form, l2 is also an eigenfunction
of ε with the same eigenvalue λ as fab. Since l2 is a square, we get that λ = ±1. Moreover, if l involves
more coordinates with nonzero coefficients, then the action of ε on all of them should be the same, hence by
another linear change of variables, and keeping the diagonal form of ε, we can transform l into one of the
coordinates. We will denote the coordinates constructed in this way by w, u, v.

The action of ε has the form diag(ia1 , ia2 , ia3). Since the action on {fab = 0} is free in codimension 1,
one gets #{j : aj even} ≤ 1.
(3) Consider the projection p : C3 → C3/Z4. If g is a function vanishing along {fab = 0}/Z4, then g ◦p is an
invariant function of form fabh. In particular, in order to obtain all the equations of {fab = 0}/Z4, we have
to multiply fab with such coinvariants h which make fabh invariant, and express fabh in terms of principal
invariants. If fab itself is invariant, it provides basically only one equation, namely its expression in terms
of the principal invariants.
(4) Assume that there is an aj (say a1) multiple of 4. Then (modulo some symmetry) there are the following
possibilities:
(4.1) ε = diag(1, i, i) (i.e. ε(w) = w, ε(u) = iu, ε(v) = iv). The principal invariants in C[w, u, v] of the action
are I = {w, v4, v3u, v2u2, vu3, u4}, hence embdim(C3/Z4) = 6. Recall that fab = l2 + (deg ≥ 3), where l is
one of the coordinates.
(4.1.1) Assume that fab = w2 + (deg ≥ 3). Since fab in some coordinates has the from w̄2 + (deg ≥ 5) (cf.
part (1)), fab in variables (w, u, v) can be written as
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(∗) fab = (w + h2 + h3)
2 + (deg ≥ 5) = w2 + 2wh2 + h2

2 + 2wh3 + (deg ≥ 5),

where deg(hj) = j. In this case fab and w are invariants, hence the same is valid for wh2 and h2
2 + 2wh3 as

well. Hence fab = w2 + aw3 + bw4 + (deg ≥ 5); in particular fab expressed in terms of the invariants I has
no linear term. Therefore, embdim{fab = 0}/Z4 = 6.
(4.1.2) Assume that fab = u2+(deg ≥ 3) (the case fab = v2+· · · is symmetric). Then the principal invariants
u4, vu3, v2u2 can be eliminated using the equation of fab. The remaining relevant principal invariants are
x := w, y := v4, z := v3u. Hence {fab = 0}/Z4 can be embedded into (C3, 0). Next we analyze its equation.
Notice that in this case λ = −1. Therefore, if m = wαuβvγ is a monomial of fab with nonzero coefficient,
then β + γ = 4tm + 2 for some tm ≥ 0. If we multiply this monomial by v4k+6, we get the invariant
wαuβvγ+4k+6. Notice that the inequality γ + 4k + 6 ≥ 3β is equivalent with k ≥ β − tm − 2, hence if we
take k0 := maxm(β − tm − 2), then mv4k0+6 = xαzβytm−β+2+k0 . In particular, u2v4k0+6 = z2yk0 . In other
words, if fab =

P
m amm, then the wanted equation of the quotient in (C3, 0) is

P
m amxαzβytm−β+2+k0 .

Finally notice that if the (w, u, v)-degree of m is α + β + γ > 2 (i.e. if m is any monomial different from
u2), then the (x, y, z)-degree of mv4k0+6 is α + β + tm − β + 2 + k0 > 2 + k0. This shows that {fab = 0}/Z4

in (C3, 0) (with coordinates x, y, z) has the equation z2yk0+ higher degree terms. This, by any coordinate
change, is not equivalent with the superisolated hypersurface singularity f4 + f5 (because its tangent cone
is reducible).
(4.2) Assume that ε acts on (w, u, v) diagonally via diag(1, i,−i). The set of principal invariants are I =
{w, v4, uv, u4}.
(4.2.1) If fab = w2 + . . ., then using the same notation as in (∗), h2 is invariant, hence fab, expressed in
terms of the principal invariants, has no linear term. In particular, embdim{fab = 0}/Z4 = 4.
(4.2.2) If fab = u2 + (deg ≥ 3), we proceed as in (4.1.2). The invariant u4 can be eliminated, the other
relevant invariants are x := w, y := v4 and z := uv and the quotient can be embedded in (C3, 0).

Define rγ ∈ {0, 1} such that γ − rγ = 2cγ is even. Notice that λ = −1. Then, if m = wαuβvγ is a
monomial of fab, then β +γ = 2(2tm + rγ +1) for some tm ≥ 0. Set k0 := maxm(tm− cγ). Then mv4k0+2 =
xαzβyk0−tm+cγ . If fab =

P
m amm then the equation of the quotient is f ′ :=

P
m amxαzβyk0−tm+cγ .

Notice that the contribution of u2 is z2yk0 . Let d(m) be the (w, u, v)-degree α + β + γ = α + 4tm + 2rγ + 2
of m, respectively, let d′(m) be the (x, y, z)-degree of mv4k0+2. (In particular, d(m) ≥ 2 with equality
if and only if m = u2.) By on easy verification one gets that d′(m) ≥ 2 + k0 = d′(u2), and if d′(m) =
2 + k0 then yk0 divides the corresponding monomial xαzβyk0−tm+cγ . (In fact, the possible monomials are
z2yk0 , xyk0+1, zyk0+1, yk0+2.) Hence the tangent cone of f ′ is not irreducible.
(5) Assume that there is an aj (say a1) of type 4s + 2 (s ∈ Z). Then one has the following possibilities:
(5.1) Set ε = diag(−1, i, i) (acting on (w, u, v)). The principal invariants in C[w, u, v] are the elements in the
set I = {v4, v3u, v2u2, vu3, u4, wu2, wuv, wv2, w2}. In particular, embdim(C3/Z4) = 9.
(5.1.1) Assume that fab = w2 + (deg ≥ 3). Then fab is an invariant, which expressed in terms of I has a
linear term. Hence embdim{fab = 0}/Z4 = 8.
(5.1.2) Assume that fab = u2 + . . ., in particular λ = −1. Then u4, u3v, u2v2 and wu2 can be eliminated
using fab, and one remains with the other five principal invariants Ir = {w2, v4, uv3, wv2, wuv}. Write fab

again in the form fab = (u + h2 + h3)
2 + (deg ≥ 5). Then uh2 and h2

2 + 2uh3 are (−1)-eigenfunctions,
hence h2 and h3 are linear combination of w2u and w2v. Hence fab = u2 + au2w2 + buvw2 + (deg ≥ 5).
Multiplying such an fab with any (−1)-eigenfunction h such that fabh can be expressed in terms of the
monomials Ir, the expression of fabh in terms of these invariants Ir will contain no linear term. Hence,
embdim{fab = 0}/Z4 = 5.
(5.2) Assume that ε = diag(−1, i,−i). The principal invariants are I = {v4, vu, u4, wu2, wv2, w2}.
(5.2.1) If fab = w2 + (deg ≥ 3) then fab is an invariant, which expressed in terms of I has a linear term.
Hence embdim{fab = 0}/Z4 = 6− 1 = 5.
(5.2.2) Assume that fab = u2 + . . ., in particular λ = −1. Then Ir = {w2, v4, uv, wv2}. Write fab =
(u + h2 + h3)

2 + (deg ≥ 5). Then uh2 and uh3 are (−1)-eigenfunctions. Analyzing the corresponding
monomial eigenfunctions, we get that fab = u2+au2w2+bv2w2+cuvw+(deg ≥ 5). Multiplying such an fab

with any (−1)-eigenfunction h such that fabh can be expressed in terms of the monomials Ir, the expression
of fabh in terms of these invariants Ir will contain no linear term. Hence, embdim{fab = 0}/Z4 = 4.

(The case fab = v2 + · · · is similar.)
(6) Assume that all the integers aj are odd. Then it is enough (modulo a symmetry) to consider the cases
fab = w2 + (deg ≥ 3) with three different actions for ε, namely diag(i, i, i), diag(i, i,−i) and diag(i,−i,−i).
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In all of these cases the embedded dimension of the quotient is > 3 (it is the cardinality of Ir, namely 9,
5, resp. 7). The verification is exactly the same as in (5.1.2) or (5.2.2). �

Let us summarize what we have: the superisolated singularity (X, 0) is clearly a Gorenstein singularity
with b1(M) = 0. It has only one “splice equation” (cf. 3.2) which defines (Xab

w , 0). The above fact shows
that the universal abelian cover (Xab, 0) is not in the equisingular deformation of (Xab

w , 0). Therefore, even
if the construction of the “splicing equations” is not obstructed (cf. 4.3 and 4.4), in general, the UACC [31]
is not valid.

We can go even further: the resolution graphs of (Xab, 0) and (Xab
w , 0) are the same, hence these two

singularities have the same topological types. Their links are rational homology spheres (with first homology
Z7). Since the common resolution graph is star-shaped, and (Xab

w , 0) is weighted homogeneous, (Xab, 0) can
be equisingularly deformed into (Xab

w , 0) if and only if their geometric genus are the same (cf. with the
already mentioned result of Neumann and Wahl [30] (3.3)). Since this is not the case (by the above Fact
A), one gets that pg(Xab, 0) 6= pg(Xab

w , 0). In particular, we constructed two Gorenstein singularities (one
of them is even a hypersurface Brieskorn singularity) with the same rational homology sphere link, but with
different geometric genus. This provides counterexample for both SWC and GGC.

What is even more striking in the above counterexample, is the fact that the corresponding graphs are
star-shaped (and one of the singularity is weighted homogeneous), cf. with the last paragraph of 3.3.

Recall that pg(Xab
w , 0) = 10. Notice also that for any normal surface singularity with the same resolution

graph as Γab, by (9.6) of [23] one has pg ≤ 10. In particular, pg(Xab, 0) < 10.
4.6. Counterexample: The case C2 with d = 5 and multiplicity sequence [26], and its universal

abelian cover. We start with f = f5 + z6 where f5 = z(yz − x2)2 − 2xy2(yz − x2) + y5. The curve C is
irreducible with unique singularity at [0 : 0 : 1] (of type A12). The resolution graph Γ of the superisolated
singularity (X, 0) is

t t t−2 −2 −2 t t t t ttΓ :
−2 −2 −3 −1 −31

−2

Since the graph is star-shaped, the same resolution graph can be realized by a weighted homogeneous
singularity (Xw, 0) as well. In fact, it is much easier to determine the universal abelian cover (Xab

w , 0) of
(Xw, 0). By [29], it is the Brieskorn hypersurface singularity {u13 + v31 + w2 = 0} (and this agrees with the
“splice equation” provided by Γ). The corresponding resolution graph Γab (of both (Xab, 0) and (Xab

w , 0)) is

Γab : t t t t t t t t tt
−7 −2 −2 −2 −2 −2 −2 −2 −5

−2

which defines the integral homology sphere Σ(13, 31, 2).
The action of H = Z5 on (Xab

w , 0) is (u, v, w) 7→ (ζ4u, ζ2v, ζw), where ζ denotes a 5-root of unity. This
action has a lot of principal invariants, but one can eliminate those ones which are multiples of w2 using
the equation u13 + v31 + w2. Therefore, we have to consider only the following ones: a := u5, b := v5, c :=
u2v, d := uv3, e := uw and f := wv2. If one wants to get the equations of (Xw, 0) in C6 (in variables
a, · · · , f), one has to eliminate from the equations u13+v31+w2, u5−a, v5−b, u2v−c, uv3−d, uw−e, wv2−f
the variables (u, v, w). This can be done by Singular [36], and we get the following set of equations for Xw

in C6:

Xw =

8>>>>>>>>>>>><>>>>>>>>>>>>:

ab− c2d = 0
bc− d2 = 0
ad− c3 = 0
be− df = 0
de− cf = 0
af − c2e = 0
e2 + a3 + b6c = 0
ef + a2c2 + b6d = 0
f2 + ac4 + b7 = 0

In fact, these equations can also be obtained without Singular: the first six equations are the principal
relations connecting the principal invariants a, . . . , f , while the last three equations are obtained (see the
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recipe in the proof of Fact B, step (3)) by multiplying the ζ2-eigenfunction u13 + v31 + w2 by the ζ3-
eigenfunctions u2, uv2, v4.

As a curiosity, separating the first six equations one gets that (Xw, 0) is a subgerm of the determinantal
singularity defined by the (2× 2)-minors of„

b d f c2

d c e a

«
.

The weights of the variables (a, . . . , f) are (62,26,30,28,93,91).

Notice also that (Xw, 0) is Gorenstein, but it is not a complete intersection. Moreover, the two singularities
(X, 0) and (Xw, 0) have the same topological types (the same graphs Γ), but their embedded dimensions are
not the same: they are 3 and 6 respectively. It is even more surprising that their multiplicities are also
different: mult(X, 0) = 5 and mult(Xw, 0) = 6 (the second computed by Singular [36]).

On the other hand, their geometric genera are the same: pg(X, 0) = 10 by the formula of (4), pg(Xw, 0) =
10 by Pinkham’s formula [35]. In particular, using again [30] (3.3), (X, 0) is in the equisingular deformation
of (Xw, 0).

This deformation can be described as follows. (Again, the weight of λ is −3.) The authors are grateful
to J. Stevens for his help in finding these deformation.

X(λ) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

ab− c2d = λf
bc− d2 = λ2a
ad− c3 = λe
be− df = −λac2

de− cf = −λa2

af − c2e = −λb6

e2 + a3 + b6c = 0
ef + a2c2 + b6d = 0
f2 + ac4 + b7 = 0

In order to understand the deformation, consider the equation (for λ 6= 0):

E := λ−2(a2b− 2ac2d + c5) + b6.

Notice that for λ 6= 0, using the first three equations one can eliminate the variables a, e, f . The last
four equations transform into Eλ, Ec, Ed and Eb (where in E we substitute a). Hence their vanishing is
equivalent with the vanishing of E. The forth and fifth equations are automatically satisfied. Hence, for
λ 6= 0, the system of equation is equivalent with a hypersurface singularity in variables (b, c, d) given by
E = 0 with the substitution a = λ−2(bc − d2). Taking λ = 1, b = z, c = y and d = x, one gets exactly the
superisolated singularity f = f5 + z6.

On the other hand, similarly as in the case of 4.5, there is no equisingular deformation at the level of
universal abelian covers. Both (Xab, 0) and (Xab

w , 0) have the same graph Γab – which is a unimodular
star-shaped graph, but (Xab, 0) is not in the equisingular deformation of (Xab

w , 0). In particular (by the same
argument as in 4.5), pg(Xab, 0) < pg(Xab

w , 0). In particular, all the conjectures UACC, SWC and GGC fail.
(For the first case notice that the “splice equation” of (X, 0) is exactly the equation of (Xab

w , 0).)
This example shows (cf. with 4.5) that even with the assumption H = 0 counterexamples for these

conjectures exist.

The non-existence of the deformation follows by a similar statement as in the case of 4.5: Assume that Z5

acts freely in codimension 1 on a hypersurface germ which in some coordinates has the form w2 +(deg ≥ 6).
Then if the quotient is a hypersurface with multiplicity greater than 2, then the tangent cone of the quotient
is reducible.

This has a completely similar proof as the similar statement in 4.5, and we will not give it here.

5. Integral homology sphere links

5.1. Recall that the first homology of the link of a hypersurface superisolated singularity f = fd + ld+1

is Zd (d ≥ 2); in particular, it is never trivial. Nevertheless, we would like to emphasize that even with
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integral homology sphere links, counterexamples exist (although it is harder to find them); this additional
requirement does not change the picture. But, in order to find such examples, we have to enlarge our family.
We exemplify here two possibilities.

5.2. The universal abelian cover revisited. In the first case we consider the universal abelian cover
(Xab, 0) of a hypersurface superisolated singularity. Notice that, in general, it is hard to give the equations (or
identify the analytic structure) of (Xab, 0). But its topological type can be described completely. Recall that

the minimal resolution X̃ of (X, 0) contains only one exceptional divisor C with (plane curve) singularities

(C, pi) and self-intersection −d. If one considers the Zd-cyclic cover q : X̃ab → X̃ of X̃, branched along C,

one gets a partial resolution of (Xab, 0). In general X̃ab is not smooth, its singularities are the d-suspensions
of the plane curve singularities (C, pi) (in other words, if the local equation of (C, pi) is gi(u, v) = 0, then

SingX̃ab = q−1(∪ipi), q−1(pi) contains only one point, and (X̃ab, q−1(pi)) is a hypersurface singularity of

type gi(u, v) + wd = 0). Moreover, the self-intersection of C̃ := q−1(C) is −1. (Indeed, dC̃ · C̃ = q∗C · C̃ =

C · q∗C̃ = C2 = −d.) In particular, the minimal good resolution graph of (Xab, 0) can be obtained in a
similar way as the graphs of hypersurface suspension singularities (if one replaces the embedded resolution
graphs of the plane curve singularities with the graphs of their d-suspensions, and the self-intersection −d
with −1).

This construction also shows that the link of (Xab, 0) is an integral homology sphere if and only if all the
links of the d suspension singularities gi(u, v) + wd are integral homology spheres. This fact can be realized,
as it is shown by the example 4.6. But even with N ≥ 3 one can find many examples.

Take for example C8 in the table 4.1 with d = 5 and N = 4. Then the local equations of the plane curve
singularities are u7 + v2 and three times u3 + v2. Hence the minimal good resolution graph of (Xab, 0) is
unimodular, and has the following form (where all the undecorated curves are −2-curves):

t t t t t t t t t t t tt t tt t tt t tt t t tt t t t t

#
#

#
#

#
#

#
#

#
#

#
##

c
c

c
c

c
c

c
c

c
c

c
cc

−10 −5 −1 −4

This shows that, even if we deal with integral homology sphere links, in general, the semigroup conjecture
fails (cf. 3.2).

5.3. Non-hypersurfaces. Another way to extend our class of examples is to consider all the singularities
(not only the hypersurfaces) which have the property that one of their resolution graphs has a “central
vertex”, and all the graph-components of the complement of the central vertex are embedded resolution
graphs of plane curve singularities.

Probably the simplest (non-hypersurface) example is the following complete intersection in (C4, 0), given
by the equations

(X, 0) = {x2 = u3 + v2y, y2 = v3 + u2x}.

Its resolution graph is unimodular and has the form:

t t t t tt t
−2 −1 −13 −1 −2

−3 −3

This example appears in [30] as a “positive” example satisfying the Casson invariant conjecture.
In the spirit of the this section, we present one of its “negative” properties: its minimal (Artin) cycle does

not agree with its maximal cycle (i.e. the minimal cycle cannot be cut out by a holomorphic function-germ).
Notice that, in general, if one wishes a topological characterization of the multiplicity, the first test is exactly
the identity of the minimal and maximal cycles.

In order to see that in this case they are not the same, notice two facts. First, the strict transforms of the
four coordinate functions are supported by the four leaves (degree one vertices). Second, the intersection
of the minimal cycle with C (the −13-curve) is −1, and with all the other irreducible exceptional divisors
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is zero. In particular, analyzing the graph (e.g. the corresponding linking numbers), one gets that if the
divisor of a holomorphic germ f would be the sum of the minimal cycle and the strict transform, then the
local intersection multiplicity i(X,0)(f, z) would be 2 for one (in fact, for two) of the coordinate functions z.
This would imply that the multiplicity of (X, 0) is 2 (or less), in particular (X, 0) would be a hypersurface
singularity. But this is not the case. (Nevertheless, the topological type of (X, 0) supports at least one
analytic structure for which the maximal cycle is the minimal cycle.)
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