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We study the poles of several local zeta functions: the Igusa,
topological and motivic zeta function associated to a germ of a
holomorphic function in two variables. It was known that there is
at most one double pole for (any of) these zeta functions which is
then given by the log canonical threshold of the function at the
singular point. If the germ is reduced Loeser showed that such
a double pole always induces a monodromy eigenvalue with a
Jordan block of size 2. Here we settle the non-reduced situation,
describing precisely in which case such a Jordan block of maximal
size 2 occurs. We also provide detailed information about the
Bernstein–Sato polynomial in the relevant non-reduced situation,
confirming a conjecture of Igusa, Denef and Loeser.

© 2010 Elsevier Inc. All rights reserved.

Introduction

0.1. To a polynomial or analytic function f defined over various fields are associated several (related)
zeta functions: the Igusa, topological, motivic and Hodge zeta function. They are essentially invariants
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of the singularities of the associated hypersurface (germ), and occur in particular in fascinating con-
jectures linking them to monodromy and to Bernstein–Sato polynomials. We first recall the definition
of the Igusa and topological zeta function.

Let f : X → Qp be a non-constant (Qp-)analytic function on a compact open X ⊂ Qn
p , where Qp

denotes the field of p-adic numbers. Let | · |p and |dx| denote the p-adic norm and the Haar measure
on Qn

p , normalized in the standard way. The p-adic integral

Z p( f ; s) :=
∫
X

∣∣ f (x)
∣∣s

p|dx|,

defined for s ∈ C with �(s) > 0, is called the (p-adic) Igusa zeta function of f . Using resolution
of singularities Igusa [11,12] showed that it is a rational function of p−s; hence it also admits a
meromorphic continuation to C. (Everything can be generalized to finite extensions of Qp .)

Let f : (Cn,0) → (C,0) be a germ of a nonzero holomorphic function f . Let B be an open ball
centered at the origin. Let π : X → B be an embedded resolution of ( f −1{0},0). We denote by Ei ,
i ∈ J , the irreducible components of π−1( f −1{0})red. Let Ni (resp. νi − 1) be the multiplicity of f ◦ π
(resp. of π∗(dx1 ∧ · · · ∧ dxn)) at a generic point of Ei . For I ⊂ J , we set E I := ⋂

i∈I Ei and E◦
I :=

E I \ (
⋃

j /∈I E j).
The (local) topological zeta function Ztop,0( f , s) of f at 0 is the rational function defined by

Ztop,0( f , s) :=
∑
I⊂ J

χ
(

E◦
I ∩ π−1{0})∏

i∈I

1

νi + Ni s
∈ Q(s).

In [8], Denef and Loeser proved that this rational function is well defined (it does not depend on the
resolution π ), by expressing it as a kind of limit of p-adic Igusa zeta functions. We just mention that
the motivic and Hodge zeta functions are other ‘algebro-geometric’ zeta functions, defined over an
arbitrary field of characteristic zero, and that the motivic zeta function specializes to the topological
zeta function and to the various p-adic Igusa zeta functions (for almost all p).

0.2. In this paper we mainly study a piece of a remarkable conjecture of Igusa, Denef and Loeser,
relating the poles of these zeta functions to roots of the Bernstein–Sato polynomial, modeled on a
result for complex integrals, defined similarly as the p-adic integrals defining the Igusa zeta function
[4,13]. We will treat poles of (maximal possible) order n. For the topological zeta function it is clear
that these occur if and only if there exist n different components Ei with the same quotient νi/Ni
and having a non-empty intersection. For the other zeta functions, due to similar explicit formulas in
terms of an embedded resolution, the situation is analogous. For that reason we formulate everything
in terms of the ‘simplest’ zeta function, being the topological one. Our results are however valid also
for the other mentioned zeta functions.

Conjecture 1. The poles of Ztop,0( f , s) are roots of the local Bernstein–Sato polynomial b f ,0(s).

Conjecture 2. The function b f ,0(s) · Ztop,0( f , s) is a polynomial.

Conjecture 2 is a stronger version of Conjecture 1, saying that the order of a pole s0 of Ztop,0( f , s)
is at most the multiplicity of s0 as root of b f ,0(s). For curves (n = 2) Conjecture 1 was proved by
Loeser [19]. In that paper he also verified Conjecture 2 for reduced f . For arbitrary n these conjectures
are still wide open. (Loeser also proved Conjecture 1 for non-degenerate polynomials satisfying some
extra assumptions [20].)

0.3. There is a well-known relation between roots of Bernstein–Sato polynomials and monodromy
eigenvalues of f . In particular, if s0 is a root of b f ,0(s), then exp(2π is0) is an eigenvalue of the
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monodromy acting on some cohomology group of the (local) Milnor fibre of f at some point of
the germ of f −1{0} at 0 (equivalently, exp(2π is0) is a monodromy eigenvalue on the nearby cycle
complex ψ f C). So the following conjecture, relating poles of Ztop,0( f , s) to monodromy eigenvalues,
is implied by Conjecture 1.

Conjecture 3. If s0 is a pole of Ztop,0( f , s), then exp(2π is0) is an eigenvalue of the local monodromy acting
on some cohomology group of the Milnor fibre of f at some point of the germ of f −1{0} at 0.

When ( f −1{0},0) is a germ of an isolated singularity, the following result, by Varchenko [33]
Theorem 1.4, relates roots of the Bernstein–Sato polynomial b f ,0(s) and Jordan blocks of the algebraic

monodromy. Let b̃ f ,0(s) be the microlocal (or reduced) Bernstein–Sato polynomial defined by b f ,0(s) =
(s + 1)b̃ f ,0(s).

Theorem 1. (See [33].) Let Mn−1
f ,0 be the algebraic monodromy action on the (n − 1)-th cohomology

Hn−1(F f ,0,C) of the Milnor fibre of f at the origin.

(1) b̃ f ,0(s) is divisible by (s − β)n if and only if β > −1 and Mn−1
f ,0 has a Jordan block of size n for the

eigenvalue exp(2π i(β)).
(2) b̃ f ,0(s) is divisible by (s + 1 − α)n−1 , with α ∈ Z, if and only if α = 0 and Mn−1

f ,0 has a Jordan block of
size n − 1 for the eigenvalue 1.

This is certainly not true in general for non-isolated singularities: for any homogeneous f its
monodromy is finite and hence all Jordan blocks have size 1. And for instance when f = ∏n

i=1 xN
i we

have that b f ,0(s) = ∏N
i=1(s − i/N)n . The ‘right’ generalization of Varchenko’s result should be stated

in terms of the sub-complex ψ f ,λC of the nearby cycle complex ψ f C; see [22].

0.4. With the notation of 0.1 the log canonical threshold c0( f ) of f at 0 is defined as

c0( f ) := min
i∈ J : 0∈π(Ei)

{νi/Ni},

see e.g. Proposition 8.5 in [16]. It does not depend on the resolution π since e.g. −c0( f ) is the root
closest to the origin of the Bernstein–Sato polynomial b f ,0(s) of f at 0, see Theorem 10.6 in [16]

or [18,37]. (In fact by results of Lichtin and Kashiwara every root of b f (s) is of the form − νi+k
Ni

, for
some i ∈ J and some integer k � 0, see Theorem 10.7 in [16].) Clearly −c0( f ) is the candidate pole
of Ztop,0( f , s) closest to the origin.

Using Varchenko’s theorem the authors have proved in [22] Theorem 1:

Theorem 2. Let f : (Cn,0) → (C,0) be a germ of a nonzero holomorphic function such that ( f −1{0},0)

is a germ of an isolated hypersurface singularity. If s0 = −c0( f ) is a pole of order n of Ztop,0( f , s), then
(s + c0( f ))n divides the Bernstein–Sato polynomial b f ,0(s).

In such a case there exists an integer N � 1 such that c0( f ) = 1/N and either

• N = 1 and (s + 1)n divides b f ,0(s), or
• N > 1 and (s + 1/N)n(s + 2/N)n · · · (s + (N − 1)/N)n(s + 1)n divides b f ,0(s).

0.5. In this paper we mainly study the case n = 2, in particular we make the situation concerning
monodromy completely clear, answering a question of C.T.C. Wall [35]. By [17] and [34], Ztop,0( f , s)
has at most one pole of order 2, and if s0 is such a pole then s0 = −c0( f ) = −1/N for some positive
integer N .
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In Section 1 we show the following concerning the size of the associated monodromy Jordan block

on the first cohomology of the Milnor fibre. Let f = ∏
j∈T f

N j

j be the decomposition of f into irre-
ducible germs.

Theorem 5. Suppose that s0 = −c0( f ) = −1/N is a pole of order two of Ztop,0( f , s). Denote λ :=
exp(2π is0).

(i) If N 
= N j for all j ∈ T , then the monodromy eigenvalue λ of f has a Jordan block of size 2.
(ii) If N = N j for some j ∈ T , then λ has only Jordan blocks of size 1.

(For reduced f this was considered in [19]; but then case (ii) can only occur if f is (analytically)
of the form f = xy.) The dichotomy in Theorem 5 can also be described in terms of the minimal part
of the dual resolution graph with respect to the quotient of its numerical data νi/Ni , see Section 1. In
the course of the proof we show a property of arbitrary chains between two rupture vertices in the
dual resolution graph (Proposition 2), that could be of independent interest.

When f is reduced, Loeser [19] actually proved Conjecture 2: the function b f ,0(s) · Ztop,0( f , s) is
a polynomial. Assume below that f is not reduced.

Suppose that −c0( f ) = −1/N is a pole of order two of Ztop,0( f , s), and denote λ := exp(2π is0). In
case (i) of Theorem 5 we have that λ has a Jordan block of size 2, and then by [19] one can conclude
that (s + 1/N)2 divides b f ,0(s). However in case (ii) of Theorem 5 we have that λ has only Jordan
blocks of size 1 and then the argument of [19] fails. (So the conclusion there should be restricted to
our case (i)!)

It turns out (see Proposition 1) that the remaining case to investigate concerning Conjecture 2 is
the following. Let f = xN g where N � 2, g is not a multiple of x, and the intersection number of x = 0 and
g = 0 in the origin is N. Does (s + 1/N)2 divide b f ,0(s)?

Studying Bernstein–Sato polynomials for non-reduced f is in general very difficult; in fact it was
not treated before – except if f is a monomial. In Sections 2 and 3 we treat such f = xN g and
in particular we answer the question above positively whenever g is weighted homogeneous and
reduced; see Proposition 3. For instance if the degree of g as a polynomial in (C[x])[y] is equal to N ,
we prove also that b f ,0(s) is divisible by

∏N
	=1(s+	/N)2 as in Theorem 2. Moreover we provide much

more detailed information about b f ,0(s). In particular we obtain in Theorem 6 of Section 3 the first
closed formulae in such a non-reduced setting.

For example the local topological zeta function Ztop,0( f , s) of the germ of plane curve singularity
at the origin defined by f = x3(y3 + x2) has a unique pole of order two which is s0 = −1/3 and,
as Conjecture 2 predicts, (s + 1/3)2 divides b f ,0(s), after Proposition 3. Nevertheless, by Theorem 5,
λ := exp(−2π i/3) has only Jordan blocks of size 1. On the other hand, by [22] Corollary 1, ‘λ has a
Jordan block of size 2 on the perverse sheaf ψ f C’.

Finally we treat in Section 4 an instance of the case n = 3, more precisely superisolated surface
singularities. We make Theorem 2 more precise, showing in particular that there is at most one pole
of maximal order 3 (see Theorem 8). This confirms a conjecture of the third author.

1. Monodromy Jordan blocks for curves

1.1. For completeness we first recall the definition of monodromy. Let f be a holomorphic function
on an n-dimensional complex manifold X . Denote by Xt the hypersurface f −1{t} for t ∈ C. Let x ∈ X0
and choose ε,η > 0 with η � ε � 1. The restriction of f to {z ∈ X | |z − x| � ε, 0 < | f (z)| < η} is a
C∞ fibre bundle, the Milnor fibration, whose typical fibre

F f ,x := {
z ∈ X

∣∣ |z − x| � ε, f (z) = δ
}

for 0 < δ < η

is called the Milnor fibre of f at x ∈ X0. The Milnor fibre is endowed with the monodromy au-
tomorphism M f ,x which induces an automorphism, denoted by Mq

f ,x , on the cohomology groups
Hq(F f ,x,C).
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1.2. Let now f : (C2,0) → (C,0) be an algebraic or analytic function germ which is singular at the
origin. Let f = ∏

i f Ni
i be its decomposition into irreducible germs and denote d := gcdi Ni .

In case f is reduced, Loeser already noticed in [19] that if s0 (
= −1) is a pole of order 2 of
Ztop,0( f , s), then exp(2π is0) has a Jordan block of size 2 of the corresponding monodromy M1

f ,0 on

H1(F f ,0,C). The main topic in this section is to provide a clear answer in the non-reduced case
concerning the existence of a corresponding Jordan block of the monodromy of size 2, see Theorem 5.

1.3. We consider the algebraic monodromy action Mq
f ,0 on the q-th cohomology Hq(F f ,0,C) of the

Milnor fibre of f at the origin for q = 0,1. It is well known that the characteristic polynomial of M0
f ,0

is td − 1.
Denote by 
(t) the characteristic polynomial of M1

f ,0 and by 
2(t) the characteristic polynomial

of M1
f ,0 on the quotient H1(F f ,0,C)/Ker((M1

f ,0)
k − 1) where k is sufficiently large. So the roots of 


are the eigenvalues of M1
f ,0 and the roots of 
2 those belonging to the Jordan blocks of size 2. We

recall the determination of 
 and 
2 in terms of an embedded resolution, see e.g. [24,31].
Let π : X → (C2,0) be the minimal embedded resolution of ( f −1{0},0). We denote as usual by Ei ,

i ∈ J , the irreducible components of π−1( f −1{0}), and by Ni their multiplicity in the divisor of f ◦π
on X . In the sequel we exclude the case where f −1{0} is already a normal crossings divisor, i.e.
f (x, y) is (analytically) of the form xN1 yN2 . (For this case the corresponding results are obvious.)

In the (dual) resolution graph Γ one associates to each Ei a vertex vi , more precisely an ordinary
vertex to each exceptional Ei and an arrowhead vertex to each (analytically) irreducible compo-
nent of the strict transform of f −1{0}. Each intersection between Ei and E j is indicated by an
edge connecting vi and v j ; we sometimes denote this edge by ei j . We put V := {ordinary vertices},
A := {arrowhead vertices} and E := {edges between vertices in V}.

For v ∈ V ∪ A we put

Nv := Ni if v corresponds to Ei,

δv := number of incident edges to v,

mv := gcd{Nw | w is a vertex adjacent or equal to v}.

Note that δv = 1 for v ∈ A. A vertex v with δv � 3 is classically called a rupture vertex (correspond-
ing to a rupture component). For e ∈ E we put me = mij := gcd{Ni, N j} if e connects vi and v j .

Theorem 3. (See [1,24,31].) With notation as above we have


(t) = (
td − 1

) ∏
v∈V

(
tNv − 1

)δv−2
(1)

and


2(t) = (
td − 1

) ∏
e∈E (tme − 1)∏
v∈V (tmv − 1)

. (2)

Denote furthermore by V ′ the set of separating rupture vertices v, i.e. those with arrowheads in at least two
components of Γ \ {v}, and by E ′ a subset of E consisting of just one edge from each chain connecting two
separating rupture vertices. Then


2(t) = (
td − 1

) ∏
e∈E ′(tme − 1)∏
v∈V ′(tmv − 1)

. (3)
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1.4. We denote by νi −1 the multiplicity of Ei in the divisor of π∗(dx∧dy) on X . (In particular νi � 1,
and νi > 1 if and only if Ei is an exceptional component.) We recall the ordered tree structure of Γ

with respect to the νi
Ni

, i ∈ J , found by the third author.
Convention: we will draw a vertex of Γ with at least three edges as

Theorem 4. (See [34].)

(i) The v j(= E j), j ∈ J , for which
ν j
N j

= mini∈ J
νi
Ni

, together with their edges, form a connected part M of

the resolution graph. More precisely M has one of the following forms (with r � 0):

(1)

(2)

(3)

(4)

(ii) Starting from an end vertex of the minimal part M, the numbers νi
Ni

strictly increase along any path in
the tree (away from M).

Proposition 1. The minimal part M in Theorem 4 is as in case (4) if and only if f can be written (analytically)
in the form xN g(x, y), where g is not a multiple of x and the intersection number of x = 0 and g = 0 in the
origin is N.

Proof. If M is as in case (4) it is shown in [34] Proposition 3.8 that f can be written in the form
xN g , where g is not a multiple of x.

Denote a priori by m the intersection number of x = 0 and g = 0 in the origin. Say that in the
resolution process yielding π the strict transform of x = 0 gets separated from the strict transform of
g = 0 after exactly 	 blowing-ups. Then it is easy to verify that the numbers N	 and ν	 associated
to the at that stage created exceptional curve E	 are ν	 = 	 + 1 and N	 = 	N + m. So, if M is as in
case (4), then 1

N = 	+1
	N+m , which is equivalent to m = N .

Now the other implication is easy to verify. �
1.5. Using Theorem 3 we now determine exactly when a double pole of the topological zeta function
induces a monodromy eigenvalue with a Jordan block of size 2.

Theorem 5. Let f : (C2,0) → (C,0) be an analytic function germ that is non-reduced. Suppose that −1/N is
a pole of order two of Ztop,0( f , s). Denote λ := exp(2π i(−1/N)).

(i) If N 
= Ni for all components Ei of the strict transform of f , i.e. if the minimal part M in Theorem 4 is of
the form (2), then the monodromy eigenvalue λ of f has a Jordan block of size 2.
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(ii) If N = Ni for a component Ei of the strict transform of f , i.e. if the minimal part is of the form (4), then λ

has only Jordan blocks of size 1.

Proof. (i) We will show that in formula (3) of Theorem 3 there are more ‘edge contributions’ than
‘vertex contributions’. The two exterior vertices of the minimal part M are separating rupture vertices
(for example by [34] 3.6). Since N divides N	 for all components E	 in M, clearly N | me for the
chosen edge in M. On the other hand we claim that N � m j when v j is an exterior vertex of M. This
follows from the fact that N � Ni , where vi is any neighboring vertex of v j (outside M). Indeed, by
Loeser [19] (or Rodrigues in [27]) we have (0 <)νi − ν j

N j
Ni = νi − 1

N Ni < 1; so N cannot divide Ni .

Further, it is easy to see that, whenever N | mi for some other separating rupture vertex vi , then
necessarily also N | me for the chosen edge in the chain from vi towards M.

We conclude that indeed λ is a zero of 
2. (A similar statement is already proved in the reduced
case by Loeser in [19].)

(ii) We know by Proposition 1 that in this case f can be written (analytically) in the form
xN g(x, y), such that the intersection number of x = 0 and g = 0 in the origin is N , and hence N � μ,
where μ is the multiplicity of g at the origin. We may suppose moreover that, writing g = ∏

i gNi
i

in its factorization in irreducible components, we have Ni < N for all i. Indeed, otherwise g must be
of the form gN

1 with g1 having multiplicity 1 at the origin. Since then also the intersection number
of x = 0 and gN

1 = 0 in the origin must be N , this means that in fact f is (analytically) of the form
xN yN , and then the statement in (ii) is obvious.

So in particular we may suppose that λ is not a root of the first factor in formula (3) for 
2. We
will show that moreover there is no edge e ∈ E ′ satisfying N | me .

Consider a chain between two separating rupture components. Suppose that N | me for an edge in
such a chain. Then necessarily N | N	 for all vertices v	 in the chain (including the two exterior ones).
Denote here the multiplicities of Ei in the divisor of π∗ g by N ′

i . Since f = xN g we clearly have that
N | Ni if and only if N | N ′

i . So N | N ′
	 for all vertices v	 in the chain. Proposition 2 below then implies

that N < μ, contradicting the fact that N � μ. �
Proposition 2. Let g : (C2,0) → (C,0) determine a plane curve singularity germ at the origin of multiplic-
ity μ. We will use all notations associated to its dual (minimal) embedded resolution graph that we used before
for f . Fix a chain between two rupture vertices, and denote by vi , i ∈ C, all vertices in the chain (including the
two rupture vertices). Then gcdi∈C Ni < μ.

Proof. We use the language of Eisenbud–Neumann diagrams associated to the (full) dual resolution
graph, see [10]. More precisely we will use the following facts.

(1) A number α in the position below, i.e. on an edge between v and v ′ , and next to v , indicates
that α is the absolute value of the determinant of the intersection matrix for the vertices in the
connected part of Γ \ {v} that contains v ′ .

(2) Fix a vertex v ∈ V . Then we have that Nv = ∑
a∈A ka , where for each arrowhead a the number

ka is the product of all numbers α on the Eisenbud–Neumann diagram adjacent to (but not on) the
path from v to a. (Here, if a is decorated with its multiplicity Na , then this Na has to be considered
as factor in the product.)
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(3) Fix an edge e between vertices v1 and v2 in V . Let α1 and β1 be the numbers along e next
to v2 and v1, respectively. Let also αi and βi denote the numbers along other edges, next to v1
and v2, respectively. For a general Eisenbud–Neumann diagram we have that the edge determinant
α1β1 − (

∏
i�2 αi)(

∏
j�2 β j) is positive (see [10]). But since we are dealing with Eisenbud–Neumann

diagram associated to the (full) dual resolution graph then one has the edge determinant rule α1β1 −
(
∏

i�2 αi)(
∏

j�2 β j) = 1, see [7,25].

Consider now the fixed chain between the two rupture components in the statement of the propo-
sition. We may suppose that the first created exceptional curve E0, corresponding to the vertex v0,
is ‘on the right-hand side of v1’, i.e. belongs to the connected part of Γ \ {v1} that contains v2. This
implies then that there is at least one arrowhead somewhere ‘on the left-hand side of v1’.

We want to express N1 and N2 as in (2) above. Let the numbers α1, β1, αi and β j be as in (3)
above, associated to the edge connecting v1 and v2. (Note that there is just one number β j if r > 2.)
Consider for each path from v2 to an arrowhead ‘on the right-hand side of v2’ the product of all
numbers on the Eisenbud–Neumann diagram adjacent to the path except α1, and denote by b the
sum of all these products. Consider analogously for each path from v1 to an arrowhead ‘on the left-
hand side of v1’ the product of all numbers adjacent to the path except β1, and let c be the sum of
all these products (certainly c 
= 0). Then by (2) we have

N1 =
(∏

i�2

αi

)
b + β1c and N2 = α1b +

( ∏
j�2

β j

)
c.

Consequently α1N1 − (
∏

i�2 αi)N2 = (α1β1 − (
∏

i�2 αi)(
∏

j�2 β j))c = c, using (3), and so in particular
gcdi∈C Ni | c.

Recall that the multiplicity N0 of E0 is μ. We will finally show that c < μ, which yields the
statement of the proposition. We consider two subcases.

Case I. Suppose that there is no arrowhead ‘on the right-hand side of vr ’. This can only happen if the
part of the diagram on that side has the form below.

Then the expression in (2) for μ = N0 is μ = ηc, where it is well known that η > 1, hence in
particular c < μ.

Case II. Suppose that there is at least one arrowhead ‘on the right-hand side of vr ’. Now (2) yields
that μ is of the form μ = (� 1)c + (� 1), and so again c < μ. �
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2. Maximal roots of b-functions for curves

2.1. We first recall the definition of the Bernstein–Sato polynomial. Let X be a complex n-dimensional
manifold, resp. smooth algebraic variety, and let X0 be the hypersurface defined as the zero locus of a
holomorphic function, resp. regular function, f . Let DX be the ring of analytic, resp. algebraic, partial
differential operators associated to X .

The Bernstein–Sato polynomial (or b-function) b f (s) of f is the unique monic polynomial of lowest
degree satisfying

b f (s) f s = P f s+1 with P ∈ DX [s].
It exists at least locally, and globally if X is an affine algebraic variety [4,5,29]. Moreover the b-
function of a regular function f and of its associated analytic function coincide. Restricting to the
stalk at a point x ∈ X0, one can also define the local b-function b f ,x(s). If X is Stein, resp. affine, then
b f (s) is the least common multiple of these local b-functions. (In fact the b-function of f is locally
the minimal polynomial of the action of s on the left holonomic DX [s]-module DX [s] f s/DX [s] f s+1

[29].)
Let R f be the set of the roots of b f (−s), and mα the multiplicity of α ∈ R f . Then R f ⊂ Q>0,

and mα � n because b f (s) is closely related to the monodromy on the nearby cycle sheaf ψ f CX , see
[15,23]. Moreover min R f coincides with the log canonical threshold, see [16,28].

The determination of b f (s) is difficult in general, even if f defines an isolated singularity; we
mention the algorithm due to Briançon et al. [6] for a non-degenerate convenient germ with respect
to its Newton polyhedron, which allows to construct the functional equation step by step. There exist
also effective algorithms using Gröbner bases, see [26] for instance.

2.2. Let f : (C2,0) → (C,0) be an algebraic or analytic function germ which is singular at the origin.
When f is reduced, Loeser [19] proved Conjecture 2: the function b f ,0(s) · Ztop,0( f , s) is a polynomial.
Assume from now on that f is not reduced.

Suppose that −c0( f ) = −1/N is a pole of order two of Ztop,0( f , s), and denote λ := exp(2π is0).
In case (i) of Theorem 5 we have that λ has a Jordan block of size 2, and then the argument in the
proof of [19], Théorème III.3.3.b, indeed yields that (s + 1/N)2 divides b f ,0(s). However in case (ii)
of Theorem 5 we have that λ has only Jordan blocks of size 1 and then this argument fails. (So the
conclusion in [19] should be restricted to our case (i)!)

So, after Proposition 1 and Theorem 5, the remaining case to investigate concerning Conjecture 2
is the following. Let f = xN g where N � 2, g is not a multiple of x, and the intersection number of x = 0 and
g = 0 in the origin is N. Does (s + 1/N)2 divide b f ,0(s)?

Studying Bernstein–Sato polynomials for non-reduced f is in general very difficult. In this section
we treat such f = xN g and in particular we answer the question above positively whenever g is a
weighted homogeneous and reduced polynomial.

2.3. Let us observe some simple facts. First, the polynomial bxN ,0(s) = ∏N
	=1(s + 	/N) divides b f ,0(s)

since g is a unit at any point (0,a) 
= (0,0) close enough to the origin. Moreover, (s + 1)2 divides
always b f ,0(s) if f is reducible (see [32]).

Henceforth, we assume that g is a weighted homogeneous polynomial. Our first result deals with
the multiplicity of the factors (s + 	/N), 1 � 	 � N − 1, in b f ,0(s).

Proposition 3. Let f ∈ C[x, y] be a polynomial of the form xN g where N � 2 and g ∈ C[x, y] is neither a
constant nor a multiple of x. Assume that g is weighted homogeneous. Let m (resp. m) denote the degree of g
(resp. of the reduced polynomial of g) as a polynomial in (C[x])[y]. Let 	 be an integer such that 1 � 	 � N −1.

If N divides m	 and m	 � (m − 1)N then (s + 	/N)2 divides b f ,0(s).

In particular when g is reduced and m = N � 2 we have indeed that (s + 1/N)2 divides b f ,0(s)

and more precisely that
∏N−1

	=1 (s + 	/N)2 divides b f ,0(s).
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2.4. The rest of this section is devoted to the proof of Proposition 3. Further we denote by O the ring
of germs of holomorphic functions C{x, y}, by D the ring of differential operators O〈∂/∂x, ∂/∂ y〉, and
by D[s] the ring D ⊗C C[s].

Now we introduce b̃′(s) and b	(s), 1 � 	 � N − 1, the monic polynomials of smallest degree which
verify the identities:

b̃′(s)xN−1 f s ∈ D[s]( f ′
x, f ′

y

)
f s,

b	(s)x	−1 f s ∈ D[s]x	 f s, 1 � 	 � N − 1.

The existence of such nontrivial equations is a consequence of the existence of a nontrivial Bernstein
equation for f . More precisely, we have the following result.

Lemma 1. Let f = xN g ∈ O be a nonzero germ such that N � 2, and g is neither a unit nor a multiple of x.
Then the polynomials b̃′(s), b1(s), . . . ,bN−1(s) divide b̃ f ,0(s), and b̃ f ,0(s) divides the product b̃′(s)× b1(s)×
· · · × bN−1(s).

Indeed, we have the following short exact sequences of D[s]-modules:

0 → Ñ ′ = D[s]xN−1 f s

D[s]( f ′
x, f ′

y) f s
↪→ Ñ = D[s] f s

D[s]( f ′
x, f ′

y) f s
� D[s] f s

D[s]xN−1 f s
→ 0, (4)

0 → N	 = D[s]x	−1 f s

D[s]x	 f s
↪→ D[s] f s

D[s]x	 f s
� D[s] f s

D[s]x	−1 f s
→ 0, 2 � 	 � N − 1, (5)

and b̃ f ,0(s) (resp. b̃′(s), b1(s), . . . ,bN−1(s)) is the minimal polynomial of the action of s on the holo-
nomic D-module Ñ (resp. Ñ ′ , N1, . . . ,NN−1). In particular, the knowledge of the roots of b f ,0(s)

is equivalent to the one of b̃′(s),b1(s), . . . ,bN−1(s). On the other hand, this result is in general not
enough for the full determination of b f ,0(s) (since we do not know if b̃ f ,0(s) coincides – or not –

with the lcm of b̃′(s),b1(s), . . . ,bN−1(s)).
The proof of Proposition 3 relies on the explicit determination of the polynomials b	(s) when

g is weighted homogeneous (Proposition 4, Remark 1). Let us remark that the very last technical
assumption is a consequence of the other ones when g is reduced.

2.5. The polynomials b�(s). This part is devoted to the determination of the polynomials b	(s) when
g is weighted homogeneous. To this end, we need to know the annihilator in D of x	 f s , 	 � 0.

Lemma 2. Let g ∈ O be a nonzero germ which is neither a unit nor a multiple of x. Let f denote the germ xN g
where N � 2. For all integers 	 � 0, the annihilator AnnD x	 f s in D of x	 f s is generated by the operator

Ng + xg′
x

h

∂

∂ y
− xg′

y

h

∂

∂x
+ 	

g′
y

h

where h is a greatest common divisor of g′
y and Ng + xg′

x.

Proof. From Kashiwara [14], the characteristic variety of the D-module Dx	 f s = D/AnnD x	 f s is
W f = {(x, λdf ) | λ ∈ C} ⊂ T ∗C2, the relative conormal space of f . In our particular case, this space is
a hypersurface in T ∗C2. As the irreducible polynomial Υ = ((Ng + xg′

x)/h)ξy − x(g′
y/h)ξx ∈ O[ξx, ξy]

is zero on W f , this is a reduced equation of W f . In particular, the principal symbol of any operator in
D annihilating x	 f s is a multiple of this polynomial. Since the given operator relieves Υ and belongs
to AnnD x	 f s , we conclude by an easy induction on the degree of operators. �
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Proposition 4. Let f = xN g ∈ C[x, y] be a weighted homogeneous polynomial of degree 1 for a system α =
(αx,αy) ∈ (Q>0)

2 where N � 2 and g is neither a constant nor a multiple of x. Let m denote the degree in y
of the reduced polynomial of g.

(i) For 1 � 	 � N − 1, the polynomial b	(s) is equal to:

(
s + 	

N

)m−1∏
i=1

(s + 	αx + iαy).

(ii) If g is reduced, then the polynomial b̃′(s) is equal to:∏
q∈Π2

(s + αx + αy + q),

where Π2 ⊂ Q�0 is the set of the degrees of the elements of a weighted homogeneous basis of
C[x, y]xN−1/((Ng + xg′

x)xN−1, g′
yxN )C[x, y].

Proof. We denote by χ the Euler vector field αxx(∂/∂x) + αy y(∂/∂ y) ∈ D associated with α. Let us
prove the first formula. In the particular case m = 1, g is equal to ym up to a change of coordinates;
thus b	(s) = (s + 	/N) by an easy computation. Henceforth, we assume that m � 2.

We recall that b	(s) is the minimal polynomial of the action of s on the holonomic D-module
N	 = D[s]x	−1 f s/D[s]x	 f s . Let us consider the following morphism of D[s]-modules:

Ñ	 = D[s]x	−1 f s

D[s](x, g′
y/h)x	−1 f s

π−→ (s + 	/N)N	

P x	−1 f s �−→ (s + 	/N)P x	−1 f s

where (s + 	/N)N	 = ((s + 	/N)D[s]x	−1 f s + D[s]x	 f s)/D[s]x	 f s is the image of the endomorphism
of N	 of multiplication by (s + 	/N), and h is a greatest common divisor of g′

x and g′
y . The morphism

π is well defined since(
s + 	

N

)
g′

y

h
x	−1 f s =

[
g′

y

h

∂

∂x
− g′

x

h

∂

∂ y

]
· x	

N
f s ∈ D[s]x	 f s.

In order to get the expected formula, let us prove that π is an isomorphism. Since π is obviously an
epimorphism, we just have to check the injectivity of π .

Let P ∈ D[s] be an operator such that P x	−1 f s ∈ kerπ . By an Euclidian division by the operator
s + (	 − 1)αx − χ ∈ AnnD[s] x	−1 f s , we can assume that P ∈ D. Moreover, since x · x	−1 f s = 0 in Ñ	 ,
we will also assume that P ∈ C{y}〈∂/∂x, ∂/∂ y〉. By definition of π , we have(

s + 	

N

)
P ∈ D[s]x + AnnD[s] x	−1 f s

= D[s](x, s + (	 − 1)αx − χ
) + D[s]AnnD x	−1 f s

= D[s]
(

x, s + (	 − 1)αx − χ,
(Ng + xg′

x)

h

∂

∂ y
− xg′

y

h

∂

∂x
+ (	 − 1)

g′
y

h

)
(by Lemma 2, using that h is also a greatest common divisor of g′

y and Ng + xg′
x). By division, we can

eliminate the variable s:
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P

[
χ − (	 − 1)αx + 	

N

]
∈ D

(
x,

Ng

h

∂

∂ y
+ 	

g′
y

h

)
= D

(
x, N ym ∂

∂ y
+ 	mym−1

)
,

and the variable x in the left-hand side member too:

P

[
αy y

∂

∂ y
− 	αx + 	

N

]
∈ D

(
x, ym−1

[
N y

∂

∂ y
+ 	m

])
,

where m ∈ Z>0 is the degree of g as a polynomial in (C[x])[y]. By using that χ( f ) = 1 with f = xN g ,
we obtain that 1 = Nαx +mαy , and then we have 	/N = 	αx + (	m/N)αy . Thus, the identity becomes

αy P

[
y

∂

∂ y
+ 	m

N

]
∈ D ym−1

[
y

∂

∂ y
+ 	m

N

]

and P ∈ D ym−1 necessarily, i.e. P x	−1 f s = 0 in Ñ	 – since (g′
y/ f , x)O = (ym−1, x)O. In other words,

π is injective.
Now, we remark that Ñ	 is supported by the origin. In fact, Ñ	 is isomorphic to the D[s]-module

D[s]/D[s](s + (	 − 1)αx − χ, x, ym−1); thus it is not hard to compute the minimal polynomial b̃	(s)
of the action of s on Ñ	:

b̃	(s) =
m−1∏
i=1

(s + 	αx + iαy). (6)

This is analogous to the (classical) computation of the Bernstein polynomial of a weighted homo-
geneous polynomial with an isolated singularity at the origin (see [36] for instance). The asser-
tion (i) follows. The proof of (ii) is similar to the computation of b̃	(s), since ( f ′

x, f ′
y)O = ((Ng +

xg′
x)xN−1, g′

yxN )O where the ideal (Ng + xg′
x, xg′

y)O defines the origin when g is reduced. �
Proposition 3 is a direct consequence of the following remark and Lemma 1.

Remark 1. Under the assumptions of Proposition 4, we have that (s+	/N)2 divides b	(s) if and only if
m	 � (m−1)N and N divides m	. Indeed, from the identities (6) and Nαx +mαy = 1, these conditions
mean that i = m	/N belongs to {1, . . . ,m − 1}.

3. Closed formulae of b-functions for non-reduced curves

3.1. Still using the notation of 2.2, we investigate in this section closed formulae for b f ,0(s) when g is
reduced. This is a result in a wider context than the main topic of the paper, but it fits well with it.

Theorem 6. Let f = xN g ∈ C[x, y] be a weighted homogeneous polynomial of degree 1 for a system α =
(αx,αy) ∈ (Q>0)

2 where N � 2 and g is reduced, non-constant, and not a multiple of x. Let |α| denote the
sum αx + αy . Let m denote the degree of g as a polynomial in (C[x])[y]. Assume that m is greater than or
equal to 2.

(i) The reduced Bernstein polynomial b̃ f ,0(s) of f divides

lcm

{[
N−1∏
	=1

(
s + 	

N

)] ∏
q∈Π1

(
s + |α| + q

)
,

∏
q∈Π2

(
s + |α| + q

)}
,
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where Π1 ⊂ Q�0 (resp. Π2 ⊂ Q�0) is the set of the degrees of the elements of a weighted homogeneous
basis of C[x, y]/(xN−1, ym−1)C[x, y] (resp. C[x, y]xN−1/((Ng + xg′

x)xN−1, g′
yxN )C[x, y]).

(ii) The polynomial b̃ f ,0(s) is a multiple of the least common multiple of the polynomials (s+	/N)
∏m−1

i=1 (s+
	αx + iαy), 1 � 	 � N − 1, and

∏
q∈Π2

(s + |α| + q).

(iii) The factor (s + 1/N) of b̃ f ,0(s) has multiplicity 2 if and only if N divides m.
(iv) Assume that g is homogeneous. Then:

b f ,0(s) =
[

N∏
	=1

(
s + 	

N

)]
×

[
2m+N−1∏

i=2

(
s + i

N + m

)]
.

Our proof uses the so-called method of ‘increasing the weights’ (see [6] for instance). We remark
that our method does not allow us to get a closed formula for b f ,0(s) if f is not homogeneous.

Example 1. Let N = 4 and g = y6 + x12. Thus m = 6 and f = x4(y6 + x12) is weighted homogeneous
of degree 1 for the system (1/16,1/8). From Theorem 6, parts (i) and (ii), the polynomial

(
s + 1

4

)(
s + 1

2

)(
s + 3

4

) 24∏
i=3

(
s + i

16

)

is a multiple of b̃ f ,0(s), and
∏24

i=3(s + i/16) divides b̃ f ,0(s). Since N does not divide m and 3m but

does divide 2m, the multiplicity of (s + 1/4) (resp. (s + 1/2)) in b̃ f ,0(s) is equal to 1 (resp. 2, using
Proposition 3), and our results do not determine the one of (s + 3/4).

3.2. Proof of Theorem 6. The proof of part (i) of Theorem 6 requires several steps. First, we will
obtain a ‘big’ multiple of b̃ f ,0(s); then we will add some refinements in the method in order to
get the expected formula. Without lost of generality, we can assume that the degree m of g as a
polynomial in (C[x])[y] is greater than or equal to 2 – since the case of normal crossings does not
present any difficulty.

We need some preliminary notation. Let ρ : O → Q�0 ∪ {+∞} be the weight function associated
with α, defined by ρ(0) = +∞ and

ρ(u) = min{αxβx + αyβy | uβ 
= 0}

if u = ∑
β uβ xβx yβy ∈ O is not zero. For all q ∈ Q, let O>q (resp. O�q) denote the ideal of O of germs

which have a weight strictly greater than (resp. greater than or equal to) q.
The following result provides a first multiple of b̃ f ,0(s) when g is reduced.

Lemma 3. Let f = xN g ∈ C[x, y] be a weighted homogeneous polynomial of degree 1 for a system α =
(αx,αy) ∈ (Q>0)

2 where N � 2 and g is reduced, non-constant and not a multiple of x. Let |α| denote the
sum αx +αy . Let m denote the degree of g as a polynomial in (C[x])[y]. Assume that m � 2. Then the following
identities are verified:

[
N−1∏
	=1

(
s + 	

N

)]
×

[ ∏
q∈Π3

(
s + |α| + q

)]
f s ∈ D[s]O>(m−2)αy−αx xN−1 f s, (7)

[ ∏
q∈Π ′

2

(
s + |α| + q

)]O>(m−2)αy−αx xN−1 f s ⊂ D[s]( f ′
x, f ′

y

)
f s (8)



Author's personal copy

A. Melle-Hernández et al. / Journal of Algebra 324 (2010) 1364–1382 1377

where Π3 ⊂ Q+ is the set of the degrees of the monomials xi y j with j � m − 2 and such that ρ(xi y j) �
(N − 2)αx + (m − 2)αy , and Π ′

2 ⊂ Q+ is the set of the degrees strictly greater than (N − 2)αx +
(m − 2)αy among the degrees of the elements of a weighted homogeneous basis of C[x, y]xN−1/((Ng +
xg′

x)xN−1, g′
yxN )C[x, y].

Proof. In order to get the first formula, we just have to prove that, for all p ∈ Π3,[
N−1∏
i=1

(
s + i

N

)]
×

[ ∏
q∈Π3,q�p

(
s + |α| + q

)]
f s =

∑
β∈B(p)

Q βcβ(s)xβx yβy · f s + R p (9)

where B(p) ⊆ (Z�0)
2 is the set of indexes β = (βx, βy) such that 0 � βy � m−2 and p < ρ(xβx yβy ) �

(N −2)αx +(m−2)αy , Q β ∈ C[s, ∂/∂x, ∂/∂ y] is a differential operator, cβ(s) ∈ C[s] belongs to the ideal
generated by

∏N−1
i=βx+1(s + i/N) and R p belongs to D[s]O>(m−2)αy−αx xN−1 f s . Indeed, the identities (7)

and (9) coincide for p = (N − 2)αx + (m − 2)αy ∈ Π3 (since B(p) is also empty).
Let us prove (9) by an increasing induction on p ∈ Π3. If p = 0, we have[

N−1∏
i=1

(
s + i

N

)]
× (

s + |α|) f s =
[

N−1∏
i=1

(
s + i

N

)][
∂

∂x
αxx + ∂

∂ y
αy y

]
· f s (10)

since χ( f s) = sf s where χ is the Euler vector field αxx(∂/∂x) + αy y(∂/∂ y) associated with α. Thus
we get the expected decomposition when m � 3. In the particular case m = 2, we have the identity
y = g′

y/(2g(0,1)) + xv(x, y) where v ∈ C[x, y] is zero or a weighted homogeneous polynomial of
degree αy − αx , and g(0,1) 
= 0 under our assumptions. Moreover, we have the following fact.

Lemma 4. Let f = xN g ∈ O be a nonzero germ where N � 2 and g is reduced, non-constant and not a multiple
of x. For 1 � 	 � N − 1, we have[

N−1∏
i=	

(
s + i

N

)]
g′

yx	−1 f s = ∂

∂x

N−	

· g′
y

N N−	
xN−1 f s

−
N−1∑
j=	

[
N−1∏

i= j+1

(
s + i

N

)]
∂

∂ y

∂

∂x

j−	

· g′
xx j

N j−	+1
f s. (11)

Proof. This identity is obtained by using the following one:(
s + 	

N

)
x	−1 g′

y f s =
[

∂

∂x
g′

y − ∂

∂ y
g′

x

]
· x	

N
f s, 1 � 	 � N − 1. �

On the other hand, let us observe that g′
yxN−1 f s ∈ O>(m−2)αy−αx xN−1 f s , and if ρ(xβx yβy ) > (N −

2)αx + (m − 2)αy with βy � m − 1, then necessarily βx � N − 1. Thus, by using (11) with 	 = 1 and
the division of y by g′

y , we deduce from (10) the identity (9) for p = 0, m = 2.
Now we assume that (9) is verified for p ∈ Π3, and let us prove this identity for p′ = min{q ∈ Π3 |

q > p}. Since

(
s + |α| + q

)
u f s =

[
∂

∂x
αxx + ∂

∂ y
αy y + q − ρ(u)

]
· u f s (12)

for any weighted homogeneous polynomial u, we have
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N−1∏
i=1

(
s + i

N

)]
×

[ ∏
q∈Π3,q�p′

(
s + |α| + q

)]
f s

=
∑

β∈B(p)

Q βcβ(s)

[
∂

∂x
αxx + ∂

∂ y
αy y + (

p′ − ρ
(
xβx yβy

))] · xβx yβy f s + (
s + |α| + p′)R p

where ρ(xβx yβy ) � p′ by definition of p′ and B(p). By expanding the products, we get monomials u =
xβ ′

x yβ ′
y of degree strictly greater than p′ . In view to get the expected decomposition, let us consider

the possible cases:

– if (β ′
x, β

′
y) belongs to B(p), then it belongs to B(p′) too;

– if β ′
x � N − 1 with ρ(u) > (N − 2)αx + (m − 2)αy , then u ∈ O>(m−2)αy−αx xN−1;

– if β ′
y � m − 1 with ρ(u) > (N − 2)αx + (m − 2)αy , then necessarily β ′

x � N − 1;
– if β ′

y = m − 1 with β ′
x � N − 2, then u is necessarily a ‘successor’ of xβx yβy where β = (β ′

x, β
′
y − 1)

belongs to B(p). In that case, we divide u by g′
y by using the identity ym−1 = g′

y/(mg(0,1)) +
v(x, y)x. The term v(x, y)xβ ′

x+1 provides monomials with the same degree as u and a degree in
y less than or equal to m − 2; in particular, we are also in one of the previous cases.

The term (1/mg(0,1))cβ(s)xβ ′
x g′

y f s may be rewritten by using the identity (11), and we obtain an

element in D[s]g′
yxN−1 f s ⊂ D[s]O>(m−2)αy−αx xN−1 f s and terms which provide monomials of degree

strictly greater than ρ(u), with a degree in y less than or equal to m − 1 and a degree in x strictly
greater than β ′

x . Up to some iterations of this last case, we are again in one of the previous cases.
Hence we get the identity (9) for p′ . The proof of the identity (8) is easier. Indeed, for any q ∈ Q�0,

we have

(
s + |α| + q

)O�q−(N−1)αx xN−1 f s ⊂ D[s]O>q−(N−1)αx xN−1 f s

by using (12). Thus

∏
q∈Π ′

2

(
s + |α| + q

)O>(m−2)αy−αx xN−1 f s ⊂ D[s](Ng + xg′
x, xg′

y

)
xN−1 f s

where ((Ng + xg′
x)xN−1, g′

yxN )O = ( f ′
x, f ′

y)O. �
The first part of Theorem 6 is a refinement of this result.

Proposition 5. Let f = xN g ∈ C[x, y] be a weighted homogeneous polynomial of degree 1 for a system α =
(αx,αy) ∈ (Q>0)

2 where N � 2 and g is reduced, non-constant and not a multiple of x. Let |α| denote the

sum αx + αy . Let m denote the degree of g as a polynomial in (C[x])[y]. Assume that m � 2. Then b̃ f ,0(s)
divides the polynomial

lcm

{[
N−1∏
	=1

(
s + 	

N

)] ∏
q∈Π1

(
s + |α| + q

); ∏
q∈Π2

(
s + |α| + q

)}

where Π1 ⊂ Q�0 (resp. Π2 ⊂ Q�0) is the set of the degrees of the elements of a weighted homogeneous basis
of C[x, y]/(xN−1, ym−1)C[x, y] (resp. C[x, y]xN−1/((Ng + xg′

x)xN−1, g′
yxN )C[x, y]).
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Proof. First of all, we prove that the sets Π3 and Π ′
2 may be exchanged with

Π̃3 = Π1 ∪
{

q ∈ Π3

∣∣∣ q /∈ Π1 and q 
= 	

n
− |α|, 1 � 	 � n − 1

}
⊂ Π3

and Π̃ ′
2 = {q ∈ Π ′

2 | q 
= (	/N) − |α|, 1 � 	 � N − 1}. In other words, the existence of a monomial
xβx yβy not in ((Ng + xg′

x)xN−1, g′
yxN )C[x, y], and such that βx � N − 1 and ρ(xβx yβy ) = (	/N) − |α|

with 1 � 	 � N − 1, does not require to increase the multiplicity of (s + 	/N) in the algorithm of the
previous result.

Indeed, if such a monomial appears, then the associated polynomial cβ(s) is a multiple of (s+	/N).
If not, the monomial xβx yβy would come from one of the terms x	 g′

x, . . . , xN−1 g′
x or g′

yxN−1 appear-
ing in (11), whose degrees are greater than or equal to inf{(	 − 1)αx + mαy, 1 − |α|}; in particular
inf{	αx + (m + 1)αy, 1} � 	/N . But this is not possible since 	 � N − 1 and Nαx + mαy = 1.

Moreover, this factor (s + 	/N) of cβ(s) cannot be useful for a successor xβ ′
x yβ ′

y of xβx yβy – since
necessarily β ′

x � βx , where βx � N − 1 > 	 − 1. Hence, we can use the factor (s + 	/N) of cβ(s) for
xβx yβy with the identity (12).

Finally, let us notice that our multiple [∏N−1
	=1 (s + 	/N)]∏q∈Π̃3∪Π̃ ′

2
(s + |α| + q) of b̃ f ,0(s) coincides

with the expected polynomial

lcm

{[
N−1∏
	=1

(
s + 	

N

)] ∏
q∈Π1

(
s + |α| + q

); ∏
q∈Π2

(
s + |α| + q

)}
.

Indeed, we have the identities Π ′
2 = {q ∈ Π2 | q > (N − 2)αx + (m − 2)αy} and Π3 = Π1 ∪{q ∈ Π2 | q �

(N − 2)αx + (m − 2)αy} (since the degree of an element in ((xg′
x + Ng)xN−1, g′

yxN )C[x, y] is strictly
greater than (N −1)αx +(m−1)αy); in particular, the two polynomials have the same roots. Moreover,
the multiplicity of a root −	/N , 1 � 	 � N − 1, is the same: in the two cases, it is equal to 2 if and
only if (	/N) − |α| belongs to Π1. �

Finally, let us show parts (ii) to (iv) of Theorem 6.

Proof. The second point is a direct consequence of Proposition 4 and Lemma 1. Let us prove (iii). If N
divides m, then (s + 1/N)2 divides b̃ f ,0(s) (Proposition 3). Conversely, let us prove that the root −1/N
is simple when N does not divide m. We repeat an argument which has been used in the proof of
Proposition 5.

If 1/N − |α| /∈ Π1, we conclude with (i). Now, let us assume that there exists a monomial xβx yβy

of degree 1/N − |α| with 0 � βx � N − 2 and 0 � βy � m − 2. Since Nαx + mαy = 1 and N does
not divide m, it is easy to verify that necessarily βx 
= 0. Moreover, when such a monomial appears
in the algorithm described in the proof of Lemma 3, the associated polynomial cβ(s) is necessarily a

multiple of (s + 1/N). On the other hand, this factor is not useful for any successor xβ ′
x yβ ′

y of xβx yβy

since ρ(xβ ′
x yβ ′

y ) > (1/N) − |α| and β ′
x � βx � 1 (consider the identity (11)). Hence, we get a multiple

of b̃ f ,0(s) which has a multiplicity 1 for (s + 1/N), thus so has b̃ f ,0(s).
Let us prove the last part. In that case, we have αx = αy = 1/(N + m); moreover, the set Π2 is

{(N − 1)/(N +m), . . . , (2m + N − 3)/(N +m)}, using that the maximal weight of a nonzero element in
the artinian algebra C[x, y]/(Ng + xg′

x, xg′
y) is equal to (2m − 2)/(N + m) (see [30]). Hence we notice

that the proposed formula is nothing else but the multiple of b f ,0(s) obtained in (i). In other words,
we just have to check that

[
N−1∏
	=1

(
s + 	

N

)]
N+m−2∏

i=2

(
s + i

N + m

)
= lcm

{(
s + 	

N

)m−1∏
j=1

(
s + 	 + j

N + m

)
; 1 � 	 � N − 1

}
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according to (ii). The ‘unobvious’ thing to do is to prove the following fact: if a factor (s + 	/N),
with 1 � 	 � N − 1, has its multiplicity equal to 2 in the polynomial on the left-hand side, then it
appears also in the product

∏m−1
j=1 (s + (	 + j)/(N + m)). Indeed, if there exists an integer i such that

i/(N + m) = 	/N then i is equal to (	/N) × (N + m) = 	 + m × (	/N); in particular 1 � i − 	 � m − 1
since 0 < 	/N < 1. Thus the index j = i − 	 provides the expected factor (s + 	/N). �
Remark 2. Let c(s) ∈ C[s] denote the multiple of b f ,0(s) obtained in Proposition 5. Our method allows
to construct a functional equation c(s) f s = P · f s+1 where P ∈ D[s] has a total degree less than or
equal to the degree of c(s).

4. Superisolated surface singularities

4.1. A hypersurface surface singularity (V ,0) ⊂ (C3,0) defined as the zero locus of a holomorphic
function f = fd + fd+1 + · · · ∈ C{x, y, z} (where f j is homogeneous of degree j) is a superisolated
surface singularity, SIS for short, if the complex projective plane curve Cd := { fd = 0} ⊂ P2 is reduced
with isolated singularities {Pi}i , and these points are not situated on the projective curve { fd+1 = 0},
that is Sing(Cd) ∩ { fd+1 = 0} = ∅. Notice that this condition implies that Cd is a reduced projective
curve in P2.

The class of SIS singularities was introduced by Luengo in [21] to study the smoothness of the
μ-constant stratum. In [2], Artal Bartolo has studied the mixed Hodge structure of the cohomology
of the Milnor fibre of a SIS singularity. For that he constructed in an effective way an embedded
resolution of a SIS singularity. He proved that the eigenvalues with Jordan blocks of size 3 in the
monodromy of a SIS singularity depend only on singularities of the projective plane curve Cd .

More precisely, for each P ∈ Cd , let 
P
2 (t) be the first Jordan polynomial of the local singularity

(Cd, P ), see Theorem 3. It contains the information about Jordan blocks of size 2 of the monodromy of
the local singularity (Cd, P ) ⊂ (C2, P ). We factorise 
P

2 (t) in irreducible factors (which are cyclotomic
polynomials):


P
2 (t) =

∏
k

φ
nk(P )

k (t).

Theorem 7. (See [2].) The roots of the polynomial


SIS
3 (t) :=

∏
P∈Sing(Cd)

∏
k|d

φ
nk(P )

k (t)

correspond exactly with the eigenvalues with a Jordan block of size 3 in the monodromy of any SIS singularity
whose tangent cone is given by fd.

Conjecture 3 for the local topological zeta function Ztop,0( f , s) of a SIS singularity has been proved
by Artal Bartolo, Cassou-Noguès, Luengo and the first author in [3].

4.2. We now give a more precise version of Theorem 2 for SIS singularities, in the spirit of the fol-
lowing conjecture of the third author [17].

Conjecture 4.

(1) Ztop,0( f , s) has at most one pole of order n.
(2) If Ztop,0( f , s) has in s0 a pole of order n, then s0 is the pole closest to the origin of Ztop,0( f , s).

This conjecture is proved in case n = 2 by himself [34] and with Laeremans [17] when f is non-
degenerate with respect to its Newton polyhedron. Moreover in these cases we have that then s0 =
−c0( f ) in (2).
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Theorem 8. Let f = fd + fd+1 +· · · ∈ C{x, y, z} be a germ of a holomorphic function defining a SIS singularity.
Then Ztop,0( f , s) has at most one pole of maximal order 3. If Ztop,0( f , s) has in s0 a pole of order 3, then there
exists N such that d = 3N, s0 = −1/N = −3/d and ((s + 1/N)(s + 2/N) · · · (s + (N − 1)/N)(s + 1))3 divides
b f ,0(s).

Proof. We may assume d > 3, otherwise one can check the statement of the theorem by simple
computations, considering all possible configurations of plane curves of degree at most 3.

Since we have a pole of maximal order, there exists a positive integer N such that s0 = −1/N.

By Theorems 1 and 7, to prove that (s + 1/N)3 divides b f ,0(s), it is enough to prove that the cyclo-
tomic polynomial φN divides 
SIS

3 (t). To prove from this fact that b f ,0(s) is divided by ((s + 1/N)(s +
2/N) · · · (s + (N − 1)/N)(s + 1))3, we either follow the remark on page 230 at the end of the proof of
the main theorem in [9] or we prove that the cyclotomic polynomial φb divides 
SIS

3 (t) for all divisors
b of N , by proving that φb divides 
P

2 (t) following the same arguments as below.
Let us describe the candidate poles of maximal order. The local topological zeta function of the SIS

singularity satisfies the following equality, see Corollary 1.12 in [3]:

Ztop,0( f , s) = χ(P2 \ Cd)

t − s
+ χ(Čd)

(t − s)(s + 1)

+
∑

P∈Sing(Cd)

(
1

t
+ (t + 1)

(
1

(t − s)(s + 1)
− 1

t

)
Ztop,P

(
g P , t

))
,

where t := 3 + (d + 1)s, g P is a local equation of Cd at P and Čd := Cd \ Sing(Cd). The set of poles
of Ztop,0( f , s) is contained in the union of the sets {−1,− 3

d } and {− νi+3Ni
(d+1)Ni

}, whenever −νi/Ni is a

pole of the local topological zeta function of g P (a local equation of the germ of Cd) at some point
P ∈ Sing(Cd).

(1) The candidate pole t = 0 is not a pole since Ztop,P (g P ,0) = 1, see [8].
(2) Assume s0 = −1/N is a pole of order three. Then, from the above description, s0 ∈ {−1,−3/d}.

Moreover, s0 is also as double pole − (νi+3Ni)
(d+1)Ni

induced by a double pole −νi/Ni of Ztop,P (g P , s) of Cd

at some singular point P .
(2.1) The case s0 = −1 is excluded because −1 = − (νi+3Ni)

(d+1)Ni
if and only if νi − Ni = Ni(d − 3). The

last equality is impossible because by assumption d > 3 and in the curve case 0 <
νi
Ni

� 1.

(2.2) Thus s0 = −3/d and then we have d = 3N and (νi+3Ni)
(d+1)Ni

= νi
Ni

= 1
N . Therefore −1/N is a double

pole of Ztop,P (g P , s) of Cd at the isolated singular point P (it is isolated because Sing(Cd) ∩ { fd+1 =
0} = ∅, this also implies that g P is analytically reduced). We are done since d = 3N and, by 1.2, φN

divides 
P
2 (t). �

Remark 3. If Conjecture 4 is true, then the pole −3/d of order 3 should be the pole closest to the
origin. This gives rise to the following question for plane curves, which we pose as an open problem.

Let C = { fd = 0} be a reduced projective plane curve of degree d � 3. Suppose that C has a singular
point P such that cP ( f ) = 3/d and the minimal part M associated to P in Theorem 4 is as in case (2)
(i.e. −3/d is a pole of order 2 of Ztop,P ( fd, s)). Are the log canonical thresholds of fd at all other
singular points of C then at least 3/d?
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