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ON GENERATING SERIES OF CLASSES OF EQUIVARIANT

HILBERT SCHEMES OF FAT POINTS

S. M. GUSEIN-ZADE, I. LUENGO, AND A. MELLE-HERNÁNDEZ

Abstract. We discuss different definitions of equivariant (with respect
to an action of a finite group on a manifold) Hilbert schemes of zero-
dimensional subschemes and compute generating series of classes of equi-
variant Hilbert schemes for actions of cyclic groups on the plane in some
cases.
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1. Introduction

For a complex d-dimensional quasi-projective variety X , let Hilbk
X be the Hilbert

scheme of zero-dimensional subschemes (sets of “fat points” of length k of X . The

Hilbert scheme Hilbk
X is also a quasi-projective variety: see, e.g., [15, Section 4.3].

For a locally closed subvariety Y ⊂ X , let us denote by Hilbk
X,Y the Hilbert scheme

of zero-dimensional subschemes of length k of the variety X supported at points of
the variety Y , and for a point x ∈ X , Hilbk

X,x := Hilbk
X,{x}.

Let K0(VC) be the Grothendieck ring of complex quasi-projective varieties. This
is the Abelian group generated by the classes [X ] of all complex quasi-projective
varieties X modulo the relations:

(1) if varieties X and Y are isomorphic, then [X ] = [Y ];
(2) if Y is a Zariski closed subvariety of X , then [X ] = [Y ] + [X \ Y ].

One has to consider all varieties to be reduced. The multiplication in K0(VC) is
defined by the Cartesian product of varieties: [X1] · [X2] = [X1 × X2]. The class
[C] ∈ K0(VC) of the complex affine line is denoted by L. For a quasi-projective
variety X , the class [X ], being an additive invariant of the variety, can be considered
as a generalized Euler characteristic χg(X) of the variety X . The additivity of χg(•)
(property (2) above) permits to use it as a measure for the notion of the integral
with respect to the generalized Euler characteristic.
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Let

HX(T ) := 1 +
∞
∑

k=1

[Hilbk
X ] T k ∈ 1 + T · K0(VC)[[T ]] and

HX,Y (T ) := 1 +

∞
∑

k=1

[Hilbk
X,Y ] T k ∈ 1 + T · K0(VC)[[T ]]

be the generating series of classes of Hilbert schemes.
In [6], there was defined a notion of a power structure over a ring and there was

described a natural power structure over the Grothendieck ring K0(VC) of complex
quasi-projective varieties. This means that for a series A(T ) = 1+a1T +a2T

2+· · · ∈
1 + T ·K0(VC)[[T ]] and for an element m ∈ K0(VC) one defines a series (A(T ))m ∈
1+T ·K0(VC)[[T ]] so that all the usual properties of the exponential function hold.
For the natural power structure over the ring K0(VC) and for ai = [Ai], m = [M ],
where Ai and M are quasi-projective varieties, the series (A(T ))m has the following
geometric description. The coefficient at T k in the series

(1 + [A1]T + [A2]T
2 + . . . )[M ]

is represented by the configuration space of pairs (K, ϕ) consisting of a finite subset
K of the variety M and a map ϕ from K to the disjoint union

∐∞
i=1 Ai of the va-

rieties Ai, such that
∑

x∈K I(ϕ(x)) = k, where I :
∐∞

i=1 Ai → Z is the tautological
function sending the component Ai of the disjoint union to i.

To describe the coefficients of this series as elements of the Grothendieck ring

K0(VC), one can write (A(T ))
[M ]

as

1 +

∞
∑

k=1

{

∑

k:
P

iki=k

[

(((

∏

i

Mki

)

\ ∆
)

×
∏

i

Aki

i

)

/
∏

i

Ski

]

}

· T k, (1)

where k = {ki : i ∈ Z>0, ki ∈ Z>0} is a partition of k, ∆ is the “large diagonal”
in

∏

i Mki = MΣki which consists of (
∑

ki)-tuples of points of M with at least
two coinciding ones, the permutation group Ski

acts by permuting corresponding
ki factors in

∏

i Mki ⊃ (
∏

i Mki) \ ∆ and the spaces Ai simultaneously. The
connection between this formula and the description above is clear.

This power structure is connected with the pre-λ-structure ([11]) on the ring
K0(VC) defined by the Kapranov zeta function ([10])

ζM (T ) := 1 + [S1M ] · T + [S2M ] · T 2 + [S3M ] · T 3 + · · · ,

where SkM is the k-th symmetric power of the variety M : one has ζM (T ) =
(1 − T )−[M ].

Remark. One can show (see, e.g., [6]) that ζLkM (T ) = ζM (LkT ). Therefore, in
particular,

(1 − L
kT )−L

s

= (ζLk(T ))L
s

= ζLk+s(T ) = (1 − L
k+sT )−1.

This equation also holds if T is substituted by T j:

(1 − L
kT j)−L

s

= (1 − L
k+sT j)−1 , (2)



GENERATING SERIES OF EQUIVARIANT HILBERT SCHEMES 595

(see the definition of the power structure in terms of the Kapranov zeta function
in [6]).

There are two natural homomorphisms from the Grothendieck ring K0(VC) to
the ring Z of integers and to the ring Z[u, v] of polynomials in two variables: the
Euler characteristic (alternating sum of ranks of cohomology groups with compact
support) χ : K0(VC) → Z and the Hodge–Deligne polynomial e : K0(VC) → Z[u, v].
These homomorphisms respect the power structures over the corresponding rings
(see, e.g., [7]). The power structure over the ring Z[u1, . . . , ur] of polynomi-
als in r variables with integer coefficients is defined in the following way. Let
P (u1, . . . , ur) =

∑

k∈Zr
>0

pk u k ∈ Z[u1, . . . , ur], where k = (k1, . . . , kr), u =

(u1, . . . , ur), u k = uk1

1 · · ·ukr
r , pk ∈ Z. Then

(1 − t)−P (u1,...,ur) =
∏

k

(1 − ukt)−pk ,

where, in the right hand side of the equation, the power (with the integer exponent
−pk) means the usual one.

In [7], it was shown that, for a smooth quasi-projective variety X of dimension
d, the following equation holds:

HX(T ) =
(

HCd,0(T )
)[X]

, (3)

where Cd is the complex affine space of dimension d. Moreover, for a locally closed
smooth subvariety W ⊂ X , one has

HX,W (T ) =
(

HCd,0(T )
)[W ]

. (4)

For d = 2, i.e., for surfaces, in other terms this equation was proved in the
Grothendieck ring of motives by L. Göttsche [5]. In this case one has

HC2,0(T ) =

∞
∏

i=1

1

1 − L
i−1T i

. (5)

For an arbitrary dimension d, the reduction of the equation (3) for the Hodge-
Deligne polynomial was proved by J. Cheah in [1].

Here we discuss different definitions of equivariant (with respect to an action of
a finite group G on a manifold) Hilbert schemes of zero-dimensional subschemes
and compute generating series of classes of equivariant Hilbert schemes for actions
of cyclic groups on the plane C2 in some cases.

2. Equivariant Hilbert Schemes of Fat Points

Let G be a finite group (of order |G|) acting on a smooth complex d-dimensional
quasi-projective complex variety X . For convenience we assume that the action is
faithful and the factor space Y = X/G is connected. In particular, this implies
that there is a nonempty Zariski open subset of X , where the action is free. The
group G also acts on the Hilbert schemes Hilbk

X of zero-dimensional subschemes of
length k on X .
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One can say that there are (at least) three natural notions of equivariant Hilbert

schemes of zero-dimensional subschemes on X (see, e.g., [3], [12], [14]).

First, one can define the equivariant Hilbert scheme (1)HilbG,k
X as the G-invariant

part of the action of the group G on Hilbk
X . It is quasi-projective being the fixed

points scheme of an action of a finite group on a quasi-projective variety.

Second, as the equivariant Hilbert scheme (2)HilbG,k
X one can take the (unique)

component of (1)HilbG,k
X which maps birationally on the k/|G|-th symmetric power

of X/G. This is the closure of the set of zero-dimensional subschemes of length k
on X supported at k points from k/|G| free orbits and with the usual (nonmultiple)
point at each of them (defined by the corresponding maximal ideal).

Let Z ∈ (1)HilbG,k
X be a G-invariant subscheme, let Zx be the connected compo-

nent of Z supported at a point x ∈ X , so that Z =
⋃

Zx, and let Gx be the isotropy

group of x in G. Then the fibre of the tautological bundle over(1)HilbG,k
X at Z is

H0(Z, OZ) =
⊕

H0(Zx, OZx
). The summand H0(Zx, OZx

) has a representation

of the group Gx. The third version (3)HilbG,k
X of equivariant Hilbert scheme consists

of those G-invariant zero-dimensional subschemes (points of (1)HilbG,k
X ) for which

the described representation of the group Gx in H0(Zx, OZx
) is a multiple of the

regular one (i.e., a multiple of C[Gx]) for each point x from the support of the
subscheme.

The schemes (2)HilbG,k
X and (3)HilbG,k

X are non-empty only if k is a multiple of the
order |G| of the group G. Both these schemes are unions of connected components

of (1)HilbG,k
X and therefore they are quasi-projective. One always has

(1)HilbG,k
X ⊃ (3)HilbG,k

X ⊃ (2)HilbG,k
X .

They are smooth if Hilbk
X is smooth. In particular this holds if X is a smooth surface

(d = 2). In many cases, in particular for surfaces, the last two notions coincide.

This is not true in general (see, e.g., [3]). The equivariant Hilbert scheme (1)HilbG,k
X

is always larger than the other two if the action of G is not free. In particular
(1)HilbG,1

Cd 6= ∅ for a rank d representation of a group G. It seems that often the
last two notions are more interesting from geometrical point of view. In particular,

for a finite group G ⊂ SL(2, C) acting on C2 in the natural way, (2)Hilb
G,|G|
C2

(= (3)Hilb
G,|G|
C2 ) is a crepant resolution of the factor space C2/G. However, the

first one could be interesting as well. In particular, it seems that formulae for

the generating series of classes of (•)HilbG,k
C2 (or of (•)HilbG,k

C2,0; • = 1, 2 or 3) are

somewhat simpler in this case (i.e., for • = 1).

3. Generating Series of Classes of Equivariant Hilbert Schemes for

Two-Dimensional Representations of a Cyclic Group

Let the cyclic group Zp act on the plane C2 by σ ∗ (x, y) = (σx, σqy), where
σ = exp

(

2πi
p

)

is the generator of Zp. For q = −1 (or rather q ≡ −1 (mod p)) the

factor space C2/Zp has the Ap−1 singularity.

Let (•)H
p,q
C2 (T ) be the generating series of classes of (•)Hilb

Zp,k

C2 of equivariant

Hilbert schemes of zero-dimensional subschemes of the plane C2 with the described
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Zp-action. Let (•)H
p,q
C2,0(T ) and (•)H

p,q
C2,C(T ) be defined in the same way (for sub-

schemes support at points of the corresponding subspaces).

Theorem 1. The following equations hold :

(1)
H

p,−1
C2,0 (T ) =

∞
∏

i=1

(

(1 − T pi)p

1 − T i
·

1

(1 − L
iT pi)p−1 · (1 − L

i−1T pi)

)

,

(2)
H

p,−1
C2,0 (T ) =

∞
∏

i=1

1

(1 − L
iT pi)p−1 · (1 − L

i−1T pi)
.

(6)

Proof. It is somewhat simpler to describe the computation of (•)H
p,−1
C2,C(T ), where C

is the x-coordinate line in the plane C2 and then to get (•)H
p,−1
C2,0 (T ). To compute

(•)H
p,q
C2 (T ), (•)H

p,q
C2,C(T ), or (•)H

p,q
C2,0(T ), one uses the method of G. Ellingsrud and

S.A. Strømme [4] based on a result of A. Bialynicki-Birula. The computations of
(•)

H
p,−1
C2,C(T ) correspond to the computations of W (0, d, 0) in [4] on page 351. For

that, one considers the action of the complex 2-torus C∗×C∗ on the projective plane
CP2 induced by the natural action of the torus on C2 ⊂ CP2 and the corresponding
action on the Hilbert schemes of zero-dimensional subschemes on it. This action has
a finite number of fixed points. For a finite subgroup G ⊂ C∗×C∗ (say, for a cyclic
one) the torus acts on the corresponding G-equivariant Hilbert schemes as well. To
apply the method of A. Bialynicki-Birula, one has to choose a subgroup of C∗ ×C∗

isomorphic to C
∗. In order to benefit from the computations by G. Ellingsrud and

S.A. Strømme in [4], we shall fix the subgroup used by them. This means that we
take a subgroup consisting elements of the form (λ, µ) = (ta, tb) ∈ C∗ × C∗ with
integers a < 0 and b > 0. The action of this subgroup defines cell decompositions of
the Hilbert schemes of zero-dimensional subschemes on CP2 and of the equivariant
one(s). Cells (locally closed subvarieties isomorphic to complex affine spaces) corre-
spond to fixed points of the action on the Hilbert schemes. The cell corresponding
to a fixed point A consist of points on the Hilbert scheme whose orbits tend to A
for t → 0. The dimension of a cell corresponding to a fixed point is equal to the
dimension of the subspace of the tangent space to Hilbk

CP2 at this point correspond-
ing to representations of C∗ with positive characters. For the described subgroup
C∗ ⊂ C∗ × C∗, the set of points of the Hilbert scheme Hilbk

CP2 whose orbits tend

to subschemes supported at the origin in C2 ⊂ CP2 coincides with Hilbk
C2,C (see

[4]). Fixed points of the natural action of the torus C∗ × C∗ on Hilbk
C2 ⊂ Hilbk

CP2

and also on (1)Hilbp,q;k
C2 ⊂ (1)Hilbp,q;k

CP2 are the monomial ideals in C[[x, y]] of length
(codimension) k. Monomial ideals of length k correspond to partitions of k, i.e., to
Young diagrams of size k.

The fibre of the tautological bundle over Hilbk
C2 over a fixed point has a natural

basis given by the monomials inside the corresponding Young diagram. Moreover
this basis is an equivariant one: the one-dimensional subspace generated by a mono-
mial xiyj is preserved by the group action. The corresponding representation of
the group Zp is given by the quasi-homogeneous weight v = i + qj mod p of the
monomial, i.e., it is δv, where δ is the natural basic one-dimensional representation
of Zp: the multiplication by σ. The regular representation of the cyclic group Zp
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has the decomposition of the form 1+δ+δ2+· · ·+δp−1. Therefore a monomial ideal

belongs to (2)Hilbp,q;k
C2 iff the corresponding Young diagram has the same numbers

of boxes with quasi-homogeneous weights 0, 1, . . . , p − 1.
For a fixed point in Hilbk

C2,C described by the Young diagram of the partition
{b0 > b1 > · · · > br−1 > 0 = br} of the integer k, the tangent space to the

corresponding cell of the cell decomposition of Hilbk
C2,C is the “positive part” T + of

the tangent space to the Hilbert scheme Hilbk
C2 ([4]). The positive part T + carries

a representation of the group C
∗×C

∗. The equivariant formula for it (i.e., with the
decomposition into one-dimensional spaces corresponding to different characters of
C∗ × C∗) is given in [4]:

T + =
∑

16i6j6r

bj−1−1
∑

s=bj

λi−j−1µbi−1−s−1. (7)

If the discussed fixed point belongs to (1)Hilbp,q;k
C2 , the tangent space to (1)Hilbp,q;k

C2

at this point is the part of the tangent space to Hilbk
C2 corresponding to the trivial

representation of the group Zp. Therefore the tangent space to the corresponding

cell in the cell decomposition of (1)Hilbp,q;k
C2,C is the part of T + corresponding to

the trivial representation. This means that the dimension of this cell is equal
to the number of the monomials in the right hand side of (7) with the weights
(i − j − 1) + q(bi−1 − s − 1) ≡ 0 (mod p).

For q = −1 these weights are just the hook lengths of the corresponding Young
diagram. Thus one has to count the number of Young diagrams of size k with
w hook lengths divisible by p. The necessary information on this subject can be
found, e.g., in [9, Section 2.7]. A Young diagram is called a p-core diagram if it
has no hook lenghts divisible by p. There is an algorithm to remove the so called
rim p-hooks (containing p boxes each) from a Young diagram [α] (one by one in
any order) so that finally one gets the (well defined) p-core diagram [α̃] of [α]
and p diagrams [α]0, [α]1, . . . , [α]p−1 which constitute the so called star p-diagram
(or the p-quotient: Theorem 2.7.37) of [α]. The number of removed rim p-hooks
w = w([α]) is called the p-weight of the diagram [α] and it is equal to the total
number of boxes in the star p-diagram of [α] and also to the number of hook lengths
divisible by p (Statement 2.7.40). Moreover any collection consisting of a p-core
diagram of size k′ = k − pw and p (arbitrary) diagrams of sizes k0, k1, . . . , kp−1

with k0 + k1 + · · ·+ kp−1 = w gives rise to a well defined Young diagram (Theorem
2.7.30). The p-core diagram [α̃] of a Young diagram [α] is defined by the p-content
of [α], that is, by the numbers of boxes (i, j) in [α] with the p-residues i − j mod p
equal to 0, 1, . . . , p − 1 respectively (Theorem 2.7.41). In particular, the p-core
diagram [α̃] of a Young diagram [α] of size k is empty iff it has the equal numbers
(k/p; in this case k has to be divisible by p) of boxes with different p-residues.

This means that monomial ideals belonging to (2)Hilbp,−1;k
C2,C are in one-to-one cor-

respondence with collections of Young diagrams (or of partitions) of sizes k0, k1, . . . ,
kp−1 with k0 + k1 + · · · + kp−1 = k/p. The generating series for the numbers
of Young diagrams of different sizes is

∏∞
i=1

1
1−T i (see, e.g., [13, Section 6.1]).

Therefore, the generating series for collections consisting of p Young diagrams is
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(
∏∞

i=1
1

1−T i

)p
=

∏∞
i=1

1
(1−T i)p . The dimension of the corresponding cell in the cell

decomposition of (2)Hilbp,−1;k
C2,C is equal to k0 + k1 + · · · + kp−1. Therefore

(2)
H

p,−1
C2,C(T ) =

∞
∏

i=1

1

(1 − L
iT pi)p

.

The generating series for the numbers of p-cores of different sizes is

∞
∏

i=1

(1 − T pi)p

1 − T i

(see, e.g., [2]). Therefore

(1)
H

p,−1
C2,C(T ) =

∞
∏

i=1

(1 − T pi)p

1 − T i
·

∞
∏

i=1

1

(1 − L
iT pi)p

.

A Zp-invariant zero-dimensional subschemes of C2 supported at points of the line
C is the union of its corresponding parts supported at points of C

∗ = C \ {0} and

at the origin respectively. Therefore (•)Hilb
Zp,k

C2,C =
⊔ k

l=0
(•)Hilb

Zp,l

C2,0 ×
(•)Hilb

Zp,k−l

C2,C∗

and thus
(•)

H
p,−1
C2,C(T ) = (•)

H
p,−1
C2,0 (T )(•)Hp,−1

C2,C∗
(T ).

The space of Zp-invariant zero-dimensional subschemes of C2 supported at points
of the line C∗ is in one-to-one correspondence with the space of (usual) zero-
dimensional subschemes of C2 \ {0}/Zp supported at points of C∗/Zp

∼= C∗. The
length of the usual subscheme is equal to the length of the corresponding invariant
one divided by p. Therefore

(•)
H

p,−1
C2,C∗

(T ) = (•)
H

C2\{0}/Zp,C∗/Zp
(T p) =

(

H
C2,0(T

p)
)[C∗/Zp]

=
(

H
C2,0(T

p)
)L−1

(see (4)) and

(•)
H

p,−1
C2,C(T ) = (•)

H
p,−1
C2,0 (T ) ·

(

H
C2,0(T

p)
)L−1

.

Equation (5) and the equation (1 − L
iT j)−L = (1 − L

i+1T j)−1 (see (2)) give

(•)
H

p,−1
C2,0 (T ) = (•)

H
p,−1
C2,C(T ) ·

( ∞
∏

i=1

1

1−L
i−1T pi

)1−L

= (•)
H

p,−1
C2,C(T ) ·

∞
∏

i=1

1−L
iT pi

1−L
i−1T pi

.

Therefore

(1)
H

p,−1
C2,0 (T ) =

∞
∏

i=1

(1 − T pi)p

1 − T i
·

∞
∏

i=1

1

(1 − L
iT pi)p−1(1 − L

i−1T pi)
,

(2)
H

p,−1
C2,0 (T ) =

∞
∏

i=1

1

(1 − L
iT pi)p−1(1 − L

i−1T pi)
. �

Repeating the same arguments as above, one gets the following equations.
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Corollary.

(1)
H

p,−1
C2 (T ) =

∞
∏

i=1

(

(1 − T pi)p

1 − T i
·

1

(1 − L
iT pi)p−1 · (1 − L

i+1T pi)

)

,

(2)
H

p,−1
C2 (T ) =

∞
∏

i=1

1

(1 − L
iT pi)p−1 · (1 − L

i+1T pi)
.

(8)

Remark. Equation (8) can be deduced, e.g., from [12] or [8] using the fact that

the coefficients of the series (2)H
p,−1
C2 (T ) are polynomials in L.

Corollary. Let the cyclic group Zp act on a smooth surface S in such a way, that

the factor space S/Zp has only Ap−1 singularities (i.e., at each of d fixed points P1,

. . . , Pd one has the representation corresponding to q = −1). Then

(1)
H

Zp

S (T ) =

( ∞
∏

i=1

(1 − T pi)p

(1 − T i)(1 − L
iT pi)p−1(1 − L

i−1T pi)

)d

·

( ∞
∏

i=1

1

1 − L
i−1T pi

)[(S\{Pi})/Zp]

,

(2)
H

Zp

S (T ) =

( ∞
∏

i=1

1

(1 − L
iT pi)p−1(1 − L

i−1T pi)

)d

·

( ∞
∏

i=1

1

1 − L
i−1T pi

)[(S\{Pi})/Zp]

.

Example. Let the group Z3 act on the projective plane CP2 by σ ∗ (x0 : x1 : x2) =
(x0 : σx1 : σ2x2). Then

(2)
H

Z3

CP2(T ) = 1 + (1 + 7L + L
2)T 3 + (1 + 8L + 36L

2 + 8L
3 + L

4)T 6

+ (1 + 8L + 44L
2 + 149L

3 + 44L
4 + 8L

5 + L
6)T 9

+ (1 + 8L + 45L
2 + 192L

3 + 543L
4 + 192L

5 + 45L
6 + 8L

7 + L
8)T 12 + · · · .

Remarks. 1. One can easily see that if q1q2 ≡ 1 (mod p), one has (•)H
p,q1

C2,0(T ) =
(•)H

p,q2

C2,0(T ). Let the group Zp act on the plane C2 by σ∗(x, y) = (σax, σby), where

gcd(a, p) = 1. Then one has (•)H
Zp

C2,0(T ) = (•)H
p,q
C2,0(T ) with q ≡ b/a (mod p).

2. It seems that, for q 6= −1, one has somewhat better (less complicated) for-
mulae for the series (1)H

p,q
C2,0(T ) than for the series (2)H

p,q
C2,0(T ) (at least in the form

similar to (5) and (6)). To show that, it is convenient to write down the logarithms
Log (•)H

p,q
C2,0(T ) of the generating series (•)H

p,q
C2,0(T ) in the sense of [6]: if A(T ) =

∏

i,j(1 − L
jT i)−kij , with kij ∈ Z, then by definition Log A(T ) =

∑

i,j kijL
jT i. In

particular, the equation (6) means that

Log (2)
H

p,−1
C2,0 (T ) =

∞
∑

i=1

(

(p − 1)Li + L
i−1

)

T pi .



GENERATING SERIES OF EQUIVARIANT HILBERT SCHEMES 601

Computations made with Maple gave:

Log (1)
H

3,1
C2,0(T ) = T + LT 2 + T 3 + LT 4 + L

2T 5 + LT 6 + L
2T 7 + L

3T 8 + L
2T 9

+ L
3T 10 + L

4T 11 + L
3T 12 + L

4T 13 + L
5T 14 + L

4T 15 + L
5T 16

+ L
6T 17 + L

5T 18 + L
6T 19 + L

7T 20 + L
6T 21 + · · · ,

Log (2)
H

3,1
C2,0(T ) = (1 + L)T 3 + (2L + 2L

2 + L
3)T 6 + (2L

2 + 2L
3 + L

4)T 9

+ (−L
2 + L

3 − L
6)T 12 + (−L

3 − L
5 − L

6 − L
7)T 15 + (2L

5 + L
7)T 18

+ (2L
4 + 3L

5 + 7L
6 + 6L

7 + 6L
8 + 3L

9 + 2L
10)T 21 + · · · .

One can make the following

Conjecture.

(1)
H

3,1
C2,0(T ) =

∞
∏

i=1

1

(1 − L
i−1T 3i−2)(1 − L

iT 3i−1)(1 − L
i−1T 3i)

.

A conjectural equation for (2)
H

3,1
C2,0(T ) is not clear.

Some other examples:

Log (1)
H

4,1
C2,0(T ) = T + LT 2 + T 3 + LT 4 + T 5 + (−1 + L + L

2)T 6 + T 7

+ (−1 + L + L
2)T 8 + T 9 + (−1 + L

2 + L
3)T 10 + T 11 + (−1 + L

2 + L
3)T 12

+ T 13 + (−1 + L
3 + L

4)T 14 + T 15 + (−1 + L
3 + L

4)T 16 + T 17

+ (−1 + L
4 + L

5)T 18 + T 19 + (−1 + L
4 + L

5)T 20 + · · · ,

Log (2)
H

4,1
C2,0(T ) = (1 + L)T 4 + (2L + 2L

2 + L
3)T 8

+ (L + 4L
2 + 5L

3 + 3L
4 + L

5)T 12 + (4L
3 + 5L

4 + 3L
5)T 16

+ (−L
2 − 3L

3 − 2L
4 − L

5 − 3L
6 − 3L

7 − L
8)T 20 + · · · ,

Log (1)
H

5,2
C2,0(T ) = T +T 2 + LT 3 + LT 4 +T 5 + LT 6 + LT 7 + L

2T 8 + L
2T 9 + LT 10

+ L
2T 11 + L

2T 12 + L
3T 13 + L

3T 14 + L
2T 15 + L

3T 16 + L
3T 17 + L

4T 18

+ L
4T 19 + L

3T 20 + L
4T 21 + L

4T 22 + L
5T 23 + L

5T 24 + L
4T 25 + · · · ,

Log (2)
H

5,2
C2,0(T ) = (1 + 2L)T 5 + (3L + 5L

2 + 2L
3)T 10 + (3L

2 + 5L
3 + 2L

4)T 15

+ (−3L
2 − 2L

3 − 4L
4 − 3L

5 − 3L
6)T 20

+ (−3L
3 − 6L

4 − 9L
5 − 7L

6 − 3L
7)T 25 + · · · .

3. Though a conjectural formula for (2)H
M,1
C2,0(T ) (or for Log (2)H

M,1
C2,0(T )) is not

clear even for small M > 2, computations show that one could have the following

stabilization. Let Log (2)H
M,1
C2,0(T ) =

∑∞
i=1 pM,1

i (L)·T Mi, where pM,1
i (L) are polyno-

mials in L. The computations predict that pM ′,1
i (L) = pM ′′,1

i (L) for M ′′ > M ′ > i.
The authors are very thankful to A. Kuznetsov for careful reading the text,

making a number of useful remarks and, in particular, finding a mistake in the
initial version of the paper.
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[5] L. Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8

(2001), no. 5-6, 613–627. MR 1879805
[6] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the

Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57. MR 2046199
[7] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the

Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan
Math. J. 54 (2006), no. 2, 353–359. MR 2252764

[8] T. Hausel, Betti numbers of holomorphic symplectic quotients via arithmetic Fourier trans-

form, Proc. Natl. Acad. Sci. USA 103 (2006), no. 16, 6120–6124 (electronic). MR 2221039
[9] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of

Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass.,
1981. MR 644144. With a foreword by P. M. Cohn, With an introduction by Gilbert de B.
Robinson.

[10] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac–Moody

groups, Preprint arXiv:math/0001005 [math.AG].
[11] D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes in

Mathematics, Vol. 308, Springer-Verlag, Berlin, 1973. MR 0364425

[12] A. Kuznetsov, Quiver varieties and Hilbert schemes, Mosc. Math. J. 7 (2007), no. 4, 673–697,
767. MR 2372209

[13] S. K. Lando, Lectures on generating functions, Student Mathematical Library, vol. 23, Amer-
ican Mathematical Society, Providence, RI, 2003. MR 2013270.

[14] A. Nolla de Celis, Dihedral groups and G-Hilbert schemes, Ph.D. thesis, Univ. of Warwick,
2008.

[15] E. Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen Wis-
senschaften, vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603

Moscow State University, Faculty of Mathematics and Mechanics, Moscow, GSP-1,

119991, Russia

E-mail address: sabir@mccme.ru

University Complutense de Madrid, Dept. of Algebra, Madrid, 28040, Spain.

E-mail address: iluengo@mat.ucm.es

E-mail address: amelle@mat.ucm.es

http://www.ams.org/mathscinet-getitem?mr=MR1382733
http://www.ams.org/mathscinet-getitem?mr=MR2471620
http://www.ams.org/mathscinet-getitem?mr=MR2329551
http://www.ams.org/mathscinet-getitem?mr=MR870732
http://www.ams.org/mathscinet-getitem?mr=MR1879805
http://www.ams.org/mathscinet-getitem?mr=MR2046199
http://www.ams.org/mathscinet-getitem?mr=MR2252764
http://www.ams.org/mathscinet-getitem?mr=MR2221039
http://www.ams.org/mathscinet-getitem?mr=MR644144
http://xxx.lanl.gov/abs/math/0001005
http://www.ams.org/mathscinet-getitem?mr=MR0364425
http://www.ams.org/mathscinet-getitem?mr=MR2372209
http://www.ams.org/mathscinet-getitem?mr=MR2013270
http://www.ams.org/mathscinet-getitem?mr=MR2247603

	1. Introduction
	2. Equivariant Hilbert Schemes of Fat Points
	3. Generating Series of Classes of Equivariant Hilbert Schemes for Two-Dimensional Representations of a Cyclic Group
	References

