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Abstract. Given a curve C on a projective nonsingular rational sur-

face S, over an algebraically closed field of characteristic zero, we are

interested in the set ΩC of linear systems L on S satisfying C ∈ L,

dimL > 1, and the general member of L is a rational curve. The main

result of the paper gives a complete description of ΩC and, in particular,

characterizes the curves C for which ΩC is non empty.
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Let S be a projective nonsingular rational surface, over an algebraically closed
field of characteristic zero. We say that a linear system L on S is rational if
dimL > 1 and the general member of L is an irreducible rational curve.

Let C ⊂ S be an irreducible curve.
Let ΩC be the set of rational linear systems L on S satisfying C ∈ L. Consider the

minimal1 resolution of singularities π : S̃ → S of C, let C̃ be the strict transform

of C on S̃, and let ν̃(C) denote the self-intersection number of C̃ in S̃. Then
Theorem 2.8 implies:

(1) ΩC 6= ∅ if and only if C is rational and ν̃(C) > 0.

Let LC be the linear system on S which is the image of |C̃| by π∗ : Div(S̃) →
Div(S) (so C ∈ LC). Assuming that ΩC 6= ∅, we show (Thm 2.8):

(2) For any linear system L on S, L ∈ ΩC ⇔ dimL > 1 and C ∈ L ⊆ LC .

This gives a complete description of ΩC , and we note in particular that ΩC has
a greatest element (namely, LC). Continuing to assume that ΩC 6= ∅, Theorem 2.8
also shows that dimLC = ν̃(C)+1 and that the minimal resolution of singularities
of C coincides with the minimal resolution of the base points of LC .
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The present paper may be viewed as a preamble to the forthcoming [2], in which
we study linear systems associated to unicuspidal rational curves C ⊂ P2. We
remind the reader that all currently known curves of that type satisfy ν̃(C) > 0,
hence ΩC 6= ∅. It is shown in [2] that if C ⊂ P2 is a unicuspidal rational curve
with singular point P then: (1) there exists a unique pencil ΛC on P2 satisfying
C ∈ ΛC and Bs(ΛC) = {P}; (2) ΛC is a rational pencil if and only if ν̃(C) > 0;
(3) if ν̃(C) > 0, then ΛC has a dicritical of degree 1.

We would like to express our thanks to Professor Dolgachev, and also to the
referee, for their useful comments.

Conventions. All algebraic varieties are over an algebraically closed field k of
characteristic zero. Varieties are irreducible and reduced, so in particular all curves
are irreducible and reduced. A divisor D of a surface is reduced if D =

∑n

i=1 Ci,
where C1, . . . , Cn are distinct curves (n > 0).

1. Clusters on a Surface

We fix a projective nonsingular surface S throughout this section. We consider
the set S∗ of points which are either points of S or points infinitely near points
of S. The set S∗ comes equipped with a partial order 6, called the natural order,
such that for P, Q ∈ S∗ we have P < Q if and only if Q is infinitely near P . The
minimal elements of (S∗, 6) are called the proper points of S, and are indeed in
bijective correspondence with the closed points of S. Note that the poset (S∗, 6)
is a classical object (for instance it is called a “bubble space” in [4] but has the
order relation reversed).

A cluster on S is a (possibly empty) finite subset K ⊂ S∗ such that, given any
P, Q ∈ S∗, if P 6 Q and Q ∈ K then P ∈ K. If K is a cluster on S then a
subcluster of K is any subset of K which is itself a cluster on S. Note that if K is
a cluster on S then each minimal element of K is a proper point of S.

The aim of this section is to fix the notations and terminologies for clusters and
to recall certain facts in that theory—there are no new results here. Our main
reference is the first chapter of [1], and our notations and definitions are in general
compatible with that text.

1.1. Let K be a cluster on S.

(a) The blowing-up of S along K is denoted πK : SK → S. Observe that if K ′

is a subcluster of K then K \K ′ is a cluster on SK′ and πK factors as

SK

π
K\K′

−−−−→ SK′
πK′

−−→ S. (1)

(b) Given a divisor D ∈ Div(S), let D̃K ∈ Div(SK) and DK ∈ Div(SK) denote,
respectively, the strict transform and total transform of D on SK .

(c) If L is a linear system on S without fixed components and such that dimL >

1, let L̃K denote the strict transform of L on SK .
(d) Given P ∈ K, one can define the corresponding exceptional curve EP as

follows. Consider the subcluster K ′ = {x ∈ K : x 6 P} of K and factor
πK as in (1). Then EP ⊂ SK′ is the unique irreducible component of the
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exceptional locus of πK′ with self-intersection (−1). The strict transform

(resp. total transform) of EP on SK is denoted ẼK
P ⊂ SK (resp. EK

P ∈
Div(SK)).

1.2. (a) Given P ∈ S∗, consider the blowing-up πKP : SKP → S of S along the
cluster KP = {x ∈ S∗ : x < P}, and note that P is a proper point of SKP .

(b) Given P ∈ S∗ and a curve C ⊂ S, let eP (C) ∈ N denote the multiplicity of

C at P (by definition, this is the multiplicity of the curve C̃KP

⊂ SKP at
the proper point P of SKP ). Extending linearly, let eP (D) ∈ Z denote the
multiplicity of a divisor D ∈ Div(S) at P .

(c) Given P ∈ S∗ and a linear system L on S without fixed components and
such that dimL > 1, let eP (L) ∈ N denote the multiplicity of L at P

(by definition, eP (L) = min{eP (D) : D ∈ L̃KP

}). Note that the general

member D of L̃KP

satisfies eP (D) = eP (L).

1.3. A weighted cluster on S is a pair (K, m) where K is a cluster on S and
m : K → Z is any set map. If K ′ is a subcluster of K and m′ : K ′ → Z is the
restriction of m, we call (K ′, m′) a weighted subcluster of (K, m).

1.4. Consider an effective divisor D ∈ Div(S).

(a) Define the set KD = {P ∈ S∗ : eP (D) > 1} and note that this is a finite
set if and only if D is reduced.

(b) Assume that D is reduced. Then KD is a cluster on S, called the cluster

of singular points of D. If KD = ∅, we say that D is nonsingular. The
blowing-up πKD : SKD → S of S along KD is called the minimal resolution

of singularities of D. For an arbitrary cluster K on S,

D̃K is nonsingular ⇐⇒ KD ⊆ K. (2)

(c) Continue to assume that D is reduced. If e(D) : KD → Z denotes the map
P 7→ eP (D) then we call KD = (KD, e(D)) the weighted cluster of singular

points of D.

1.5. Consider a linear system L on S such that dimL > 1 and without fixed
components.

(a) The set KL = {P ∈ S∗ : eP (L) > 0} is a cluster on S, called the cluster of

base points of L. The blowing-up πKL
: SKL

→ S of S along KL is called
the minimal resolution of the base points of L. For an arbitrary cluster K
on S,

L̃
K is base-point-free ⇐⇒ KL ⊆ K. (3)

Let us also observe the following property of KL:

For each P ∈ KL, if (Ẽ
KL

P )2 = −1 in SKL
then ẼKL

P is a horizontal

curve (i.e., is not included in the support of an element of L̃KL).

(4)

(b) If e(L) : KL → Z denotes the map P 7→ eP (L) then we callKL = (KL, e(L))
the weighted cluster of base points of L.
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(c) We write Bs(L) = {Q ∈ S : eQ(L) > 0} for the base locus of L. Note that
this is a set of proper points of S, and is the set of minimal elements of KL.

1.6. Let K = (K, m) be a weighted cluster on S and D a divisor on S. Let us use
the notation m = (mP )P∈K for the map m and let πK : SK → S be the blowing-up
of S along K.

(a) The virtual transform of D with respect to K is the divisor ĎK ∈ Div(SK)
defined by:

ĎK = DK −
∑

P∈K

mPE
K
P .

(b) We say that D goes through K if ĎK is an effective divisor. Note that if D
goes through K then D is effective.

(c) We say that D goes through K effectively if the following equivalent condi-
tions are satisfied:

• D is effective and eP (D) = mP for all P ∈ K

• D goes through K and eP (D) = mP for all P ∈ K

• D is effective and ĎK = D̃K .

We leave it to the reader to verify assertions 1.7–1.11, below. To prove 1.11(b),
one uses characteristic zero Bertini Theorem.

1.7. Let K be a weighted cluster on S and D ∈ Div(S). If D goes through K, then

D goes through every weighted subcluster of K.

1.8. Let K = (K, m) be a weighted cluster on S and D ∈ Div(S). Suppose that D

goes through K, and that eP (D) 6 mP for all P ∈ K. Then eP (D) = mP for all

P ∈ K.

1.9. Let L be a linear system on S without fixed component and such that dimL > 1.
For any D ∈ L and any cluster K on S, the following are equivalent :

(a) D̃K ∈ L̃
K ,

(b) eP (D) = eP (L) for all P ∈ K,

(c) eP (D) 6 eP (L) for all P ∈ K,

(d) D goes through the weighted cluster (K, e(L)) effectively, where e(L) : K →
Z denotes the set map P 7→ eP (L).

1.10. Notation. If K = (K, m) is a weighted cluster, let K(>1) = (K ′, m′) be the
pair defined by setting K ′ = {P ∈ K : m(P ) > 1} and by letting m′ : K ′ → Z be
the restriction of m : K → Z to K ′.

1.11. Let L be a linear system on S without fixed component and such that

dimL > 1.

(a) For any D ∈ L, the following are equivalent :

(i) K
D = K

(>1)
L

,

(ii) D̃KL ∈ L̃KL and D̃KL is nonsingular.

(b) The general member D of L satisfies (a-i) and (a-ii), and goes through KL

effectively.
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2. Rational Linear Systems on Rational Surfaces

In this section, S is a rational nonsingular projective surface.

2.1. Definition. A linear system L on S is rational if dimL > 1 and the general
member of L is a rational curve.

Given a curve C ⊂ S, it is interesting to ask whether there exists a rational
linear system L on S satisfying C ∈ L. In this section we show that the existence
of L is equivalent to C being rational and of nonnegative type (cf. 2.5). When C

satisfies these conditions, we describe all rational linear systems containing C.
We begin by recalling some known facts (2.3 and 2.4).

2.2. Definition. A pencil Λ on S is called a P1-ruling if it is base-point-free and
if its general member is isomorphic to a projective line.

The following fact is a consequence of a well-known result of Gizatullin (see for
instance [5, Chap. 2, 2.2] or [3, Sec. 2]). Note that Gizatullin’s result is stronger
than 2.3, as we are only stating the part of the result which we need.

2.3. Lemma (Gizatullin). Let Λ be a P1-ruling on S and let D ∈ Λ.

(a) Each irreducible component of D is a nonsingular rational curve.

(b) If supp(D) is irreducible then D is reduced.

(c) If supp(D) is reducible then there exists a (−1)-component Γ of supp(D)
which meets at most two other components of supp(D); moreover, if Γ has

multiplicity 1 in the divisor D then there exists another (−1)-component of

supp(D) which meets at most two other components of supp(D).

2.4. Lemma. Consider C ⊂ S such that C ∼= P
1 and C2 > 0.

(a) dim |C| = C2 + 1 and |C| is base-point-free.

(b) For any linear system L on S such that C ∈ L and dimL > 1, the general

member of L is a nonsingular rational curve.

(c) If C2 = 0 then |C| is a P
1-ruling.

Proof. Assertions (a) and (c) are well known. Let L be a linear system on S

such that C ∈ L and dimL > 1, and consider a general member D of L. Then
D is irreducible and reduced (because L has an element which is irreducible and
reduced) and pa(D) = pa(C) = 0 (because D is linearly equivalent to C); so D is a
nonsingular rational curve. �

Let us now turn our attention to the subject matter of this section, i.e., the
problem of describing all rational linear systems containing a given curve.

2.5. Definition. Let C ⊂ S be a curve. Consider the minimal resolution of
singularities π = πKC : SKC → S of C (cf. 1.4), and the strict transform C̃ =

C̃KC

⊂ SKC of C. Let ν̃(C) denote the self-intersection number of C̃ in SKC . If
ν̃(C) > 0, we say that C is of nonnegative type. We also define the set

LC = {π∗(D) : D ∈ |C̃|},

where π∗ : Div(SKC ) → Div(S) is the homomorphism induced by π = πKC . It is

clear that LC is a linear system on S, that dimLC = dim |C̃|, and that C ∈ LC .
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2.6. Lemma. Let C ⊂ S be a rational curve.

(a) dimLC > 1 ⇔ ν̃(C) > 0
(b) If ν̃(C) > 0, then dimLC = ν̃(C) + 1.
(c) If ν̃(C) > 0, then every linear system L on S satisfying C ∈ L ⊆ LC and

dimL > 1 is a rational linear system.

Proof. Let the notation (π = πKC : SKC → S, π∗ : Div(SKC ) → Div(S) and C̃ =

C̃KC

⊂ SKC ) be as in 2.5. We have dimLC = dim |C̃| and ν̃(C) = C̃2, so assertion

(b) follows by applying 2.4(a) to the nonsingular curve C̃. Part “⇐” of (a) follows

immediately, and the converse is the observation that dim |C̃| > 1 implies C̃2 > 0.
To prove (c), suppose that ν̃(C) > 0 and consider a linear system L on S

satisfying C ∈ L ⊆ LC and dimL > 1. Then there exists a linear system L′ on

SKC satisfying C̃ ∈ L′ and π∗(L
′) = L. Since C̃2 = ν̃(C) > 0, 2.4(b) implies that

the general member of L′ is a rational curve; so the general member of π∗(L
′) = L

is a rational curve. �

2.7. Proposition. Let C ⊂ S be a curve and suppose that L is a rational linear

system on S (cf. 2.1) satisfying C ∈ L. Then the following hold.

(a) C is a rational curve of nonnegative type.

(b) C̃KL ∈ L̃KL and C̃KL is nonsingular.

(c) C goes through KL effectively.

(d) The general member D of L satisfies K
C = K

D.

(e) L ⊆ LC .

(f) KC ⊆ KL and ν̃(C) = (C̃KL)2 + |KL \KC | > |KL \KC |.

Proof. There is a nonempty Zariski-open subset U of L such that every element
of U is an irreducible rational curve. Pick a pencil Λ ⊆ L such that C ∈ Λ and
Λ ∩ U 6= ∅; then Λ is a rational pencil. Let πKΛ

: SKΛ
→ S be the minimal

resolution of the base points of Λ. Then Λ̃KΛ is a P
1-ruling and C̃KΛ is included in

the support of an element of Λ̃KΛ , so Gizatullin’s Theorem 2.3 implies that C̃KΛ is

rational (so C is rational) and nonsingular (so KC ⊆ KΛ by (2)). Let F ∈ Λ̃KΛ be

the element such that C̃KΛ ⊆ supp(F ). The fact that 1C ∈ Λ implies that

F = 1C̃KΛ +
∑

P∈I

aP Ẽ
KΛ

P (5)

for some subset I ⊆ KΛ and where aP > 1 for all P ∈ I.
We claim that I = ∅. Indeed, suppose the contrary. Then supp(F ) is reducible,

so Gizatullin’s Theorem implies that supp(F ) has a (−1)-component Γ, and that if
Γ has multiplicity 1 in F then Γ is not the only (−1)-component of supp(F ). This

together with (5) imply that there exists P ∈ I such that (ẼKΛ

P )2 = −1; as P ∈ KΛ

and ẼKΛ

P is vertical, this contradicts (4), and proves that I = ∅. So:

C̃KΛ ∈ Λ̃KΛ . (6)

It follows that (C̃KΛ)2 = 0 in SKΛ
, because Λ̃KΛ is a base-point-free pencil. As

C̃KΛ is also nonsingular, C is of nonnegative type and (a) is proved.
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Since C̃KΛ ∈ Λ̃KΛ and C̃KΛ is nonsingular, 1.11 implies that K
C = K

(>1)
Λ . As

the general member D of Λ satisfies KD = K
(>1)
Λ by 1.11, we get KD = K

C . So we
have shown that, for any pencil Λ satisfying C ∈ Λ ⊆ L and Λ∩U 6= ∅, the general
member D of Λ satisfies KD = K

C . Consequently, {D ∈ L : KD = K
C} is a dense

subset of L; together with the fact (1.11) that KD = K
(>1)
L

for general D ∈ L, this
implies

K
C = K

(>1)
L

. (7)

Then assertions (b) and (d) follow from (7) and 1.11, and assertion (c) follows

from C̃KL ∈ L̃KL and 1.9. By (7) we have eP (C) = eP (L) for all P ∈ KC ;

this together with 1.9 implies that C̃KC

∈ L̃KC

, hence L̃KC

⊆ |C̃KC

|. It follows

that π∗

(
L̃
KC)

⊆ π∗

(
|C̃KC

|
)
, where π∗ : Div(SKC ) → Div(S) is the homomorphism

induced by π = πKC : SKC → S. As π∗

(
L̃KC)

= L and (by definition) π∗

(
|C̃KC

|
)
=

LC , (e) is true.
We have KC ⊆ KL by (7), and (c) implies that eP (C) = 1 for all P ∈ KL \KC .

Consequently, ν̃(C) = (C̃KC

)2 = (C̃KL)2 + |KL \KC |. Pick any D ∈ L̃KL \ {C̃KL},

then (C̃KL)2 = C̃KL ·D > 0 and (f) is proved. �

2.8. Theorem. For a curve C ⊂ S, the following are equivalent :

(a) LC is a rational linear system;
(b) there exists a rational linear system L on S such that C ∈ L;
(c) C is rational and dimLC > 1;
(d) C is rational and ν̃(C) > 0.

Moreover, if conditions (a–d) are satisfied then the following hold:

(e) For a linear system L on S satisfying C ∈ L and dimL > 1,

L is rational ⇐⇒ L ⊆ LC .

(f) dimLC = ν̃(C) + 1, KLC
= K

C and L̃KC

C = |C̃KC

|.

Proof. Suppose that L is a rational linear system on S such that C ∈ L. By 2.7,
we obtain that C is rational and that L ⊆ LC (so dimLC > 1). So (b) implies (c),
and this also proves implication “⇒” in statement (e).

Equivalence (c)⇔ (d) is 2.6(a), implication (c and d)⇒ (a) is the case L = LC

of 2.6(c), and (a)⇒ (b) is obvious. So (a–d) are equivalent.
Now assume that (a–d) are satisfied. Implication “⇐” in statement (e) is a

consequence of 2.6(c), so there only remains to prove (f). Equality dimLC =
ν̃(C) + 1 is 2.6(b). Observe that there can be at most one linear system G on SKC

satisfying

the general member of G is irreducible and π∗(G) = LC ,

where π = πKC : SKC → S; as L̃KC

C and |C̃KC

| are two such linear systems, we

get L̃
KC

C = |C̃KC

|. This implies that L̃
KC

C is base-point-free (because |C̃KC

| is
base-point-free by 2.4), so all base points of LC are in KC , i.e., KLC

⊆ KC . On

the other hand, 2.7(b) together with 1.11 gives KC = K
(>1)
LC

(which was also noted

in (7)); this and KLC
⊆ KC imply KLC

= K
C , which completes the proof. �
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