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A POWER STRUCTURE OVER THE GROTHENDIECK RING
OF VARIETIES

S.M. Gusein-Zade, I. Luengo and A. Melle–Hernández

Abstract. Let R be either the Grothendieck semiring (semigroup with multi-
plication) of complex quasi-projective varieties, or the Grothendieck ring of these
varieties, or the Grothendieck ring localized by the class L of the complex affine
line. We define a power structure over these (semi)rings. This means that, for

a power series A(t) = 1 +
∞∑

i=1
[Ai]t

i with the coefficients [Ai] from R and for

[M ] ∈ R, there is defined a series (A(t))[M ], also with coefficients from R, so that
all the usual properties of the exponential function hold. In the particular case

A(t) = (1 − t)−1, the series (A(t))[M ] is the motivic zeta function introduced by
M. Kapranov. As an application we express the generating function of the Hilbert
scheme of points, 0-dimensional subschemes, on a surface as an exponential of the
surface.

By a semiring we mean a semigroup with multiplication. If R is a semiring,
we have the semiring R[[t]] of formal power series with coefficients in R. Let 1+

R+[[t]] denote the set of series of the form A(t) = 1+
∞∑

i=1

Ait
i with Ai ∈ R. If R

is a ring, resp. a semiring, 1+R+[[t]] is an abelian group, resp. a semigroup, with
respect to the multiplication. The Grothendieck semiring S0(VarC) of complex
quasi-projective varieties is the semigroup generated by isomorphism classes [X]
of such varieties modulo the relation [X] = [X −Y ] + [Y ] for a closed subvariety
Y ⊂ X; the multiplication is defined by [X1]·[X2] = [X1×X2]. The Grothendieck
ring K0(VarC) is the group generated by these classes with the same relation and
the same multiplication. Let L ∈ K0(VarC) be the class of the affine line, which
itself also will be denoted by L, and letM := K0(VarC)[L−1] be the localization
of Grothendieck ring K0(VarC) with respect to L.

Power series
∞∑

i=0

[Ai]ti with coefficients from one of these (semi)rings are usual

objects of study, in particular, in the framework of the theory of motivic integra-
tion, see for instance [3],[4], [9]. The main result of the paper shows that there
exists a natural notion of the [M ]-th power of such a series with [A0] = 1 for the
exponent [M ] from the same ring or semiring.
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Definition: A power structure over a (semi)ring R is a map (1 +R+[[t]])×R →
1 +R+[[t]] : (A(t), m) 	→ (A(t))m which possesses the properties:

1. (A(t))0 = 1.
2. (A(t))1 = A(t).
3. (A(t) ·B(t))m = (A(t))m · (B(t))m.
4. (A(t))m+n = (A(t))m · (A(t))n.
5. (A(t))mn = ((A(t))n)m.

Remark. Some examples of power structures can be found in the theory of
λ-rings (see, e.g., [1], [2], [5]). Note also that in the theory of λ-rings the con-
structions in [2] and [5] have sense only over rings which are Q-algebras. The
main point of our construction is that we use factorization by actions of per-
mutation groups instead of division by integers. Using our approach a natural
structure of λ-ring on the Grothendieck ring of complex algebraic varieties would
be given by λt([M ]) = (1 + t)[M ]. But in such a case the coefficient at t2 in the
power series (1+ t)L

2
computed as λt(L×L) should be equal to 2L4−2L2, while

in our construction it is equal to L4 − L2.

Definition: Let A(t) = 1 + [A1] t + [A2] t2 + . . . be a formal power series with
coefficients from S0(VarC) and [M ] ∈ S0(VarC). We define

(A(t))[M ] := 1 +
∞∑

k=1

 ∑
k:

∑
iki=k

[(
(
∏

i

Mki) \∆

)
×

∏
i

Aki
i /

∏
i

Ski

] · tk,

(1)

where ∆ is the ”large diagonal” in MΣki which consists of (
∑

ki)-tuples of points
of M with at least two coinciding ones, the group Ski acts by permuting corre-
sponding ki factors in

∏
i

Mki ⊃ (
∏

i Mki)\∆ and the spaces Ai simultaneously.

Remarks. 1. This definition can also be ”read from” the following formula for
the usual power (1 + a1t + a2t

2 + . . . )m of a series with a natural exponent:

(1 + a1t + a2t
2 + . . . )m =

= 1 +
∞∑

k=1

 ∑
k:Σiki=k

m(m− 1) · . . . · (m− Σki + 1) ·
∏

i

aki
i /

∏
i

ki!

 · tk,

see, for instance [12], page 40. In this formula one should understand the product
m(m−1) · . . . ·(m−Σki+1) as MΣki \∆. If M is a set which consists of m points,
this product is the number of elements of the indicated space. The division by∏
i

ki! should be understood as the factorization by the group
∏
i

Ski .
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2. For a complex algebraic variety M , its motivic zeta function ζ[M ](t) was
defined by M. Kapranov in [8] as the power series

ζ[M ](t) :=
∞∑

k=0

[SkM ] · tk = 1 + [S1M ] · t + [S2M ] · t2 + [S3M ] · t3 + . . . ,

where SkM is the k-th symmetric power Mk/Sk of the variety M , Sk is the
symmetric group of permutations on k elements. It has the property ζM+N (t) =
ζM (t) · ζN (t).

Theorem 1. The equation (1) defines a power structure over the Grothendieck
semiring S0(VarC) of complex algebraic varieties such that

(1 + t + t2 + . . . )[M ] = ζ[M ](t).

Proof. The fact that (1 + t + t2 + . . . )[M ] = ζ[M ](t) and the properties 1 and
2 from the definition of a power structure are obvious. Let us reformulate the
definition of the series (A(t))[M ] a little bit so that the properties 3 to 5 will be
proved by establishing one-to-one correspondences between the sets representing
the coefficients of the left hand side (LHS) and the right hand side (RHS) series.

The coefficient at the monomial tk in the series (A(t))[M ] is represented by the
set whose element is a finite subset K of points of the variety M with positive
multiplicities such that the total number of points of the set K counted with

multiplicities is equal to k plus a map ϕ from K to A =
∞∐

i=0

Ai such that a point

of multiplicity s goes to As ⊂ A. Here
∐

means the disjoint union which is the
sum in the semiring S0(VarC). For short, instead of writing that ”a coefficient
of a series is represented by a set which consists of elements of the form . . . ”
we shall write that ”an element of the coefficient is . . . ”.

Proof of 3. Consider another series B(t) =
∞∑

i=0

[Bi] ti with coefficients from the

same semiring. Let [Cj ] :=
j∑

i=0

[Ai][Bj−i] be the coefficient at the monomial tj

in the product A(t) · B(t). An element of the coefficient at the monomial tk in
the LHS of the equation 3 is a k-point subset K of M with a map ϕ from K to
∞∐

i=0

Ci =
∐

i,j≥0

AiBj such that a point of multiplicity s goes to Cs =
s∐

i=0

Ai×Bs−i.

An element of the coefficient at the monomial tk in the RHS of this equation
is: an �-point subset K1 of the variety M with 0 ≤ � ≤ k, a map ϕ1 from K1

to A =
∞∐

i=0

Ai such that a point of multiplicity s goes to As, a (k − �)-point

subset K2 of the variety M , a map ϕ2 from K2 to B =
∞∐

i=0

Bi such that a

point of multiplicity s goes to Bs. Suppose we have an element of the first set.
Let us decompose the subset K into two parts K1 and K2. A point x of K
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of multiplicity s = s(x) goes to Cs =
s∐

i=0

Ai × Bs−i and thus ϕ(x) belongs to

one of the summands, say to Ai0 × Bs−i0 . Let us include the point x into the
set K1 with the multiplicity i0 and into the set K2 with the multiplicity s− i0.
If i0 and/or s − i0 is positive, define ϕ1(x) and/or ϕ2(x) as the corresponding
projection, to Ai0 and/or to Bs−i0 respectively, of the point ϕ(x) ∈ Ai0 ×Bs−i0 .
In the other direction, from an element of the second set one can construct an
element of the first one uniting the subsets K1 and K2 so that a multiplicity of a
point x in K1∪K2 is equal to the sum s1+s2 of its multiplicities in K1 and in K2

and defining ϕ(x) as (ϕ1(x), ϕ2(x)) ∈ As1 ×Bs2 ⊂ Cs1+s2 . One easily sees that
these correspondences are inverse to each other and thus are one-to-one.

Proof of 4. An element of the coefficient at the monomial tk in the LHS of the
equation is a k-point subset K of the variety M ∪ N with a map ϕ from K to

A =
∞∐

i=0

Ai. An element of the coefficient at the monomial tk in the RHS is a

pair: an �-point subset K1 of the variety M with 0 ≤ � ≤ k and a (k − �)-point
subset K2 of the variety N with their maps to A. The union of these two subsets
with the corresponding map to A gives a subset in the union M ∪N with a map
to A. This correspondence is obviously one-to-one.

Proof of 5. An element of the coefficient at the monomial tk in the LHS of the
equation is a k-point subset K of the product M × N with a map ϕ : K →
A =

∞∐
i=0

Ai. An element of the coefficient at the monomial tk in the RHS is a

k-point subset KM of the variety M with a map from it which sends a point of
multiplicity s to an s point subset of N with a map from it to A. To establish a
one-to-one correspondence between these coefficients, rather between the variety
representing them, one should define KM as the projection prMK of the subset
K ⊂M ×N to the first factor and, for x ∈ KM , the corresponding subset in N
as prNpr−1

M (x) with the natural map to A.

Example.

(1 + t)[M ] = 1 +
∞∑

k=1

[
(Mk \∆)/Sk

] · tk,

where (Mk \∆)/Sk is the configuration space of k distinct unlabeled points in
M .

Let χ(X) be the Euler characteristic of the space X (the alternating sum of
ranks of the cohomology groups with compact support). For a series A(t) =
1 + [A1]t + [A2]t2 + . . . , one defines its Euler characteristic as the series

χ (A(t)) = 1 + χ([A1])t + χ([A2])t2 + . . . ∈ Z[[t]].
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Statement 1.
χ

(
(A(t))[M ]

)
= (χ (A(t)))χ([M ])

.

The proof follows either from direct calculations or from the fact that the
coefficients at the monomials tk in the LHS of the equation are polynomials
in the Euler characteristics of the varieties M and Ai (i = 1, 2, . . . ) and the
equation holds for ”natural numbers”, i.e., for the case when all the varieties M
and Ai are finite sets of points. �

Theorem 2. There exists a unique power structure over the Grothendieck ring
K0(VarC) of complex algebraic varieties which extends the one defined over the
semiring S0(VarC).

Proof. To define the operation notice that for any series A(t) ∈ 1+K0(VarC)+[[t]]

there exists a series B(t) =
∞∑

i=0

[Bi] ti ∈ 1 + K0(VarC)+[[t]] with the coefficients

from the image of the natural map S0(VarC) → K0(VarC) such that all the
coefficients of the product C(t) = A(t) · B(t) are from the same image as well.
Then one puts:

(A(t))[M ] := (C(t))[M ]
/ (B(t))[M ]

.

To define the power of a series with the exponent [M ] from the Grothendieck
ring K0(VarC), one puts

(A(t))−[M ] := 1/ (A(t))[M ]
.

The properties of the definition of a power structure obviously hold.

Theorem 3. There exists a unique power structure over the ring
M = K0(VarC)[L−1] which extends the one defined over the ring K0(VarC).

Proof. First let us define the operation for a series A(t) with the coefficients
[Ai] from the ringM and with the exponent [M ] from the ”non-localized” ring
K0(VarC). This is possible because of the following statement.

Statement 2. Let [Ai] and [M ] be from the Grothendieck ring of complex alge-
braic varieties. Then, for any integer s ≥ 0, (A(Lst))[M ] =

(
A(t)[M ]

)
|t�→Lst.

Proof. It is sufficient to prove this equation for a series with the coefficients from
S0(VarC). The coefficient at the monomial tk in the power series (A(t))[M ] is a
sum of the classes of varieties of the form

V =

(
(
∏

i

Mki) \∆

)
×

∏
i

Aki
i /

∏
i

Ski

with
∑

iki = k. The corresponding summand [Ṽ ] in the coefficient at the mono-
mial tk in the power series (A(Lst))[M ] has the form

Ṽ =

(
(
∏

i

Mki) \∆

)
×

∏
i

(Lsi ×Ai)ki/
∏

i

Ski .
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There is a natural map Ṽ → V which from the point of view of differential
geometry is a complex analytic vector bundle of rank sk. It is locally trivial over
a neighbourhood of each point in the usual topology. According to [11] this is a
vector bundle in the ”algebraic sense” and then it is locally trivial over a Zariski
open neighbourhood of each point. This implies that [Ṽ ] = Lsk · [V ].

For a series A(t) =
∞∑

i=0

[Ai] ti, let JrA(t) denote its truncation
r∑

i=0

[Ai] ti up

to terms of degree r. Statement 2 implies that, for [Ai] ∈ M, i ≥ 1 and [M ] ∈
K0(VarC), one can define the power (A(t))[M ] by the formula

Jr
(
(A(t))[M ]

)
:= (JrA(Lst))[M ] |t�→t/Ls mod tr+1

for s large enough so that all the coefficients of JrA(Lst) belong to the image of
the map K0(VarC)→M. One can easily see that the properties 3–5 hold.

Now we have to extend the operation to the exponent [M ] from the localized
ringM. First let us do it for one particular series, namely for (1 + t + t2 + . . . ).
In other words, we define the zeta function ζ[M ](t) for [M ] ∈M.

Statement 3. For M ∈ K0(VarC), s ≥ 0, one has

ζLs[M ](t) = ζ[M ](Lst).

Proof. It is sufficient to prove the equation for s = 1. One has ζL(t) = 1 + Lt +
L2t2 + . . . and therefore, using Statement 2, gets

ζL[M ](t) = (1 + Lt + L2t2 + . . . )[M ] = (1 + t + t2 + . . . )[M ]|t�→Lt.

This statement permits to define ζ[M ](t) for [M ] ∈M by the formula

ζ[M ](t) = ζLs[M ](L−st)

for s large enough so that Ls[M ] belongs to the image of the map K0(VarC)→
M.

For A(t) ∈ 1 + K0(VarC)+[[t]], [M ] ∈ K0(VarC), s > 0, one has

(A(ts))[M ] =
(
A(t)[M ]

)
|t�→ts .

Since ζ[M ](t) = 1 + [M ] t + . . . , for any series A(t) ∈ 1 +M+[[t]] and for any
r > 0, the truncated series JrA(t) can be represented in a unique way as

Jr
(
ζ[A1](t) · ζ[A′2](t

2) · ζ[A′3](t
3) · . . . · ζ[A′r](tr)

)
with [A′i] ∈M. One defines (A(t))[M ] by the formula

Jr
(
(A(t))[M ]

)
:= Jr

(
ζ[M ][A1](t) · ζ[M ][A′2](t

2) · . . . · ζ[M ][A′r](tr)
)
.(2)

Properties 3–5 of the definition of a power structure obviously hold.
Since the formula (2) can be used to define the power structure over the rings

K0(VarC) andM, such a structure over them is unique.
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Remarks. 1. Yu.I.Manin has informed us that his calculations in [10] resemble
a particular case of our construction.

2. The following construction was inspired by the paper of E.Getzler [6]. Let R
be either the ring K0(VarC) or the ring M. Consider 1 +R+[[t]] and R+[[t]] =
(t)R[[t]] as groups with respect to the multiplication and addition respectively.
The construction described here permits to define group isomorphisms Exp :
R+[[t]]→ 1 +R+[[t]] and Log : 1 +R+[[t]]→ R+[[t]]. Namely,

Exp([A1]t + [A2]t2 + ..) :=
∏
k≥1

(1− tk)−[Ak] =
∏
k≥1

ζ[Ak](tk);

for a series M(t) = 1 + [M1]t + [M2]t2 + . . . ∈ 1 +R+[[t]] (R is either K0(VarC)
orM),

Log(M(t)) :=
∑
k≥1

[A′k]tk,

where [A′k] ∈ R are defined by the equation M(t) = ζ[A′1](t) · ζ[A′2](t
2) · ζ[A′3](t

3) ·
. . . (such a representation is unique). Obviously Exp and Log are inverse to
each other. The properties of the power structure imply that the maps Exp
and Log posess the usual properties of the log and exp functions: Exp(A(t) +
B(t)) = Exp(A(t))Exp(B(t)), Log(M(t) · N(t)) = Log(M(t)) + Log(N(t)),
Exp([M ]t) = ζ[M ](t), . . .

An application. For a smooth quasi–projective surface M , let M [n] =
HilbnM be the Hilbert scheme of 0-dimensional subschemes of length n on M .

Statement 4. In the Grothendieck ring K0(VarC) one has:

1 +
∑
n≥1

[M [n]]tn =
∏
k≥1

ζL−1[M ]((Lt)k) =

∏
k≥1

1
1− Lk−1tk

[M ]

=
∏
k≥1

(
1

1− tk

)Lk−1[M ]

=
(
Exp(

Lt

1− Lt
)
)L−1[M ]

.

The proof follows from the following result of L. Göttsche [7]:

[M [n]] =
∑

k:Σiki=n

[SkM ] · Ln−|k|,
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where |k| = ∑
ki, SkM = Sk1M × · · · × SknM . Therefore

1 +
∑
n≥1

[M [n]]tn =
∑
n≥0

( ∑
k:Σiki=n

[SkM ] · Ln−|k|
)
· tn

=
∑
n≥0

( ∑
k:Σiki=n

[Sk1M ] · . . . · [SknM ] · Ln−(k1+...+kn)

)
· tΣiki

=
∑
n≥0

( ∑
k:Σiki=n

([Sk1M ] · L−k1) · . . . · ([SknM ] · L−kn)

)
· (Lt)Σiki

=
∏

k≥1

( ∑
r≥0

[SrM ] · L−r(Lt)kr

)
=

∏
k≥1

ζL−1[M ]

(
(Lt)k

)
. �

Remarks. 1. D. van Straten told us that the fact that the generating function
of the Hilbert scheme of 0-dimensional subschemes of a surface is in some sense
an exponent was conjectured by several people.
2. All the results of this paper can be extended to the Grothendieck ring of
algebraic varieties over an algebraically closed field of characteristic zero. In this
case Statement 2 follows from a version of Lemma 4.4 in [7]. In Statement 1, the
Euler characteristic should be replaced by the �-adic Euler characteristic with
compact support.

Acknowledgements: The authors are thankful to Tomás L. Gómez for
useful discussions.
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