Math. Z. 233, 679-696 (2000)

Mathematische
Zeitschrift

© Springer-Verlag 2000

Milnor number at infinity, topology
and Newton boundary of a polynomial function

E. Artal Bartolo !, I. Luengo?, A. Melle—Hernande?

! Departamento de Mateaticas, Universidad de Zaragoza, Campus Plaza San Francisco
s/n, E-50009, Zaragoza, Spain (e-mail: artal@posta.unizar.es)

2 Departamento dalgebra, Universidad Complutense, Ciudad Universitaria s/n, E-28040,
Madrid, Spain (e-mail: iluengo@eucmos.sim.ucm.es, amelle@eucmos.sim.ucm.es)

Received May 25, 1998; in final form January 28, 1999

Abstract. In this paper we show that the Euler characteristic of the generic
fibre of a complex polynomial functiofi : C™* — C can be easily computed
using the Newton number gf. We apply this result to study polynomials
with a finite number of critical points.
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Let f : C* — C be a complex polynomial function and I8 C C be its
bifurcation set, i.e. the (smallest) finite set of atypical valuesC where
f is not aC*°-locally trivial fibration, ([HL], [V], [Ve]). The bifurcation
setB; includes not only the set of critical valugs; of f but By may also
contain values correspondingtte critical points at infinitythese are called
atypical values at infinityfor a definition see e.g. [GLM1].

Inaneighborhood of an atypical value at infinity the topology of the fibres
Fy := f~1(t) of the functionf changes. This change is well understood
when the singularities of the compactificatioRis C P™ of the fibres are
isolated (cf. [C], [Du],[HL],[P3]).

Inthe paper we mostly deal with complex polynomials with only isolated
critical points and we allow the singularities at infinity to be non-isolated.
In such a case lgt( f) be the sum of the local Milnor numbers of the germs
of the level hypersurfaces ¢f at its singular points and Iei;%(t) be the
sum of the local Milnor numbers of the germs of the fibbieat its singular
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points. We will define later invariants( f) andA¢(b), b € C, as a difference
between generalized Milnor numbers at infinity of the special fibres and
of the generic one. One computes explicitly the Euler characteristic of the
fibresF;, t € C, as follows.

Theorem.Let f : C* — C be a polynomial function having only isolated
critical points.

(i) 1ft € C\ By thenthe Euler characteristig(F;) of the fibreF; can be
computed as

X(F) = 14 (=1)" " (p(f) + A(f))-

(i) For any valueb € C the Euler characteristicy(F;) of the fibre Fy
satisfies

X(Fp) = x(Fy) + (=1)" (13 (b) + Af(b))-

As a consequence of this theorem the invarpgft) coincides with the
invariant defined by H.V. A and D.T. &, [HL], for polynomials in two
variables and Siersma and @it [ST], for polynomials withW-isolated
singularities at infinity. Recently, Téy [T] has used the equaliti¢s) and
(i7) as definitions of the invariantg f) and¢(b). Our approach is slightly
different. We define the invariants(f) and A(b) using the generalized
Milnor number introduced by Parumsiki in [P1]. The main reason to do this
is thatA(f) andA(b) can be explicitly computed in many cases using the
properties of the generalized Milnor number.

In casef has non-degenerated Newton principal part at infinity, {Qee
for definitions), the Euler characteristic of the generic fibré¢ f computed
in terms of theNewton numbeof f. In particular, if the polynomial function
f : C" — Chasonlyisolated critical points then the invariaff) is related
to its Newton number( f). This fact gives the main result of the paper:

Theorem.Let f : C* — C be a complex polynomial function with only iso-
lated critical points and non-degenerated Newton principal part at infinity,
then

u(f) +Af) = v(f).

This result is a generalization of Kushnirenko’s Theorem, [Ku], namely,
if fisalsoconvenientthek(f) = 0and the above theorem gives the equal-
ity in Kushnirenko’s Theorem. In fact, the apparently striking relationship
betweenu(f) andv(f) can be explained from the fact thatf) may be
negative whem > 2 and the singularities of the fibres are not isolated at in-
finity. Cassou-Noges in [C] proved the theorem for a complex polynomial
function in two variables; she also got the inequatitjor polynomials with
degenerated Newton principal part at infinity. As a corollary of our results
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we prove her Conjecture, [C, p. 120], in the non-degenerated case not only
for tame polynomials, [B], but for any polynomial havingf) = 0, e.g.
guasi-tame or M-tame polynomials, [N1], [NZ]. Related with this conjec-
ture there are some new results about the positivit\(gf) + A(fz) (for

H a generic hyperplane) in [CD].

Finally, we give a list of interesting examples. Example 3.1 disproves
Cassou-Noges' conjecture in the degenerated case. In Example 3.8 we
study the fibres of + 2%y z +u* 4+ v!. We conjecture that its zero fibre is an
exoticC*. A negative answer to this conjecture would give a counterexample
to the Abhyankar-Shataye conjecture in dimensibasd5.

Other interesting invariants of a complex polynomial functfdpesides
the integers\;(¢) andA(f) are the zeta-functions of the local monodromies
around the atypical values (including the itself). These zeta-functions
(and therefore the Euler characteristic of the fibpggs) andA(f)) can be
also computed using germs of meromorphic functions at the points of the
hyperplane at infinity, see [GLM1]. Further generalizations of the previous
invariants for a meromorphic function on a compact complex manifold have
been described in [GLM2].

1 Polynomials with isolated critical points
1.1 Generalized Milnor number

Letusrecall anumber of known results about the generalized Milnor number
introduced by Parusski. We denote by (A) the Euler characteristic of.

Let £ be a holomorphic vector bundle of ranlover a smooth compact
complex manifoldM of dimensionn. Let s € P(H°(M;€)) and letX
be the zero set of a representativesoParusiski [P2] defined the Milnor
number ofX in M, denoted by:(M; X), as follows

p(M; X) = (—1)" " (x(X) — x(M;€)),

wherex(M; £) is the Euler characteristic of the zero set of a sectioé of
transversal to the zero section.
Let us enumerate some properties of this invariant from [P1] and [PP]:

Property 1.1.[P1] If X andZ are two hypersurfaces equivalent as divisors
then

p(M; X) — u(M; Z) = (=1)" (x(X) = x(2))-

Property 1.2. [PP] The generalized Milnor number can be computed as
follows. LetX be a hypersurface oid. If f, = 0 is a local equation ofX
atx € X the topological Milnor number ok at z is

,Utop(XaJ;) = (_1)n_1(X(FI) - 1)7
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whereF}, is the Milnor fibre off,. at the pointz; itis just the classical Milnor
number ifz is an isolated singular point ok .

Given a Whitney stratificatiots of X the topological Milnor number
Lop(X, ) has a constant value along each stratum; let us denojestitis
value for each stratun§ € S. If Z is a smooth hypersurface a linearly
equivalent toX and transversal t&5 then the Milnor number ok in M
verifies the equality

X) =Y x(S\ Z)us

Ses

Remarklin [P1] itis defined a more general invariartV/; X, Y'), whereY’
is a compact subvariety df which admits a neighborhoddin X such that
U\ 'Y is nonsingular. IZ andS are as above anflinduces a stratification
Sy onY then

p(M; X,Y) = > x(S\ Z)ps

SESyYy

Let £ be a holomorphic line bundle over a smooth compact complex
manifold M and letV be ak-dimensional subspace of the projective space
of the global section®(H°(M; L)). For anyv € V, let X, be the zero
set of a representative of There exists a stratificatio§ of V' such that
wu(M; X,) is constant along each stratumSiffor any S € S we denote by
1s this constant Milnor number.

Proposition 1.3.[P2] LetV andS be as above and I&8 be the base points
of V (considered as the zero set of a sectio£&f+1). Then the integer

=Y x(S)us + (=1)" u(M; B)
SeS

only depends ok and L.

1.2 Milnor number at infinity and th&-invariant

Letf : C* — Cbeacomplex polynomial function with only isolated critical
points and letff = fo+ f1 + - - - + fq be its decomposition in homogeneous
forms. We take the natural inclusidii* — P"; we will denote byP"; !
the hyperplane at infinity defined by, = 0. Let D be the divisor ofP"; !
defined by the zero locus of the homogeneous polynofpiaWe will denote
by F, the compactlflcatlon of} := f~1(t) in P"; the equatlon ofF; is
f(zo,21,...,2)—tad = 0,wheref = fotxofa1+ - +zd ' fi+ag fo.
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Since the set ) of critical points is finite then the sum of the local
Milnor numbers of the germs of the level hypersurfaceg at the points
of C(f) is a finite integer denoted hy( f).

Let us consider the function?® C — Z, wheret — (P"; Fy, D). Ifit
is constant we will denote its constant value/By.

One can apply the invariant (£) of (1.3) to this case. Such a polynomial
is interpreted as a-dimensional subspadé} of HO(P", O(d)) generated
by thed*-homogeneous polynomiafsandxg. The zero sets associated to
P} = CU {oo} are the hypersurfaces, ¢t € C, andd timesP7; "

The fact that the functiorf has only isolated critical points allows to
separate the affine singular points of eagfrom the singularities at infinity.
Namely, for eacht € C the generalized Milnor number(P™; F}) of F; in
P can be expressed as

w(P™; Fy) = w(P"; Fy, D) + p(P™; Fy, Sing(Fy)).

Let us denotg«(P"; Fy, Sing(F;)) by p5(t); recall thatu(P™; Fy, D) =
ug (t).

Two useful stratifications. In order to stratify}P’} in a way such that the

generalized Milnor number df; is constant over each stratum we consider
the following stratifications of = P} \ {oc} :

(1) We choose a stratificatia$), of C such thatu4%(t) is constant of value
s along the stratun$' of S,. Because of Bertini theorepf, vanishes
if Sy is thel-dimensional stratum and

> usx(S) = u(f).

SeS,

(2) Since Gf) s finite one takes any stratificatioh, of C such thap°(¢)
is constant along each stratustof S.. Let 4 be this constant value
over the stratunt € Su. Let Sy, := C\ {t1,... ,t} be thel-
dimensional stratum & and letu.7¢,, (f) be the value ofi3° on Sy,

Definition 1.4. With the above notations we define for any C

Ap(t) = pF () — pgen(f)
and

AF) =D A0 =D Ap(ty)-
j=1

teC
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It is easily seen thak(t) and\(f) do not depend on the choice of the
stratification verifying(2). Moreover

D X(S)uF = MF) + wgen(f)

SeS~

and it is clear that if the functiop}” is constant thei(f) is equal to zero.

Let S be the non-empty open s&t:= Sy N Sge, = C\ {s1,..., sk}
Let S be the following stratification d]”} : S, {si}¥_, and{cc}. Itis easy
to see that the stratificatia$ verifies the condition of (2) and for alle S
the integen:(P™; F}) is constant.

Example 1.5Let us considerf(z,y) := = + 2%y € C[z,y]. Choosing
coordinate§ X : Y : Z]inP? (x = X/Z, y = Y/Z) one hasD,.q :=
{PL=[1:0:0,P,=[0:1:0]} c PL.We compute the (generalized)
Milnor number ofF; at infinity. It is obvious thap°(t) = u(P*; Fy, Pr) +
w(P? F,, Py).LetZ = 0 be the equation of the line at infinity. Then the local
equation off; at Py isy+2z2—tz3 = 0;itis smooth angi(P?; F}, P;) = 0for
allt € C. Analogously, the local equation &f at P, is 2% +x2? —tz3 = 0;
thenu(P?; Fy, P») = 2 for all t € C* and u(P?; Fy, P») = 3. Taking the
stratificationS., := {{0}, C*} one gets\(f) = 1.

Next considerf(z,y) as a polynomial functiorf : C3 — C. ThenD
is the projective curve if?2, = {w = 0} whose equation ig?y = 0. In
order to computg(P3; I, D) we apply the remark after Property (1.2). We
choose as stratificatia$, the canonical Whitney stratification éf,..;. We
will see that it matches with the required properties.

Let S, be the stratum of equation= w = 0,z # 0. SinceF; is smooth
atany poinf1 : 0 : z : 0] in this stratum then

fiop(Fiy [1:0:2:0]) = p(P* F,[1:0:2:0]) =0

forall ¢ € C which yieldsyus, = 0.

Let S, be the stratum of equatian= w = 0,y # 0. The Milnor fibre of
Fyatany poinf0 : 1 : z : 0] isthe product of the Milnor fibre in two variables
by a disk, so the Euler characteristic does not change along the stratum and
pitop(F,[0: 12 2: 0]) = —2forallt € C*, puyop(Fo,[0:1: 2:0]) = —3.
Thenug, is well defined.

Finally, let us consider the one-point stratuim= {[0: 0: 1 : 0]}. We
compute the Milnor number of the homogeneous non-isolated singularity
zw? + 2%y — tw® = 0 at (0,0,0). Its Milnor fibre is the3-fold cyclic
covering of the complement iB? of the corresponding projective curve. It
means that the Euler characteristic of the Milnor fibréfbfs equal ta0 if
t = 0 and3 otherwise. Them,,(F;,[0:0:1:0]) = 2forall t € C* and
ftop(Fo,[0:0:1:0]) = —1.
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In order to compute the formula we choose a generic cubic suffane
P3. Itis easily seen thag \ Z = S, andS, andsS, are homeomorphic t€
minus three points. Then the formula gives

p(P% Fy, D) = psx(S\ Z) + ps,x(Sz \ Z) + ps, x(Sy \ Z)
givesu(P3; Fy, D) = 6 for all t € C* andu(P?; Fy, D) = 5. It follows that
A(f) = 1.

More general computations afcan be found in [ALM].

Corollary 1.6. Let f : C* — C be a polynomial function with a finite
number of critical points. Led be the degree of the polynomigllf S is
as above then the integer

y(d,n) = p(f) + M) + Hgen(f) + (=1)""'x(D)

only depends od andn.

Proof. From (1.3) the integer

1(0( +Zx W + p(P"ydP" ) + u(P"; D)

only depends o (d) whereD is considered as the zero set of a section of
O(d) @ O(d). We recall that

u(P" D) = (=1)" " (x(D) — x(B"; O(d) & O(d))).
Since u(P™; dP"1) and x(P™; O(d) @ O(d)) only depend orO(d) the
corollary is proved. O
Theorem1.7Letf : C* — C be apolynomial function with a finite number
of critical points. Lett € C\ By then

(i) The Euler characteristig (F;) of the fiberF; satisfies

X(E) = 1+ (=1)" " (u(f) + A(f))-

(i) For any valueb € C the Euler characteristio((Fy) of the fibreF;, is
equal to

X(Fp) = x(Fp) + (=1)"(u3(b) + Ay (D).
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RemarkThis theorem is a generalization of Corollary 3.5 of [ST] which ap-
plies only for polynomials with/V-isolated singularities at infinity. There-
fore the above definition of( f) is a natural generalization of other invariants
defined in [C] and [ST]. We note also thatf) is invariant up to polynomial
automorphism. As the above example has shawf) could be a negative
integer.

Proof. (i) Let us take the polynomial function:= z¢ + --- + 24 : C"* —

C. The origin is its only critical point angi(g) = (d — 1)". Moreover
pgc(t) = 0 vt € C. The intersection of the compactified fibresgofvith

the hyperplane at infinity is a smooth hypersurfagec P21 of degree.
Sincep,” has constant value equal to zero one takes the trivial stratification
of C for g. Moreover (1.6) shows that

H(F) + M) + pgen(F) + (=1)""1x(D) = (d = 1)" + (=1)"""x(Dy).

Let V, be the compactification @f *(0) and lett € C\ By be a generic
value thenu(P™; Fy) = pge, (f), (P, Vy) = (d — )" andx(Vy) =
1+ x(Dy). The above formula becomes

u(f) + ) + p(B™ Fy) + (=1)""'x(D)
= u(P" Vg) + (=1)" " (x(Vg) = 1).

Using the properties of the generalized Milnor number one gets
u(P"; Vy) — (P Fy) = (—1)" (x(Vy) — x(F}))
and then

p(f) +A) + (1" (D) = (1" (x(Fr) — 1).
Itis clear thaty(F;) = x(F}) + x(D) and the result of the first part follows.

(ii) Letb € C. Itis clear thaty(F,) — x(F;) = x(F) — x(F}). Using
first (1.1) and secondly the definition of the generalized Milnor number the
following equalities follow

X(Fy) = x(Fy) = (=1)"(n
= (=1)"(p

(P"; Fy) — u(P"; F))
(P
—p(P"  F, ))-

: F
s Fy, D) + pu(P"; Fy, Sing(Fy))
So the theorem is proved. O

RemarkThe negative sign of(f) in the second example of (1.5) is an easy
consequence of this theorem as in such a p@ag¢ = 0 in 2 and3 variables
and the Euler characteristic of the generic fibre does not change.
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The following results are an easy consequence of the theorem but, indeed,
they are very useful for computations.

Corollary 1.8. Let f : C" — C be a complex polynomial function with a
finite number of critical points such that® is constant. It € C \ B(f)
then

X(F) =1+ (=1)" " u(f).

Sebastiani-Thom formula for A(f). Itis clear from a theorem of &methi,

[N2], and our previous result that there exists a formula of Sebastiani-Thom-
type for the invarianf(f). Suppose thaf(z, ) = g(z) + h(y), f : C" x

C™ — C. Némethi showed that the generic fibre 6fis homotopically
equivalent to the join space of the generic fibres of the polynomiatslh

(for the definition of join space see e.g. [D]). Sg é&ndh have only isolated
critical points thenf has only isolated critical points and

(1) p(f) = p(g)u(h) and
(2) A(f) = Mg)A(h) + Ag)u(h) + A(R)u(g).

Now suppose thaf(z,y) = g(z) wheref : C" x C™ — C andg : C" —
C. The polynomial functiory has only isolated critical points if and only if
g haspu(g) =0.Insuchacasg(f) = u(g) =0andA(f) = (—1)"A(g).

For a germ(V,0) C (C",0) of isolated hypersurface singularity there
exists a Noether-type formula relating the following invariants of the singu-
larity (V,0): its local Milnor number, its multiplicity, the generalized Milnor
number of its tangent cone and the generalized Milnor number of its strict
transform after one blowing-up, see e.g. [Me]. Next theorem shows a similar
Noether-type formula in the global case.

Theorem 1.9.Letf = f4+ fa—1+ - -+ fo : C" — C be a polynomial
function of degreel with a finite number of critical points. Lef, be a
stratification as above then

p(f) = (d=1)" = uPL D)= > x(S)ug
S€ES~
or
p(f) +Af) = (d=1)" = p(Pi s D) — pge, (f)

Therefore ifu} is constant then

p(f) = (d—1)" = (P D) — uf.

Proof. The main ingredient in this proof is (1.6). Let us take again=
¢+ +2d, u(g) = (d—1)", andD, the smooth hypersurface of degree
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d that is the intersection of the compactified fibreg efith the hyperplane
atinfinity. Sinceug® has constant value equal to zero, see the proof of (1.7),
one takes the trivial stratification @f for g. After (1.6) one has

ulf)+ Y XS + (1" (D) = (d = 1)" + (=1)""'x(Dy).
SeS

Using (1.1) we are done. O

2 Non-degeneracy and\(f)

For a generic complex polynomial functighwe will show that the Euler
characteristic of the generic fibre gfcan be computed using the Newton
number of the Newton polytope at infinity gf. Moreover this Newton
number can be computed algorithmically.

As a consequence ff has a finite number of critical points the invariant
A(f) is obtained from the Newton number of the Newton polytope at infinity
and the invariani(f). It is known how this invariang(f) is related to
this polytope for convenient polynomials, see [Ku], and for two variable
polynomials, see [C].

Let f € Clzy,...,z,] be apolynomialf = > apz™, 2™ = 2" ...
™ with £(0) = 0. Let Supp(f) = {m € N" : a,,, # 0} and letI">(f)
be the convex closure of the g@t} U Supp( f) inR”;. TheNewton boundary
at infinity of f, denoted by"*°(f), is the polytope formed by the closed
faces ofl">°( f) which do not contain the origin. The polynomial

foo — Z amxm

mel>(f)

is called theNewton principal part at infinityf f.

For each closed face of the polytopel™(f) we denote byf, the
polynomialzmev anx™. The Newton principal part at infinity of is non-
degeneratedn v if the system of equations

Oh _ .. _0h
8%1 8xn

has no solution iC*)™. When f*° is non-degenerated on each fage
of I"°(f) we say that the Newton principal part at infinity ¢fis non-
degenerated

Letl C {1,...,n}.Foranysubset in C" orR" we denote by A)’ the
set{(z1,...,z,) € A: x; # 0ifonlyif : € I}. For any polynomialf €
Clxy, ..., z,] we denote byf; the polynomialf where the indeterminate

=0
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x; is zero whenevei ¢ I. The proof of the next lemma is clear from the
definitions.

Lemma2.1.Let f € C[zy,...,x,] be a polynomial with non-degenerated
Newton principal part at infinity. For every C {1,... ,n} then

(1) the polynomiaf; has non-degenerated Newton principal part at infinity.
(@) I™(fr) = I=(f)NEL.

Let.S be a compact polytope iR’} . TheNewton numbeof S is defined
as follows

v(S)=nlV, —(n— DW,q + ...+ (=1D)" 1 + (-1)"

whereV/, is then-dimensional volume of and forallg € {1,... ,n—1},
V, is the sum of theg-dimensional volumes of the intersection®fvith all
g-dimensional coordinate planes.

Definition 2.2. TheNewton number at infinitpf f isv(f) := v(I"°(f)).

Let us recall another non-degeneracy condition associated with a poly-
nomial. Leth € C[zy,...,z,] be a polynomial and let\(h) be the convex
closure ofSupp(h) in R’}. The polynomial is called0-non-degenerated
[Ku], or globally non-degeneratedO], if for any facey of A(h) the system
of equations
_0h,  0Ohy,

" o T T

0

has no solution ifC*)".

Theorem 2.3.[BKK] [Kh] [O] Let h € Clzy,...,x,] be a0-non-dege-
ne-rated polynomial then the Euler characteristic of the{sete (C*)" :
h(z) = 0} is equal to(—1)""1n!V,,(A(h)), whereV,,(A(R)) is the n-
dimensional volume af\(h).

The proof of the following lemma is an easy consequence of the defini-
tions.

Lemma 2.4.Leth € Clzy,...,x,] be a0-non-degenerated polynomial.
Let7 Cc {1,...,n}, then

(1) the polynomiah; is 0-non-degenerated.
(2 A(hr)= AR)NRL.

Proposition 2.5.For any0-non-degenerated polynomiale Clz1, ..., x,)
with 2(0) # 0 following equality holds

(1) (x({e € €< h(x) = 0}) — 1) = v(A(h)).
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Proof.Let FF C C™ be the affine set
F:={zeC": h(z) =0}.
Foreachl C {1,...,n}, letus consider the affine set

Ff=Fn(C ={(z1,...,2,) € F: x; £0 ifonlyif i € I}.

SoF = |J Frandx(F)= > x(Fp).
Ic{1,...,n} Ic{1,...,n}

Let V,, be then-dimensional volume ofA(h) and forl < g < n — 1,
let V, be theg-dimensional volume of the intersections 4{%) with all
g-dimensional coordinate planes. For every {1,... ,n} letus set/, :=
{I c{1,...,n}: #(I) = q}. Itis clear that

S X(FD =)0 x(FY)

Ic{1,..,n} q=11IeJ,

Foranyl € J,onehas’; = {z € (C*)! : hy = 0}. Since (2.1)h; has
non-degenerated Newton principal part at infinity. Moreover lemma (2.4)
shows that:; is a0-non-degenerated polynomial. Using (2.3) one gets the
equality

X(E7) = (=1)7 q!Ve(A(hr))
whereV,(A(hr)) is theg-dimensional volume ofA(h;). For a givery
{1,...,n} one has

D ox(FD) = (=17 qWV(A(hn) = (-1)7 gV,

Ied, IeJ,

This means that

n

XEF)= > x(FH=> (-1)"qV,

Ic{1,...,n} q=1

By adding —1 and multiplying by(—1)"~! on both sides of the above
equality one gets

()" ((F) = 1) = (=) Y (=1 gtV = v(A(R)).0
q=0

Let f : C™ — C be a polynomial function. This map induces a locally
trivial fibration f : C* \ f~*(Bs) — C\ By over the complement of the
bifurcation setB;. By Sard theorem for any € B the fibreF;, = f~1(¢)
is a smooth manifold. In order to relate the Euler characteristic of a generic



Milnor number at infinity 691

fiber F; with the Newton number at infinity of we need the following
lemma which relates the above notions of non-degeneracy.

Lemma2.6.f f : C* — Cisacomplex polynomial function which has non-
degenerated Newton principal part at infinity then there existsC \ By
such thath := f — t is a0-non-degenerated polynomial.

Proof.For everyt € C\ By itis clear thatSupp(h) = {0} U Supp(f). This
means that the polytoped(h) andI">°(f) coincide. Moreover, for every
closed facey of this polytope the equations

Ohy O

8331 N N 8$n -
are equivalent to

781?7 - = L)f“* =0

8$1 8xn '

Lety be a face ofA(h).

(i) If vdoesnotcontainthe origin thérs 0-non-degenerated erbecause
f has non-degenerated Newton principal part at infinity.

(ii) If v contains the origin then applying Sard theorem there exists a dense
opensel/,, in C suchthatthe polynomialmafy : C"nf~(U,) — U,
has smooth fibres. Then for everyg U, the system of equations

R

or1 _Oxnzo

f'y —t=
has no solution.

Since the number of faces df( /) is finite we have proved the lemna.

Theorem 2.7.Let f : C* — C be a complex polynomial function. Let
t € C\ By. If f has non-degenerated Newton principal part at infinity then

(=D)" (X(F) = 1) = v(f).

Proof.Let f € Clxy,...,z,] beapolynomial with non-degenerated Newton
principal part at infinity. Let € C\ By and letF; = {x € C": F(z) =t}

be a generic fibre, indeed a smooth fiber, suchthatifies (2.6). Next we
apply Proposition (2.5) and the result follows. O

Corollary 2.8. Let f : C" — C be a complex polynomial function with a
finite number of critical points and with non-degenerated Newton principal
part at infinity then

u(f) + M) = v(f).
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Proof. Itis a straightforward consequence of the theorems (2.7) and{1.7).

3 Final remarks

The Corollary (2.8) is a generalization of a Kushnirenko’s result obtained
under the additional hypothesis thyais a convenient polynomial, see [Ku].
Moreover Pierrette Cassou-Naeg) [C], proved Corollary (2.8) for = 2.

In both cases they obtained also the inequalityheneverf is degenerated
atinfinity. Since in the two variable polynomials cage) = 0 if f is tame,

[H], then she proved Kushnirenko’s theorem for tame polynomials in two
variables (non necessarily convenient) and she conjectured the same result
in higher dimensions.

Conjecture [C] Let f : C" — C be a tame polynomial function then

@) u(f) <v(f).
(2) If f has non-degenerated Newton principal part at infinity then

u(f) =v(f).

Notice that Corollary (2.8) proves the equality part of the conjecture of
Cassou-Noges not only for tame polynomials but for any polynomial such
that \(f) = 0. For instance this condition includes quasi-tame ([N1]) and
M-tame ([NZ]) polynomials. Example 3.1 bellow proves that the inequality
part of her conjecture is not true wheris degenerated.

Finally we list some examples and open questions:

Example 3.1Let f = z+(x+y)? and letf : C*> — C be the corresponding
polynomial function. Sincg is a component of an automorphism@fthen

f is a tame polynomial. Moreover(f) = 1 (f has degenerated principal
part at infinity and the inequality holds). Now lebe the same polynomial
asf but considered as a polynomial in three variables ang 16> — C be

its corresponding function. As fgfthe polynomialy hasu(g) = A(g) =0

and it is tame, see [B, Prop 3.1]. Againhas degenerated principal part
at infinity andrv(g) = —v(f) = —1 < p(g) + A(g). Neverthelesgl) in
Cassou-Noges’ conjecture is open for degenerated tame polynomials in
exactlyn variables.

Example 3.2Let us review the examples of Cassou-Negu[C] Sect. 6.
Her first examplef = z(z — 1)?z + y* + yz is valid to prove that the other
inequality is possible. She proved thatf) = 3, A\(f) = 0 andv(f) = 9.

Example 3.3der second exampl¢g = zy + x2% + 2227 + 4?23 + xy2b
has non-degenerated Newton principal part at infinity. Using SINGULAR,
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[GPS98], one getg(f) = 20. Moreover the Newton number at infinity of
fisv(f) =23 andthen\(f) = 3 following Cassou-Noges proof.

Example 3.4Let f = = + 2%yz. The functionf : C3> — C has no critical
points, namely:(f) = 0. Sincef has non-degenerated Newton principal
part at infinity, the invariants\(f) andv(f) are equal. Let us compute
v(f) = 31V3—2Va+V;—1. The polytopd >°( f) is the convex closure of the
points{(0, 0,0), (1,0,0), (2,1,1)}. Soitis atwo-dimensional polytope and
thenVs = 0. Moreover any intersection @f>°( f) with any coordinate plane
has not dimension two, i.8, = 0. Finally V; = 1 and\(f) = v(f) = 0.
But it is clear that the fibrdy, is not topologically equivalent to any other
fibre. This example shows that /) = 0 does not implyB; = (.

Example 3.5Let f = x+22y? +232. Againin this case(f) = 0Oandithas
non-degenerated Newton principal part atinfinity. Théf) = v(f) = —1.
In this caseVs = 1, V3 = 3 4+ 1 andV; = 1. This example shows how
the striking relationship betweer( f) andv/(f) is corrected by the integer
A(f). Afamily of this sort of examples is given by, = x + 22y + 2+ 2.
Moreover with f, or f,, and the Sebastiani-Thom-type formula foff)
one can get polynomials with(f) = 0 and A(f) as negative as desired.
Nevertheless we have the following

e Conjecture. There does not exist a polynomialsuch that(f) > 0
and\(f) < 0.

Example 3.6Next example shows that the hypothesisias isolated critical
points” is necessary. Let = = + 2%yz + yz. This polynomial has non-
degenerated Newton principal part at infinity, it is not convenient, of course
v(f) is finite but the set of critical values is not finite, i.a(f) does not
exist.

Example 3.7We study a family of polynomialg = z%®(x¢y? — z¢+4) 4 2.
Whenbc — ad # 0 the polynomialf has no critical points, i.eu(f) =0
and in this case(f) = |bc — ad|. So after corollary (2.8)\(f) = |bc — ad].

Example 3.8Finally let us takey, = x + 2?yz +v*. The Sebastiani-Thom-
type formulee fory and A show thatu(gx) = A(gx) = 0; then we have
examples of all fibre-irreducible-polynomials where the Euler characteristic
of the fibres is constant. From [N2] one knows that the generic @iref
gi has the homotopy type of the join of the generic fibres ef z2yz and
v*. Applying the formula of the homology of a join space, see [D, p. 88],
one has

Z if i =0,

Hi(Gp,Z) = ZF 1 ifi=2,3
0 otherwise.
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Moreover the generic fibré', is simply connected. These facts prove that
G is neither contractible nor a wedge ®&fspheres; in particular it has
not W-isolated singularities at infinity in the sense of [ST]. Related to the
conditionu(f) = A(f) = 0 one has the conjecture of Siersmadirib

Conjecture [ST]. Let f : C* — C be a polynomial function with/y-
isolated singularities at infinity and(f) = A(f) = 0, thenf is equivalent
to a linear function module an isomorphism@f.

The polynomialy;. shows that one can not drop the conditidhisolated
singularities at infinity in the above conjecture. The vdlue C is the only
atypical value of the polynomial functiog,. Let G,‘g be the special fibre
over 0. Its fundamental group is cyclic of ordér The computations on
the fundamental group may be performed by means of the restriction of the
projection onz, y, z. The computation of its homology groups gives:

VA if i =0,
H{(G,Z) = Z/kZ ifi=1,2
0 otherwise.

Applying a result of Kaliman, see [K, Theorem A] or [Z, Theorem 6.9], one
has that ifk, [ are coprime positive numbers then the polynomial

hk,l($7y> Z,U, U) =T+ IL‘2yZ + uk + Ul

verifies also that Euler characteristic of the fibres is constant and in this case
the (special) fibre ove, denoted by}, ;, is contractible and hence diffeo-
morphic toC*. These polynomials are not topologically trivial (the generic
fibre is not contractible) despite of the fact that the Euler characteristic of
the fibres is a constant function.

The4-folds H}, ; are related to tha-folds

Fk,l = {(:B,y,u,v) G(C4 | x+$2y+uk+vl :0}

introduced by M. Koras and P. Russell in [KR] and studied by Makar-
Limanov and Kaliman; itis known, see [M] and [KM], tha]; ; is an exotic
C3.

e Conjecture. Hy,; is an exoticC?.

A negative answer would give a counterexample to the Abhyankar-
Shataye conjecture in dimensiorsnd5. By blowing-up a closed subvariety
of V:= Hy,; N {xz = 0}, as in [KR, Prop. 7.8], one can get a morphism
7:C*— Hj,; which is an isomorphism o#l, ; \ V, in particularr is a
dominant map. Note also that the map

QL1 Hk,l —C: O‘k’,l(xv Y, Z,U,’U) =z
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verifies that its generic fibre is isomorphickp; and the fiber oved is C3.
We also note that the symmetry gfz induces &-fold ramified covering
of Hy; onto Fj,; x C,; itis not known, see [KM], whetheF},; x C has an
exotic structure.
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