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Abstract. In this paper we show that the Euler characteristic of the generic
fibre of a complex polynomial functionf : C

n → C can be easily computed
using the Newton number off. We apply this result to study polynomials
with a finite number of critical points.
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Let f : C
n → C be a complex polynomial function and letBf ⊂ C be its

bifurcation set, i.e. the (smallest) finite set of atypical valuest ∈ C where
f is not aC∞-locally trivial fibration, ([HL], [V], [Ve]). The bifurcation
setBf includes not only the set of critical valuesΣf of f butBf may also
contain values corresponding tothe critical points at infinity; these are called
atypical values at infinity, for a definition see e.g. [GLM1].

In a neighborhood of an atypical value at infinity the topology of the fibres
Ft := f−1(t) of the functionf changes. This change is well understood
when the singularities of the compactificationsF̄t ⊂ P

n of the fibres are
isolated (cf. [C], [Du],[HL],[P3]).

In the paper we mostly deal with complex polynomials with only isolated
critical points and we allow the singularities at infinity to be non-isolated.
In such a case letµ(f) be the sum of the local Milnor numbers of the germs
of the level hypersurfaces off at its singular points and letµa

f (t) be the
sum of the local Milnor numbers of the germs of the fibreFt at its singular
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points. We will define later invariantsλ(f) andλf (b), b ∈ C, as a difference
between generalized Milnor numbers at infinity of the special fibres and
of the generic one. One computes explicitly the Euler characteristic of the
fibresFt, t ∈ C, as follows.

Theorem. Let f : C
n → C be a polynomial function having only isolated

critical points.

(i) If t ∈ C \ Bf then the Euler characteristicχ(Ft) of the fibreFt can be
computed as

χ(Ft) = 1 + (−1)n−1(µ(f) + λ(f)).

(ii) For any valueb ∈ C the Euler characteristicχ(Fb) of the fibreFb

satisfies
χ(Fb) = χ(Ft) + (−1)n(µa

f (b) + λf (b)).

As a consequence of this theorem the invariantλ(f) coincides with the
invariant defined by H.V. H̀a and D.T. L̂e, [HL], for polynomials in two
variables and Siersma and Tibăr, [ST], for polynomials withW-isolated
singularities at infinity. Recently, Tib̆ar [T] has used the equalities(i) and
(ii) as definitions of the invariantsλ(f) andλf (b). Our approach is slightly
different. We define the invariantsλ(f) andλf (b) using the generalized
Milnor number introduced by Parusiński in [P1]. The main reason to do this
is thatλ(f) andλf (b) can be explicitly computed in many cases using the
properties of the generalized Milnor number.

In casef has non-degenerated Newton principal part at infinity, (see§2
for definitions), the Euler characteristic of the generic fibre off is computed
in terms of theNewton numberof f. In particular, if the polynomial function
f : C

n → C has only isolated critical points then the invariantλ(f) is related
to its Newton numberν(f). This fact gives the main result of the paper:

Theorem.Letf : C
n → C be a complex polynomial function with only iso-

lated critical points and non-degenerated Newton principal part at infinity,
then

µ(f) + λ(f) = ν(f).

This result is a generalization of Kushnirenko’s Theorem, [Ku], namely,
if f is also convenient thenλ(f) = 0 and the above theorem gives the equal-
ity in Kushnirenko’s Theorem. In fact, the apparently striking relationship
betweenµ(f) andν(f) can be explained from the fact thatλ(f) may be
negative whenn > 2 and the singularities of the fibres are not isolated at in-
finity. Cassou-Nogùes in [C] proved the theorem for a complex polynomial
function in two variables; she also got the inequality≤ for polynomials with
degenerated Newton principal part at infinity. As a corollary of our results
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we prove her Conjecture, [C, p. 120], in the non-degenerated case not only
for tame polynomials, [B], but for any polynomial havingλ(f) = 0, e.g.
quasi-tame or M-tame polynomials, [N1], [NZ]. Related with this conjec-
ture there are some new results about the positivity ofλ(f) + λ(f|H) (for
H a generic hyperplane) in [CD].

Finally, we give a list of interesting examples. Example 3.1 disproves
Cassou-Nogùes’ conjecture in the degenerated case. In Example 3.8 we
study the fibres ofx+x2yz +uk +vl. We conjecture that its zero fibre is an
exoticC

4. A negative answer to this conjecture would give a counterexample
to the Abhyankar-Shataye conjecture in dimensions4 and5.

Other interesting invariants of a complex polynomial functionf besides
the integersλf (t) andλ(f) are the zeta-functions of the local monodromies
around the atypical values (including the∞ itself). These zeta-functions
(and therefore the Euler characteristic of the fibres,λf (t) andλ(f)) can be
also computed using germs of meromorphic functions at the points of the
hyperplane at infinity, see [GLM1]. Further generalizations of the previous
invariants for a meromorphic function on a compact complex manifold have
been described in [GLM2].

1 Polynomials with isolated critical points

1.1 Generalized Milnor number

Let us recall a number of known results about the generalized Milnor number
introduced by Parusiński. We denote byχ(A) the Euler characteristic ofA.

Let E be a holomorphic vector bundle of rankr over a smooth compact
complex manifoldM of dimensionn. Let s ∈ P(H0(M ; E)) and letX
be the zero set of a representative ofs. Parusínski [P2] defined the Milnor
number ofX in M , denoted byµ(M ;X), as follows

µ(M ;X) := (−1)n−r+1(χ(X) − χ(M ; E)),

whereχ(M ; E) is the Euler characteristic of the zero set of a section ofE
transversal to the zero section.

Let us enumerate some properties of this invariant from [P1] and [PP]:

Property 1.1. [P1] If X andZ are two hypersurfaces equivalent as divisors
then

µ(M ;X) − µ(M ;Z) = (−1)n(χ(X) − χ(Z)).

Property 1.2. [PP] The generalized Milnor number can be computed as
follows. LetX be a hypersurface onM . If fx = 0 is a local equation ofX
at x ∈ X the topological Milnor number ofX at x is

µtop(X, x) := (−1)n−1(χ(Fx) − 1),
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whereFx is the Milnor fibre offx at the pointx; it is just the classical Milnor
number ifx is an isolated singular point ofX.

Given a Whitney stratificationS of X the topological Milnor number
µtop(X, x) has a constant value along each stratum; let us denote byµS this
value for each stratumS ∈ S. If Z is a smooth hypersurface onM linearly
equivalent toX and transversal toS then the Milnor number ofX in M
verifies the equality

µ(M ;X) =
∑
S∈S

χ(S \ Z)µS .

Remark.In [P1] it is defined a more general invariantµ(M ;X, Y ), whereY
is a compact subvariety ofX which admits a neighborhoodU in X such that
U \ Y is nonsingular. IfZ andS are as above andS induces a stratification
SY onY then

µ(M ;X, Y ) =
∑

S∈SY

χ(S \ Z)µS .

Let L be a holomorphic line bundle over a smooth compact complex
manifoldM and letV be ak-dimensional subspace of the projective space
of the global sectionsP(H0(M ;L)). For anyv ∈ V , let Xv be the zero
set of a representative ofv. There exists a stratificationS of V such that
µ(M ;Xv) is constant along each stratum ofS; for anyS ∈ S we denote by
µS this constant Milnor number.

Proposition 1.3.[P2] LetV andS be as above and letB be the base points
of V (considered as the zero set of a section ofL⊕k+1). Then the integer

γk(L) :=
∑
S∈S

χ(S)µS + (−1)k+1µ(M ;B)

only depends onk andL.

1.2 Milnor number at infinity and theλ-invariant

Letf : C
n → C be a complex polynomial function with only isolated critical

points and letf = f0 + f1 + · · ·+ fd be its decomposition in homogeneous
forms. We take the natural inclusionCn ↪→ P

n; we will denote byPn−1∞
the hyperplane at infinity defined byx0 = 0. Let D be the divisor ofPn−1∞
defined by the zero locus of the homogeneous polynomialfd. We will denote
by F̄t the compactification ofFt := f−1(t) in P

n; the equation ofF̄t is
f̃(x0, x1, . . . , xn)−txd

0 = 0, wheref̃ := fd+x0fd−1+· · ·+xd−1
0 f1+xd

0f0.
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Since the set C(f) of critical points is finite then the sum of the local
Milnor numbers of the germs of the level hypersurfaces off at the points
of C(f) is a finite integer denoted byµ(f).

Let us consider the functionµ∞
f C → Z, wheret 7→ µ(Pn; F̄t, D). If it

is constant we will denote its constant value byµ∞
f .

One can apply the invariantγk(L) of (1.3) to this case. Such a polynomial
is interpreted as a1-dimensional subspaceP1

f of H0(Pn,O(d)) generated

by thedth-homogeneous polynomials̃f andxd
0. The zero sets associated to

P
1
f = C ∪ {∞} are the hypersurfaces̄Ft, t ∈ C, andd timesP

n−1∞ .
The fact that the functionf has only isolated critical points allows to

separate the affine singular points of eachF̄t from the singularities at infinity.
Namely, for eacht ∈ C the generalized Milnor numberµ(Pn; F̄t) of F̄t in
P

n can be expressed as

µ(Pn; F̄t) = µ(Pn; F̄t, D) + µ(Pn; F̄t, Sing(Ft)).

Let us denoteµ(Pn; F̄t, Sing(Ft)) by µa
f (t); recall thatµ(Pn; F̄t, D) =

µ∞
f (t).

Two useful stratifications. In order to stratifyP
1
f in a way such that the

generalized Milnor number of̄Ft is constant over each stratum we consider
the following stratifications ofC = P

1
f \ {∞} :

(1) We choose a stratificationSa of C such thatµa
f (t) is constant of value

µa
S along the stratumS of Sa. Because of Bertini theoremµa

S0
vanishes

if S0 is the1-dimensional stratum and

∑
S∈Sa

µa
Sχ(S) = µ(f).

(2) Since C(f) is finite one takes any stratificationS∞ of C such thatµ∞
f (t)

is constant along each stratumS of S∞. Let µ∞
S be this constant value

over the stratumS ∈ S∞. Let Sgen := C \ {t1, . . . , tm} be the1-
dimensional stratum ofS∞ and letµ∞

gen(f) be the value ofµ∞
f onSgen.

Definition 1.4. With the above notations we define for anyt ∈ C

λf (t) := µ∞
f (t) − µ∞

gen(f)

and

λ(f) :=
∑
t∈C

λf (t) =
m∑

j=1

λf (tj).
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It is easily seen thatλf (t) andλ(f) do not depend on the choice of the
stratification verifying(2). Moreover

∑
S∈S∞

χ(S)µ∞
S = λ(f) + µ∞

gen(f)

and it is clear that if the functionµ∞
f is constant thenλ(f) is equal to zero.

Let S be the non-empty open setS := S0 ∩ Sgen = C \ {s1, . . . , sk}.
Let S be the following stratification ofP1

f : S, {si}k
i=1 and{∞}. It is easy

to see that the stratificationS verifies the condition of (2) and for allt ∈ S
the integerµ(Pn; F̄t) is constant.

Example 1.5.Let us considerf(x, y) := x + x2y ∈ C[x, y]. Choosing
coordinates[X : Y : Z] in P

2 (x = X/Z, y = Y/Z) one hasDred :=
{P1 = [1 : 0 : 0], P2 = [0 : 1 : 0]} ⊂ P

1∞. We compute the (generalized)
Milnor number ofF̄t at infinity. It is obvious thatµ∞

f (t) = µ(P2; F̄t, P1) +
µ(P2; F̄t, P2). LetZ = 0 be the equation of the line at infinity. Then the local
equation ofF̄t atP1 isy+z2−tz3 = 0; it is smooth andµ(P2; F̄t, P1) = 0 for
all t ∈ C. Analogously, the local equation of̄Ft atP2 isx2 +xz2 − tz3 = 0;
thenµ(P2; F̄t, P2) = 2 for all t ∈ C

∗ andµ(P2; F̄0, P2) = 3. Taking the
stratificationS∞ := {{0}, C∗} one getsλ(f) = 1.

Next considerf(x, y) as a polynomial functionf : C
3 → C. ThenD

is the projective curve inP2∞ = {w = 0} whose equation isx2y = 0. In
order to computeµ(P3; F̄t, D) we apply the remark after Property (1.2). We
choose as stratificationSD the canonical Whitney stratification ofDred. We
will see that it matches with the required properties.

Let Sy be the stratum of equationy = w = 0, x 6= 0. SinceF̄t is smooth
at any point[1 : 0 : z : 0] in this stratum then

µtop(F̄t, [1 : 0 : z : 0]) = µ(P3; F̄t, [1 : 0 : z : 0]) = 0

for all t ∈ C which yieldsµSy = 0.
LetSx be the stratum of equationx = w = 0, y 6= 0. The Milnor fibre of

F̄t at any point[0 : 1 : z : 0] is the product of the Milnor fibre in two variables
by a disk, so the Euler characteristic does not change along the stratum and
µtop(F̄t, [0 : 1 : z : 0]) = −2 for all t ∈ C

∗, µtop(F̄0, [0 : 1 : z : 0]) = −3.
ThenµSx is well defined.

Finally, let us consider the one-point stratumS = {[0 : 0 : 1 : 0]}. We
compute the Milnor number of the homogeneous non-isolated singularity
xw2 + x2y − tw3 = 0 at (0, 0, 0). Its Milnor fibre is the3-fold cyclic
covering of the complement inP2 of the corresponding projective curve. It
means that the Euler characteristic of the Milnor fibre ofF̄t is equal to0 if
t = 0 and3 otherwise. Thenµtop(F̄t, [0 : 0 : 1 : 0]) = 2 for all t ∈ C

∗ and
µtop(F̄0, [0 : 0 : 1 : 0]) = −1.
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In order to compute the formula we choose a generic cubic surfaceZ in
P

3. It is easily seen thatS \ Z = S, andSx andSy are homeomorphic toC
minus three points. Then the formula gives

µ(P3; F̄t, D) = µSχ(S \ Z) + µSxχ(Sx \ Z) + µSyχ(Sy \ Z)

givesµ(P3; F̄t, D) = 6 for all t ∈ C
∗ andµ(P2; F̄0, D) = 5. It follows that

λ(f) = −1.
More general computations ofλ can be found in [ALM].

Corollary 1.6. Let f : C
n → C be a polynomial function with a finite

number of critical points. Letd be the degree of the polynomialf. If S∞ is
as above then the integer

γ(d, n) := µ(f) + λ(f) + µ∞
gen(f) + (−1)n−1χ(D)

only depends ond andn.

Proof.From (1.3) the integer

γ1(O(d)) = µ(f) +
∑
S

χ(S)µ∞
S + µ(Pn; dP

n−1) + µ(Pn;D)

only depends onO(d) whereD is considered as the zero set of a section of
O(d) ⊕ O(d). We recall that

µ(Pn;D) = (−1)n−1(χ(D) − χ(Pn;O(d) ⊕ O(d))).

Sinceµ(Pn; dP
n−1) and χ(Pn;O(d) ⊕ O(d)) only depend onO(d) the

corollary is proved. 2

Theorem 1.7.Letf : C
n → C be a polynomial function with a finite number

of critical points. Lett ∈ C \ Bf then

(i) The Euler characteristicχ(Ft) of the fiberFt satisfies

χ(Ft) = 1 + (−1)n−1(µ(f) + λ(f)).

(ii) For any valueb ∈ C the Euler characteristicχ(Fb) of the fibreFb is
equal to

χ(Fb) = χ(Ft) + (−1)n(µa
f (b) + λf (b)).
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Remark.This theorem is a generalization of Corollary 3.5 of [ST] which ap-
plies only for polynomials withW-isolated singularities at infinity. There-
fore the above definition ofλ(f) is a natural generalization of other invariants
defined in [C] and [ST]. We note also thatλ(f) is invariant up to polynomial
automorphism. As the above example has shownλ(f) could be a negative
integer.

Proof.(i) Let us take the polynomial functiong := xd
1 + · · · + xd

n : C
n →

C. The origin is its only critical point andµ(g) = (d − 1)n. Moreover
µ∞

g (t) = 0 ∀t ∈ C. The intersection of the compactified fibres ofg with
the hyperplane at infinity is a smooth hypersurfaceDg ⊂ P

n−1∞ of degreed.
Sinceµ∞

g has constant value equal to zero one takes the trivial stratification
of C for g. Moreover (1.6) shows that

µ(f) + λ(f) + µ∞
gen(f) + (−1)n−1χ(D) = (d − 1)n + (−1)n−1χ(Dg).

Let Vg be the compactification ofg−1(0) and lett ∈ C\Bf be a generic
value thenµ(Pn; F̄t) = µ∞

gen(f), µ(Pn, Vg) = (d − 1)n and χ(Vg) =
1 + χ(Dg). The above formula becomes

µ(f) + λ(f) + µ(Pn; F̄t) + (−1)n−1χ(D)
= µ(Pn;Vg) + (−1)n−1(χ(Vg) − 1).

Using the properties of the generalized Milnor number one gets

µ(Pn;Vg) − µ(Pn; F̄t) = (−1)n(χ(Vg) − χ(F̄t))

and then

µ(f) + λ(f) + (−1)n−1χ(D) = (−1)n−1(χ(F̄t) − 1).

It is clear thatχ(F̄t) = χ(Ft)+χ(D) and the result of the first part follows.

(ii) Let b ∈ C. It is clear thatχ(F̄b) − χ(F̄t) = χ(Fb) − χ(Ft). Using
first (1.1) and secondly the definition of the generalized Milnor number the
following equalities follow

χ(Fb) − χ(Ft) = (−1)n(µ(Pn; F̄b) − µ(Pn; F̄t))
= (−1)n(µ(Pn; F̄b, D) + µ(Pn; F̄b, Sing(Fb))

−µ(Pn; F̄t, D)).

So the theorem is proved. 2

Remark.The negative sign ofλ(f) in the second example of (1.5) is an easy
consequence of this theorem as in such a caseµ(f) = 0 in 2 and3 variables
and the Euler characteristic of the generic fibre does not change.
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The following results are an easy consequence of the theorem but, indeed,
they are very useful for computations.

Corollary 1.8. Let f : C
n → C be a complex polynomial function with a

finite number of critical points such thatµ∞
f is constant. Ift ∈ C \ B(f)

then
χ(Ft) = 1 + (−1)n−1µ(f).

Sebastiani-Thom formula forλ(f). It is clear from a theorem of Ńemethi,
[N2], and our previous result that there exists a formula of Sebastiani-Thom-
type for the invariantλ(f). Suppose thatf(x̄, ȳ) = g(x̄) + h(ȳ), f : C

n ×
C

m → C. Némethi showed that the generic fibre off is homotopically
equivalent to the join space of the generic fibres of the polynomialsg andh
(for the definition of join space see e.g. [D]). So ifg andh have only isolated
critical points thenf has only isolated critical points and

(1) µ(f) = µ(g)µ(h) and
(2) λ(f) = λ(g)λ(h) + λ(g)µ(h) + λ(h)µ(g).

Now suppose thatf(x, y) = g(x) wheref : C
n × C

m → C andg : C
n →

C. The polynomial functionf has only isolated critical points if and only if
g hasµ(g) = 0. In such a caseµ(f) = µ(g) = 0 andλ(f) = (−1)mλ(g).

For a germ(V, 0) ⊂ (Cn, 0) of isolated hypersurface singularity there
exists a Noether-type formula relating the following invariants of the singu-
larity (V, 0): its local Milnor number, its multiplicity, the generalized Milnor
number of its tangent cone and the generalized Milnor number of its strict
transform after one blowing-up, see e.g. [Me]. Next theorem shows a similar
Noether-type formula in the global case.

Theorem 1.9.Let f = fd + fd−1 + · · · + f0 : C
n → C be a polynomial

function of degreed with a finite number of critical points. LetS∞ be a
stratification as above then

µ(f) = (d − 1)n − µ(Pn−1
∞ ;D) −

∑
S∈S∞

χ(S)µ∞
S

or
µ(f) + λ(f) = (d − 1)n − µ(Pn−1

∞ ;D) − µ∞
gen(f)

Therefore ifµ∞
f is constant then

µ(f) = (d − 1)n − µ(Pn−1
∞ ;D) − µ∞

f .

Proof. The main ingredient in this proof is (1.6). Let us take againg :=
xd

1 + · · ·+xd
n, µ(g) = (d− 1)n, andDg the smooth hypersurface of degree
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d that is the intersection of the compactified fibres ofg with the hyperplane
at infinity. Sinceµ∞

g has constant value equal to zero, see the proof of (1.7),
one takes the trivial stratification ofC for g. After (1.6) one has

µ(f) +
∑

S∈S∞

χ(S)µ∞
S + (−1)n−1χ(D) = (d − 1)n + (−1)n−1χ(Dg).

Using (1.1) we are done. 2

2 Non-degeneracy andλ(f)

For a generic complex polynomial functionf we will show that the Euler
characteristic of the generic fibre off can be computed using the Newton
number of the Newton polytope at infinity off. Moreover this Newton
number can be computed algorithmically.

As a consequence iff has a finite number of critical points the invariant
λ(f) is obtained from the Newton number of the Newton polytope at infinity
and the invariantµ(f). It is known how this invariantµ(f) is related to
this polytope for convenient polynomials, see [Ku], and for two variable
polynomials, see [C].

Let f ∈ C[x1, . . . , xn] be a polynomial,f =
∑

amxm, xm = xm1
1 . . .

xmn
n with f(0) = 0. Let Supp(f) = {m ∈ N

n : am 6= 0} and letΓ∞− (f)
be the convex closure of the set{0}∪Supp(f) in R

n
+. TheNewton boundary

at infinity of f , denoted byΓ∞(f), is the polytope formed by the closed
faces ofΓ∞− (f) which do not contain the origin. The polynomial

f∞ =
∑

m∈Γ ∞(f)

amxm

is called theNewton principal part at infinityof f .

For each closed faceγ of the polytopeΓ∞(f) we denote byfγ the
polynomial

∑
m∈γ amxm. The Newton principal part at infinity off is non-

degeneratedonγ if the system of equations

∂fγ

∂x1
= · · · =

∂fγ

∂xn
= 0

has no solution in(C∗)n. Whenf∞ is non-degenerated on each faceγ
of Γ∞(f) we say that the Newton principal part at infinity off is non-
degenerated.

LetI ⊂ {1, . . . , n}. For any subsetA in C
n orR

n we denote by(A)I the
set{(x1, . . . , xn) ∈ A : xi 6= 0 if only if i ∈ I}. For any polynomialf ∈
C[x1, . . . , xn] we denote byfI the polynomialf where the indeterminate
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xi is zero wheneveri 6∈ I. The proof of the next lemma is clear from the
definitions.

Lemma 2.1.Letf ∈ C[x1, . . . , xn] be a polynomial with non-degenerated
Newton principal part at infinity. For everyI ⊂ {1, . . . , n} then

(1) the polynomialfI has non-degenerated Newton principal part at infinity.
(2) Γ∞− (fI) = Γ∞− (f) ∩ R

I
+.

Let S be a compact polytope inRn
+. TheNewton numberof S is defined

as follows

ν(S) = n!Vn − (n − 1)!Vn−1 + . . . + (−1)n−1V1 + (−1)n

whereVn is then-dimensional volume ofS and for allq ∈ {1, . . . , n− 1},
Vq is the sum of theq-dimensional volumes of the intersection ofS with all
q-dimensional coordinate planes.

Definition 2.2. TheNewton number at infinityof f is ν(f) := ν(Γ∞− (f)).

Let us recall another non-degeneracy condition associated with a poly-
nomial. Leth ∈ C[x1, . . . , xn] be a polynomial and let∆(h) be the convex
closure ofSupp(h) in R

n
+. The polynomialh is called0-non-degenerated,

[Ku], or globally non-degenerated, [O], if for any faceγ of ∆(h) the system
of equations

hγ =
∂hγ

∂x1
= · · · =

∂hγ

∂xn
= 0

has no solution in(C∗)n.

Theorem 2.3.[BKK] [Kh] [O] Let h ∈ C[x1, . . . , xn] be a0-non-dege-
ne-rated polynomial then the Euler characteristic of the set{x ∈ (C∗)n :
h(x) = 0} is equal to(−1)n−1n!Vn(∆(h)), whereVn(∆(h)) is the n-
dimensional volume of∆(h).

The proof of the following lemma is an easy consequence of the defini-
tions.

Lemma 2.4.Let h ∈ C[x1, . . . , xn] be a0-non-degenerated polynomial.
Let I ⊂ {1, . . . , n}, then

(1) the polynomialhI is 0-non-degenerated.
(2) ∆(hI) = ∆(h) ∩ R

I
+.

Proposition 2.5.For any0-non-degenerated polynomialh ∈ C[x1, . . . , xn]
with h(0) 6= 0 following equality holds

(−1)n−1(χ({x ∈ C
n : h(x) = 0}) − 1) = ν(∆(h)).



690 E. Artal Bartolo et al.

Proof.Let F ⊂ C
n be the affine set

F := {x ∈ C
n : h(x) = 0}.

For eachI ⊂ {1, . . . , n}, let us consider the affine set

F ∗
I := F ∩ (C∗)I = {(x1, . . . , xn) ∈ F : xi 6= 0 if only if i ∈ I}.

SoF =
⋃

I⊂{1,... ,n}
F ∗

I andχ(F ) =
∑

I⊂{1,... ,n}
χ(F ∗

I ).

Let Vn be then-dimensional volume of∆(h) and for1 ≤ q ≤ n − 1,
let Vq be theq-dimensional volume of the intersections of∆(h) with all
q-dimensional coordinate planes. For everyq ∈ {1, . . . , n} let us setJq :=
{I ⊂ {1, . . . , n} : #(I) = q}. It is clear that

∑
I⊂{1,... ,n}

χ(F ∗
I ) =

n∑
q=1

∑
I∈Jq

χ(F ∗
I )

For anyI ∈ Jq one hasF ∗
I = {x ∈ (C∗)I : hI = 0}. Since (2.1)hI has

non-degenerated Newton principal part at infinity. Moreover lemma (2.4)
shows thathI is a0-non-degenerated polynomial. Using (2.3) one gets the
equality

χ(F ∗
I ) = (−1)q−1q!Vq(∆(hI))

whereVq(∆(hI)) is theq-dimensional volume of∆(hI). For a givenq ∈
{1, . . . , n} one has

∑
I∈Jq

χ(F ∗
I ) = (−1)q−1

∑
I∈Jq

q!Vq(∆(hI)) = (−1)q−1q!Vq.

This means that

χ(F ) =
∑

I⊂{1,... ,n}
χ(F ∗

I ) =
n∑

q=1

(−1)q−1q!Vq.

By adding−1 and multiplying by(−1)n−1 on both sides of the above
equality one gets

(−1)n−1(χ(F ) − 1) = (−1)n−1
n∑

q=0

(−1)q−1q!Vq = ν(∆(h)).2

Let f : C
n → C be a polynomial function. This map induces a locally

trivial fibration f : C
n \ f−1(Bf ) → C \ Bf over the complement of the

bifurcation setBf . By Sard theorem for anyt ∈ Bf the fibreFt = f−1(t)
is a smooth manifold. In order to relate the Euler characteristic of a generic
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fiber Ft with the Newton number at infinity off we need the following
lemma which relates the above notions of non-degeneracy.

Lemma 2.6.If f : C
n → C is a complex polynomial function which has non-

degenerated Newton principal part at infinity then there existst ∈ C \ Bf

such thath := f − t is a0-non-degenerated polynomial.

Proof.For everyt ∈ C\Bf it is clear thatSupp(h) = {0}∪Supp(f). This
means that the polytopes∆(h) andΓ∞− (f) coincide. Moreover, for every
closed faceγ of this polytope the equations

∂hγ

∂x1
= · · · =

∂hγ

∂xn
= 0

are equivalent to
∂fγ

∂x1
= · · · =

∂fγ

∂xn
= 0.

Let γ be a face of∆(h).

(i) If γ does not contain the origin thenh is 0-non-degenerated onγ because
f has non-degenerated Newton principal part at infinity.

(ii) If γ contains the origin then applying Sard theorem there exists a dense
open setUγ in C such that the polynomial mapfγ : C

n∩f−1(Uγ) → Uγ

has smooth fibres. Then for everyt ∈ Uγ the system of equations

fγ − t =
∂fγ

∂x1
= · · · =

∂fγ

∂xn
= 0

has no solution.

Since the number of faces of∆(h) is finite we have proved the lemma.2

Theorem 2.7.Let f : C
n → C be a complex polynomial function. Let

t ∈ C \ Bf . If f has non-degenerated Newton principal part at infinity then

(−1)n−1(χ(Ft) − 1) = ν(f).

Proof.Letf ∈ C[x1, . . . , xn]be a polynomial with non-degenerated Newton
principal part at infinity. Lett ∈ C\Bf and letFt = {x ∈ C

n : F (x) = t}
be a generic fibre, indeed a smooth fiber, such thatt verifies (2.6). Next we
apply Proposition (2.5) and the result follows. 2

Corollary 2.8. Let f : C
n → C be a complex polynomial function with a

finite number of critical points and with non-degenerated Newton principal
part at infinity then

µ(f) + λ(f) = ν(f).
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Proof.It is a straightforward consequence of the theorems (2.7) and (1.7).2

3 Final remarks

The Corollary (2.8) is a generalization of a Kushnirenko’s result obtained
under the additional hypothesis thatf is a convenient polynomial, see [Ku].
Moreover Pierrette Cassou-Noguès, [C], proved Corollary (2.8) forn = 2.
In both cases they obtained also the inequality≤ wheneverf is degenerated
at infinity. Since in the two variable polynomials caseλ(f) = 0 if f is tame,
[H], then she proved Kushnirenko’s theorem for tame polynomials in two
variables (non necessarily convenient) and she conjectured the same result
in higher dimensions.

Conjecture.[C] Let f : C
n → C be a tame polynomial function then

(1) µ(f) ≤ ν(f).
(2) If f has non-degenerated Newton principal part at infinity then

µ(f) = ν(f).

Notice that Corollary (2.8) proves the equality part of the conjecture of
Cassou-Nogùes not only for tame polynomials but for any polynomial such
thatλ(f) = 0. For instance this condition includes quasi-tame ([N1]) and
M-tame ([NZ]) polynomials. Example 3.1 bellow proves that the inequality
part of her conjecture is not true whenf is degenerated.

Finally we list some examples and open questions:

Example 3.1.Letf = x+(x+y)2 and letf : C
2 → C be the corresponding

polynomial function. Sincef is a component of an automorphism ofC
2 then

f is a tame polynomial. Moreoverν(f) = 1 (f has degenerated principal
part at infinity and the inequality holds). Now letg be the same polynomial
asf but considered as a polynomial in three variables and letg : C

3 → C be
its corresponding function. As forf the polynomialg hasµ(g) = λ(g) = 0
and it is tame, see [B, Prop 3.1]. Againg has degenerated principal part
at infinity andν(g) = −ν(f) = −1 < µ(g) + λ(g). Nevertheless(1) in
Cassou-Nogùes’ conjecture is open for degenerated tame polynomials in
exactlyn variables.

Example 3.2.Let us review the examples of Cassou-Noguès, [C] Sect. 6.
Her first examplef = x(z − 1)2z + y4 + yz is valid to prove that the other
inequality is possible. She proved thatµ(f) = 3, λ(f) = 0 andν(f) = 9.

Example 3.3.Her second examplef = xy + xz3 + x2z7 + y2z3 + xyz6

has non-degenerated Newton principal part at infinity. Using SINGULAR,
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[GPS98], one getsµ(f) = 20. Moreover the Newton number at infinity of
f is ν(f) = 23 and thenλ(f) = 3 following Cassou-Nogùes proof.

Example 3.4.Let f = x + x2yz. The functionf : C
3 → C has no critical

points, namelyµ(f) = 0. Sincef has non-degenerated Newton principal
part at infinity, the invariantsλ(f) and ν(f) are equal. Let us compute
ν(f) = 3!V3−2V2+V1−1. The polytopeΓ∞− (f) is the convex closure of the
points{(0, 0, 0), (1, 0, 0), (2, 1, 1)}. So it is a two-dimensional polytope and
thenV3 = 0. Moreover any intersection ofΓ∞− (f) with any coordinate plane
has not dimension two, i.e.V2 = 0. Finally V1 = 1 andλ(f) = ν(f) = 0.
But it is clear that the fibreF0 is not topologically equivalent to any other
fibre. This example shows thatλ(f) = 0 does not implyBf = ∅.

Example 3.5.Letf = x+x2y2+x3z. Again in this caseµ(f) = 0 and it has
non-degenerated Newton principal part at infinity. Thenλ(f) = ν(f) = −1.
In this caseV3 = 1

3 , V2 = 1
2 + 1 andV1 = 1. This example shows how

the striking relationship betweenµ(f) andν(f) is corrected by the integer
λ(f). A family of this sort of examples is given byfa = x+x2ya +xa+1z.
Moreover withf, or fa, and the Sebastiani-Thom-type formula forλ(f)
one can get polynomials withµ(f) = 0 andλ(f) as negative as desired.
Nevertheless we have the following

• Conjecture. There does not exist a polynomialf such thatµ(f) > 0
andλ(f) < 0.

Example 3.6.Next example shows that the hypothesis “f has isolated critical
points” is necessary. Letf = x + x2yz + yz. This polynomial has non-
degenerated Newton principal part at infinity, it is not convenient, of course
ν(f) is finite but the set of critical values is not finite, i.e.,µ(f) does not
exist.

Example 3.7.We study a family of polynomialsf = xayb(xcyd−zc+d)+z.
Whenbc − ad 6= 0 the polynomialf has no critical points, i.e.,µ(f) = 0
and in this caseν(f) = |bc−ad|. So after corollary (2.8)λ(f) = |bc−ad|.
Example 3.8.Finally let us takegk = x+x2yz+vk. The Sebastiani-Thom-
type formulæ forµ andλ show thatµ(gk) = λ(gk) = 0; then we have
examples of all fibre-irreducible-polynomials where the Euler characteristic
of the fibres is constant. From [N2] one knows that the generic fibreGk of
gk has the homotopy type of the join of the generic fibres ofx + x2yz and
vk. Applying the formula of the homology of a join space, see [D, p. 88],
one has

Hi(Gk, Z) ∼=




Z if i = 0,

Z
k−1 if i = 2, 3

0 otherwise.
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Moreover the generic fibreGk is simply connected. These facts prove that
Gk is neither contractible nor a wedge of3-spheres; in particular it has
not W-isolated singularities at infinity in the sense of [ST]. Related to the
conditionµ(f) = λ(f) = 0 one has the conjecture of Siersma-Tibăr:

Conjecture [ST]. Let f : C
n → C be a polynomial function withW-

isolated singularities at infinity andµ(f) = λ(f) = 0, thenf is equivalent
to a linear function module an isomorphism ofC

n.

The polynomialgk shows that one can not drop the conditionW-isolated
singularities at infinity in the above conjecture. The value0 ∈ C is the only
atypical value of the polynomial functiongk. Let G0

k be the special fibre
over 0. Its fundamental group is cyclic of orderk. The computations on
the fundamental group may be performed by means of the restriction of the
projection onx, y, z. The computation of its homology groups gives:

Hi(G0
k, Z) ∼=




Z if i = 0,

Z/kZ if i = 1, 2
0 otherwise.

Applying a result of Kaliman, see [K, Theorem A] or [Z, Theorem 6.9], one
has that ifk, l are coprime positive numbers then the polynomial

hk,l(x, y, z, u, v) := x + x2yz + uk + vl

verifies also that Euler characteristic of the fibres is constant and in this case
the (special) fibre over0, denoted byHk,l, is contractible and hence diffeo-
morphic toC

4. These polynomials are not topologically trivial (the generic
fibre is not contractible) despite of the fact that the Euler characteristic of
the fibres is a constant function.

The4-foldsHk,l are related to the3-folds

Fk,l := {(x, y, u, v) ∈ C
4 | x + x2y + uk + vl = 0}

introduced by M. Koras and P. Russell in [KR] and studied by Makar-
Limanov and Kaliman; it is known, see [M] and [KM], thatFk,l is an exotic
C

3.
• Conjecture. Hk,l is an exoticC4.
A negative answer would give a counterexample to the Abhyankar-

Shataye conjecture in dimensions4 and5. By blowing-up a closed subvariety
of V := Hk,l ∩ {x = 0}, as in [KR, Prop. 7.8], one can get a morphism
π : C

4 → Hk,l which is an isomorphism onHk,l \ V, in particularπ is a
dominant map. Note also that the map

αk,l Hk,l → C : αk,l(x, y, z, u, v) = z
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verifies that its generic fibre is isomorphic toFk,l and the fiber over0 is C
3.

We also note that the symmetry ofy, z induces a2-fold ramified covering
of Hk,l ontoFk,l × C; it is not known, see [KM], whetherFk,l × C has an
exotic structure.
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[Me] A. Melle-Herńandez, Milnor numbers of surfaces, Israel J. Math. (to appear)
[N1] A. Némethi, Th́eorie de Lefschetz pour les variét́es alǵebriques affines, C.R. Acad.
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[T] M. Tib ăr, Regularity at infinity of real and complex polynomials functions, Sin-
gularity Theory, C.T.C. Wall Anniversary Volume, Cambrige Univ. Press, Cam-
bridge, (to appear)

[V] A.N. Varchenko, Theorems on the topological equisingularity of families of al-
gebraic varieties and families of polynomials mappings, Math. USSR Izvestija6
(1972), 949–1008

[Ve] J.L. Verdier, Stratifications de: Whitney et théor̀eme de Bertini-Sard, Inv. math.
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