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Introduction: polynomial and meromorphic functions

Maps defined by polynomial functions are traditional objects of interest
in algebraic geometry and singularity theory. A polynomial P in n
complex variables defines a map P : C* — C. The map P is not
a locally trivial fibration over critical values of P. However, since the
source C" is not compact, the map P fails to be a locally trivial fibration
over some other values as well. It is well known that a polynomial map
defines a locally trivial fibration over the complement to a finite set in
C (the bifurcation set of P): [Th],[V1],[Ve].

To describe the atypical values which detect an irregular behaviour
of a polynomial at infinity is an important and unsolved problem. There
are several known regularity conditions which guarantee that a value is
not atypical at infinity or that there are no atypical values at infinity
(see, e, [Br], [HL], [NZ],[P1),[ST1], [T1], [12], [13], [Sa]).

A number of papers are devoted to the study of the topology of
generic fibres (e.g. theorems of bouquet type) and their difference from
non-generic ones (see, e.g., [D2], [ST1], [ACD], [CD], [ALM1], [ALMZ2]).

Important invariants of a polynomial map are monodromy operators
corresponding to small loops around atypical values and (usually the
most important) the monodromy operator at infinity corresponding to
a big loop around all atypical values. They are related to a number of
properties of the polynomial, including arithmetic ones (see, e.g., [N],

[1.S], [GN], [G], [ST2], [DN], [D3]).
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A natural way to understand the behaviour of a polynomial at infin-
ity is to consider it as a rational function on the projective space CP".
In this case one has to study its behaviour at points of the infinite
hyperplane CP”7!. The problem is that at such points a polynomial
map defines not a holomorphic germ, but a meromorphic one (of a par-
ticular type). Thus in order to use local considerations for a description
of global properties of a polynomial map one needs to describe related
properties of meromorphic germs.

It is thus natural to reconsider the entire local theory in the more
general context of arbitrary meromorphic germs P/Q). A first step in
this direction was taken by V.I.Arnold [A], who gave classifications of
simple meromorphic germs with respect to certain equivalence rela-
tions. One may now seek to establish and study analogues of notions
already well-understood for analytic germs and by now also developed
in some detail for the behaviour of polynomial maps at infinity, such
as Milnor fibres and monodromy, for meromorphic germs in general.
We will thus not attempt to survey the by now considerable literature
on polynomial maps, and we refer to the paper [D3] by Dimca in this
volume for an account of the Hodge-theoretic aspects of this study.

Despite a number of close parallels with the earlier results, certain
new features require attention. Their study was begun in [GLM2] and
further developed in [GLM4] and [ST3]. Although the problem is very
closely related to the study of pencils sP + t() = 0, for which also a
number of interesting results are known — for example, the character-
isation by L.é and Weber [LW] of atypical fibres — this aspect also is
slightly different.

In the first chapter of this article we present the basic definitions,
and then study the monodromy by calculating its zeta-function. For
results on homology splitting, and for bouquet type theorems, we refer
to [ST2]. In the second chapter we give some corresponding results for
the global case of meromorphic functions on compact complex mani-
folds. The traditional case is that of rational functions on CP™ (see e.g.
[GLM3], [GLM5], [ST3]), including in particular polynomial functions
on C”, and we give applications to this in the final section.

1. Local theory

A meromorphic germ at the origin in the complex space C” is a ratio
f= g of two holomorphic germs P and @ on (C”,0).
The following equivalence relation (first introduced by V.I. Arnold

is essential for further considerations. Two meromorphic germs f = o

and f' = % are equal if and only if P/ = P.U and Q' = Q - U
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for a holomorphic germ U not equal to zero at the origin: U(0) # 0.
2
According to this definition il # x—, but ~ = w.
y "y y  yexp()

A meromorphic germ f = g defines a map from the complement of
the indeterminacy locus I(f) := {P = @ = 0} to the complex projec-
tive line CP'. Unfortunately, this map is not a locally trivial fibration
over the complement of a finite set in CP'. Roughly speaking, f fails to
be a locally trivial fibration over values ¢ for which the level set f~'(c)
is not transversal to the sphere S2"~' = 9B2" (among others). This
is a “real condition” and thus it can occur at points of the projective
line CP! forming a set of real codimension 1. Thus one cannot define a
generic fibre of a meromorphic germ in this way.

EXAMPLE 1.1. Let f = xgy_gye’ . One can see that f: B2\ {0} — CP!
fails to be a locally trivial fibration over neighbourhoods of 0, co, and
points ¢ (=(c: 1)) such that |[¢|| = 3e.

However if one fixes a value ¢ in CP!, this does not happen in a
neighbourhood of ¢ provided the radius ¢ is small enough.

THEOREM 1.2. ([GLMZ2]) For any value ¢ € CP', there exists eg > 0
(0 = eo0(c)) such that for any positive € < eq the sphere SZ"~' is
transversal to all strata of the level set f~'(c), and the map f : B\
I(f) — CP' is a locally trivial fibration over a punctured neighbourhood

of c.

DEFINITION 1.3. The fibration described is called the c-Milnor fi-

bration of the meromorphic germ f. A fibre of the ¢-Milnor fibration,

i.e.,

P
() _

Q(2)

for ¢ small enough and for ¢ close enough to ¢ (in CP'), is a (non-

compact) (n — 1)-dimensional complex manifold with boundary, and

will be called the ¢-Milnor fibre of the meromorphic germ f.

M5 ={z € BP\I()) : f(z) =

EXAMPLE 1.4. Tor the f of Example 1.1, M?, is a (2-dimensional)
disk minus two points; for ¢ # 0, M5 is the disjoint union of two
punctured disks.

Remark. 1) In particular, the definition means that ./\/l(} is equal to

{z€B.: P(z)=c-Q(2), P(z)#0}
(¢’ close to 0, ¢ # 0) and thus, if R(0) = 0, the Milnor fibres of the

functions g and % are, generally speaking, different.
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2) For f = g, let f~1 = %. It is not difficult to see that MS_, =

M;_l, in particular ./\/l()),_1 = MP, ML, = M(}. Let f—c= PZ;Q.
Then M5 = M?:_C. The same properties hold for the monodromy

transformations and for the zeta-functions discussed below.

A fibration over a punctured neighbourhood of a point in the pro-
jective line CP! defines a monodromy transformation, which is a dif-
feomorphism of the fibre (well defined up to isotopy).

DEFINITION 1.5. The monodromy transformation A% : M% — M}
of the c-Milnor fibration is called the c-monodromy transformation of
the meromorphic germ f.

EXAMPLE 1.6. For the f of Example 1.1, h} is trivial (i.e. isotopic
to the identity) for all ¢ # 0, 00. The 0-monodromy transformation is a
self-map of a disk without two points which interchanges these points.
The co-monodromy transformation interchanges two punctured disks.

One can show that for almost all values ¢ (i.e. for all but a finite
number) the c-monodromy transformation h§ is trivial, i.e., isotopic to
the identity.

DEFINITION 1.7. A value ¢ € CP! is called a typical value of the
meromorphic germ f if for € small enough the map f : B2"\I(f) — CP"'
is a locally trivial (and thus trivial) fibration over a neighbourhood (not
punctured) of the point ¢. Otherwise the value ¢ is called atypical. The
set B(f) of atypical values is called the bifurcation set of the germ f.

Note that if a value c is typical, then the corresponding monodromy
transformation A% is isotopic to identity. Moreover we have the follow-

ing.

THEOREM 1.8. ([GLM4]) There exists a finite set > C CP' such that
for all c € CP'\ X the c-Milnor fibres of f are diffeomorphic to each
other and the c-monodromy transformations are trivial (i.e., isotopic
to identity). In particular, the set of atypical values is finite.

EXAMPLE 1.9. The meromorphic germ f of Example 1.1 1.1 has two
atypical values: 0 and co.

To prove Theorems 1.2 and 1.8 we use resolution of singularities. A
resolution of the germ f is a modification of the space (C*,0) (i.e., a
proper analytic map 7 : X — U of a smooth analytic manifold X onto a
neighbourhood U of the origin in C*, which is an isomorphism outside of

Algemeen.tex; 25/01/2001; 9:28; p.4



Running title 5

a proper analytic subspace in i) such that the total transform 7=1(H)
of the hypersurface H = {P = 0} U {Q = 0} is a normal crossing
divisor at each point of the manifold X'. We assume that the map = is
an isomorphism outside of the hypersurface H.

The fact that the preimage 7='(H) is a divisor with normal crossings
implies that in a neighbourhood of any of its points there exists a local
system of coordinates yi,...,y, such that the liftings ” = P or and
@ = @ om of the functions P and @ to the total space X of the
modification have the forms u - yfl coeyFnoand v y‘fl .oyl respectively,
where u(0) # 0, v(0) # 0, and the k; and ¢; are nonnegative integers.

Note that the values 0 and co in the projective line CP! are used as
distinguished points for convenience, so as to use the usual notion of a
resolution of a function.

Proof (of Theorem 1.8). One can make additional blow-ups along

intersections of pairs of irreducible components of the divisor 7#=1(H)
so that the lifting f: fom = % of the function f defines a holomorphic

map from the manifold X" to the complex projective line CP!. This
means that P = V- P, Q = V - Q" where V is a section of a line
bundle, say £, over X', P’ and Q' are sections of the line bundle £,

oy ’
and P' and @' have no common zeroes on X. Let f' = %.

On each component of the divisor #=!'(H) and on each intersection
of several of the components, f~' defines a map to the projective line
CP'. These maps have a finite number of critical values, say a;, as, ...,
as.

If the function f’is constant on a component of the divisor 71 (H),
or on an intersection of components, then this constant value is critical.
The value of the function f’ on an intersection of n components (this
intersection is zero-dimensional) should also be considered as a critical
value.

Let ¢ € CP! be different from ay, as, ..., a;. We shall show that for
all ¢’ in a neighbourhood of the point ¢ (including ¢ itself) the ¢’-Milnor
fibres of the meromorphic function f are diffeomorphic to each other
and the ¢-monodromy transformations are trivial.

Let r2(z) be the square of the distance from the origin in the space
C" and let 7(z) = r%(r(z)) be the lifting of this function to the total
space X’ of the modification. In order to obtain a ¢’-Milnor fibre one
has to choose g9 > 0 (a Milnor radius) small enough so that the level
manifold {72(z) = €2} is transversal to {f'(z) = ¢} for all ¢ with
0 < e < gg. Let g9 = gg(c) be a Milnor radius for the value ¢. Since
{f'(z) = ¢} is transversal to all components of the divisor 7=1(H)
and to all their intersections, ¢ is also a Milnor radius for all ¢/ in a
neighbourhood of the point ¢ € CP' (and the level manifold {f'(z) =
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'} is transversal to all components of the divisor #=}(H) and to their
intersections). This implies that for all such ¢’ the ¢-Milnor fibres of
the meromorphic germ f are diffeomorphic to each other and the ¢'-
monodromy transformations are trivial.

The e-Milnor fibre for a generic value ¢ € CP! can be called the
generic Milnor fibre of the meromorphic germ f. One can see that
the generic Milnor fibre of a meromorphic germ can be considered as
embedded in the c-Milnor fibre for any value ¢ € CP.

THEOREM 1.10. Let f :g be a meromorphic germ on the space
(C*,0) such that the numerator P has an isolated critical point at the
origin and, if n = 2, assume also that the germs of the curves {P = 0}
and {€ = 0} have no common irreducible components. Then, for a
generict € C,

X(MG) = (=)D (u(P,0) = p(P +1Q, 0)).

Here 11(g,0) stands for the usual Milnor number of the holomorphic
germ g at the origin.
Remark. Similar results for polynomials (i.e., for meromorphic germs

of the form P/z%) can be found in [P1] and [ST1].

Proof. The Milnor fibre ./\/l?, of the meromorphic germ f has the
following description. Let ¢ be small enough (and thus be a Milnor
radius for the holomorphic germ P). Then

MG = B.(0)n ({P+1Q =0} \ I(f))

for t # 0 with [¢| small enough (and thus t generic). Note that the
zero-level set {P + t@) = 0} is non-singular outside the origin for [{|
small enough. The space B.(0) N {P = @ = 0} is homeomorphic to a
cone and therefore its Euler characteristic is equal to 1. Therefore

X(MG) = x(B:(0) N {P+1tQ =0}) — 1.

Now Theorem 1.17 is a consequence of the following well known state-
ment (see, e.g., [GZ]).

STATEMENT 1.11. Let P : (C*,0) — (C,0) be a germ of a holomor-
phic function with an isolated critical point at the origin and let P; be
a deformation of P (i.e., Py = P). Let ¢ be small enough. Then for |t|
small enough,

(=)™ (x(B=(0) N {Pr = 0}) = 1)
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is equal to the number of critical points of P (counted with multiplici-
ties) which split from the zero level set, i.e., to

p(P0) = D u(PLQ).

Qe{P;=0}nB.

EXAMPLE 1.12.  The example f = Z shows the necessity of the
condition that, for n = 2, the curves {P = 0} and {@) = 0} have no
common components.

EXAMPLE 1.13. In Theorem1.171.17 , for the difference of Milnor
numbers we can substitute the difference of Euler characteristics of the
corresponding Milnor fibres (of the germs P and P+ ¢@Q)) (up to sign).
However the formula obtained this way is not correct if the germ P has

a nonisolated critical point at the origin. This is shown by the example
f=24
z

THEOREM 1.14. Let f = g be the germ of a meromorphic function

on (C*,0) such that the numerator P has an isolated critical point at
the origin. The value 0 is typical for the meromorphic germ f if and
only if x(M}) = 0.

Proof. “ Only if” follows from the definition and 1.171.17.

“1f” is a consequence of a result of A. Parusiiiski [P2] (or rather of its
proof). He proved that, if u(P) = p(P +tQ) for |t| small enough, then
the family of maps P, = P+1t(@) is topologically trivial. In particular the
family of germs of hypersurfaces {P; = 0} is topologically trivial. For
n # 3 this was proved by L.é D.T. and C.P. Ramanujam [[.R]. However
in order to apply the result to the present situation, it is necessary to
have a topological trivialization of the family {P; = 0} which preserves
the subset {P = @ = 0} and is smooth outside the origin. For the
family P, = P 4 t(Q), such a trivialization was explicitly constructed in
[P2] without any restriction on the dimension.

EXAMPLE 1.15. If the germ of the function P has a non-isolated
critical point at the origin, then this characterization is no longer true.
Take, for example, P(z,y) = 2?y* and Q(z,y) = z* + y*.

1.1. THE MONODROMY AND ITS ZETA-FUNCTION

DEFINITION 1.16. For a transformation h : X — X of a topological
space X its zeta-function C,(t) is the rational function defined by

Cult) = H{det [id — th*|Hq(X;©]}(—1)q.

920
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This definition coincides with that in [AGV] and differs by a sign in
the exponent from that in [A’C].

Let (§(t) be the zeta-function of the c-monodromy transformation
hf of the meromorphic germ f. The degree of the rational function (} (t)
(i.e., the degree of the numerator minus the degree of the denominator)
is equal to the Euler characteristic of the c-Milnor fibre M5. In the
general case one has the following statement.

THEOREM 1.17. ([GLM4]) If the value ¢ is typical then the Euler
characteristic of the c-Milnor fibre is equal to 0 and its zeta-function
C§(t) is equal to 1.

EXAMPLE 1.18. For the f of Example 1.1, C?(t) = 11? and (§(t) =1
for ¢ # 0.

In the holomorphic case, resolution is an important tool for under-
standing the Milnor fibration. An excellent example of this fact is the
formula of A’Campo, [A’C]. We also have an A’Campo formula in the
meromorphic case.

Let f = £ be a germ of a meromorphic function on (C*,0) and let 7 :

X — U be a resolution of the germ f. The preimage D = 7~'(0) of the
origin of C" is a normal crossing divisor. Let Sy , be the set of points of
D in a neighbourhood of which the functions Por and Qom in some local
coordinates have the form u-y¥ and vy respectively (u(0) # 0, v(0) #
0). A slight modification of the arguments of A’Campo ([A’C]) permits
us to obtain the following version of his formula for the zeta-function
of the monodromy of a meromorphic function.

THEOREM 1.19. ([GLM2]) Let the resolution © : X — U be an
isomorphism outside the hypersurface H = {P =0} U {Q = 0}. Then

¢t = TT0 ==,
k>¢

Gr(t) = [T -1k,
k<t

Remark. A resolution 7 of the germ f' = % is at the same time a

resolution of the germ f = g. Moreover the multiplicities of any com-
ponent ' of the exceptional divisor in the zero divisors of the liftings
(RP) o7 and (RQ) o of the germs RP and R() are obtained from
those of the germs P and ) by adding one and the same integer, the
multiplicity m = m(C) of R. Nevertheless the meromorphic functions f
and f' can have different zeta-functions. The reason why the formulae
in the previous theorem give different results for f and f’ consists in
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the fact that if an open part of the component C lies in Sy ,(f) then,
generally speaking, its part which lies in Skt o4m (f') is smaller.

The A’Campo theorem for germs of holomorphic functions has been
generalized to the case when the modification 7 : (X, D) — (C*,0) is
not a resolution of the singularity, see [GLM1]. This can also be done
in the present set-up.

In order to have somewhat more attractive and unified formulae
here and below it will be convenient to use the notion of the integral
with respect to the Euler characteristic ([Vi]). The main property of
a traditional (say, Lebesgue) measure, which, together with positivity,
permits one to define a notion of integral, is the property o(X UY) =
o(X)+0o(Y)—o(X NY). For spaces that can be represented as finite
unions of cells, say semialgebraic spaces, the Euler characteristic defined
as the alternating sum of numbers of cells of different dimensions also
possesses this property. In this sense it can be considered as a measure,
though nonpositive. Nonpositivity of the Euler characteristic imposes
restrictions on the class of functions for which the integral with respect
to the Kuler characteristic can be defined.

Let A be an Abelian group with group operation *, and let X be
a semianalytic subset of a complex manifold. Let ¥ : X — A be a
function on X with values in A for which there exists a finite partition
S of X into semianalytic sets (strata) = such that W is constant on
each stratum = (and equal to ¥=). Then by definition the integral with
respect to the Euler characteristic of ¥ over X is equal to

/X U(z)dx =Y x(E)=,

Zes

where x(Z) is the Euler characteristic of the stratum =. In the above
formula we use additive notation for the operation *. In what follows,
this definition will be used for integer valued functions and also for local
zeta-functions (. (), which are elements of the Abelian group of non-
zero rational functions of the variable ¢t with respect to multiplication.
In the latter case, in multiplicative notation, the above formula becomes

J Gt ax=TJ Gz

Zes

Let f = g be the germ of a meromorphic function on (C*,0), and
let m: (X,D) — (C",0) be an arbitrary modification of (C*,0), which
is an isomorphism outside the hypersurface H = {P = 0} U {Q = 0}
(i.e. 7 is not necessarily a resolution). Let f: fom be the lifting of f to

the space of the modification, i.e., the meromorphic function gz; For a
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point z € 7~1(H), let C% (t) be the zeta-function of the 0-monodromy

of the germ of the function fat z. Let § = {E} be a pre-stratification of
D = 77'(0) (that is, a partitioning into semianalytic subspaces without
any regularity conditions) such that, for each stratum Z of S, the zeta-
functions C%T(t) do not depend on =z, for € =. We denote these

zeta-functions by (2.

THEOREM 1.20.
G =[ &y (1).

In the holomorphic case, the Newton diagram of a function gives a lot
of information about the singularity (for a singularity non-degenerate
with respect to its Newton diagram). It determines an embedded res-
olution of the singularity and one can read the zeta-function of the
singularity from this resolution (by a formula of Varchenko [V2]). There
is a version of this formula also for meromorphic germs.

For a germ R = Y agzk : (C*,0) — (C,0) of a holomorphic function
(k= (ki,...,kn), 2¥ =2 ... . 2zf) its Newton diagram I' = I'(R) is
the union of the compact faces of the polytope I'y = 'y (R) which is
the convex hull of Uy.,, 20(k + R%) C RY.

Let f = g be a germ of a meromorphic function on (C*,0) and let
I'y = I'(P) and 'y = I'(Q) be the Newton diagrams of P and (. We
call the pair A = (I'1,I'2) of Newton diagrams I'y and I'y the Newton
pair of f. We say that the meromorphic germ f is non-degenerate with
respect to its Newton pair A = (I'y,'y) if the pair of germs (P, Q) is
non-degenerate with respect to the pair A = (I'y,T'3) in the sense of
[O] (which is an adaptation for germs of complete intersections of the
definition of A.G. Khovanskii [Kh]). Almost all meromorphic germs
with Newton pair A are non-degenerate with respect to it.

Let us define zeta-functions (3 (¢) and (3°(¢) for a Newton pair
A = (I',Ty). Let 1 < £ < n and let Z be a subset of {1,...,n}
with cardinality #7 = /. Let Lz be the coordinate subspace L7 =
{k e R" : ki = 0for ¢ ¢ 7T} and I';7 = [, N Ly C Lz. Let L}
be the dual of L7 and L7, its positive orthant (the set of covectors
with positive values on Lzsg = {k € L7 : k; > 0 for i € I}). For
a primitive integer covector a € (RM)7%, let m(a,I') = minger(a, )
and let A(e,I') = {z € I' : (a,z) = m(a,I')}. We denote by mz
and Az the corresponding objects for the diagram 'z and a primi-
tive integer covector a € L7 . Let K7 be the set of primitive integer
covectors @ € L7 such that dim(A(ae,T'y) + A(a,T2)) = £ — 1 (the
Minkowski sum Ay + Ay of two polytopes Ay and Aj is the polytope
{r=a1+22: 21 € Ay, x2 € Ay}). There exist only a finite number
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of such covectors. For a € Fr, let Ay = A(a, 1), Ay = A(a,'y) and

£—1
Va=> Vici(Ar,. . Ay, Ayl Ay ),
=0 sterms [ —1— s terms
where the definition of the (Minkowski) mixed volume V (Aq, ..., A,)

can be found, e.g., in [B] or [O]. The (£ — 1)-dimensional volume in a
rational (£ —1)-dimensional affine subspace of Lz has to be normalized
in such a way that the volume of the unit cube spanned by any integer
basis of the corresponding linear subspace is equal to 1. Recall that

Vi (A, ..., A) is simply the m-dimensional volume of A. We have to

m terms
define Vj(nothing) = 1 (this is necessary to define V, for £ = 1). Let:

Qo= [ a-eemeere,
a€Er:m(a,l'1)>m(a,l'z)
() = H (1- tm(ﬂ7rz)—m(a,r1))(é—l)!Va’

a€FE7m(a,l)<m(a,l's)

¢w = II ¢,
T: #(T)=¢

am = [,

=1
where @ = 0 or oo.

THEOREM 1.21. ([GLMZ2]) Let f = g be a germ of a meromorphic
function on (C",0) non-degenerated with respect to its Newton pair

A= (FI’ FQ) Then

Crt) = CR(t) and  CF°(t) = G} (8).

1.2. EXAMPLES

For the germ of a meromorphic function of two variables, a resolution
can be obtained by a sequence of blow-ups at points.

EXAMPLE 1.22. The minimal resolution of the germ f of Example
1.1 can be described by Fig. 1.
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Figure 1

Here lines correspond to components of the exceptional divisor D. Each
component is isomorphic to the complex projective line CP'. The pairs
of numbers near them are the multiplicities of the liftings of the numer-
ator P and of the denominator () along these components. The arrow
(respectively the double arrow) corresponds to the strict transform of
the curve {P = 0} (respectively, of the curve {) = 0}). Then Sj,
(respectively S3o and Sg4 is the complex projective line minus two
points (minus one and three points respectively). Thus

1
14+t

Gty = -1 -2*)7" =
P = 1.

EXAMPLE 1.23. Let f= TS;—“’ The Milnor fibre ./\/l(} (respectively
MP)is {(z,y) « [[(z, )]l <& 2® =2y = ey} \{(0,0)}, where [c|| is

small (respectively large). From the equation z3 — zy = cy one has

y = acijc and thus M(} is diffeomorphic to the disk D in the z-plane
with two points removed: —c and the origin. In the same way M% is
diffeomorphic to the punctured disk D*. It is not difficult to see that
the action of the monodromy transformation on the homology groups

is trivial in both cases. Thus

Gy=@1-7" and (F()=1.
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Now let us calculate these zeta-functions from their Newton dia-
grams.

Figure 2

We have (f(t) = 1 since each coordinate axis intersects only one
Newton diagram. There is only one linear function (namely a = k, +
2 ky) such that dim A(a,I';) = 1. The one-dimensional volume V;(A(a,I'1))
of A(a,I'y) is equal to 1 and Vi(A(a,l'z)) = 0. We have m(a,['y) =3
and m(a,I'y) = 2. Thus (3(t) = (1-1), ¢5°(t) = 1, ¢, (1) = (1-1) 7"
and C&?hm)(t) = 1, which coincides with the formulae for f written
above.

EXAMPLE 1.24. Let P = zyz+ 2P +y? + 2" be a T} , , singularity,
1141 -9 andletQ—md+ 44 »9 he a homo | ial
stgtr , = Yy geneous polynomia
of degree d. Suppose that p > ¢ > r > d > 3 and that p, ¢, and r are
pairwise coprime. Let us compute the zeta-functions of f = g using
the methods described above.

(a) 1t is clear that f is non-degenerate with respect to its Newton

pair A = (I'1,'2). Thus
CH) =) =G(¢3)7'¢ (e=0o0r o).

One has (7° = (5° = 1 and the only covector which is necessary for
computing ¢5° is @ = (1,1,1). In this case m(a,['y) = 3, m(a,'y) =
d, Aa,Ty) = {(1,1,1)} and A(a,l'y) is the simplex {k; + ky + k, =
d, ky; >0, ky >0, k. > 0}, its two-dimensional volume is equal to g
Thus ¢5° = (1 - =3y,

We have

G=0-)1 -1 -,
= (1= #0=D) (1 = =) (1 prle=D) (1 =ty (1 o=y
To compute ¢ one has to take into account both the covectors

(rg—gq—r,r,q), (rypr—p—r,p),and (¢,p, qp— p—q) corresponding to
two-dimensional faces of I'1, and the covectors (1,7 —2,1), (r—2,1,1),
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14 Gusein-Zade, Luengo, Melle Hernandez

and (¢ — 2,1,1) corresponding to pairs of the form (one-dimensional
face of I'y, one-dimensional face of I'z). E.g., for @ = (1,7 — 2,1),
Afa, 1) (respectively A(a,l'3)) is the segment between (0,0,7) to
(1,1,1) (respectively between (d,0,0) and (0,0, d)). Note the absence of
symmetry: the latter three covectors are not obtained from each other
by permuting the coordinates and the numbers p, ¢, and r. Then

¢ = (1= =) (1 = D)1 — o=y (1 — =2 =y

and
=== ==y (1 =179,

(b) For computing the zeta-functions of f with the help of partial
resolutions, let 7 : (X, D) — (C*,0) be the blowing-up of the origin in
C? and let f be the lifting f o m of f to the space X'. The exceptional
divisor D is the complex projective plane CP2. Let H; and H; be the
strict transforms of the hypersurfaces {P = 0} and {@Q = 0}, D; =
D N H;. The curve D consists of three transversal lines £, £y, {3 and
has three singular points S1 = f;N¥l3 = (0,0,1), 52 = ¢1N¥3 = (0,1,0),
and S3 = {; N {3 =(1,0,0). The curve Dy is a smooth curve of degree
d, it intersects Dy at 3d distinct points {Py, ..., Psq}.

One has the following natural stratification of the exceptional divisor
D:

(i) 0-dimensional strata A? (: = 1,2,3), each consisting of one point
Si;
(ii) 0-dimensional strata =) consisting of one point P; each (1 = 1,. .., 3d);
(iii) 1-dimensional strata Z} = ¢, \ {Dy U {; U4} (¢ = 1,2,3) and
2y = D2\ Dy;

(iv) the 2-dimensional stratum =2 =D\ (D; U Dy).

It is not difficult to see that (g (t) =1, ¢Z(t) =1 - =3 and for each
stratum Z from Z¢ (1 < i < 3d), Zf (1 <17 < 4) one has (&(t) = 1
(=10 or c0).

In what follows, the exceptional divisor D has the local equation
u = 0. At the point S; the lifting f of the function f is of the form

3
w?ziyr+u” ol uP+ydu?
udxf-l-udyld-}-ud
u’myyy +u”
ud

. This germ has the same Newton pair as the germ

. Using the Newton diagram formula one has ({5 = 1, ({5 =
1 1

udz 21 +zlr u” +le’up +ud
udm“l’l+ud+zflud ?

1—#"—%. At the point Sy the function fhas the form

wdzy 2 +ziu” +ud
ud

and the same Newton pair as . Again from the Newton
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diagrams one has Cxog (t) = 1, ng (t) = 1 —t9=% In the same way,
CX‘(:J (t) =1, ng (t) = 1 — t*=%, Combining these computations, one
has the same results as we obtained above without using a partial
resolution.

2. Global theory

We want to consider fibrations defined by meromorphic functions on
manifolds. In order to have more general statements we prefer to use a
notion of a meromorphic function slightly different from the standard
one. Let M be an n-dimensional compact complex analytic manifold.

DEFINITION 2.1. A meromorphic function [ on the manifold M

is a ratio g of two non-zero sections of a line bundle L over M.

Two meromorphic functions f = g and f' = % (where P’ and Q'
are sections of a line bundle L') are equal if P=U-P' and Q = U - Q'
where U is a section of the bundle hom (L', L) = L& L™ without zeroes
(in particular, this implies that the bundles L and L' are isomorphic).

A particular important case of meromorphic functions is given by

P(z1,...,2n)

rational functions 0 on the projective space CP", where P and

() are homogeneous plo71y7ngmials of the same degree.

A meromorphic function f = g defines a map f from the comple-
ment M \ {P = = 0} of the set of common zeros of P and @ to the
complex line CP'. The indeterminacy set I(f) := {P = @ = 0} may
have components of codimension one. For ¢ € CP!, let F. = f~!(c).

Standard arguments (using a resolution of singularities; see, e.g.,
[V1]) give the following statement.

THEOREM 2.2. The map f: M\ {P =Q =0} — CP' is a C*
locally trivial fibration outside a finite subset of the projective line CP!.

Any fibre Fje, = f~'(cgen) of this fibration is called a generic fibre
of the meromorphic function f. The smallest subset B(f) c CP! for
which f is a C° locally trivial fibration over CP'\ B(f) is called the
bifurcation set of the meromorphic function f. Its elements are called
atypical values of the meromorphic function f.

A loop in the complement CP'\ B(f) to the bifurcation set B(f)
gives rise to a monodromy transformation of the fibre bundle. The
monodromy transformation is defined only up to homotopy (or rather,
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16 Gusein-Zade, Luengo, Melle Hernandez

up to isotopy), but the monodromy operator (the action of the mon-
odromy transformation on a homology group of the generic fibre of the
meromorphic function f) is well defined. Therefore the fundamental
group 71 (CP'\ B(f)) of the complement to the bifurcation set acts
on the homology groups H(Fye,;C) of the generic fibre of the mero-
morphic function f. The image of the group =1(CP!\ B(f)) in the
group of automorphisms of Hy(Fyen; C) is called the monodromy group
of the meromorphic function f. It is generated by local monodromy
operators corresponding to simple loops around the atypical values of
f (see [AGV]).

Let C)C,(t) be the zeta-function of the local monodromy corresponding

to the value ¢ € CP' (i.e., defined by a simple loop around the value
c).

Note that the local monodromy and the corresponding zeta-function
are defined for any value ¢ € CP!, not only for atypical ones. For a
generic value of the meromorphic function f, the local monodromy is
the identity and its zeta-function is equal to (1 — )X(Foen),

Let f = £ be a meromorphic function on the complex manifold M.

The following statement is a direct consequence of the definitions.

STATEMENT 2.3. Let 7 : M — M be a_proper analytic map of an
n-dimensional compact complex manifold M which is an isomorphism
outside the union of the indeterminacy set I(f) of the meromorphic

function f and a finite number of level sets f~'(c¢;). Let f = Sg: be
the lifting of the meromorphic function f = £ to M. Then the generic

fibre of fcoincides with that of f, and for each ¢ € CP! one has

Gl = GG 0.

Note that, in order to ensure that the generic fibres of f and f coin-
cide, one really needs to use the equivalence relation for meromorphic
functions formulated above.

Let ¢ be a point of the projective line CP!. For a point z € M, let
C;Z’x(t) be the corresponding zeta-function of the germ of the meromor-
phic function f at the point z, and let x5, be its degree deg C;’x(t)

THEOREM 2.4.

¢5(t) = / pnop, S0 (1)

Eoen) =x(F) = [ (Go=Dax+ [ xGede @
Fe I(f)
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Proof. The proof follows the lines of the proof of 1.171.2 in [GLM1].
Without any loss of generality one can suppose that ¢ = 0. There exists
a modification 7 : X — M of the manifold M which is an isomorphism
outside the set

{P=Q=0}U{f=0}U{f=00} ={P=0}U{Q =0}
such that D = 7=1({P = 0} U {Q = 0}) is a normal crossing divisor
in the manifold X'. Then at each point of the exceptional divisor D

in a local system of coordinates one has Ponr = u - yfl eyl
Qom=v-yl ...yl with u(0) # 0, v(0) # 0, k; > 0 and £ > 0.

There exist Whitney stratifications § and §* of M and X respectively
such that:

1. the map 7 is a stratified morphism with respect to these stratifica-
tions;

2. the set {P =0} U {Q = 0} is a stratified subspace of the stratified
space (M,S);

3. for each stratum =* € §*, the germs of the liftings P o 7 and
() o 7 of the sections P and () at points of Z* have normal forms
weyt o yFand vyt Lyl where (ky, ... k) and (6, ..., L)
do not depend on the point of =*;

4. for each stratum = € §, the zeta-function C;@(t) does not depend
on the point z for z € =.

Actually, point (4) follows from the first three. However it is conve-
nient to include it in the list of conditions.

One applies the following version of the formula of A’Campo ([A’C])
and also its local variant for meromorphic germs (1.171.19). Let Si ¢
be the set of points of the manifold A in a neighbourhood of which the
liftings Pom and Q o of P and () in some local coordinates have the
forms u - y¥ and v -y} respectively (u(0) # 0, v(0) # 0).

STATEMENT 2.5.
¢y = T (1= =,

E>£>0

Property (1) of the stratifications § and §* implies that the mor-
phism 7 is locally trivial over each stratum of S: if the stratum = of §
is the image of the stratum =Z* of §*, £ = n(Z*), then 7 : Z* 5> Zis a
smooth locally trivial fibre bundle. In particular,

XE)=x(E) x(r7'(2)NE"),  (z€E).
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18 Gusein-Zade, Luengo, Melle Hernandez

Let 2 ¢ be the set of strata from §* such that the germs of the liftings
Porand Qo of P and Q at their points are equivalent to yf and y{
respectively; Sy, = (J Z*. We have

E*€Ek r

Go=T[ a=#H7se = [T J 0= =

k>£>0 E>L>0 E*€Ey 4

= 1T II I[I - =

I GEOE

Zes

/ ¢
{P=Q=0}UFy

As usual, the formula for the Kuler characteristic of the generic
fibre follows from the formula for the zeta-function, since the Euler
characteristic is the degree of the zeta-function.

The difference between (x}, — 1) and x}, in the two integrals in
(2) reflects the fact that the Euler characteristic of the local level set
F. N B.(z) (where B.(z) is the ball of small radius ¢ centred at the
point z) of the germ of the function f is equal to 1 for a point z of
the level set F. and is equal to 0 for a point z of the indeterminacy
set I(f). In the first case this local level set is contractible, and in the
second it is the difference between two contractible sets. O

Let us denote (—1)"~! times the first and the second integrals in (2)
by ps(c) and Ag(c) respectively. Let puy = > ps(c), Af= Y Af(e)
ceCP! ceCP?

(in each sum only a finite number of summands are different from zero).
THEOREM 2.6.

pr+Ap=(=1)""1 Q2 x(Fyen) = x(M) + x(I(£))) -
Proof. One has

[ X dy = (P = Q = 03) = x(M) = X(I(£).
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Therefore
XONX(UP=Q=0)) = [ x(Fy) it [ () =x(Fyen)) d =
= 2X(Fy) = (1" 3 ({1425 (6) = 2X(Fyen) (=1 (s 2.

ceCP1

Let f~ be the 1‘e§triction of fto M\ {Q =0},
f:M\{Q :~0}—>(C:(C]P’1\{oo}.
Note that the fibres of f and f over values ¢ € C coincide.

COROLLARY 2.7.
X(Fgen) = X(M) = x({Q = 03) + (=1)" " (As = Ag(00) 4 ps — pg(00)).

For the meromorphic function on the complex projective space CP"
defined by a polynomial P in n variables with isolated critical points,
ps(c) is the sum of the Milnor numbers of the critical points of the
polynomial P with critical value ¢, and Af(c) is equal to the invariant
Ap(c) studied in [ALM1]. Therefore pif(c) and A¢(c) can be considered
as generalizations of those invariants (they have sense also in the case
when critical points of the polynomial P are not isolated). One has

g = pp + pif(00), Ap = Ap + Ag(00), where pup = ZECHP(C), Ap =
ce

>~ Ap(c). Note that in this case Corollary 1 turns into the well known
ceC

formula x(Fye,) =1+ (=1)"""(Ap + pp).

3. Applications

3.1. POLYNOMIAL FUNCTIONS

A polynomial P : C" — C defines a meromorphic function f = xﬂd on
0

the projective space CP" (d = deg P, P is the homogenization of P).
For any ¢ € CP!, the local monodromy of the polynomial P and its
zeta-function (5(t) are defined (in fact they coincide with those of the
meromorphic function f). The technique described can be applied to
this case. For instance,

1. For c € C C CP!,

(1) = ( J sy G dx) - ( [, GBatt) dx) .
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20 Gusein-Zade, Luengo, Melle Hernandez

2. For the infinite value,
FO= [, b

Note that the zeta-function of the monodromy at infinity of the
polynomial P is nothing but (2 (#).

The bifurcation set consists of critical values of the polynomial P
(in the affine part) and of atypical (“critical”) values at infinity.

In order to study the level set {P = c}, one can consider the zero
level set of the polynomial (P — ¢). Thus let us consider the zero level
set Vo = {P =0} C C" of the polynomial P. Let us suppose that V{ has
only isolated singular points (in the affine part C*). For p > 0, let B, be
the open ball of radius p centred at the origin in C* and S, = 0B, be
the (2n—1)-dimensional sphere of radius p with the centre at the origin.
There exists R > 0 such that, for all p > R, the sphere S, is transversal
to the level set Vy = {P> = 0}. The restriction P|c.\p, : C*\Br — Cof
the function P to the complement of the ball Bg defines a C'* locally
trivial fibration over a punctured neighbourhood of the origin in C.
The loop &g - exp(2mit) (0 < 7 < 1, ||eg|| small enough) defines the
monodromy transformation h : V., \ Br — V., \ Bg. Let us denote its

zeta-function (5 (t) by 5]03(75). We use the following definition.

DEFINITION 3.1. The value 0 is atypical at infinity for the polynomial
P if the restriction P|@n\BR of the function P to the complement of the
ball Br is not a C'™ locally trivial fibration over a neighbourhood of the
origin in C.

This definition does not depend on choice of coordinates, i.e., it is
invariant with respect to polynomial diffeomorphisms of the space C".
One can see that an atypical value at infinity is atypical, i.e. it belongs
to B(P). Moreover the bifurcation set B(P) is the union of the set
of critical values of the polynomial P (in C*) and of the set of values
atypical at infinity in the sense described. If the singular locus of the
level set Vo = { P = 0} is not finite, the value 0 can hardly be considered
as typical at infinity.

THEOREM 3.2. The zeta-function near infinity 5]%(75) of the local mon-
odromy (corresponding to the value 0) of the polynomial P is the first
factor in formula (3), with ¢ = 0. If this zeta-function is different from
1, then the value 0 is atypical at infinity.

EXAMPLE 3.3. Let P(z,y,2) = 2%y’ (2°y? — 2°t?) + 2, (ad — be) # 0,
and let D = deg(P) = a + b+ ¢+ d. The curve {Fp = 0} C CP%
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consists of three components: the line Cy = {z = 0} with multiplicity
a, the line Cy = {y = 0} with multiplicity b, and the reduced curve
Cy = {2yt — 22t = 0}. Let Q1 = CuNC3 = (1:0:0), Qs =
CiNC3=(0:1:0),Q3=CyNCy=1(0:0:1). At each point z of
the infinite hyperplane CPZ, except Q1 and @3, one has (p (t) = 1. At
the point )1, the germ of the meromorphic function P has the form
yb(yd _ Zc+d) + SuP-1
ul
Varchenko type formula (1.171.21). If (ad — bc) < 0, then CIOD,Ql(t) =1.
If (ad — bc) > 0, then

. Its zero zeta-function can be obtained by the

(o (1) = (1 — 17

where h = g.c.d(c,d) -g.c.d.(gii‘ld_(gcd), D— 1). The situation at the point

()2 is given by symmetry. Finally,

|ad—bc|
h

1) = (1 - 1T,

Thus the value 0 is atypical at infinity. In the same way (%__(t) = 1,
for ¢ # 0.

EXAMPLE 3.4. The polynomial function P(z,,y,z) =z + z?yz has

0 as an atypical value at infinity and ¢ (#) = 1. Hence the converse of
the above theorem does not hold.

3.2. YOMDIN-AT-INFINITY POLYNOMIALS

For a polynomial P € C[zy,..., z,], let P; be its homogeneous part of
degree 1. Let P be of the form P = Pj+ Py_;+terms of lower degree,
k > 1. Consider the hypersurfaces in CP7! defined by {F; = 0} and
{Pi—r = 0}. Let Sing(P;) be the singular locus of the hypersurface
{P; = 0} (including all points where { P; = 0} is not reduced). One says
that Pis a Yomdin-at-infinity polynomial if Sing(P;)N{Pi—r =0} =0
(in particular this implies that Sing(P;) is finite).

Y. Yomdin ([Y]) considered critical points of holomorphic functions
which are local versions of such polynomials. He gave a formula for their
Milnor numbers. In [Sil] the zeta-function of the classical monodromy
transformation of such a germ was described; see also the contribution
of D. Siersma in this volume, [Si2]. The generic fibre (level set) of a
Yomdin-at-infinity polynomial is homotopy equivalent to the bouquet
of n-dimensional spheres ([D1]). Its Euler characteristic xp (or rather
the (global) Milnor number) was determined in [ALM2]. For k = 1 the
zeta-function of such a polynomial was obtained in [GN].
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Let P(z,...,2,) = Ps+ Pj—r +... be a Yomdin-at-infinity polyno-
mial. Let Sing(Py) consist of s points @1, ..., Q5. One has the following
natural stratification of the infinite hyperplane CP”':

1. the (n — 1)-dimensional stratum Z"~1 = CP"'\ {P; = 0};
2. the (n — 2)-dimensional stratum Z"~% = {P; = 0} \ {Q1, ..., Qs };

3. the 0-dimensional strata Z¢ (i = 1,...,s), each consisting of one
point Q;.

-1

The Euler characteristic of the stratum ="~ is equal to

X(CPZ) = (1P = 0)) = m = x(n = L)+ (=12 Y,

where x(n — 1,d) = n+ U;danu is the Euler characteristic of a non-

singular hypersurface of degree d in the complex projective space CP7!,

i is the Milnor number of the germ of the hypersurface {P; = 0} C
CP”~! at the point Q;. At each point of the stratum =", the germ of

the meromorphic function P has (in some local coordinates u, y1, ..., yn

where u = 0 defines CP"~") the form %d, and its infinite zeta-function
(1) is equal to (1 — t%).

At each point of the stratum Z"~2, the germ of the polynomial P
has (in some local coordinates u, y1,...,yn—1) the form % TIts infinite
zeta-function (3, (#) is equal to 1 and thus it does not contribute a
factor to the zeta-function of the polynomial P.

At a point Q; (1 =1,...,5s), the germ of the meromorphic function

. k
P has the form o(u,y1,...,yp—1) = gz(y]"”’giln_l) tu , where g; is
u

a local equation of the hypersurface {P; = 0} ¢ CP%! at the point
;. Thus y; is its Milnor number.
In order to compute the infinite zeta-function (°(#) of the mero-

morphic germ ¢, let us consider a resolution 7 : (X, D) — (C*~',0) of
the singularity g;, i.e., at each point of the exceptional divisor D, the
lifting ¢; o m of the function g; to the space A of the modification has
(in some local coordinates) the form y*' ...y, 77" (m; > 0). Let us
consider the modification
T=idx m:(C, x X,0x D) — (C*,0) = (C, x C*~',0)
of the space (C",0). Let @ = ¢ o7 be the lifting of the meromor-
phic function ¢ to the space C, x & of the modification 7. At ]g)oints
m Lyl /

of {0} x D the function ¢ has the form notee yz_l ) . Let

u
M%’ = 77'“1(./\/120) (M is the infinite Milnor fibre of the germ ¢) be
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the local level set of the meromorphic function @ (close to the infinite
one). In the natural way one has the (infinite) monodromy h%o acting
on M%" and its zeta-function C%O (t).

The problem is that the modification 7 is not an isomorphism out-
side the union of the zero sets of the numerator and denominator of ¢.
Therefore (°(t) does not coincide with C%O (t). However one can show
that

(F(t) = (1= "D o i),

The infinite zeta-function of the germ ¢ can be computed using the
Varchenko type formula (1.171.21), by taking into account the local
normal form of the germ of ¢ described above and the fact that the

zeta-function (5 (f) of a self-transformation h : X — X of a space X
determines the zeta-function (jx (¢) of the k-th power of h. In particular,

if ¢p(t) = [ (1 —t™)*m, then

m_

G =11 (1 _ tm"h—my)g.c.d,(hm)_am
m>1

THEOREM 3.5. ([GLMS5]) For a Yomdin-at-infinity polynomial P =
Py+ Py_p + ..., its zeta-function at infinity is equal to

CP(t) — (] _td)x(E"_) fd k (H k fd k )_ ’

where (=) = 202 L (=250 pi(g).

3.3. THE EULER CHARACTERISTIC OF A SINGULAR HYPERSURFACE

Let X be a compact complex manifold and let £ be a holomorphic line
bundle on X. Let s be a section of the bundle £ not identically equal to
zero, 7 = {s = 0} its zero locus (a hypersurface in the manifold X'). Let
s’ be another section of the bundle £, whose zero locus 7' is nonsingular
and transversal to a Whitney stratification of the hypersurface 7. A.
Parusiiski and P. Pragacz have proved (see [PP1], Proposition 7) a
statement which can be written as follows:

2N —x(2) = / =(Z) = 1)dx, 4
x(2) = x(2) Z\Z,(X() ) dx (4)
where x,(7) is the Euler characteristic of the Milnor fibre of the germ

of the section s at the point 2. We shall indicate a more general formula
which includes this one as a particular case.
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THEOREM 3.6. Let s be as above and let s be a section of the bun-
dle L whose zero locus Z' is non-singular. Let f be the meromorphic
function s/s' on the manifold X . Then

)= [ e =Dk [ e 6)

where X(} . is the Fuler characteristic of the 0-Milnor fibre of the mero-
morphic 1qerm [ at the point x.

Proof. Let F; be the level set {f =t} of the (global) meromorphic
function f on the manifold X (with indeterminacy set {s = s’ = 0}),
e, It = {s—ts' =0}\{s = s = 0}. We know that, for a generic value
t, one has

X(Fpen) = X(F0) = [ (6§2(2) = 1) dx + G s,

Foy {s:s’:O}

where X?,r is the Euler characteristic of the 0-Milnor fibre of the mero-
morphic germ f at the point z. One has Fy = Z\ (Z N7, Foo =
Z'\(ZNZ"), and in this case Fy, is a generic level set of the meromor-
phic function f (since its closure is non-singular). Therefore x(Fp) =
X(Z2) = x(Zn0Z"), x(Fgen) = x(Z") — x(Z 0 Z"). Finally, for z € Fy,
the germ of the function f at the point z is holomorphic and thus

If the hypersurface 7’ is transversal to all strata of a Whitney
stratification of the hypersurface Z, then, for z € Z N Z’, the Euler
characteristic X())'g; = 0 (Proposition 5.1 from [PP2]) and therefore
formula (5) reduces to (4).
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