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In the study of polynomial functions of two variables over the complex num-
bers, it has been known from the beginning (see e.g. [4]) that the family was
topologically trivial except at a finite number of atypical values, and an early
and striking theorem [16] asserts that these values are characterised by a simple
Euler characteristic condition. The starting point of this work was an attempt
to see what became of this result for curves in finite characteristic.

To understand the geometry one is soon led to compactify the family by
adding in points at infinity, and it then seems more natural to consider arbitrary
pencils of curves. Since one is soon led to perform blowing up, there is little to
be gained by restricting to families on a plane, so this can be replaced by an
arbitrary smooth projective surface.

Moreover, to direct the study in finite characteristic it is essential to begin with
a clear picture of the situation in characteristic zero. Here the paper [20] of Lê and
Weber shows that the characterisation of atypical fibres by Euler characteristics
applies locally. However their purely topological reasoning cannot be used in
finite characteristic, and we need to replace it by algebraic arguments.

In finite characteristic there are two essential changes to the situation in char-
acteristic zero. One is the existence of ‘wild vanishing cycles’, enumerated by
the ‘Swan conductor’, which measures the failure of the familiar behaviour of the
Euler characteristic for fibrations. The other is the failure of Bertini’s theorem.
Although in some sense this is now well understood, the geometrical picture is
significantly changed when a failure presents itself, and we do not at present have
a satisfactory account of these situations.

We begin with a preliminary section introducing our main tools and concepts.
We recall a number of known results on maps from a smooth surface to a smooth
curve with smooth general fibre: here the Swan conductor enters the formulae,
but does not really affect the condition for a fibre to be typical. In §3 we give a
brief discussion of general pencils, and in the final section we present a charac-
terisation of exceptional members of a pencil by Euler characteristics, assuming
a ‘conservative’ condition equivalent to Bertini’s theorem.

Let k be a field of characteristic p ≥ 0. Let X be a surface over k. A point
x ∈ X is smooth if and only if the corresponding points x′ over algebraically
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closed k′ ⊃ k are smooth. If k is algebraically closed, or more generally if k is
perfect, this is equivalent to x being a regular point of X. In general, smooth
implies regular but not conversely: we return to this below. A point x ∈ X is
singular if it is not smooth. If k is an algebraically closed field then X is smooth
at all points if X is a non-singular surface, e.g. see [17].

Most of this work was done while the first author was a visitor at the Uni-
versity of Liverpool. The kind hospitality of the Department of Mathematical
Sciences at Liverpool is gratefully acknowledged. The research of the first author
was partially supported by a grant ‘Convenio SEUID – Royal Society’ and by
DGES PB97-0284-CO2.

1 Preliminaries

We begin by recalling a number of known results, in which the behaviour of curves
in characteristic p is parallel to that in the classical case. Here and below, ‘curve’
means a scheme of dimension one of finite type over k.

1.1 Resolution of singularities of a curve

Singularities of curves in finite characteristic may be resolved, as in the classical
case, by blowing up points: see e.g. [6]. We recall some properties of this proce-
dure, which survive in positive characteristic [8]. We begin with a reduced curve
C lying in a smooth surface X.

A single step consists in choosing a singular point x of C and blowing X up at
this point. This gives a smooth surface X̃ and a map π : X̃ → X. The surface X̃
contains an exceptional curve E = π−1(x), and the strict transform C̃ of C, which
may be found as the closure of π−1(C)−E. When we consider C as a divisor, we
have the total transform π∗(C) and the strict transform π∗(C)−mx(C)E, which
does not contain E as a component. Here mx(C) is the multiplicity of C at x.
The exceptional curve E is smooth and rational, and we have C̃.E = mx(C).

Any sequence of blowings up yields a sequence of surfaces, which contain,
as well as strict transforms of the original curve C, the strict transforms of the
successive exceptional curves. In each of these surfaces, the collection of all
exceptional curves lying over x ∈ X forms a tree of curves, with normal crossings.

We distinguish the exceptional curves by suffices, and e.g. let Eα be created
by blowing up a point eα. We continue to write Eα for the strict transforms of
Eα in all higher surfaces. In the terminology of Enriques, each Eα determines an
infinitely near point to its image x ∈ X.

The sequence of blowings up induces a partial order on the infinitely near
points eα: we say eβ is proximate to eα if the point eβ lies on the curve Eα, and
that eβ lies above eα if there is a sequence of points eβ, eγ, . . . , eα with each one
proximate to the next.
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Let X be a smooth projective surface defined over k, let x be a closed point
on X and X∗ the set of infinitely near points of x. For D an effective divisor on
X and p ∈ X∗, denote by mp(D) the multiplicity of the strict transform of D at
p. If E is another effective divisor on X such that D and E intersect at x and
have no common components through x, then the intersection multiplicity of D
and E at x is given by

(D.E)x =
∑

p∈X∗ mp(D)mp(E) [k(p) : k],
where the sum is over the infinitely near points p of x in common to D and E
and k(p) is the residue field at the point p. If k is algebraically closed, then each
infinitely near point p is rational over k, so the integer [k(p) : k] is equal to 1.

If D is a reduced curve on X with x ∈ D, then the ‘double point number’
δx(D) is given by

δx(D) =
1

2

∑
p∈X∗

mp(D)(mp(D)− 1)[k(p) : k], (1)

and we have the proximity relations

mp(D) =
∑
p′

mp′(D)[k(p′) : k(p)], (2)

where the sum is over all the infinitely near points p′ proximate to p.

Lemma 1.1 Let C be an irreducible curve germ over an algebraically closed field;
suppose repeatedly blowing up C produces the sequence {pi : i ≥ 0} of infinitely
near points, and that pn+2 is not proximate to any pi with i < n. Then there
are numbers a, b, determined solely by the proximity relations, such that for any
curve Γ through pn+1,

m0(Γ) = amn(Γ) + bmn+1(Γ).

Proof Suppose inductively we have found ar, br such that for all Γ through pn+1

we have mn−r(Γ) = armn(Γ) + brmn+1(Γ) — the induction starts trivially with
a−1 = 0, b−1 = 1, a0 = 1, b0 = 0. Then the multiplicity at pn−r−1 is the sum of the
multiplicities at all points proximate to that one, which must be pn−r, . . . , pn−s

where s ≥ −1 since it follows from our hypothesis that no pq with q > n + 1 can
be proximate to any pi with i < n. Thus we may take ar+1 =

∑r
s ai and similarly

for br+1. 2

1.2 Resolving base points of pencils of curves

We now collect some well-known results on resolutions of pencils on a smooth
projective surface X over an algebraically closed field k. Let Λ be a pencil of
curves {Γt} on X which has no fixed component, and let x ∈ X be any point of
intersection of two, hence of all curves in the pencil: such points are called base
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points. Write mx(Λ) = min{mx(Γt)|t ∈ P 1}. Then mx(Λ) = mx(Γt) for all but
finitely many t ∈ P 1.

Let π : X̃ → X be the blow up of X at x, E the exceptional divisor of
π. Then the total transform π∗(Λ) = {π∗(Γt) |Γt ∈ Λ} of Λ is a linear system
with mx(Λ)E as fixed component. Removing this gives the strict transform Λ1 =
{π∗(Γt)−mx(Λ)E | t ∈ P 1} of Λ, which has no fixed component.

Let q ∈ Xr be an infinitely near point of p obtained by a finite sequence of
blowings-up πi : Xi+1 → Xi (with X0 = X). Set mq(Λ) := mq(Λr) where Λr is
the strict transform of Λ on Xr. We say that q is a base point of Λ if mq(Λ) > 0.

Inductively blow up at a base point of the pencil, take the strict transform of
the pencil, and continue. Since for two members of the pencil with multiplicity
mx(Λ) at x, blowing up x reduces their intersection multiplicity there by mx(Λ)2,
the blow-up reduces the total intersection number of these two, hence of any two
members of the pencil by mx(Λ)2. As the original intersection number is finite,
we may continue till no base points remain. Write B for the set of base points
(including infinitely near ones) of Λ: then this is a finite set.

At the end, we have a smooth projective surface Y with a well defined map
π : Y → P 1, whose fibres Yt = π−1(t) project to the curves Γt of the original
pencil. In local coordinates (u, v) on Y we may write π(u, v) = (f(u, v) : g(u, v))
where f, g are algebraic functions on Y , smooth at the point in question; then Yt

is given by f = tg.
An exceptional curve in Y may project to a single point of P 1 and so lie in

a fibre, when we call it vertical, or may map onto P 1, in which case we call it
horizontal or dicritical.

We now discuss the creation of a single exceptional curve Eα: write m =
mα := meα(Λ). Take local coordinates in Xα with eα at (0, 0). Then we can
write f =

∑∞
m fk as a sum of homogeneous components, and similarly for g.

The m-jets fm, gm define a pencil of binary m-ics. The curve Eα has parameters
(ξ : η) = (u : v) whose projection to the base curve is given by fm = tgm. Thus
Eα is vertical if and only if some member of the pencil of binary forms vanishes
identically.

To describe the geometry when Eα is horizontal, first note that any common
factor of fm and gm produces a base point of the blown-up pencil on Eα. To
determine the multiplicities of these requires an examination of terms of higher
order in f and g: for example, x = 0 defines a singular point of the strict transform
in Yα of f = 0 if and only if y2 divides fm and y divides fm+1.

If the degree of the highest common factor of fm and gm is h then the degree
of the projection πα : Eα → P 1 is m − h. If fm/gm is a function of (u/v)p,
where p is the characteristic, then all values of t give multiple roots, and to
study the geometry it is necessary to factorise πα = πi ◦ πs where πi(t) = tp

r
for

some r, and πs is not a function of (u/v)p: here q = pr is called the degree of
inseparability. Equivalently, since k is algebraically closed, we may write fm/gm =
φq and factorise πα = π′α ◦Fq, where Fq : Eα → D is purely inseparable of degree
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q and π′α : D → P 1 is separable, of degree q−1(m−h). We will refer to the points
of P 1 over which π′α is ramified as the branch values of Eα.

If q > 1 all points of Eα are singular for πα, and the branching behaviour is
best studied via π′α. The number of branch points of π′α (counting multiplicities
appropriately) is 2q−1(m− h)− 2. The intersections of Eα with the fibre Yt are
the preimages of t ∈ P 1 under πα: for almost all t this gives q−1(m− h) distinct
points, but for t a branch value of π′α the number is decreased.

Now suppose Eα is vertical: we may suppose gm ≡ 0. Let the least order
terms in g have degree m+k. Then Eα lies in the fibre Ys over the point s where
t = ∞, and has multiplicity k as component of that fibre. The base points of the
pencil in the surface Yα are the points on Eα where fm vanishes, and Eα intersects
its complement Z in the corresponding fibre Y ′

s,α of the map πα : Yα → P 1 in
the points where gm+k = 0. Although the roots of gm+k need not be distinct, the
intersection number of Z and Eα is m + k.

Lemma 1.2 Any exceptional curve of the first kind contained in a fibre Yt of Y
must be a component of Γ̃t.

For at the creation of a vertical exceptional curve Eα there are at least some
branch points on it, so in Y each such curve has been blown up at least once
more, so is not exceptional of the first kind.

1.3 Cohomology and Euler characteristics of curves

An Euler characteristic is an alternating sum of Betti numbers. In finite char-
acteristic, it is necessary to use étale cohomology groups, which were introduced
by Grothendieck [14]. We recall that one first chooses a prime ` different from
p, constructs cohomology groups Hr

ét(X; Z/`k) with finite coefficient groups, and

then takes the inverse limit Hr
ét(X; Ẑ`). For our purposes we need only consider

the case when X is a proper scheme.
Let C be a reduced, complete algebraic curve over an algebraically closed field

k. Let C =
⋃h

i=1 Ci be its decomposition into irreducible components; write also
s for the number of connected components of C. Let C̄i be the normalisation of
Ci, C̄ be the disjoint union of the C̄i and n : C̄ → C be the canonical projection.
Write gi for the genus of C̄i and g :=

∑
gi.

For each closed point x of C set δx(C) := dimk n∗(OC̄)x/OC,x, (see also (1))
and write δ(C) :=

∑
x∈|C| δx(C) where x ∈ |C| means that x runs through closed

points of C. These numbers are finite because n is a finite map and n∗(OC̄)/OC is
a coherent sheaf supported on a finite set of points. If rx(C) denotes the number
of analytic branches of C at x let δ′x(C) := rx(C)− 1 and δ′(C) :=

∑
x∈|C| δ

′
x(C).

We use µx(C) := 2δx(C)− δ′x(C) as a definition of the Milnor number of C at x
and write µ(C) :=

∑
x∈|C| µx(C) = 2δ(C)− δ′(C) for the total Milnor number of
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C. Note that, in distinction to the characteristic zero case, this number cannot
easily be calculated from a local equation for C: we discuss this point fully below.

Other invariants of C may now be expressed in terms of the above. Dolgachev
[11] showed that the étale cohomology groups of C are free of rank βi(C), where
the Betti numbers βi(C) are given by

β0(C) = s; β1(C) = 2g + δ′(C)− h + s; β2(C) = h; βi(C) = 0 for i > 0.

Thus the topological Euler-Poincaré characteristic (l-adic Euler-Poincaré charac-
teristic) of C is

χ(C) = χét(C) =
∑

(−1)iβi(C) = 2h− 2g − δ′(C).

Thus if p : C ′ → C is a birational map (e.g. obtained via blowing up), then the
values of h and g agree for C and C ′, so χ(C ′)−χ(C) = δ′(C)− δ′(C ′). This can
be written in the more familiar form

∑
x∈C #(p−1(x)− 1).

The cohomology of the sheaf OC is given in terms of the above invariants (via
the Leray spectral sequence for the morphism n) by:

dimk H0(C,OC) = s, pa(C) := dimk H1(C,OC) = g + δ(C)− h + s,

so χ(OC) = h− g − δ(C), and we obtain the useful formula

χ(C) = 2χ(OC) + µ(C). (3)

We will find the invariant χ(OC) convenient since [17, p.261] it is constant on
flat families. Thus for curves in a smooth surface Y , χ(OC) depends only on the
equivalence class of the divisor of C, and is easy to compute. In particular — a
fact of which we will make constant use — it takes the same value for any two
fibres of a map Y → S. We also have the adjunction formula

0 = 2χ(OC) + C2 + C.KY , (4)

where . denotes intersection of divisors and KY the canonical divisor; and the
formula

χ(OA+B) = χ(OA) + χ(OB)− A.B, (5)

which follows from the adjunction formula.

2 Fibrations with smooth general fibre

We now suppose π : Y → S a map with smooth general fibre from a smooth
surface Y to a smooth curve S, all defined over the algebraically closed field k.
Over each closed point s ∈ S we have the fibre Ys; over the generic point we
also have a fibre, which is a variety defined over k(S); we denote it by Ygen. It

6



is usually more geometrical to work over algebraically closed fields; the variety
obtained by extending the ground field to the separable algebraic closure is called
the geometric generic fibre: we will denote it by Yggen := Ygen ⊗k(S) k(S). Our
present hypothesis is that Ys is smooth for all but finitely many s, or equivalently
that Yggen is smooth.

In characteristic zero, the additive property of the Euler characteristic pro-
vides a formula

χ(Y )− χ(Yggen)χ(S) =
∑

s

(χ(Ys)− χ(Yggen)),

where there are only finitely many non-vanishing terms on the right hand side. For
reduced fibres we may write (using (3)) χ(Ys)−χ(Yggen) = µ(Ys); for non-reduced
fibres various formulae may be inferred by considering the underlying reduced
curve Ys,red and using the facts that χ(Ys) = χ(Ys,red) = 2χ(OYs,red

)+µ(Ys,red). In
this section we discuss what becomes of these formulae in the characteristic p case.
This involves deep results of Grothendieck and others: it seems worth presenting
an account here since many results simplify considerably in this relatively simple
situation.

2.1 Algebra

Fix a rational point s ∈ S, and write OS,s for the local ring of S at s, with field

k(S) of quotients with separable (algebraic) closure k(S); write Ĝ for the Galois
group of k(S) over k(S). Choose an extension vs to k(S) of the discrete valuation
vs of k(S) with valuation ring OS,s, and write Gs, or G for short, for the inertia
group of vs: then Gs is a pro-p-group.

The group Ĝ acts on the geometric generic curve Yggen and hence on its (étale)

cohomology group H := H1
ét(Yggen; Ẑ`), where ` is a prime different from p. As

module over Ẑ`, H is torsion-free with rank 2g, where g is the genus of Yggen. The

kernel of the projection GL2g(Ẑ`) → GL2g(Z/`Z) is a pro-`-group, and it follows
that the image of Gs in the former group maps isomorphically to the second, so
in particular is finite. Thus one may work with H1

ét(Yggen; Z/`Z) rather than with
H.

Let M be any finite G-module annihilated by `. Then a subgroup of finite
index in G acts trivially on M : write G0 for the quotient of G which acts ef-
fectively, and kM for the finite extension of k(S) corresponding to G0 by Galois
duality. Write vM for the restriction to kM of the valuation vs of k(S): normalise
so that vM has value group Z. Choose a prime element $ of KM , so vM($) = 1.
We have the ramification groups

Gi := {σ ∈ G0 | vM(σ($)−$) ≥ i + 1}.
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The Artin character of G0 is now defined by

α(σ) = −vM(σ($)−$) if σ 6= 1;
∑
σ∈G0

α(σ) = 0.

The Swan character β is obtained by subtracting from α the character of the aug-
mentation representation. According to Serre (see e.g. [26]), there is a projective

Ẑ`[G0]-module P such that β is the character of the representation on P ⊗ Q̂`.
Then ‘Serre’s measure of the wildness’ of M (also called the ‘Swan conductor’) is

Sw(M, G) := dimZ/`Z HomẐ`[G0](P, M).

Below we will write Sw(M, s) for Sw(M, Gs). It is shown in [22] that, if M i

denotes the fixed set of Gi acting on M , then

Sw(M, G) =
∞∑
i=1

|Gi|
|G0|

dimZ/`Z

(
M

MGi

)
.

2.2 The Ogg-Šafarevič-Grothendieck formula

The main ingredient of the formulae we are about to describe was first obtained
by Ogg [21], and developed in full by Grothendieck [15]; see also Šafarevič [24]
and the account [23] of Raynaud.

Let S be (as above) a smooth curve, F a sheaf over S of abelian groups
annihilated by `: write Fggen for the stalk over the geometric generic point of S.
Then the formula is [15, 7.2]

χ(S; F )− χ(S) dim Fggen =
∑
s∈|S|

(dim Fs − dim Fggen − Sw(Fggen, s)) , (6)

where all dimensions are over Z/`. Strictly, we should take F as an element of
the derived category of such sheaves; the dimensions must then be replaced by
Euler characteristics.

The Leray spectral sequence of π : Y → S for the constant sheaf Z/` gives
the calculation

χ(Y ; Z/`) =
∑
p,q

(−1)p+q dim Hp(S; Rqπ∗(Z/`)) =
∑

q

(−1)qχ(S; Rqπ∗(Z/`)).

(7)
Applying (6) yields

χ(S; Rqπ∗(Z/`))− χ(S) dim(Rqπ∗(Z/`))ggen =
∑
s∈|S|

Aq
s,

where Aq
s is given by

Aq
s := dim(Rqπ∗(Z/`))s − dim(Rqπ∗(Z/`))ggen − Sw((Rqπ∗(Z/`))ggen, s)
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= dim Hq(Ys; Z/`)− dim Hq(Yggen; Z/`)− Sw(Hq(Yggen; Z/`), s).

Substituting in (7) gives

χ(Y ; Z/`) = χ(S)χ(Yggen; Z/`) +
∑
s∈|S|

(χ(Ys; Z/`)− χ(Yggen; Z/`)− as) ,

where as :=
∑

q(−1)qSw(Hq(Yggen; Z/`), s). This is essentially the main result of
[12].

When the fibres are curves, this simplifies since [12, 1.6] if the fibres of π are
smooth of dimension n, then Sw(Hq(Yggen; Z/`), s) vanishes unless 0 < q < 2n,
so as n = 1 the only non-vanishing term is for q = 1. Thus we have

χ(Y ) = χ(S)χ(Yggen) +
∑
s∈|S|

(
χ(Ys)− χ(Yggen) + Sw(H1(Yggen, s)

)
, (8)

where, as from now on, we omit explicit mention of the coefficients, which will
remain Z/` throughout.

2.3 Vanishing cycles

A general theory of vanishing cycles, due to Grothendieck, is developed by Deligne
in [9]. Again we require only a small part of the general theory. Fix a (rational)
point s ∈ |S| (this already simplifies half the notation); the theory is set in the
context of the spectrum of the henselisation of OS,s, which we denote by Sloc: it
contains the closed point s, the generic point η, and the geometric generic point
η; and we have a map Sloc → S, inducing Yloc → Y , say, with fibres Ys, Yη and Yη

which we can identify with the Ys, Ygen and Yggen discussed previously.
The first step is to define a functor Ψ from (complexes of) sheaves over Yloc,

annihilated by some `n, to (complexes of) sheaves over Ys × Sloc. To achieve
this, one must observe that giving a sheaf K over Ys × Sloc is equivalent to
giving a triple (Ks, Kη, φ) with Ks, Kη sheaves over Ys and φ a morphism from
Ks to Kη with image contained in the invariants under the action on the latter
of the group Gs or Galois group G0. There is then a (split) exact sequence
0 → (s◦p)∗Ks → Kη → Φ(K) → 0, inducing an exact sequence (1.4.2.2 loc. cit.)
of cohomology of Ys.

Given a sheaf F , Deligne defines (1.3, loc. cit.) ΨFs := F |s, ΨFη is the
pullback of the push forward to Y of F |η, and φ is constructed using adjunction
morphisms. The above short exact sequence of sheaves must be considered in the
derived category as an exact triangle (2.1.2.4 loc. cit.). Further work leads to
the identification (2.1.8.9 loc. cit.) of its cohomology exact sequence with

· · · → H i(Ys; F ) → H i(Yη; F ) → H i(Ys; Φ) → H i+1(Ys; F ) → · · · ,
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where Φ denotes Φ(ΨF ). It is also shown that Φ is supported on the singular
set of the map f and (2.4.2 loc. cit.) that if F is a constructible sheaf of Z/`n-
modules (with ` 6= p) which is locally constant at the isolated singular point x of
f , then the stalk Φx of Φ at x is a finite abelian group.

We are interested in the case when F is a constant sheaf Z/`n and the fibres
Ys are curves. The exact sequence shows that χ(Yη) − χ(Ys) = χ(Ys; Φ). Since
π∗(Z/`) ∼= (Z/`), H0(Ys; Φ) vanishes. Also H2(Ys; Φ) is trivial: we may argue by
duality, or, perhaps more convincingly, since at least one component of Ys must
have multiplicity prime to `. Thus there is only one non-vanishing module of
vanishing cycles, and we write Vs for H1(Ys; Φ).

Since forming Swan conductors is purely algebraic and additive, and vanishes
on the cohomology of Ys where the action of G is trivial, we have

Sw(H∗(Yggen), s) = Sw(H∗(Ys; Φ), s) = −Sw(H1(Ys; Φ), s) = −Sw(Vs, s).

Substituting in (8), we obtain

χ(Y ) = χ(S)χ(Yggen) +
∑
s∈|S|

(dim Vs + Sw(Vs, s)) . (9)

Since Φ is supported on the singular set, if Ys is reduced, so has isolated singu-
larities, Φ is supported on a finite set, so Vs splits as a sum of local contributions
Vs = ⊕Vx.

2.4 The degree of the discriminant

We turn to global consideration of the map π : Y → S with Y, S smooth and
complete and with the generic fibre also smooth, and apply Example 14.1.5 of
Fulton’s book [13]. We have a proper morphism π; the induced map dπ : TY →
π∗TS determines a section σ of π∗TS ⊗T∨

Y . The top Chern class Z(σ) is a 0-cycle
class on the singular set of π, with degree deg Z(σ) = χ(Y )− χ(S)χ(Yggen). The
image under π of the class of Z(σ) is a divisor Dπ on S, thus

deg Dπ = deg Z(σ) = χ(Y )− χ(S)χ(Yggen).

It was shown by Bloch [2], sharpening a result of Deligne [10] and also giving
an interpretation of (8), that the degree of Dπ at a point s ∈ |S| is

D(s) := degs(Dπ) = χ(Ys)− χ(Yggen)− Sw(H∗(Yggen, s)). (10)

Bloch also interpreted this number as a cycle-theoretic self-intersection of the
diagonal ∆Y .

We have seen in (9) that in the case of curves, this in turn reduces to

D(s) = dim Vs + Sw(Vs, s). (11)
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It follows, in particular, that D(s) ≥ 0, and vanishes if and only if Vs is trivial.
We first discuss the case of an isolated critical point. In [10], Deligne defines

the numbers of ordinary, wild or total vanishing cycles at an isolated singular
point x respectively to be the numbers dim Vx, dim Sw(Vx, s) and their sum, and
proves (Theorem 2.4 loc. cit.) that the total number of vanishing cycles at x is
equal to the Milnor number of π at x, defined in the usual way by taking local
coordinates (u, v) on Y at x and t on S at s = f(x) and setting f := t ◦ π and

µx(π) := dimOu,v/〈∂f/∂u, ∂f/∂v〉.

That this is also the local degree of Z(σ) is shown by Bloch. Now the ordinary
number of vanishing cycles at x is equal to dim Vx = µx(Ys). The relation between
the two definitions of Milnor number at an isolated singularity is thus clarified as
follows. The Milnor number µx(Ys) of the fibre at x is the dimension of the space
Vx of vanishing cycles. The inertia group Gs of s = π(x) acts on this space, and
the Milnor number of the map π is given by

µx(π) = µx(Ys) + Sw(Vx, s). (12)

If the fibre Ys is reduced, D(s) is the sum of the µx(π) over singular points
x ∈ |Ys|: the decomposition into tame and wild cycles is given by (12).

Suppose in addition that D(s) = 0. Then there are no singular points; if Yggen

is connected, so is Ys, and it has the same genus. Over C, we can then apply
Ehresmann’s fibration theorem to deduce that π is locally topologically trivial at
s. In finite characteristic, π is still locally trivial in some sense which we do not
attempt to make precise.

If Ys is not reduced, to obtain a local formula we need a term corresponding
to the 1-dimensional part of the singular locus. Globally, Iversen [18] obtained a
formula which may be written as

χ(Y )− χ(Yggen)χ(S) = KY .R−R2 +
∑
x∈|Y |

µred
x (π), (13)

where R denotes the ramification divisor, KY the canonical class, and µred
x (π) is

defined as follows. As in the case when x is an isolated singular point, we take
local coordinates (u, v) on Y at x and t on S at s = π(x), and set f = t ◦ π. The
partial derivatives ∂f/∂u, ∂f/∂v do not generate an ideal of finite codimension
in the local ring Ox: their highest common factor h vanishes along the singular
locus. We set au := (∂f/∂u)/h, av := (∂f/∂v)/h, and define

µred
x (π) := dim hOu,v/〈∂f/∂u, ∂f/∂v〉 = dimOu,v/〈au, av〉.

The right hand side of (13) is easily expressed as a sum over fibres, and the
natural interpretation was achieved by Sun [28] by showing that

D(s) = KY .Rs −R2
s +

∑
x∈|Ys|

µred
x (π), (14)
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where Rs denotes the part of R lying in the fibre over s.
The divisor R is supported on the union of multiple components of the fibres.

Let Ci be a component of Ys, with multiplicity mi > 1. Let ri be the multiplicity
of Ci as component of R. In local coordinates at a point of T we may write

(t ◦ π)(u, v) = f(u, v) = umiφ(u, v).
The definition of R amounts to taking it as defined by the highest common factor
of ∂f/∂u and ∂f/∂v.

Lemma 2.1 If mi is not divisible by p (e.g. if p = 0) then ri = mi − 1. If p |mi

then ri = mi unless we can express φ in the form α(vp)+u2β(u, v), when ri > mi.

This follows by an easy calculation. In the first case we have non-zero terms
involving umi−1; in the second, if the coefficients of all terms umiv∗ in both ∂f/∂u
and ∂f/∂v vanish, φ must be as stated.

In the case when Ci is a vertical exceptional curve arising in a blowing-up, we
take local coordinates and suppose, reverting to the notation of 1.2 and setting
π(x) = (f(x) : g(x)), that f, g have respective orders m + M, m. Substituting
v = uw gives f/g = (uM(fm+M(1, w) + O(u))/(gm(1, w) + O(u)), where O(u)
denotes terms divisible by u. Thus the above invariant mi is here identified with
M . For the final case in the lemma to arise we require

fm+M (1,w)

gm(1,w)
+ O(u) = α(wp) + u2β,

and hence that for some γ(w) we have fm+M(1, w) ∼= γpgm(1, w).
It would be feasible to push these calculations further.

2.5 The Euler characteristic of the fibre

We now study a particular (non-reduced) fibre Ys. Then we cannot regard the
fibration as locally trivial at s, and so we expect that D(s) > 0. By (11), this
condition is equivalent to χ(Yggen) < χ(Ys) = χ(Ys,red). We next investigate
whether indeed these inequalities hold.

We begin with some notation. Let Ys have components Ci, and Ys =
∑

miCi

as divisors. Then the underlying reduced curve is Ys,red =
∑

Ci. Also write
Rs =

∑
riCi. Thus in the characteristic 0 case, Ys = Rs + Ys,red; in general,

Rs +Ys,red−Ys has non-negative coefficients ri +1−mi which equal 0 only when
mi is not divisible by p.

Since Ys is numerically equivalent to Yggen which is disjoint from Ys we have,
for each j, 0 = Ys.Cj =

∑
miCi.Cj and in particular, Y 2

s = 0. Below we shall
also use without further mention the invariance χ(OYs) = χ(OYggen), the formula
(3) and the adjunction formula (4).

Proposition 2.2 Assume that Yggen is connected, and that Ys contains no ex-
ceptional curve of the first kind. Exclude the case when Yggen and Ys are smooth
and rational and A = 0. Then for any divisor A on Ys with 0 ≤ A < Ys,
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χ(OA) ≥ χ(OYs), with equality only if A = λYs with 0 ≤ λ < 1 and Yggen is
elliptic.

Proof We first briefly recall the (standard) proof that the intersection form re-
stricted to the fibre Ys is negative semi-definite, with radical generated rationally
by Ys. We have Ci.Cj ≥ 0 for i 6= j, and 0 = Ci.Yggen = Ci.Ys =

∑
j mjCi.Cj.

Now for any coefficients xi ∈ Q,(∑
i

xiCi

)2

=
∑

i

x2
i C

2
i +
∑
i6=j

xixjCi.Cj =
∑

i

x2
i

mi

∑
j 6=i

(−mjCi.Cj)+
∑
i6=j

xixjCi.Cj,

which reduces to ∑
i<j

−(mjxi −mixj)
2

2mimj

Ci.Cj ≤ 0.

For equality to hold, mjxi − mixj must vanish whenever Ci.Cj > 0, i.e. xi/mi

takes equal values for components Ci and Cj that intersect. Since the fibre is
connected, (Principle of Connectedness, [17]), all values are equal, so for some λ
we have xi = λmi for each i.

Next let C be a reduced, irreducible component of Ys: we show that C.KY ≥ 0.
We have χ(OC) = 1 if C is smooth and rational, = 0 if C is either nodal or
cuspidal rational or smooth elliptic, and otherwise < 0. If C is a component of
Ys, then since C.KY = −C2 − 2χ(OC) and C2 ≤ 0, we deduce that if C.KY < 0
then either

χ(OC) = 1 and C2 = 0, so that C is the whole fibre. If Ys = mC we obtain
χ(OYggen) = χ(OYs) = m, so that m must be 1, the fibration rational and Ys a
smooth fibre, contradicting our hypothesis; or

χ(OC) = 1 and C2 = −1, so that C is smooth and rational and is an excep-
tional curve of the first kind contained in Ys. But by hypothesis this does not
exist either.

Moreover, if C.KY = 0 then either
χ(OC) = 1 and C2 = −2, so C is smooth and rational: C is a ‘(-2)-curve’, or
χ(OC) = 0 and C2 = 0, hence Ys is a multiple of C, and the entire fibre

reduces to the curve C.
Now let A =

∑
aiCi with 0 ≤ ai ≤ mi. By the adjunction formula,

2(χ(OA)− χ(OYs)) = Ys.Ys + Ys.KY − A.A− A.KY .
But the intersection form restricted to a fibre is negative semi-definite, so A.A ≤
0, while Ys.Ys = 0. We thus obtain

2(χ(OA)− χ(OYs)) = (−A.A) +
∑

i

(mi − ai)Ci.KY .

Here each term on the right is non-negative. Thus for equality to hold, each
term must vanish. Since A2 = 0, A is a (rational) multiple of Ys, so for some
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λ, ai = λmi for each i. It follows from our hypothesis that λ < 1, so mi > ai

for each i. Hence each Ci.KY must vanish, and we have Ys.KY = 0, thus the
fibration is elliptic. 2

We can be more precise about the case of equality.

Corollary 2.3 If equality holds, Ys has Kodaira type mIb for some m ≥ 2, b ≥ 0.
Thus Ys = mΘb for some b, where

Θ0 is smooth elliptic,
Θ1 is nodal rational,
Θ2 consists of two smooth rational curves meeting transversely in 2 points,
for b ≥ 3, Θb is a cycle of b (-2)-curves, each component meeting the next.

This follows from the enumeration of types of (non-reduced) fibre in elliptic fi-
brations by Kodaira [19] in characteristic 0 and Bombieri and Mumford [3] in
general.

We next deal with exceptional curves contained in the fibre.

Proposition 2.4 Assume that Yggen is connected. Suppose Z obtained by suc-
cessively collapsing exceptional curves of the first kind in the fibre over s. Then
(χ(OYs,red

)− χ(OYs)) ≥ (χ(OZs,red
)− χ(OZs)), and hence is non-negative.

Proof Suppose there is an exceptional curve of the first kind E ⊂ Ys. Write
Ys,red = B + E, and let M := E.B. Collapsing E to a point gives a surface Y ′,
a factorisation Y → Y ′ → S of π, and hence a fibre Y ′

s with Y ′
s,red = B′, the

image of B, so that B′ has multiplicity M at the image e of E and hence strict
transform B + ME. The standard rules for blowings up give

B.KY = B′.KY ′ + M, B2 = B′2 −M2, so χ(OB) = χ(OB′) + (M2 −M)/2.

Hence
χ(OYs,red

) = χ(OB) + χ(OE)−B.E = χ(OB′) + 1
2
(M2 −M) + 1−M,

which is equal to χ(OY ′
s,red

) + 1
2
(M − 1)(M − 2) ≥ χ(OY ′

s,red
). If Y ′

s also contains
an exceptional curve, we may repeat the process, which must terminate at some
surface Z, say, with fibre Zs. It follows by induction that χ(OYs,red

) ≥ χ(OZs,red
),

while χ(OZs) = χ(OZggen) = χ(OYggen) = χ(OYs), since the generic fibre is unal-
tered by the collapsing. The final assertion follows by Proposition 2.2. 2

The conditions for equality here may be inferred from the previous result and
the fact that we then need M = 1 or M = 2 at each step of the blowing down
process.

Proposition 2.5 Assume that Yggen is connected, and that Ys is non-reduced.
Then χ(Ys) > χ(Yggen) unless each of Ys and Yggen is a smooth elliptic curve.
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Proof By Proposition 2.4, we have χ(OYs,red
) ≥ χ(OYs), and this in turn is

equal to χ(OYggen). Hence

χ(Ys,red) = 2χ(OYs,red
) + µ(Ys,red) ≥ 2χ(OYggen) + µ(Ys,red) = χ(Yggen) + µ(Ys,red).

We thus obtain χ(Ys) = χ(Ys,red) > χ(Yggen) unless first, we have equality above,
so Yggen is elliptic, and secondly, µ(Ys,red) = 0, so Ys,red is smooth. The result
follows. 2

According to [25], this result is well known. We include the proof for complete-
ness.

We conclude this section with a note about wild ramification in the case of
non-isolated singularities. In view of Lemma 2.1 we can regard the ramification at
Ci as wild when p|mi, though the relation of this wildness condition to calculation
of the Swan conductor is not clear.

Lemma 2.6 Suppose Rs is tame, i.e. that no mi is divisible by p. Then

Sw(Vs, s) =
∑

x∈|Ys|

(µred
x (π)− µx(Ys,red)).

Proof It follows from our hypothesis that Rs = Ys−Ys,red. Hence the expression
for D(s) given by (14) is equal to

KY .(Ys − Ys,red)− (Ys − Ys,red)
2 +

∑
x∈|Ys| µ

red
x (π).

Using (3) and (4), the expression for D(s) given by (10) may be expressed as
µ(Ys,red)−KY .Ys,red − Y 2

s,red + KY .Yggen + Y 2
ggen + Sw(Vs, s).

Comparing these two, and using KY .Ys = KY .Yggen and Y 2
s = 0 = Ys.Ys,red =

Y 2
ggen, we see that the equation simplifies to the form stated. 2

If Rs is not tame, and some component through x has multiplicity divisible by
p, then the local equation has the form f = gp

1g2, and differentiating gives ∂f =
gp
1∂g2, so we expect no close relation between µred

x (π) and µx(Ys,red).

3 Pencils of curves and Bertini’s theorem

Consider a smooth surface X0 with a pencil of curves {Γt} whose generic member
Γgen is reduced and irreducible, but may be singular. If the field k has finite
characteristic p, Bertini’s theorem in its original form is not always valid. For
example, for the plane pencil t0(x

3
0 +x2

1x2)+ t1x
3
2 in characteristic 2, the curve Γt

has a singular point at (0 : u0 : u1) where (u2
0 : u2

1) = (t1 : t0). A detailed study
of systems of singular cubics appears in [3].

The correct formulation of Bertini’s theorem for this case was found by Zariski
in 1944 [30]: the introduction by Mumford to the first part of Zariski’s collected
works gives a useful account of Zariski’s achievement in modern terminology.
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The key is to consider the generic curve of the pencil as defined over the
field k(t). Since this field is not perfect, many of the familiar results of algebraic
geometry do not hold without slight modifications. In particular, two of the
traditional definitions of a ‘simple point’ on an algebraic variety are not here
equivalent: if the variety is defined by equations whose differentials at that point
cut out a tangent space of the same dimension as the variety it is called smooth
there; if the local ring of the variety at that point is regular, it is called a regular
point.

Then Zariski’s version of Bertini’s theorem states that the generic curve Γgen

of the pencil is regular outside the set of base points of the pencil. It is important
here to distinguish between Γgen and Γggen. Following the procedure in §1.2, we
study Γgen by blowing up all the base points of the pencil to obtain a pencil of
curves Ys on a surface Y having no base points. It follows from the theorem that
Ygen is regular (at all points).

It follows from elementary results about local rings that for curves the con-
ditions ‘regular’ and ‘normal’ are equivalent. A function field of transcendence
degree 1 over any field has an essentially unique normal model. The arguments
leading to the proof of the Riemann-Roch theorem go through over any field (see
e.g. Artin [1]). It follows from this theorem that for an irreducible normal curve
C the genus and arithmetic genus agree, g(C) = pa(C).

The genus of a curve over a non-perfect field is not invariant under inseparable
change of ground field (the first paper on this topic seems to be Tate [29], where
it is shown that g(C)− g(C) is a multiple of p−1

2
). (Since separable base change

commutes with integral closure, and so preserves normality, this cannot affect
the genus.) We may control the genus as follows. Since χ(OC) is constant in
flat families (the constancy including both closed and non-closed points), it is
invariant under change of ground field. On ground field extension however we
may acquire non-regular points, and have to blow these up. If C1 is the result of
blowing up a closed point P on C, then taking Euler characteristics of the exact
sequence

0 → OC → f∗OC1 →
(∑

f(Q)=P O1(Q)
)

/OC(P ) → 0

we see that χ(OC1)− χ(OC) is the length of (
∑

f(Q)=P O1(Q))/OC(P ); and this

length is equal to 1
2
mP (mP − 1)[K(P ) : K] where mP is the multiplicity of C at

the point P and K the field of definition of C (see Deligne [8] for a full treatment
of this situation). The effect on the genus is thus to subtract the sum of the terms
1
2
mP (mP − 1)[K(P ) : K] corresponding to the points that have to be blown up.

If we are extending the ground field to be algebraically closed, then all singular
infinitely near points need to be resolved, and by (1) the sum is the double point
number δ(C): thus for C regular, g(C) = g(C) − δ(C). Alternatively we may
argue that g(C) = pa(C)− δ(C), while pa(C) = pa(C) = g(C).

Thus blowing up the base points of the pencil gives a regular generic fibre Ygen,
however Yggen may have singular points; necessarily only defined over inseparable
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extensions of k(t). We have g(Yggen) = g(Ygen) − δ(Yggen). Artin uses the word
conservative for the case when the genus is stable by base change: we see that
this is equivalent to Yggen being non-singular. We may use the word radical for
the opposite case.

If Γt has a singular point which moves with t, the pencil is radical. If f0 =
abp

0 + c0h
2 and f1 = abp

1 + c1h
2 as polynomials on the plane P 2, then the general

member t0f0 + t1f1 of the pencil is singular at points where 0 = t0b
p
0 + t1b

p
1 = h.

Thus any curve h = 0 may arise as a locus of singular points. It may be true
that all cases may be put in this form. We can prove this if h is linear and have
a sketch of proof whenever h = 0 is an irreducible rational curve.

Variable singular points may also arise on blowing up: consider an isolated
base point of multiplicity m, with local coordinates (u, v) as usual. The first blow-
up produces an exceptional curve with coordinate (ξ : η): assume it dicritical.
The base points on this curve correspond to common zeros of fm and gm. The
point (1 : 0) is singular on the blow-up of f = 0 if v2 divides fm and v divides fm+1.
We have already seen that the exceptional curve is inseparable if fm and gm are
both pth powers, or more generally if fm/gm is so; if in addition gmfm+1 = fmgm+1

(e.g. if fm+1 = gm+1 = 0), then each point of the exceptional curve is singular on
some member of the pencil, which is thus radical.

The radical pencils were termed ‘supercuspidal’ and studied in [27], where
some results of [3] were generalised. Observe that (since k is perfect) all elements
of k[t] become pth powers in k[t1/p], so all elements of k(t) become pth powers in
k(t1/p). Thus if x is algebraic over k(t) with minimal equation f(xpr

) = 0 where
f is separable, there is a separable g over k(tp

−r
) with f(xpr

) ∼= g(x)pr
, so x is

separable over k(tp
−r

). Thus any finite extension of k(t) may be regarded as a
separable extension of k(tp

−r
) for some r.

Consider the sequence Sr → Sr−1 · · · → S1 → S0 = S with each Si isomorphic
to P 1 and each map given by the Frobenius map F (t) = tp. We can pull back
the map π0 : Y0 → S0 to give maps πk : Yk → Sk. These are not given by pencils,
but are certainly families of curves. If the field generated by all coordinates of all
points blown up in the minimal resolution of Yggen is K, then by the above, K is
separable over k(tp

−r
) for some r, so the normalisation of the generic fibre of Yr

is smooth.
Shimada’s main result gives a normal form for the local behaviour at a generic

point on the singular curve in the case r = 1.

Theorem 3.1 [27] In suitable local coordinates in Y , if the above parameter r is
1, π is given at a generic point on a singular curve by either
(a) if Y1 is separable over S1, π(x, y) = xp − ym for some m > 1 prime to p;
(b) if the inseparable degree is q, π(x, y) = xp + yq + xpmy for some m > 0.

We have not succeeded in obtaining a good insight into the structure of radical
pencils. Perhaps the most natural construction is to resolve the singularities of
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the generic fibre. There are finitely many of these: one may make a base change,
extending k(t) to a field over which they (and all infinitely near points along
which blowing up is required) are well defined, so that the field extension defines
a finite map S1 → S0. Note also that geometrically, blowing up a point whose
coordinates depend on t, is perhaps best understood as taking the strict transform
of X1 ⊂ X0×S0 under the blow-up of a section of X0×S0 → S0. We can combine
this with a base change by blowing up X0×S0 along the curve consisting of pairs
(Q, t) such that Γt is singular at Q.

Eventually one must arrive at a smooth surface Y1, a map π1 : Y1 → S1, and a
collection of curves Er in Y1 consisting of all the exceptional curves arising during
the above procedure. We can call a point of S1 or S0 atypical if it is a critical value
of the projection of any of the Er, or the image of an intersection point of two
distinct curves Er. In some sense the other values should all be typical. But we
see no way to control this sequence of operations: at the least, one would need a
rather good understanding of equisingularity for the singularities deforming those
of the generic fibre. We thus restrict from now on to the conservative case.

4 Conservative pencils

We saw in §3 that conservative pencils are characterised by the property that if
all the base points of the pencil are blown up, the generic fibre becomes smooth:
this property is automatic in characteristic 0. We shall assume from now on that
this holds and that, moreover, the generic fibre is irreducible: we may then use
the results of §2.

The point of main interest to us is to define what it means for a member of
the pencil to be atypical, and to detect such members. For work over C we take
‘atypical’ to mean a member at which topological triviality of the family fails.
We seek a model which we can follow for the finite characteristic case.

The following was proved in the complex case by Lê and Weber [20] by topo-
logical arguments (although that paper was addressed to the local case, the results
are applicable globally).

Theorem 4.1 (a) (4.3, loc. cit.) The function µ(Γt) (interpreted as ∞ if Γt is
non-reduced) is an upper semi-continuous function of t; and topological triviality
holds along the set where it takes its minimum value.
(b) The complement of this set is finite, and consists of values where either Γt is
non-reduced or χ(Γt) > χ(Γggen): such values are called atypical.
(c) (4.1, loc.cit.) The value t is atypical if and only if either

(C1) Yt is singular,
(C2) t is a branch value for some dicritical exceptional curve, or
(C3) Yt contains a point of intersection of two dicritical curves.

(d) The pencil is topologically trivial over the complement of the atypical set.
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We proceed to a direct combinatorial proof, valid in all characteristics, of a
corresponding result.

Theorem 4.2 Let {Γt} be a pencil of curves in a smooth surface X such that
the generic curve Γggen is irreducible. Then χ(Γt) ≥ χ(Γggen). Equality holds if
and only if Yt,red is smooth, C2 and C3 both fail, and either Yt is reduced or Yt,red

(hence also Yggen) is smooth elliptic.

We begin the proof by finding a formula expressing the difference χ(Γt)−χ(Γggen)
as a sum of terms which we will then prove to be non-negative. A consideration
of the cases when they vanish will lead to the conclusion. As in §1.2 we blow up
all base points of the pencil to give a map π : Y → S.

We need to take care with notation. Write Yt for the special fibre. As a divisor,
we can write this as a sum Γ̃t +Et, where Et is the sum of terms corresponding to
exceptional curves (for the map Y → X) lying in the fibre Yt. We add a further
suffix red to refer to the underlying reduced curves. We write D for the union of
all dicritical curves Di in Y , and define the Q-divisor DQ to be the sum over i of
terms p−ai [Di], where pai is the degree of inseparability of the projection Di → S.

Lemma 4.3 We have χ(Γt)− χ(Γggen) =
∑6

1 Nr, where

N1 = 2(χ(OYt,red
)− χ(OYt)), N2 = µ(Γ̃t,red),

N3 = Γ̃t,red.Et,red −#(Γ̃t ∩ Et), N4 = Γ̃t,red.Et,red − χ(OEt,red
),

N5 = #(D ∩ Et)− χ(OEt,red
), N6 = Yt.DQ −#(Yt ∩D).

Proof By (5), χ(OYt,red
) = χ(OΓ̃t,red

) + χ(OEt,red
) − Γ̃t,red.Et,red. Since also

χ(OYggen) = χ(OYt),

χ(OΓ̃t,red
)− χ(OYggen) =

(
χ(OYt,red

)− χ(OYt)
)
− χ(OEt,red

) + Γ̃t,red.Et,red. (15)

Now χ(Γ̃t,red) = 2χ(OΓ̃t,red
) + µ(Γ̃t,red), while the generic fibre is smooth, so

χ(Γ̃t,red)− χ(Yggen) = 2
(
χ(OΓ̃t,red

)− χ(OYggen)
)

+ µ(Γ̃t,red). (16)

On the other hand, the difference χ(Γ̃t)−χ(Γt) can be evaluated by counting
the numbers of points in preimages under Γ̃t → Γt. This map is bijective outside
the set B of base points of the pencil. We must thus count the number of points
of Γ̃t lying over the points of B. These are the points of Γ̃t which also lie on one
or more exceptional curves. These curves may be dicritical or contained in the
fibre Yt, and hence in Et. Thus we have χ(Γ̃t)−χ(Γt) = #(Γ̃t ∩ (D ∪Et))−#B.
Here we expand #(Γ̃t ∩ (D ∪ Et)) = #(Γ̃t ∩D) + #(Γ̃t ∩ Et)−#(Γ̃t ∩D ∩ Et).
We proceed similarly with the generic fibre, save that Egen is empty. Comparing
these shows that χ(Γt)− χ(Γggen) is equal to

(χ(Γ̃t)−χ(Yggen))+(#(Yggen∩D)−#(Γ̃t∩D))−#(Γ̃t∩Et)+#(Γ̃t∩D∩Et). (17)
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The definition of DQ was so framed that for each dicritical curve Di, its intersec-
tion number with the fibre at a generic point is pai so the intersection number
DQ.Yggen is 1. Hence DQ.Yggen = #(D ∩ Yggen). Since Yt is linearly equivalent to
Yggen, we have Yggen.D = Yt.D and so

#(Yggen ∩D) = Yggen.DQ = Yt.DQ. (18)

Substituting the right hand side of (15) for χ(OΓ̃t,red
) − χ(OYggen) in (16), and

substituting the result and (18) in (17) gives an expression for χ(Γt) − χ(Γggen)
which is the sum of N1, N2, N3, N4 and

−χ(OEt,red
)−#(Γ̃t ∩D) + #(Γ̃t ∩D ∩ Et) + Yt.DQ.

But since #(D ∩ Yt) = #(D ∩ Γ̃t) + #(D ∩Et)−#(D ∩ Γ̃t ∩Et), this reduces to
N5 + N6. 2

We next show that each of the terms N1-N6 is non-negative. Indeed, the
assertion for N1 was proved in Proposition 2.4. Non-negativity of N2 and N3 is
immediate, and for N6 follows since at each intersection point of Yt with any Di,
the intersection number is the local degree of the projection of Di on S, which is
a multiple of pai .

Since the exceptional curves are constructed by a sequence of blowings-up
of points in a smooth surface, they (or rather, the dual graph) form a forest
with normal crossings. In particular, the curves Et contained in Yt form a forest,
which is a union of trees T . Each tree Tred consists of smooth rational curves with
normal crossings, thus each having χ(O) = 1 and each edge of the dual graph
corresponds to an intersection number 1. Since the number of vertices exceeds
that of edges by 1, it follows from (5) that χ(OTred

) = 1.
As Yt is connected, and T is not the whole fibre, it must meet the union of

the others, hence T ∩ Γ̃t is non-empty. Thus Tred.Γ̃t,red − χ(OTred
) ≥ 0, and non-

negativity of N4 follows by summing over trees T . We also see that non-negativity
of N5 will follow if each tree T intersects D: we address this next.

We recall from §1.1 the notion ‘aβ lies above aα’, which gives a partial order
on the set of infinitely near points; we say that a set J of infinitely near points is
convex if aα < aβ < aγ and aα ∈ J , aγ ∈ J imply aβ ∈ J .

Lemma 4.4 For each T , every maximal component E of T meets D. Hence
T ∩D 6= ∅.

Proof Let Em be a component of T which is maximal in the above partial
order. Since em is a base point, in the surface Xm where Em has just been
created Em meets Yggen, in P , say. This cannot lie on any other component of T
since otherwise blowing it up would disconnect T which, by hypothesis, remains
connected in Y .

Consider the sequence of blowings-up at points of Em over P in higher surfaces
in the sequence until the corresponding point ceases to lie on Yggen. This produces
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a chain of exceptional curves A1, A2, . . . , Ak with each intersecting Em at P at
its first appearance, so that no further blowing up takes place over P . Since T
is a connected component, Ak cannot lie in the fibre Yt: nor can it lie in another
fibre, since this is disjoint from Yt. Hence Ak is dicritical, and the result follows.
2

This completes the proof of the inequality in Theorem 4.2. We next seek to
characterise the cases of equality.

Lemma 4.5 Suppose equality holds in Theorem 4.2. Then
(i) Each component of Yt,red is smooth, and Yt,red has normal crossings. Each

component T of Et meets Γ̃t in just one point. Γ̃t has just one component, and
the dual graph of Yt is a tree.

(ii) If Yt is not reduced, it has just one component which is smooth, elliptic,
and of multiplicity a power of p.

(iii) Neither C2 nor C3 holds. Each tree T meets D in just one point.
(iv) For each T , the set of components of T is totally ordered and convex.

Proof (i) As N2 = 0 , Γ̃t,red is smooth (and components of Et,red are smooth
anyway); as N4 = 0 , it follows from the above discussion that for each component
T of Et we have Tred.Γ̃t,red = 1, so T meets Γ̃t in just one point, transversely. Thus
Yt,red has normal crossings. Since Yt is connected, it follows that Γ̃t is connected,
so has just one component, and the dual graph of Yt is a tree.

(ii) Suppose Yt non-reduced. Since N1 = 0 , it follows from Proposition 2.4
that if all exceptional curves of the first kind in Yt are collapsed in turn we obtain
a fibre of Kodaira type mIb for some m ≥ 2, b ≥ 0. If b ≥ 1, the dual graph
is not a tree, but contains a cycle (of length b). Blowing up points to produce
exceptional curves will still leave a cycle (perhaps of greater length). Hence this
case does not occur.

Since b = 0, there is a component of Zt, hence of Yt, of genus 1: this component
must be Γ̃t. Since by Lemma 1.2 no other component may be exceptional of the
first kind, Yt just has one component C. Finally, if C has multiplicity m as
component of the fibre, and D is dicritical of inseparable degree pi, the local
intersection number at any point P ∈ C ∩D satisfies pi = D.Yt = mD.C, so m
is a power of p.

(iii) Next we show that N6 > 0 if and only if either C2 or C3 holds. Consider
a point P of intersection of Yt with a dicritical Di. The intersection Di.Yt is pai

if we have no ramification at t, otherwise is greater. Thus if C2 holds, the point
P contributes > 1 to Yt.DQ, and this is also true if C3 holds and we have two
dicritical curves through P . The converse follows by the same argument.

The vanishing of N5 shows that each T meets D in just one point.
(iv) Since the partial order on the set of exceptional curves gives this the

structure of a 1-way tree, if T is not a chain it has more than one maximal
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element. But the proof of Lemma 4.4 shows that each maximal element meets
D, so then #(T ∩D) ≥ 2, contradicting the above.

Let T denote the convex cover of T - i.e. the set of all exceptional curves C
such that for some A, B ∈ T we have A < C < B. Since each blow-up produces
a component intersecting the union of the preceding ones, the union of all curves
in T is connected. Thus if it includes any components not in T , at least one
of these - necessarily dicritical - will meet T . This intersection of T with D is
distinct from the one constructed in Lemma 4.4 since this dicritical precedes Em

while the other follows it. Thus again we have a contradiction. 2

Now suppose that Yt,red is smooth and C2 and C3 fail. Since Yt,red is smooth
it is irreducible and Γ̃t,red is smooth. Thus N2 = 0 and Et is empty, so N3, N4

and N5 all vanish. As we have just seen, since C2 and C3 fail, N6 = 0. Now N1

vanishes if Yt is reduced, and also if Yt,red is smooth elliptic, so in these cases we
have χ(Γt) = χ(Γggen).

To complete the proof of Theorem 4.2, it remains to show that in the case of
equality Yt,red is smooth, i.e. Et is empty. We will assume this false, and aim for
a contradiction.

Lemma 4.6 Under the conditions of Lemma 4.5, Et = ∅.

Proof Suppose not, then by Lemma 4.5, Yt is reduced. Choose a component T
of Et such that no exceptional curve in Et lies above the highest curve Vm in T (if
there is more than one highest curve in T , then by Lemma 4.4, #(T ∩D) ≥ 2).
Write Yt = T + Wt.

Since (by Lemma 4.5) T is convex, in the chain of blowings-up that produces
Y , the components V1, . . . , Vm of T appear consecutively, so we have surfaces
X0, . . . , Xm say. There is just one base point P , say in T in Xm, and it lies
in Vm (this follows since #(T ∩ D) = 1). Resolving this till there is no base
point on Vm gives the chain D1, D2, · · · , Dk of curves constructed in the proof of
Lemma 4.4 (all now dicritical since Vm is the highest vertical curve). If Z0 = Xm,
these appear in turn on surfaces Z1, . . . , Zk. Any further blowing up to produce
Y takes place at points not on T and produces further dicritical curves.

We will use the same letter to denote the image of a curve in Y in any of
these intermediate surfaces, but avoid ambiguity by writing (A.B)Z to denote
the intersection number of A and B considered as curves in the surface Z. Also
if a blow up at a point in one surface produces an exceptional curve in the
next, we denote the point by the same letter as the curve, but in lower case,
e.g. Di → di, and then mdi

(A) denotes the multiplicity of the curve A at the
point di in the lower surface. Recall from § 1.1 that if A, B are curves through
a smooth point e on a surface X, and blowing e up produces an exceptional
curve E and strict transforms A, B in Z, then me(A) = (E.A)Z and (A.B)X =
me(A)me(B) + (A.B)Z .

22



Blowing up v1 produces a vertical curve. Hence the multiplicity at v1 of the
member Yt of the pencil strictly exceeds the multiplicity of Yggen. We shall obtain
a contradiction to this inequality.

We have mdi
(Yggen) − mdi

(Wt) = (Di.(Yggen − Wt))Zi
. As Yggen and Yt are

linearly equivalent, and Yt −Wt = T , this equals (Di.T )Zi
. But the only compo-

nent of T meeting Di in Zi is Vm, and as Vm is smooth in Zi−1 this intersection
number is 1.

Since the only intersections of Vm with Yggen or Wt in Zi−1 occur at di, we
have

(Vm.Yggen − Vm.Wt)Zi−1
= mdi

(Yggen)−mdi
(Wt) + (Vm.Yggen − Vm.Wt)Zi

,

so adding up,

(Vm.Yggen − Vm.Wt)Z0
= k + (Vm.Yggen − Vm.Wt)Zk

.

But in Zk, Vm is disjoint from Yggen and meets Wt transversely in just one point.
Thus the right hand side here is equal to k − 1. The left hand side is equal (by
the same argument) to Vm.(Yt −Wt) = Vm.T . This is equal to r − 1 where r is
the number of other components of T meeting Vm. In particular, if T has just
one component Vm we obtain 0 = r = k, contradicting the fact that there is at
least one dicritical meeting Vm.

Until Vm has been blown down, none of the curves not in T meet Vm−1, so
none of the corresponding infinitely near points are proximate to vm−1. It follows
from (2) that each component of Yggen and Wt has the same multiplicity at vm−1

as at vm, and hence that

mvm−1(Yggen)−mvm−1(Wt) = mvm(Yggen)−mvm(Wt) = k − 1 ≥ 0. (19)

In Xm = Z0 none of the components of T other than Vm meet any component
of Yggen or Wt outside T . Thus any such component which passes through v1 must
also pass through vm, and no further infinitely near point of either Yggen or Wt

is proximate to vm−1. We may thus apply Lemma 1.1 to see that there are non-
negative numbers a, b, determined solely by the proximity relations, such that for
any component A of these curves through vm, mv1(A) = amvm−1(A) + bmvm(A).

We apply this to Yggen on one hand and to Wt on the other. It then follows
from (19) that mv1(Yggen) − mv1(Wt) = (a + b)(k − 1) ≥ 0. However, since
in X0 all components of T have been blown down, mv1(Yt) = mv1(Wt). Hence
we have mv1(Yggen) ≥ mv1(Yt), contradicting the fact that V1 is vertical. This
contradiction establishes the result. 2

We have proved a little more than asserted in Theorem 4.2: we see from
Lemma 4.5 that if equality holds and Yt = mC is non-reduced (so C is smooth
elliptic), and if also the pencil has base points and hence Y contains dicritical
curves, the degree of inseparability of each of these must be divisible by m.
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