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ON RATIONAL CUSPIDAL PROJECTIVE PLANE CURVES

J. FERNÁNDEZ DE BOBADILLA, I. LUENGO-VELASCO,
A. MELLE-HERNÁNDEZ and A. NÉMETHI

1. Introduction.

Let C be an irreducible projective plane curve in the complex projective space P2

with singular points {pi}ν
i=1. From C one can extract the following information: its

degree d, and the local embedded topological types Ti of the local singular germs
(C, pi) ⊂ (P2, pi). It is a very interesting, and still open problem, to characterize
those collections of local embedded topological types {Ti}ν

i=1 (without fixing the
positions of the points pi) which can be realized by such a projective curve C of
degree d. This remarkable problem is not only important for its own sake, but it is
also connected with crucial properties, problems and conjectures in the theory of
open surfaces.

For instance, the open surface P2 \ C is Q-acyclic if and only if C is a rational
cuspidal curve. On the other hand, the rigidity conjecture proposed by Flenner and
Zaidenberg in [13] (and supported by many examples, see [9], [13], [14], [15]) says
that every Q-acyclic affine surfaces Y with logarithmic Kodaira dimension κ̄(Y ) = 2
must be rigid. (E.g., if C has at least three cusps then κ̄(P2 \C) = 2, cf. [46].) This
conjecture for Y = P2 \ C would imply the projective rigidity of the curve C in
the sense that every equisingular deformation of C in P2 would be projectively
equivalent to C.

Among other interesting related open problems we mention: every rational cus-
pidal curve can be transformed by a Cremona transformation into a line (this is
the Coolidge-Nagata problem, see [6],[26]); or, the determination of the maximal
number of cusps among all the rational cuspidal plane curves (proposed by F. Sakai
in [16]) – this number is expected to be small (the maximal known by the authors
is four). In a recent paper by K. Tono [40] it is proved that the maximal number
is strictly less than nine. Finally, we also list the conjectured numerical inequality
(2.3) [34] of S.Yu. Orevkov.

The first-mentioned ‘characterization problem’ (on the realization of prescribed
topological types of singularities) has a long and rich history providing many inter-
esting compatibility properties connecting local invariants of the germs {(C, pi)}i

with some global invariants of C (like its degree, or the log-Kodaira dimension of
P2 \C, etc.). Most of the compatibility properties are mere identities or inequalities
(see e.g. the Matsuoka-Sakai inequality, or Orevkov’s sharp inequality, both being
consequences of the logarithmic version of the Bogomolov-Miyaoka-Yau inequality).
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The more complex Varchenko’s compatibility property is provided by the semicon-
tinuity of the spectral numbers of isolated hypersurface singularities, and it consists
of a finite set of inequalities.

Our goal is to propose a new compatibility property – valid for rational cuspidal
curves C – which seems to be rather powerful (see section 3 for some compar-
ison with some classical criterions). Its formulation is surprisingly very elemen-
tary. Consider a collection (C, pi)

ν
i=1 of locally irreducible plane curve singularities

(i.e. cusps), let ∆i(t) be the characteristic polynomials of the monodromy action
associated with (C, pi), and ∆(t) :=

∏

i ∆i(t). Its degree is 2δ, where δ is the
sum of the delta-invariants of the singular points. Then ∆(t) can be written as
1 + (t − 1)δ + (t − 1)2Q(t) for some polynomial Q(t). Let cl be the coefficient of
t(d−3−l)d in Q(t) for any l = 0, . . . , d− 3.

Conjecture 1. Let (C, pi)
ν
i=1 be a collection of local plane curve singularities,

all of them locally irreducible, such that 2δ = (d−1)(d−2) for some integer d. Then
if (C, pi)

ν
i=1 can be realized as the local singularities of a degree d (automatically

rational and cuspidal) projective plane curve of degree d then

cl ≤ (l + 1)(l + 2)/2 for all l = 0, . . . , d− 3. (∗l)

In fact, the integers Nl := cl − (l+1)(l+2)/2 are symmetric: Nl = Nd−3−l; and
N0 = Nd−3 = 0 automatically. Moreover, there is a surprising phenomenon in the
above conjecture:

If ν = 1, then the conjecture is true if and only if in all the inequalities (∗l), in
fact, one has equality (cf. Theorem 3).

The conjecture can be reformulated in the language of the semigroups of the
germs (C, pi) (and the degree d) as well. E.g., if ν = 1, then collection of vanishings
of all the coefficients Nl can be described by a very precise and mysterious distri-
bution of the elements of the semigroup of the unique singular point with respect
to the intervals Il := ( (l − 1)d, ld ] (cf. section 3):

If ν = 1, the conjecture predicts that there are exactly min{l + 1, d} elements of
the semigroup in Il for any l > 0.

The idea (and the main motivation) of the above conjecture came from the
Seiberg-Witten invariant conjecture formulated for normal surface singularities by
Nicolaescu and the forth author [29], respectively from the set of counterexamples
for this conjecture provided by superisolated singularities [22] found by the last
three authors. For the completeness of the presentation, this is described in short
in section 2, but we emphasize that the present article is independent of the tech-
niques of [29], in particular involves no Seiberg-Witten theory. (On the other hand,
we are witnesses of a mysterious connection whose deeper understanding would be
a wonderful mathematical goal.)

As supporting evidence, in the body of the paper we prove the following result:

Theorem 1. If the logarithmic Kodaira dimension κ̄ := κ̄(P2 \C) is ≤ 1, then
the above conjecture is true. In fact, in all these cases Nl = 0 for any l = 0, . . . , d−3
(regardless of ν).
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The proof of Theorem 1 consists of many steps. Its structure is the following.

(a) If κ̄ = −∞ then ν = 1 by [46]. Moreover, all these curves are classified by
H. Kashiwara [19]. The family contains as an important subfamily the Abhyankar-
Moh-Suzuki (AMS) curves.

In this case, our proof runs as follows: first we verify the vanishing of the co-
efficients Nl for the AMS curves (section 4) – this corresponds to the FI family
in Kashiwara’s classification. The case of the other subfamily (the FII curves) is
treated in section 6. The proof is based on an induction where the starting point
is given by some unicuspidal curves which have only one Puiseux pair. This case is
completely resolved in section 5.

(b) The case κ̄ = 0 cannot occur by a result of Sh. Tsunoda [41], see also the
paper by Orevkov [34].

(c) If κ̄ = 1 then by a result of Wakabayashi [46] one has ν ≤ 2. In the case ν = 1,
K. Tono writes the possible equations of the curves [39]. (Notice that Tsunoda’
classification in [42] is incomplete.) We verify the conjecture for them in section
7. On the other hand, by another result of Tono [38], the case ν = 2 corresponds
exactly to the Lin-Zaidenberg bicuspidal rational plane curves. For them we verify
the conjecture in section 8.

We wish to emphasize that in the process of the verification of the conjecture,
in fact, we list all the possible local topological types (e.g. Eisenbud-Neumann splice
diagrams) of local plane curve singularities, together with the degrees d, which can
be geometrically realized with κ̄ ≤ 1. But, from the point of view of the proof of
Theorem 1, this information is far to be enough to verify the conjecture. Even if one
knows the local topological types (e.g. the local resolution graphs, or even better,
the generators of the corresponding semigroups), one needs sometimes additional
rather involved arithmetical arguments to complete the proof.

It is important to notice that in the κ̄ = 2 case there are (infinitely many, and for
arbitrarily large d) examples when not all the coefficients Nl vanish. The complete
picture for curves with d ≤ 6 is provided in section 2, together with some additional
introductory examples with larger d. The following list provides those cases which
are verified in the present article.

Theorem 2. If κ̄ = 2, then in the following cases the conjecture is true:

(a) d ≤ 6;
(b) C is unicuspidal with one Puiseux pair (see section 5);
(c) Orevkov’s curves C4k and C∗

4k [34] (see section 9).
(d) d is even, ν = 2, and the multiplicity sequence is [d− 2], [2d−2] (see 2.4).

See also Remark 1, valid for ν = 1.

2. The Main Conjecture. Motivation and first comments.

For the convenience of the reader, we recall some notations and classical proper-
ties of plane curve singularities, which will be intensively used in the sequel.
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2.1. Invariants of germs of irreducible plane curve singularities.

To encode the topology of a germ of an irreducible plane curve singularity (C, 0) ⊂
(C2, 0) several sets of invariants can be used: Puiseux pairs, Newton pairs, (minimal)
embedded resolution graph, Eisenbud-Neumann splice diagram, semigroup, etc. We
mainly use the Eisenbud-Neumann splice diagram (cf. [7], page 49). If the germ
(C, 0) has g Newton pairs {(pk, qk)}g

k=1 with gcd(pk, qk) = 1 and pk ≥ 2 and
qk ≥ 2 (and by convention, q1 > p1), define the integers {ak}g

k=1 by a1 := q1 and
ak+1 := qk+1 + pk+1pkak for k ≥ 1. Then its Eisenbud-Neumann splice diagram
decorated by the numerical data {(pk, ak)}g

k=1 has the following shape:

s s s s s

s s s s

C̃
a1 a2 ag−1 ag

p1 p2 pg−1 pg

. . . -

The characteristic polynomial ∆(C,0)(t) of the monodromy acting on the first
homology of the Milnor fiber of the singularity can be computed by A’Campo’s
formula [2] from the splice diagram. If we define

βk := akpkpk+1 . . . pg for 1 ≤ k ≤ g;
β̄0 := p1p2 . . . pg;
β̄k := akpk+1 . . . pg for 1 ≤ k ≤ g,

then ∆(C,0) is given by:

∆(C,0)(t) =
(t− 1)

∏

1≤k≤g(t
βk − 1)

∏

0≤k≤g (tβ̄k − 1)
.

The polynomial ∆(C,0) is a complete (embedded) topological invariant of the
germ (C, 0) ⊂ (C2, 0), similarly as the semigroup Γ(C,0) ⊂ N generated by all the
possible intersection multiplicities i({h = 0}, C) at 0 for all h ∈ O(C2,0). The degree
2δ(C,0) of ∆(C,0) is the conductor of the singularity, where the delta-invariant δ(C,0)

is the cardinality of the finite set N \ Γ(C,0).
By [17], ∆(C,0)(t) = (1 − t) · L(t), where L(t) :=

∑

k∈Γ(C,0)
tk is the Poincaré

series of Γ(C,0). In fact, the minimal set of generators of Γ(C,0) consists of the g+ 1
elements β̄i (0 ≤ i ≤ g). It is also known that each element γ ∈ Γ(C,0) can be
represented in a unique way in the form γ = k0β̄0 +

∑

1≤j≤g kj β̄j with k0 ≥ 0 and
0 ≤ kj ≤ pj − 1 for 1 ≤ j ≤ g, see [36].

2.2. Motivation. The Seiberg-Witten invariant conjecture (SWC).

In [29] L. Nicolaescu and the forth author formulated the following conjecture
(as a generalization of the “Casson invariant conjecture” of Neumann and Wahl
[32]):

If the link of a normal surface singularity (X, 0) is a rational homology sphere
then the geometric genus pg of (X, 0) has an “optimal” topological upper bound.
Namely,

pg ≤ sw(M) − (K2 + s)/8. (SWC)
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Moreover, if (X, 0) is a Q-Gorenstein (e.g. hypersurface) singularity then in (SWC)
the equality holds.

Here, sw(M) is the (topological, or ‘modified’) Seiberg-Witten invariant of the
link M of (X, 0) associated with its canonical spinc structure, K is the canonical
cycle associated with a fixed resolution graph G of (X, 0), and s is the number of
vertices of G (see [29] for more details).

The (SWC)-conjecture was verified successfully for many different families, see
e.g. [28, 29, 30, 31]. But the last three authors in [22] found some counterexam-
ples based on superisolated singularities. This class “contains” in a canonical way
the theory of complex projective plane curves, a fact which is crucial in the next
discussion.

Hypersurface superisolated singularities were introduced in [21] by the second
author and achieved the reputation of being a distinguished class of singularities
and source of interesting examples and counterexamples. A hypersurface singularity
f : (C3, 0) → (C, 0), f = fd + fd+1 + . . . (where fj is homogeneous of degree j)
is superisolated if the projective plane curve C := {fd = 0} ⊂ P2 is reduced with
isolated singularities {pi}ν

i=1, and these points are not situated on the projective
curve {fd+1 = 0}. In this case the embedded topological type (and the equisingular
type) of f depends only on the curve C. Notice also that the link of f is a rational
homology sphere if the curve C is rational and cuspidal (i.e. if all the germs (C, pi)
are locally irreducible). In the sequel we also will assume these two facts.

In [22] the authors have shown that some hypersurface superisolated singularities
with ν = #Sing(C) ≥ 2 do not satisfy the above Seiberg-Witten invariant conjec-
ture. Moreover, in all the counterexamples pg > sw(M) − (K2 + s)/8 (contrary to
the inequality predicted by the general conjecture 2.2 !). On the other hand, even
after an intense search of the existing cases, the authors were not able to find any
counterexample with ν = 1. (In fact, one of the goal of the present article is to
explain, at least partially, these phenomenons, cf. Theorem 3.)

In the next paragraphs, we plan to reformulate (SWC) relating with an even
deeper conjectural property. We denote by ∆i the characteristic polynomial of
(C, pi) ⊂ (P2, pi), set ∆(t) :=

∏

i ∆i(t) and 2δ := deg ∆(t). By the rationality
of C one has (d− 1)(d− 2) = 2δ. Clearly, δ is the sum of the delta-invariants of the
germs (C, pi)

ν
i=1. Notice also that (see e.g. [30] (4.3)):

∆(1) = 1 and ∆′(1) = δ. (1)

In the next discussion it is convenient to introduce the polynomials P and Q by

∆(t) = 1 + (t− 1)P (t) = 1 + (t− 1)δ + (t− 1)2Q(t).

The corresponding coefficients are denoted by

P (t) =

2δ−1
∑

l=0

akt
k, and Q(t) =

∑

l-d

blt
l +

d−3
∑

l=0

clt
(d−3−l)d. (2)

The following definition helps to describe the properties of these coefficients.

Definition/Lemma 1. We say that a polynomial D(t) =
∑

l αlt
l has the neg-

ative distribution property if
∑

0≤l≤k αl ≤ 0 for any k ≥ 0. If D(t) = N(t)(1 − t)
for some other polynomial N(t), then D(t) has the negative distribution property
if and only if all the coefficients of N(t) are nonpositive.
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For the superisolated singularity (X, 0) := {f = 0} those invariants which appear
in the formula (SWC) (cf. 2.2) are computed in [22] as follows (here sw(M) is
computed by the Reidemeister-Turaev torsion normalized by the Casson-Walker
invariant) :



















K2 + s = −(d− 1)(d2 − 3d+ 1); pg = d(d − 1)(d− 2)/6; and

sw(M) =
1

d

∑

ξd=16=ξ

∆(ξ)

(ξ − 1)2
+

1

2d
∆(t)′′(1) − δ(6δ − 5)

12d
.

(3)

Consider now the (a priori) rational function

R(t) :=
1

d

∑

ξd=1

∆(ξt)

(1 − ξt)2
− 1 − td

2

(1 − td)3
. (4)

Proposition 1. With the above notations one has:

(a) R(t) can be written in the form D(td)/(1 − td), where

D(t) = (d− 2)t+ (d− 3)t2 + . . .+ td−2 −
2δ−1
∑

k=0

akt
dk/de

=
∑

k≥0

(1 − ak)tdk/de − 1 − td

(1 − t)2
.

(b) In (a), some combinations of the coefficients {ak}k give no contribution in
R(t). Indeed, if one writes P (t) = δ+(t−1)Q(t) as above (cf. (2)), then the
{bl}l coefficients have no effect in R. More precisely, R(t) = N(td), where

N(t) =
d−3
∑

l=0

(

cl −
(l + 1)(l + 2)

2

)

td−3−l.

(c) N(t) is a symmetric polynomial (i.e. N(t) = td−3 · N(1/t)) with integral
coefficients and with N(0) = 0.

(d)

R(1) = sw(M) − K2 + s

8
− pg .

In particular, the following facts also hold:
(e) R(t) ≡ 0 if and only if D(t) ≡ 0 if and only if N(t) ≡ 0. In this case

evidently (SWC) is true (with equality).
(f) D(t) has the negative distribution property if and only if all the coefficients of

R(t) (or, equivalently, of N(t)) are nonpositive. In this case pg ≥ sw(M)−
(K2 + s)/8.

Proof. Write ∆(t)/(1 − t)2 = 1/(1− t)2 − P (t)/(1− t). By an elementary com-
putation

1

d

∑

ξd=1

1

(1 − ξt)2
=

1 + (d− 1)td

(1 − td)2
.
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For the second contribution consider the monomials akt
k of P (t). Express any fixed

k in the form k = dn+ r with r = 1, 2, . . . , d. Then

1

d

∑

ξd=1

ξktk

1 − ξt
=
tk

d

∑

ξd=1

ξr

1 − ξt
=

tk

d(1 − td)

∑

ξd=1

( 1+ ξt+ . . .+(ξt)d−1)ξr =
td(n+1)

1 − td
.

Notice also that

1 − td

(1 − t)2
= 1 + 2t+ . . .+ (d− 1)td−2 + d(td−1 + td + . . .),

and
1 + (d− 1)t

(1 − t)
= 1 + d(t+ t2 + . . .) =

∑

k≥0

tdk/de,

which ends the proof of (a). The proof of (b) is similar. (c) follows from (b) and
from (4) using the fact that ∆ is monic and symmetric. For (d) write

R(t) =
1

d

∑

ξd=16=ξ

∆(ξt)

(1 − ξt)2
+

(1 + t+ . . .+ td−1)3∆(t) − d(1 + t+ . . .+ td
2−1)

d(1 − t)2(1 + t+ . . .+ td−1)3
.

Then compute limt→1R(t) by the L’Hospital rule, then use (1) and (3).

The starting point of the present article is the following conjecture which is indeed
a reformulation of Conjecture 1.

Conjecture 2. Assume that C is a rational cuspidal projective plane curve
as above. Then the property (f) of Proposition 1 is always true. Namely, N(t) (or
equivalently, R(t)) has only nonpositive coefficients. In other words, D(t) has the
negative distribution property.

In fact, one can ask about the stronger property (e) in Proposition 1, i.e. about
the vanishing of N(t) (or equivalently, of R(t)). Obviously, this does not hold in
general: all the examples of [22] with pg > sw(M)− (K2 + s)/8 have R(t) 6≡ 0 (cf.
also with 2.3). On the other hand, using Proposition 1(d) one gets the following:
if one can verify independently the inequality pg ≤ sw(M) − (K2 + s)/8 then the
above Conjecture 2 is true if and only if, in fact, R(t) ≡ 0. This is the case, e.g., if
ν = 1:

Theorem 3. Assume that C is an unicuspidal rational curve. Then Conjecture
2 is true if and only if R(t) is identical zero.

We will give two proofs of this theorem. The first one, given below, is based on a
geometrical result which reveals the connection of Conjecture 2 with links of surface
singularities and topological invariants of 3-manifolds. The second (see section 3.4)
is rather elementary and surprising.

Proof. Recall that a good resolution graph of a normal surface singularity is
called AR (almost rational) if the graph has at least one vertex with the following
property: if one replaces the decoration (self-intersection) of the corresponding ver-
tex by a smaller (more negative) integer then one gets a rational graph (in the sense
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of Artin); for more details see [28]. The point is that if a normal surface singularity
with rational homology sphere link admits an AR good resolution graph then it
satisfies the inequality pg ≤ sw(M) − (K2 + s)/8, cf. [28] (9.6). [Here we have to
mention that [28] verifies the inequality for the Ozsváth-Szabó ‘Euler-characteristic’
swOSZ(M), but, by [35], this agrees with the Reidemeister-Turaev sign refined tor-
sion normalized by the Casson-Walker invariant, used here and in [29].] Therefore,
it is enough to verify that {f = 0} admits an AR good resolution graph. Recall that
the minimal good resolution graph G of {f = 0} can be obtained from the minimal
good embedded resolution graph Γ of the unique singular point (C, p) of C when
gluing an extra vertex w by a unique edge to the unique (−1) vertex v of Γ. The
decoration of w (as any decoration) is negative, say (−r), its precise value is not
essential here – for details see e.g. [22]. Now, let Gs be the graph obtained from G
by changing the decoration (−1) of v by (−2). Then Gs is the resolution graph of
a sandwiched singularity. Indeed, consider again Γ. Blow up a generic point on the
curve corresponding to v, and then blow up r − 1 generic points on the new curve.
In this way one gets a non-minimal resolution graph of (C, p) which contains the
graph Gs as a subgraph.

See also Example 3 for some additional comments about Theorem 3.

2.3. Examples (d small; ν ≥ 1).

Below, any singular point (C, pi) will be identified by its multiplicity sequence.
Since the number of occurrences of the multiplicity 1 in the multiplicity sequence
equals the last multiplicity greater than 1, we omit the multiplicity 1: we denote
such a sequence by [m1, . . . ,ml] where m1 ≥ m2 ≥ . . . ≥ ml > ml+1 = 1 for a
suitable l ≥ 1. In fact, we will write [m̂1r1

, . . . , m̂krk
] for a multiplicity sequence

which means that the multiplicity m̂i occurs ri times for i = 1, . . . , k. For example,
[42, 23] means [4, 4, 2, 2, 2, 1, 1].

For the classification of the cuspidal rational curves with degree d ≤ 5, see e.g.
the book of Namba [27]; for the classification of multiplicity sequences of rational
cuspidal plane curves of degree 6 see e.g. Fenske’s paper [8].

If d = 3, then C has a unique singularity of type [2]. If d = 4, then there are four
possibilities; the corresponding multiplicity sequences of the singular points are [3];
[23]; [22], [2] and [2], [2], [2]. By a verification (or by Proposition 1(c)), in all these
cases N(t) ≡ 0, hence the conjecture is true.

d ν type of cusp −N(t)

5 1 [4] 0
5 1 [26] 0
5 2 [3, 2] , [22] 0
5 2 [3] , [23] 2t
5 2 [22] , [24] 2t
5 3 [3] , [22] , [2] 2t
5 3 [22] , [22] , [22] 6t
5 4 [23] , [2] , [2], [2] 8t

d ν type of cusp −N(t)

6 1 [5] 0
6 1 [4, 24] 0
6 1 [33, 2] 0
6 2 [33] , [2] 0
6 2 [32, 2] , [3] 0
6 2 [32] , [3, 2] 0
6 2 [4, 23] , [2] 0
6 2 [4, 22] , [22] 0
6 2 [4] , [24] t + t2

6 3 [4] , [23] , [2] 0
6 3 [4] , [22] , [22] 0

Table 1. Rational cuspidal curves of degrees 5 and 6
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Table 2. Rational cuspidal curves of degree 7

reference d ν type of cusp −N(t)

x6z + y7 7 1 [6] 0
x5z2 + y7 7 2 [5, 22] , [23] 0
x4z3 + y7 7 2 [4, 3] , [32] 0

[8] 7 2 [5] , [25] 2t + 2t2 + 2t3

[8] 7 2 [4, 23] , [32] t + 2t2 + t3

[8] 7 2 [4, 22] , [32, 2] 2t + 2t2 + 2t3

[8] 7 2 [4] , [33] 2t + 2t2 + 2t3

[15] 7 3 [4, 22] , [32] , [2] 3t + 4t2 + 3t3

[14] 7 3 [5] , [24] , [2] 3t + 3t3

[14] 7 3 [5] , [23] , [22] 3t + 3t3

For d = 5 and d = 6 Table 1 shows all the possible multiplicity sequences together
with the polynomials N(t). For all these cases the conjecture is also true.

For d = 7 there is no complete classification (known by the authors). Table 2
shows some examples (the first column provides either a possible equation, or the
reference where the corresponding curve has been constructed).

Here the first example is of Abhyankar-Moh-Suzuki type, while the next two of
Lin-Zaidenberg type, cf. with the next sections.

2.4. Example (d large).

Examples with arbitrarily large d and with non-vanishing R(t) (but still satisfying
the conjecture) exist. E.g., if C has two cusps of types [d− 2], [2d−2] (see e.g. [8]),
and d is even, then

−N(t) =

d
2−2
∑

k=1

k(tk + td−3−k).

It is instructive (and sometimes rather mysterious) to verify our conjecture for the
other families listed e.g. in Fenske’s article [8].

Theorem 1 has the following immediate consequence:

Corollary 1. Let f = fd + fd+1 + . . . : (C3, 0) → (C, 0) be a hypersurface su-
perisolated singularity with κ̄(P2\{fd = 0}) < 2. Then the Seiberg-Witten invariant
conjecture (cf. [29], see 2.2 here) is true for (X, 0) = ({f = 0}, 0).

It is a big question for the authors: what is the (conceptual) connection between
the log Kodaira dimension (of what?) with the general conjecture 2.2 ?

3. ν = 1 revisited. Comparison with other criterions.

Assume now that ν = 1, and write Sing(C) = {p}. Recall that the characteristic
polynomial ∆ of (C, p) ⊂ (P2, p) is a complete (embedded) topological invariant of
this germ, similarly as the semigroup Γ(C,p) ⊂ N, see 2.1. In the next discussion we
will replace ∆ by Γ(C,p).

Recall, that by [17], ∆(t) = (1−t)·L(t), where L(t) =
∑

k∈Γ(C,p)
tk is the Poincaré
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series of Γ(C,p). Since P (t) was defined by the identity ∆(t) = 1 − P (t)(1 − t), one
gets L(t) + P (t) = 1/(1− t) =

∑

k≥0 t
k. In particular, P (t) =

∑

k∈N\Γ(C,p)
tk.

We let the reader to verify that Proposition 1 implies the following facts (cf. also
with Theorem 3).

3.1. Fact I.

If ν = 1 then

sw(M) − K2 + s

8
=

∑

k 6∈Γ(C,p)

dk/de.

In particular, pg = sw(M) − (K2 + s)/8 if and only if D′(1) = 0, or equivalently,
if:

∑

k 6∈Γ(C,0)

dk/de = d(d− 1)(d− 2)/6.

3.2. Fact II.

Q(t) =
(
∑

k 6∈Γ(C,p)
tk) − δ

t− 1
.

Then Conjecture 2 (in the light of Theorem 3) predicts that the coefficient cl of the
monomial td(d−3−l) of Q(t) is exactly (l + 1)(l + 2)/2 (for any 0 ≤ l ≤ d− 3).

3.3. Fact III.

D(t) =
∑

k∈Γ(C,p)

tdk/de − 1− td

(1 − t)2
.

In particular, the second reformulation of the Conjecture 2 (and Theorem 3) is the
identity

∑

k∈Γ(C,p)

tdk/de = 1 + 2t+ . . .+ (d− 1)td−2 + d(td−1 + td + td+1 + . . .). (CP )

Property (CP ) (similarly as the property of Fact II) connects the local invariant
Γ(C,p) with the degree d of C. It predicts a very precise distribution law for the
elements of the semigroup Γ(C,p) with respect to the intervals Il := ( (l − 1)d, ld ]
(l ∈ N). It says that for any l ≥ 0 one has

#Γ(C,p) ∩ Il = min{l+ 1, d}. (CPl)

By the symmetry of the semigroup (namely, k ∈ Γ(C,p) if and only if 2δ − 1 − k 6∈
Γ(C,p)), one has that (CPl) is true if and only if (CPd−2−l) is true. In fact, (CPl)
is automatically true for l = 0 and any l ≥ d− 2. But for 1 ≤ l ≤ d− 3 it combines
a lot of restrictions.

3.4. A property of semigroups of plane curves.

Now we will provide an alternative and very elementary proof of Theorem 3.
It is based on a rather surprising and general property about the semigroups of
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a (not necessarily rational) plane curve at any collection of points with the sole
assumption that the curve is locally irreducible at them.

Let C be a (not necessarily rational) irreducible plane curve of degree d. Let
p1, ..., pr be a set of points of C such that the germ (C, pi) is irreducible for any i.
Denote by Γi the semigroup of (C, pi).

Proposition 2. Suppose l < d. Let (n1, ..., nr) be an r-uple of positive numbers
such that n1 + ...+ nr ≥ ld. Then

r
∑

i=1

#(Γi ∩ [0, ni]) ≥ (l + 1)(l + 2)/2.

Proof. Since the ideas of the proof appear when r = 1, and this is the case what
we will use, for simplicity of notation we give the proof only for that case. Consider
n1 ≥ ld. Observe that (l+1)(l+2)/2 is the dimension of the space of homogeneous
polynomials P in three variables of degree l. Let γ(t) be a local parametrisation
of C at p1. The composition P (γ(t)) can be written as P (γ(t)) =

∑∞
h=1 Lh(P )th.

Therefore the conditions, imposed to P , that the local intersection multiplicity
ip1(C, {P = 0}) is > n1, is given by the equations Lh(P ) = 0 for 0 ≤ h ≤ n1. On
the other hand, as the semigroup Γ1 is the collection of intersection multiplicities
of C with other curves at p1, the number of independent conditions is at most
#(Γ1 ∩ [0, n1]), i.e. Lh(P ) = 0 for h ≤ n1 and h ∈ Γ1 implies the vanishing Lh(P )
for all h ≤ n1. Therefore, if #(Γ1 ∩ [0, n1]) < (l + 1)(l + 2)/2, then there exists
a non-zero polynomial P of degree l with ip1(C, {P = 0}) > n1. But, by Bezout’s
theorem any such polynomial must have a component in common with C, but, as
C is irreducible, this is impossible.

Proof of Theorem 3. Our Conjecture 2 in the unicuspidal case implies that the
polynomial

D(t) =

d−1
∑

l=0

(#Γ1 ∩ ((l − 1)d, ld] − (l + 1))tl

has the negative distribution property. We have proved in the previous proposition
that D(t) has the positive distribution property. Hence conjecture implies that D(t)
is identically 0.

3.5. Comparing with consequences of log Bogomolov-Miyaoka-Yau type
inequalities.

We are rather surprised that the restrictions (CPl), imposed already by the very
first intervals Il, are closely related with famous properties (conjectures) of rational
plane curves. In order to exemplify this, we need some more notations.

Similarly as above, let [m1,m2, . . .] be the multiplicity sequence of (C, p), the
unique singular point of C. Following Nagata [26], we define t to be the maximal
positive integer such that m1 ≥ m2 + . . .+mt.

We rewrite the elements of Γ(C,p) as {0 = γ0 < γ1 < γ2 < . . .}. Recall that the
minimal set of generators of Γ(C,p) verifies β̄0 < . . . < β̄g. In terms of the decorations
of the Eisenbud-Neumann splice diagram β̄0 = p1 . . . pg = m1, β̄k = akpk+1 . . . pg

for 1 ≤ k < g, and β̄g = ag , see 2.1. In fact, since a2 > a1p1p2 and p1 ≥ 2, one
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has β̄2 > 2β̄1. In particular, the first (at least) three elements of Γ(C,p) depend only
on β̄0 and β̄1 (hence, all their properties can be verified essentially at the level of
germs with one Puiseux pair). Using these facts, one can verify that

{

γ1 = m1; γ2 = m1 +m2; and
m1 + 2mt+1 ≤ γ3 ≤ 3m1.

(5)

3.5.1. Example. (CP1). By the above notations, (CP1) says that γ2 ≤ d < γ3.
The first part γ2 ≤ d can be verified easily. Indeed, if Lp denotes the tangent cone
(line) of C at p, then ip(C,Lp) ∈ Γ(C,p) and it is strict larger than m1, hence
γ2 ≤ ip(C,Lp) ≤ d (the second inequality by Bézout’s theorem).

For the second inequality, notice that if C satisfies the Nagata-Noether inequality
d < m1 + 2mt+1, then by (5) it satisfies d < γ3 too. Recall that any curve C which
can be transformed by a Cremona transformation into a line satisfies the Nagata-
Noether inequality [18, 23, 26]. On the other hand, it is conjectured that any
cuspidal rational curve can be transformed into a line by a Cremona transformation
(see [23]).

Notice also that via (5), (CP1) (or d < γ3) implies that d < 3m1, an inequality
valid for any cuspidal rational curve C, which was proved in [23] by the log Miyaoka
inequality [20, 25]. In fact, d < γ3 also implies that i(C,Lp) = γ2 = m1 +m2.

3.5.2. Finally, let us reconsider again the inequalitym1+m2 = γ2 ≤ d. Here, by
a result of Yoshihara [47] (whose proof is based on the Abhyankar-Moh theorem),
one has equality m1 +m2 = d if and only if C is an Abhyankar-Moh-Suzuki curve
(cf.Definition 1). The Abhyankar-Moh theorem [1] says that such a curve can be
transformed into a line, hence by the above discussion it satisfies (CP1). In the next
section we will show that, in fact, it satisfies all the restrictions (CPl), l ≥ 1.

3.5.3. The interested reader is invited to analyze some other particular restric-
tions (CPl), e.g. (CPl) for l = 1, 2, 3, combined together; cf. also with the last
statement of Remarks 1(1).

Remark. Notice also that the above distribution law (CP ) is very different
from Arnold’s prediction of the distribution of generic sub-semigroups of N [3].
This shows that the geometric realization of (C, p) as the unique singular point of
a degree d rational curve implies that the semigroup of (C, p) “is far to be generic”
(a fact already suggested by the local Abhyankar-Azevedo theorem as well).

3.6. Comparison with Varchenko’s criterion.

The above negative distribution property has some analogies with the criterions
provided by the semicontinuity of the spectrum [44, 45]. Namely, if {(C, pi)}i are
the local singular points of the degree d curve C, then the multisingularity

∑

i(C, pi)
is in the deformation of the universal plane germ (U, 0) := (xd+yd, 0). In particular,
the collection of all spectral numbers Sp of the local plane curve singularities (C, pi)i

satisfies the semicontinuity property compared with the spectral numbers of (U, 0)
for any interval (α, α + 1).

In order to exemplify the similarities, let us assume for simplicity that ν = 1.
Since the spectral numbers of (U, 0) are of type l/d, the semicontinuity property
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for intervals (−1 + l/d, l/d) ( l = 2, 3, . . . , d− 1) reads as follows:

#{α ∈ Sp : α < l/d} ≤ (l − 2)(l − 1)/2. (6)

On the other hand, the negative distribution property of D(t) is equivalent to

#{k ∈ Γ(C,p) : k ≤ ld} ≤ (l + 1)(l + 2)/2 (7)

for any l = 1, 2, . . . , d − 3. Although the similarities are striking, it is not easy at
all to compare the two set of inequalities: the transition from Sp(C, p) to Γ(C,p)

arithmetically is not very simple. (If we add to the discussion the semicontinuity
intervals (−1+ l/d, l/d) with l > d, then the comparison is even more difficult.) But
even when Sp(C, p) and Γ(C,p) can be easily compared (see e.g. below), still, the
comparison of the inequalities is not obvious. Let us exemplify this in the case when
(C, p) has only one Puiseux pair, say (a, b), a < b. In this case the semicontinuity
transforms into

#{i ≥ 0, j ≥ 0 : ia+ jb < abl/d} ≤ (l − 2)(l − 1)/2 + [al/d] + [bl/d] + 1.

(Recall that (a−1)(b−1) = (d−1)(d−2).) On the other hand, our criterion (7) is:

#{i ≥ 0, j ≥ 0 : ia+ jb ≤ ld} ≤ (l + 2)(l + 1)/2.

In the next examples show that the two restrictions are (at least arithmetically)
independent.

Example 1. The semicontinuity of the spectrum does not imply the negative
distribution property. Indeed, (d, a, b) = (11, 4, 31) satisfies the semicontinuity but
N(t) has some positive coefficients (Γ in I4 has six elements). A similar example is
(19, 7, 52); here the first l when CPl fails is l = 7, Il has 9 semigroup elements. (The
reader is invited to verify that these triples (d, a, b) cannot be realized geometrically,
a fact compatible with our conjecture.)

In fact, one can even enter in the game another restriction, namely the sharp
inequality of Orevkov [34]:

d <
3 +

√
5

2
(a+ 1) +

1√
5
, (8)

and ask if the semicontinuity together with (8) would imply arithmetically the
negative distribution property. The answer again is no, as (again) the above two
examples show.

Nevertheless, for d large, ν = 1 and (C, p) with only one Puiseux pair, computer
experiment shows that Orevkov inequality and the semicontinuity of the spectrum
imply the vanishing of R(t).

Example 2. Notice that for ν = 1, Theorem 3 replaces the negative distribution
property with the vanishing ofN(t). This is a non-trivial additional restriction. E.g.,
(d, a, b) = (5, 3, 7) satisfies the semicontinuity property of the spectrum and also
N(t) = −t. (Its geometric realization is excluded by Theorem 3.)

Example 3. The negative distribution property does not imply the semicon-
tinuity of the spectrum. Consider the case (d, a, b) = (7, 3, 16). Then it satisfies
the negative distribution property (with N(t) = −t2) but it does not satisfy the
semicontinuity of the spectrum.
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Let us reconsider the triplet (d, a, b) = (7, 3, 16) from the point of view of Theorem
3: this is a candidate for a unicuspidal curve but with R(t) 6= 0. According to
Theorem 3 a geometric realization cannot exist, but the very existence of this
triplet shows that the proof of Theorem 3 cannot be replaced by a pure arithmetical
argument (having starting point the non-positivity of the coefficients of R, and the
fact that (C, p) has only one Puiseux pairs, and proving the vanishing of R).

Remark 1. For ν = 1, we do not know any example when R is zero but
the situation geometrically is not realizable. (In particular, we do not know any
example when R or N are vanishing, but the semicontinuity of the spectrum fails.)
This motivates the following conjecture:

Conjecture 3. Conjecture 3.2 (or, equivalently, 3.3) covers an ‘if and only if’
property: the local topological type (C, p) ⊂ (P2, p) can be realized by a degree d
unicuspidal rational curve if and only if the property (CP ) is valid.

4. The validity of (CP ) for Abhyankar-Moh-Suzuki curves.

The AMS type curves appeared naturally in the study of rational plane curves C
meeting with a line L at only one point {p} = C∩L. By the Lin-Zaidenberg theorem
[48] the curve C has at most another cusp as singularities. C is called a Abhyankar-
Moh-Suzuki curve if C \ L is smooth, respectively Lin-Zaidenberg curve if C \ L is
singular. K. Tono has given classifications, up to projective equivalence, of AMS
curves in [37] and of LZ curves in [38]. Here we will not use these classifications,
but we use the relation of these curves with automorphisms of the affine plane
C2 = P2 \ L instead.

Definition 1. An irreducible plane curve C is said to be of Abhyankar-Moh-
Suzuki type (AMS type for short) if there exists a line L ⊂ P2 such that C \ L is
isomorphic to C. In our situation this means that ν = 1 and C∩L = Sing(C) = {p}.

Not any curve with ν = 1 is of AMS type, e.g. the examples (c)-(f) in Examples 1
are not (cf. also with 3.5.2). The simplest AMS curve is {zxd−1 + yd = 0}. In this
case Γ(C,p) is generated by two elements, d − 1 and d, and (CP ) can be easily
verified. The goal of the present section is to prove the general case.

Theorem 4. (CP ) is satisfied by any AMS curve; in other words R(t) ≡ 0.

Identify C2 with P2 \ L. In the next discussion we consider algebraic automor-
phisms φ : C2 → C2 with components (f, g). Recall, that by [1], a curve C is
of AMS type if and only if it is the compactification in P2 of the zero locus of a
component of a certain automorphism φ. The embedding of C2 into P2 allows us
to view any automorphism of C2 as a birational transformation of P2. The point
is that the combinatorics of the minimal embedded resolution of (C, p) is closely
related to the combinatorics of the minimal resolution of the indeterminacy of φ as
a birational transformation of P2, and this last one can be described precisely. In
the sequel we make this statement more precise. For details see [10, 11].

Let π′ : X ′ → P2 be the minimal resolution of the indeterminacy of φ. Then
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Figure 2. An elementary graph of degree n

(π′)∗L is a divisor with normal crossings and its dual graph A (weighted by the
corresponding self intersections) has the form of Figure 1.
Here the vertices of A are the “black” vertices. The strict transform of L is denoted
by a “white” vertex with decoration L. This graph can be obtained from elementary
pieces. An elementary graph of degree n is defined in Figure 2.

The graph A is obtained by putting r elementary graphs of degrees n1, . . . , nr

one after the other, identifying the last vertex of each graph with the first vertex of
the next, and weighting the identified vertices with −3. We say that the graph A
has r floors. The morphism π′ : X ′ → P2 is a composition of blowing ups, which are
totally ordered by appearance. This gives a total order of the vertices of the graph
(which can be recovered combinatorially by successively contracting (−1)-vertices).

Now, we concentrate on the unique singular point p of C. The minimal embedded
resolution π : X → P2 of (C, p) ⊂ (P2, p) is again a composition of blowing ups,
and all these blowing ups appear in the minimal resolution of the indeterminacy of
φ. In fact, there are two possibilities:

(a) π is the composition of all the blowing ups of π′ except the last nr − 1 of
them;

(b) π is the composition of the blowing ups of the first r − 1 floors of π′ except
the last nr−1 − 1 of them.

If the second possibility holds then one can find a different automorphism ψ = (f, g)
such that C is the closure of {f = 0} and the graph associated with ψ has r − 1
floors satisfying possibility (a). Therefore, one can always assume the validity of
(a). This means that the embedded resolution graph of (C, p) can be obtained from
the above graph A by deleting the last nr − 1 (black) vertices, and changing the
decoration of Enr

into −1. The strict transform C̄ intersects Enr
.

In particular, the singularity p of the curve C has r Newton pairs, and the
decorations {(pk, ak)}r

k=1 of its Eisenbud-Neumann splice diagram (cf. 2.1) can be
computed by standard graph-determinant computations (cf. [7], section 21). One
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gets the following:






d = ip(z, C̄) = n1 . . . nr;
p1 = n1 − 1; and pk = nk for k = 2, . . . , r;
a1 = n1, and ak = n2

1 . . . n
2
k−1nk − 1 for k = 2, . . . , r.

(9)

In particular, the generators β̄i of Γ(C,p) are β̄0 = (n1 − 1)n2 . . . nr, β̄1 = n1 . . . nr,
and for 1 < k ≤ r one has β̄k = (n2

1 . . . n
2
k−1nk − 1)nk+1 . . . nr.

We will verify (CP ) by induction over r. Assume that A = Ar has r floors of
degrees n1, . . . , nr. Let Γr be the corresponding semigroup. If r = 1 then Γ1 is
generated by n1 − 1 and n1, d1 = n1 and (CP ) can be easily verified. If r > 1, by
(9) and 2.1, the degree dr of of C is dr = n1 . . . nr = dr−1nr, and Γr is generated
by nrΓr−1 and β̄r := n2

1 . . . n
2
r−1nr − 1. In fact, any element x ∈ Γr can be written

in a unique way as x = nry + bβ̄r with y ∈ Γr−1 and 0 ≤ b < nr (see e.g. [36]).
Now, the inductive step runs as follows:

∑

x∈Γr

tdx/dre =

nr−1
∑

b=0

∑

y∈Γr−1

td(ynr+bβ̄r)/dre =

nr−1
∑

b=0

∑

y∈Γr−1

tbdr−1+dy/dr−1e

=
1 − tdr

1 − tdr−1
· 1 − tdr−1

(1 − t)2
.

5. The case ν = 1 and (C, p) with one Puiseux pair.

Assume that the unique cusp of C has exactly one Puiseux pair (a, b) (where
1 < a < b). Then clearly (a−1)(b−1) = (d−1)(d−2), where d = deg(C) as above.

In the sequel we denote by {ϕj}j≥0 the Fibonacci numbers ϕ0 = 0, ϕ1 = 1,
ϕj+2 = ϕj+1 +ϕj . The Fibonacci numbers have a remarkable amount of interesting
properties, see e.g. Vajda’s book [43]. We also will use some of them which will be
crucial in the next arguments and also in the proof of the conjecture for Kashiwara’s
families (cf. section 6). E.g.:

(1) ϕ2
j − ϕj−1ϕj+1 = (−1)j+1;

(2) ϕ2
j − ϕj−2ϕj+2 = (−1)j .

(3) gcd(ϕj , ϕi) = ϕgcd(j,i).

Examples 1. We will consider the following pairs (a, b):
(a) (a, b) = (d− 1, d);
(b) (a, b) = (d/2, 2d− 1), where d = deg(C) is even;
(c) (a, b) = (ϕ2

j−2, ϕ
2
j ) and d = ϕ2

j−1 + 1 = ϕj−2ϕj , where j is odd and ≥ 5;
(d) (a, b) = (ϕj−2, ϕj+2) and d = ϕj , where j is odd and ≥ 5;
(e) (a, b) = (ϕ4, ϕ8 + 1) = (3, 22) and d = ϕ6 = 8;
(f) (a, b) = (2ϕ4, 2ϕ8 + 1) = (6, 43) and d = 2ϕ6 = 16.

All these cases are realizable: (a) e.g. by {zyd−1 = xd}, (b) by {(zy − x2)d/2 =
xyd−1}, or by the parametrization [z(t) : x(t) : y(t)] = [1 + td−1 : td/2 : td]. Both
cases (a) and (b) satisfy Yoshihara’s criterionm1+m2 = d [47] (cf. here with 3.5.2),
hence any curve with these data is AMS curve.

The existence of (c) and (d) is guaranteed by Kashiwara classification [19], Corol-
lary 11.4. These two cases can be realized by a rational pencil of type (0, 1): the
generic member of the pencil is (c), while the special member of the pencil is of
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type (d) (cf. also with the next section). Orevkov in [34] denoted the curves (d) by
Cj , where a different construction is also given for them.

The cases (e) and (f) correspond to the sporadic cases C4 and C∗
4 of Orevkov

[34].

Remarks 1. (1) The above list is not accidental. In [12] we prove that if C is
a unicuspidal rational plane curve of degree d and if the singular point p of C has
only one characteristic pair (a, b), then the triple (d, a, b) is one of the above cases.
This classification is coordinated by the following integer. Let π : X → P2 be the
minimal embedded resolution of C ⊂ P2, and let C̄ be the strict transform of C.
Then C̄2 = d2 − ab = 3d − a − b − 1, and in the above cases is as follows: it is
positive for (a) and (b), it is zero for (c), equals −1 for (d), and = −2 for (e) and
(f). [Notice that C̄2 < −1 if and only if a+ b > 3d, i.e. if and only if the semigroup
element a+ b is not sitting in the first three intervals Il. Notice also that C̄2 < −1
happens exactly for the cases (a)-(d), i.e. when κ̄(P2 \ C) = −∞; cf. (3) below.]

(2) Since Γ(C,p) is the semigroup generated by a and b, the verification of (CP )
for the above triples (d, a, b) is purely combinatorial depending on these integers.

On the other hand, not any triple (d, a, b) (with (a− 1)(b− 1) = (d− 1)(d− 2))
satisfies (CP ). E.g., (5, 3, 7) or (17, 6, 49) do not. (But curves with these data do
not exist, cf. [12].)

(3) The log Kodaira dimensions κ̄(P2 \ C) are the following (cf. [34]): −∞ for
(a)-(d), and 2 for the last two sporadic cases.

(4) Let α = (3 +
√

5)/2 be the root of α+ 1
α = 3. Notice that in family (d), d/a

and b/d asymptotically equals α. In fact, for j odd, {ϕj/ϕj−2}j are the increasing
convergents of the continued fraction of α. Using this, another remarkable property
of the family (d) can be described as follows (cf. [34], page 658). The convex hull
of all the pairs (m, d) ∈ Z2 satisfying m+ 1 ≤ d < αm (cf. with the sharp Orevkov
inequality [34], or Example 1) coincides with the convex hull of all pairs (m, d)
realizable by rational unicuspidal curves C (where d = deg(C) andm = mult(C, p))
with κ̄(P2 \ C) = −∞; moreover, this convex hull is generated by curves with
numerical data (a) and (d). (For curves with d > αm, see 9.)

Theorem 5. The identity (CP ) (i.e. R(t) ≡ 0) is satisfied in the above cases
(a)-(f).

Proof. The cases (a) and (b) are covered by Theorem 4. The cases (e) and (f)
can be verified by hand: doing this the reader definitely will feel the mystery of this
distribution pattern. In the sequel we will verify (c) and (d).

We start with (d). We fix j. The point is that a+ b = 3d, hence a nice induction
can be considered if we group the intervals Il in blocks of three. Let us analyze the
first block. I1 contains a and 2a; I2 contains 3a, 4a, and 5a; finally I3 has 6a, 7a, b
and a+ b. All this can be verified by the definition of the Fibonacci numbers. E.g.
3a > d iff 3ϕj−2 > ϕj−1 + ϕj−2 iff 2ϕj−2 > ϕj−1 iff 2ϕj−2 > ϕj−2 + ϕj−3 which is
true.

It is clear that it is enough to analyze the intervals Il for l < d. So fix such an l.
The point is that an inequality of type kb > ld is true if and only if k/l > 1/α. One
direction is easy, since d/b > 1/α. Assume, that k/l > 1/α, then d/b ≥ k/l > 1/α
is not possible since d/b – being a convergent of α – is the best approximation of
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α among fractions with denominator ≤ b (see e.g. [33] (7.13)). Hence k/l > d/b. In
particular, kb ∈ Il if and only if dkαe = l.

There is a similar statement for ia, but its proof is slightly different. If ia ≤ ld
then using d/a < α one gets i/l < α. Assume now that i/l < α then we wish to
prove that d/a < i/l < α is not possible. For this notice that d/a < b/d < α (in fact
d/a and b/d are two consecutive convergents of α). Then i/l cannot be between b/d
and α since b/d is one of the convergents and l < d; and also i/l cannot be between
d/a and b/d since ab − d2 = 1 and l < d (cf. [33], p. 165, 5(a)). Hence ia ≤ ld if
and only if i/l < α. This implies that ia ∈ Il if and only if di/αe = l.

Now, using the fact that a + b = 3d, we can move the first block to the second
block (of three intervals ) by adding a + b = 3d. In the relevant intervals (l < d)
the only terms not in the image of this translation have form ia or kb, and they are
all distinct. An easy counting shows that the only fact we have to show is that in
any interval there are exactly 3 terms of these types. Namely, we have to verify the
following: Consider the numbers S1 of the form di/αe and the numbers S2 of the
form dkαe. Then the claim is that in S1 ∪ S2 each positive integer appears exactly
three times.

This can be proved as follows. Consider in the (x, y)-plane the semi-line `1 :
{y = αx} (in the first quadrant) and the semi-line `2: {y = −x/α} (in the forth
quadrant). For any positive integer l consider the vertical segment connecting the
two intersection points of the line {x = l} with `1 and `2. Notice that the length of
this segment is exactly 3l. Any horizontal line {y = i} (resp. {y = −k}) intersects
the segment iff i/α ≤ l (resp. kα ≤ l). Since the segment can be intersected exactly
by 3l horizontal lines of type y =integer (and all the numbers of type kα and i/α
are distinct) the claim follows.

Next, we prove (c). We start as in (d). Fix j and notice that d = ϕj−2ϕj .
Step 1. Assume that l < ϕj−2 + ϕj . If kb > ld then kϕj > lϕj−2, hence k/l >

ϕj−2/ϕj > 1/α. Conversely, assume that k/l > 1/α. Consider the convergents
ϕj−2/ϕj > ϕj/ϕj+2 > 1/α. Since ϕj+2 > l we conclude that k/l cannot be neither
between ϕj/ϕj+2 and 1/α nor between ϕj−2/ϕj and ϕj/ϕj+2 by similar argument
as in (d). Hence either k/l > ϕj−2/ϕj or l = ϕj . This shows that for l 6∈ {ϕj , ϕj +1},
kb ∈ Il if and only if dkαe = l.

Step 2. Assume again that l < ϕj−2 + ϕj . If ia ≤ ld then i/l ≤ ϕj/ϕj−2 <
α. Conversely, assume that i/l < α and consider the three intervals ϕj/ϕj−2 <
ϕj+2/ϕj < ϕj+4/ϕj+2 < α. Then i/l cannot be in the second and third interval by
similar arguments as above. Moreover, it cannot be in the first one either, since the
two end-points are two elements of the ϕj -Farey sequence, and the denominator of
any rational number between them is at least ϕj−2 +ϕj (cf. (6.4) [33]). Therefore,
either l = ϕj or i/l ≤ ϕj/ϕj−2. Hence, if l 6∈ {ϕj , ϕj + 1} then ia ∈ Il if and only
if di/αe = l.

Step 3. The intervals Il for l = ϕj and ϕj + 1 can be analyzed independently:
kb ∈ Iϕj

if and only if k = ϕj−2 (and then kb = ϕjd), and ia ∈ Iϕj
if and only if

i = ϕj+2 − 1 or i = ϕj+2 − 2.
Similarly, Iϕj+1 contains no number of type kb, but contains three numbers of

type ia for i = ϕj+2, ϕj+2 + 1, ϕj+2 + 2.
Combined the argument of (d) applied for Step 1 and Step 2 and the above two

facts, we conclude that the distribution patern is true for any l < ϕj + ϕj−2.
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Step 4. Notice that in the relevant intervals (i.e. for l < d), the semigroup element
ia+ kb determines uniquely the integers i and k.

Step 5. Using the identity aϕj = ϕj−2d, we construct a well-defined injective
map sl : Il−ϕj−2 ∩Γ → Il∩Γ by x 7→ x+aϕj . Denote by Pl the subset of semigroup
elements of Il ∩Γ which have the form ia+ kb with k ≥ 0 and a > i ≥ 0. Then (via
step 4) Il ∩Γ is the disjoint union of the image of sl and Pl. Therefore, it is enough
to show that

#Pl = ϕj−2 (10)

for any ϕj−2 ≤ l < d.
Step 6. Since the distribution property is true for any l < ϕj−2 + ϕj (step 3),

we conclude (by the arguments of step 5) that (10) is true for any ϕj−2 − 1 ≤ l ≤
ϕj−2 + ϕj − 1.

Step 7. We verify that there is a bijection Pl → Pl+ϕj
given by (i, k) 7→ (i, k +

ϕj−2) for any l ≥ ϕj−2. The facts that the map is well-defined and injective are
clear, for the surjectivity one has to verify an (easy) inequality satisfied by the
Fibonacci numbers. Hence (10) follows by step 6 and induction.

6. R(t) ≡ 0 for κ̄(P2 \ C) = −∞ (i.e. for Kashiwara’s curves).

We start with the following lemma which helps us to compare distinct semigroups.

Lemma 1. Fix integers k ≥ 0 and m, d ≥ 1. Then
(a) in the set B := {dmk/de+ j}m−1

j=0 the unique multiple of m is dk/dem.
(b) Fix a subset Γ ⊂ N and define the series

η(t) :=
∑

k∈Γ

tdk/de and χ(t) :=
∑

k∈Γ

tdmk/de.

Then the series ψ(t) := χ(t)(1 − tm)/(1 − t) satisfies the identity

η(tm) =
1

m

∑

ξm=1

ψ(ξt).

Proof. It is clear that there is only one multiple of m in B, say a. If k = qd
the proof is also clear. Otherwise, write k = qd + r with r ∈ {1, . . . , d − 1}. Thus
mq/d = mq + rm/d. Since 0 < r/d < 1 then 0 < rm/d < m and 0 < dmr/de ≤ m.
Finally mq < a ≤ mq +m+m− 1 < m(q + 2), and a = (q + 1).

6.1. The proof of the conjecture for Kashiwara’s curves.

As we have mentioned most of the previous curves appear as irreducible compo-
nents of fibres of rational functions on P2 of type (0, 1), that is, rational functions
all whose fibres (once the indeterminacy point has been removed) are isomorphic
to C. Remark that any of these rational function φ has at most one indeterminacy
point which will be the only possible singular point of any of its fibres. The classifi-
cation of such rational functions is given in H. Kashiwara’s paper [19]. Moreover, a
rational cuspidal curve C verifies κ̄(P2 \C) = −∞ if and only if C is an irreducible
component of a fibre of a rational function of type (0, 1).

The number of multiple fibres that a rational function φ on P2 of type (0, 1) can
have is at most two. Kashiwara’s classification gives three strata inside the set of
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rational functions of type (0, 1): F0,FI ,FII , according to the number of multiple
fibres will be 0, 1 or 2 respectively.

(1) The stratum F0 consists of all linear rational functions on P2, therefore there
are no cuspidal rational curves as fibres.

(2) If φ ∈ FI then the multiple fibre of φ turns out to be a line L, and φ is a
component of an automorphism of C2 = P2 \L, see Corollaire 8.1 in [19]. Moreover
every fibre of φ, but the multiple one, defines a rational cuspidal curve of AMS-type
for which we have already checked (CP ) in Theorem 4.

(3) A rational function φ ∈ FII has two atypical values, say 0 and ∞. Its divisor
will be denoted by (φ) = mS0 − nS∞ (for some integers that we may assume
gcd(m,n) = 1 taking φ primitive). From the topological point of view the rational
function φ has only three different fibres S0, S∞ and the generic fibre φge.

The minimal resolution graph of the indeterminacy of a rational function φ of
type (0, 1) almost coincides with the minimal resolution graph of the generic fibre
of φ. But this is not the case for special fibres. In her Théorème 6.1 the minimal
resolution graphs of the indeterminacy point of the rational functions of type (0, 1)
are given. The remaining case in which we are interested in is φ ∈ FII where five
different graphs appear:

Case 1. II(`)∗ (with ` ≥ 0),
Case 2. II+(`,N ;λ1, . . . , λN )∗ (with N even ≥ 2),
Case 3. II+(`,N ;λ1, . . . , λN )∗ (with N odd ≥ 1),
Case 4. II−(`,N ;λ1, . . . , λN )∗ (with N even ≥ 2),
Case 5. II−(`,N ;λ1, . . . , λN )∗ (with N odd ≥ 2).
Here λ1, . . . , λN are integers such that λ1, . . . , λN ≥ 0 if ` ≥ 1 and λ1, . . . , λN ≥ 1

if ` = 0.
In Case 1, for a rational function φ` whose graph belongs to II(`)∗, there are three

distinct cuspidal rational curves appearing as fibres of φ`: S`
0, S

`
∞ and the generic

fibre φ`
ge. The rational function φ` is constructed by induction based on a rational

function φ`−1 which implies that S`
∞ is nothing but S`−1

0 , see e.g. Corollaire 11.4.
Thus for each graph in II(`)∗ there are only two new unicuspidal rational plane
curves: the generic member of the pencil, we will denote it by II(`)ge, and the new
special member of the pencil, we will denote it by II(`)sp. We have already studied
those curves (c) and (d) in Examples 1:

(c) II(`)ge is a unicuspidal rational curve of degree d = ϕ2`+3ϕ2`+5 and only
one characteristic pair (a, b) = (ϕ2

2`+3, ϕ
2
2`+5);

(d) II(`)sp is a unicuspidal rational curve of degree d = ϕ2`+3 and only one
characteristic pair (a, b) = (ϕ2`+1, ϕ2`+5).

Therefore in Theorem 5 we have proved the identity (CP ) for II(`)ge and II(`)sp,
` ≥ 0.

The same fact happens for all rational functions whose graphs belongs to any
of the remaining four cases, see e.g. Corollaire 11.6. The irreducible component of
the ∞ fibre of the `-rational function is nothing but the 0-fibre of the previous
(`−1)-rational function. Therefore in each group we have just two new unicuspidal
rational curves: the generic member of the pencil and one special member of the
pencil.

The only difference between the generic rational curve in II+(`,N ;λ1, . . . , λN )∗

(with N even ≥ 2), (Case 2), and the generic rational curve in
II+(`,N ;λ1, . . . , λN )∗ (with N odd ≥ 1), (Case 3), is the number of Puiseux pairs.
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In fact, it is possible to codify the invariants of the generic members of Cases 2 and
3 in one and the same sequence of Eisenbud-Neumann splice diagrams, which we
denote by II+(`,N ;λ1, . . . , λN )ge. The same can be done with the special members
of the pencils, which we will denote by II+(`,N ;λ1, . . . , λN )sp.

Finally the same can be done also with Cases 4 and 5, that is for rational functions
with graphs in II−(`,N ;λ1, . . . , λN )∗ (with N even ≥ 2) or II−(`,N ;λ1, . . . , λN )∗

(with N odd ≥ 2). The generic curve will be denoted by II−(`,N ;λ1, . . . , λN )ge

and the special curve by II−(`,N ;λ1, . . . , λN )sp.

6.2. Degrees of curves and generators of semigroups.

Fix ` ≥ 0 and N ≥ 1 and non-negative integers λ1, . . . , λN .

6.2.1. II+(`,N ;λ1, . . . , λN )ge. For 1 ≤ i ≤ N define

{

ni := λiϕ
2
2`+3 + ϕ2`+3ϕ2`−1 − 1 for i odd;

ni := λiϕ
2
2`+3 + ϕ2`+3(ϕ2`+3 − ϕ2`−1) − 1 for i even.

(11)

The degree of the curve II+(`,N ;λ1, . . . , λN )ge is d = ϕ2`+3ϕ2`+5n1 . . . nN , (see
Proposition 7.2 in [19]). We remark that the integer m` in [19] is nothing but the
Fibonacci number ϕ2`+3. This curve has only one singularity whose splice diagram
can be easily deduced from the resolution graph of the corresponding rational func-
tion. This singularity has N +1 Newton pairs and the decorations {(pk, ak)}N+1

k=1 of
the corresponding Eisenbud-Neumann splice diagram can be done computing the
graph determinants (as it is explained in [7]). Thus







pk = nk for 1 ≤ k ≤ N, and pN+1 = ϕ2
2`+3;

ak = (ϕ2
2`+5n

2
1 . . . n

2
k−1nk − 1)/ϕ2

2`+3, for 1 ≤ k ≤ N and
aN+1 = ϕ2

2`+5n
2
1 . . . n

2
N .

(12)

To check that the ak’s are integers, let bk denote the numerator ϕ2
2`+5n

2
1 . . . n

2
k−1nk−

1 of ak, then bk = bk−1nk−1nk + nk−1nk − 1. By induction, to show that
bk = 0 modϕ2

2`+3 it is enough to prove that nk−1nk − 1 = 0 modϕ2
2`+3. From the

definition of nk, see (11), nk−1nk − 1 = (ϕ2`+3ϕ2`−1 − 1)(−ϕ2`+3ϕ2`−1 − 1) − 1 =
−(ϕ2

2`+3ϕ
2
2`−1−1)−1 = 0 modϕ2

2`+3, after property (ii) of the Fibonacci numbers.
Thus the generators {β̄k} of its semigroup ΓII+(`,N ;λ)ge

are β̄0 = ϕ2
2`+3n1 . . . nN ,

β̄k = (ϕ2
2`+5n

2
1 . . . n

2
k−1nk − 1)nk+1 . . . nN for 1 ≤ k ≤ N , and β̄N+1 =

ϕ2
2`+5n

2
1 . . . n

2
N .

6.2.2. II+(`,N ;λ1, . . . , λN )sp. The curve II+(`,N ;λ1, . . . , λN )sp is rational
and unicuspidal and has degree d = ϕ2`+5n1 . . . nN , (see Proposition 7.2 in [19]).
This curve has also only one singularity which is a cusp with N + 1 Newton pairs.
To compute the decorations {(pk, ak)}N+1

k=1 of the corresponding splice diagram,
observe that all the determinants, but the last two, are the same as in the previous
case. Thus the invariants in this case are:







pk = nk for 1 ≤ k ≤ N, and pN+1 = ϕ2`+3;
ak = (ϕ2

2`+5n
2
1 . . . n

2
k−1nk − 1)/ϕ2

2`+3, for 1 ≤ k ≤ N and
aN+1 = (ϕ2

2`+5n
2
1 . . . n

2
N + 1)/ϕ2`+3.

(13)

Moreover, aN+1 is also integer because ni = −1 modϕ2`+3 and then
ϕ2

2`+5n
2
1 . . . n

2
N + 1 = ϕ2

2`+5 − 1 = (ϕ2`+3ϕ2`+7 − 1) + 1 = 0 modϕ2`+3.
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The generators {β̄k} of its semigroup ΓII+(`,N ;λ)sp
are β̄0 = ϕ2`+3n1 . . . nN ,

β̄k = (ϕ2
2`+5n

2
1 . . . n

2
k−1nk − 1)nk+1 . . . nN/ϕ2`+3 for 1 ≤ k ≤ N , and β̄N+1 =

(ϕ2
2`+5n

2
1 . . . n

2
N + 1)/ϕ2`+3.

6.2.3. II−(`,N ;λ1, . . . , λN )ge. For 1 ≤ i ≤ N, define

{

ñi := λiϕ
2
2`+3 + ϕ2`+3ϕ2`−1 − 1 for i even;

ñi := λiϕ
2
2`+3 + ϕ2`+3(ϕ2`+3 − ϕ2`−1) − 1 for i odd.

(14)

Essentially the data of the curve II−(`,N ;λ1, . . . , λN )ge can be obtained from the
data of the curve II+(`,N ;λ1, . . . , λN )ge replacing ϕ2`+5 by ϕ2`+1. The combina-
torial reason for that is the identity ϕ2

2`+3 = ϕ2`+1ϕ2`+5 − 1. The degree of the
rational curve II−(`,N ;λ1, . . . , λN )ge is d = ϕ2`+3ϕ2`+1ñ1 . . . ñN , (see Proposition
7.2 in [19]). This curve has only one singular point which is a cusp with N+1 New-
ton pairs. The decorations {(pk, ak)}N+1

k=1 of the corresponding Eisenbud-Neumann
splice diagram obtained computing the graph determinants are







pk = ñk for 1 ≤ k ≤ N, and pN+1 = ϕ2
2`+3;

ak = (ϕ2
2`+1ñ

2
1 . . . ñ

2
k−1ñk − 1)/ϕ2

2`+3, for 1 ≤ k ≤ N and
aN+1 = ϕ2

2`+1ñ
2
1 . . . ñ

2
N .

(15)

In the same way as before one checks that the ak’s are integers. The minimal
set of generators of its semigroup ΓII−(`,N ;λ)ge

are β̄0 = ϕ2
2`+3ñ1 . . . ñN , β̄k =

(ϕ2
2`+1n

2
1 . . . ñ

2
k−1ñk − 1)ñk+1 . . . ñN for 1 ≤ k ≤ N , and β̄N+1 = ϕ2

2`+1ñ
2
1 . . . ñ

2
N .

6.2.4. II−(`,N ;λ1, . . . , λN )sp. The degree of the unicuspidal rational curve
II−(`,N ;λ1, . . . , λN )sp is d = ϕ2`+1n1 . . . nN , (see Proposition 7.2 in [19]). Its
singularity has N + 1 Newton pairs and the decorations {(pk, ak)}N+1

k=1 of the cor-
responding Eisenbud-Neumann splice diagram are







pk = ñk for 1 ≤ k ≤ N,and pN+1 = ϕ2`+3;
ak = (ϕ2

2`+1ñ
2
1 . . . ñ

2
k−1ñk − 1)/ϕ2

2`+3, for 1 ≤ k ≤ N and
aN+1 = (ϕ2

2`+1ñ
2
1 . . . ñ

2
N + 1)/ϕ2`+3.

(16)

Again aN+1 is integer and the generators of its semigroup ΓII−(`,N ;λ)sp
are β̄0 =

ϕ2`+3ñ1 . . . ñN , β̄k = (ϕ2
2`+1ñ

2
1 . . . ñ

2
k−1ñk − 1)ñk+1 . . . ñN/ϕ2`+3 for 1 ≤ k ≤ N ,

and β̄N+1 = (ϕ2
2`+1ñ

2
1 . . . ñ

2
N + 1)/ϕ2`+3.

6.3. (CP ) for generic members of the pencils.

The generic members of the pencils are the curves IIε(`,N ;λ1, . . . , λN )ge, ε = ±.
To deal with the elements of their semigroups ΓII±(`,N ;λ)ge

it is better to multiply
them by ϕ2`+3. Define

χε
ge(t) :=

∑

k∈ΓIIε(`,N;λ)ge

tdϕ2`+3k/de andψε
ge(t) :=

χε
ge(t)(1 − tϕ2`+3)

1 − t
, with ε = ±,

where either d = ϕ2`+3ϕ2`+5n1 . . . nN if ε = + or d = ϕ2`+3ϕ2`+1ñ1 . . . ñN other-
wise. If

CP ε
ge(t) :=

∑

k∈ΓIIε(`,N;λ)ge

tdk/de with ε = ±,
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then Lemma 1 implies

CP ε
ge(t

ϕ2`+3) =
1

ϕ2`+3

∑

ξϕ2`+3=1

ψε
ge(ξt) with ε = ±. (17)

Proposition 3.

(a) For the curve II+(`,N ;λ1, . . . , λN )ge the following identity holds:

χ+
ge(t) =

(1 − tϕ2`+1ϕ2`+5)(1 − tϕ
2
2`+3ϕ2`+5n1...nN )

(1 − tϕ
2
2`+3)(1 − tϕ2`+1)(1 − tϕ2`+5)

.

(b) For the curve II−(`,N ;λ1, . . . , λN )ge the following identity holds:

χ−
ge(t) =

(1 − tϕ2`+1ϕ2`+5)(1 − tϕ
2
2`+3ϕ2`+1ñ1...ñN )

(1 − tϕ
2
2`+3)(1 − tϕ2`+1)(1 − tϕ2`+5)

.

Proof. We start with the curve II+(`,N ;λ1, . . . , λN )ge which has degree d =
ϕ2`+3ϕ2`+5n1 . . . nN and whose generators of its semigroup ΓII+(`,N ;λ)ge

has been
described in (12). By 2.1, each element x in the semigroup can be written in a
unique way as

x = x0ϕ
2
2`+3

N
∏

i=1

ni +
N
∑

k=1

yk ak ϕ
2
2`+3nk+1 . . . nN + z0 ϕ

2
2`+5 n

2
1 . . . n

2
N ,

with x0 ≥ 0, 0 ≤ yk ≤ nk − 1, for 1 ≤ k ≤ N, and 0 ≤ z0 ≤ ϕ2
2`+3 − 1. Thus

ϕ2`+3x

d
= x0

ϕ2
2`+3

ϕ2`+5
+

N
∑

k=1

yk

(ϕ2
2`+5n

2
1 . . . n

2
k−1nk − 1)

ϕ2`+5n1 . . . nk
+ z0ϕ2`+5n1 . . . nN .

Write x0 = q0ϕ2`+5 + r0 with 0 ≤ r0 ≤ ϕ2`+5 − 1. Using ϕ2
2`+3 = ϕ2`+5ϕ2`+1 − 1,

we get

dϕ2`+3x/de = q0ϕ
2
2`+3 + r0ϕ2`+1 +

N
∑

k=1

ykϕ2`+5n1 . . . nk−1 + z0ϕ2`+5n1 . . . nN ,

because −1 < (−r0n1 . . . nN −∑N
k=1 yknk+1 . . . nN )/ϕ2`+5n1 . . . nN ≤ 0, for every

0 ≤ yk ≤ nk − 1, for 1 ≤ k ≤ N, and 0 ≤ r0 ≤ ϕ2`+5 − 1. The result is proved
because χ+

ge(t) is equal to

∑

q0≥0

ϕ2`+5−1
∑

r0=0

N
∑

k=1

nk−1
∑

yk=0

ϕ2
2`+3−1
∑

z0=0

tq0ϕ2
2`+3+r0ϕ2`+1+

PN
k=1 ykϕ2`+5n1...nk−1+z0ϕ2`+5n1...nN

=
(1 − tϕ2`+1ϕ2`+5)

∏N
k=1(1 − tϕ2`+5n1...nk)(1 − tϕ

2
2`+3ϕ2`+5n1...nN )

(1 − tϕ
2
2`+3)(1 − tϕ2`+1)

∏N
k=1(1 − tϕ2`+5n1...nk−1)(1 − tϕ2`+5n1...nN )

.

The proof for the curve II−(`,N ;λ1, . . . , λN )ge is essentially the same replacing
ϕ2`+5 by ϕ2`+1.

Theorem 6. (CP ) is true for the generic curves II+(`,N ;λ1, . . . , λN )ge and
II−(`,N ;λ1, . . . , λN )ge.
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Proof. We do the case ε = + leaving the other one to the reader. Using Propo-
sition 3 and (17) then

CP+
ge(t

ϕ2`+3) =
(1 − tϕ2`+3)(1 − tϕ

2
2`+3ϕ2`+5n1...nN )

(1 − tϕ
2
2`+3)

· 1

ϕ2`+3

·
∑

ξϕ2`+3=1

(1 − (ξt)ϕ2`+1ϕ2`+5)

(1 − (ξt)ϕ2`+1)(1 − (ξt)ϕ2`+5)(1 − ξt)
.

Let ∆(t) be the characteristic polynomial of the rational unicuspidal curve of Ex-
ample (d) in Examples 1. That is, it has degree ϕ2`+3 and one characteristic pair
(a, b) = (ϕ2`+1, ϕ2`+5). For such a curve we have already proved R(t) ≡ 0 in Theo-
rem 5. Thus

1

ϕ2`+3

∑

ξϕ2`+3=1

(1 − (ξt)ϕ2`+1ϕ2`+5)

(1 − (ξt)ϕ2`+1)(1 − (ξt)ϕ2`+5)(1 − ξt)

=
1

ϕ2`+3

∑

ξϕ2`+3=1

∆(ξt)

(1 − ξt)2
=

(1 − tϕ
2
2`+3)

(1 − tϕ
2
2`+3)3

.

Since the degree of II+(`,N ;λ1, . . . , λN )ge is ϕ2`+3ϕ2`+5n1 . . . nN then the result
follows because

CP+
ge(t

ϕ2`+3) =
(1 − tϕ

2
2`+3ϕ2`+5n1...nN )

(1 − tϕ
2
2`+3)2

.

6.4. (CP ) for special members of the pencils.

The special members of the pencils are the rational curves IIε(`,N ;λ1, . . . , λN )sp,
with ε = ±. As in the previous case, to deal with the elements of their semigroups
ΓII±(`,N ;λ)sp

we multiply them by ϕ2`+3. Define

χε
sp(t) :=

∑

k∈ΓIIε(`,N;λ)sp

tdϕ2`+3k/de andψε
sp(t) :=

χε
sp(t)(1 − tϕ2`+3)

1 − t
, with ε = ±,

where either d = ϕ2`+5n1 . . . nN if ε = + or d = ϕ2`+1ñ1 . . . ñN otherwise. If

CP ε
sp(t) :=

∑

k∈ΓIIε(`,N;λ)sp

tdk/de with ε = ±,

then Lemma 1 implies

CP ε
sp(t

ϕ2`+3) =
1

ϕ2`+3

∑

ξϕ2`+3=1

ψε
sp(ξt) with ε = ±. (18)

Theorem 7. (CP ) is true for the special curves II+(`,N ;λ1, . . . , λN )sp and
II−(`,N ;λ1, . . . , λN )sp.

Proof. We do the proof for the curve II+(`,N ;λ1, . . . , λN )sp and the proof for
the curve II−(`,N ;λ1, . . . , λN )sp is essentially the same replacing ni by ñi and
ϕ2`+5 by ϕ2`+1.

The degree of II+(`,N ;λ1, . . . , λN )g is d = ϕ2`+5n1 . . . nN and the generators of
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the semigroup ΓII+(`,N ;λ1,...,λN )sp
have been described in (13). Each element x in

ΓII+(`,N ;λ)sp
can be written in a unique way as

x = x0ϕ2`+3

N
∏

i=1

ni +

N
∑

k=1

yk ak ϕ2`+3 nk+1 . . . nN + z0
ϕ2

2`+5n
2
1 . . . n

2
N + 1

ϕ2`+3
,

with x0 ≥ 0, 0 ≤ yk ≤ nk − 1, for 1 ≤ k ≤ N, and 0 ≤ z0 ≤ ϕ2`+3 − 1. Thus

ϕ2`+3x

d
= x0

ϕ2
2`+3

ϕ2`+5
+

N
∑

k=1

yk

(ϕ2
2`+5n

2
1 . . . n

2
k−1nk − 1)

ϕ2`+5n1 . . . nk
+ z0

ϕ2
2`+5n

2
1 . . . n

2
N + 1

ϕ2`+5n1 . . . nN
.

Write x0 = q0ϕ2`+5 + r0 with 0 ≤ r0 ≤ ϕ2`+5 − 1. Since ϕ2
2`+3 = ϕ2`+5ϕ2`+1 − 1

then

dϕ2`+3x/de = q0ϕ
2
2`+3 + α(r0,y, z0) + dβ(r0,y, z0)e.

where β(r0,y, z0) := (z0 − r0n1 . . . nN −∑N
k=1 yknk+1 . . . nN )/ϕ2`+5n1 . . . nN and

α(r0,y, z0) := r0ϕ2`+1 +

N
∑

k=1

ykϕ2`+5n1 . . . nk−1 + z0ϕ2`+5n1 . . . nN .

Set A := {(r0,y, z0) : 0 ≤ r0 ≤ ϕ2`+5 − 1, 0 ≤ z0 ≤ ϕ2`+3 − 1, 0 ≤ yk ≤
nk − 1, for k = 1, . . . , N}. Since for (r0, y1, . . . , yN , z0) ∈ A, one gets −1 <
β(r0,y, z0) < 1 then dβ(r0,y, z0)e is either 0 or 1. Consider the subset P of A
defined by {z0 − r0n1 . . . nN −∑N

k=1 yknk+1 . . . nN > 0} and Q its complement in
A. Thus dβ(r0,y, z0)e is 1 if and only if (r0,y, z0) ∈ P and it is zero otherwise.
This implies

χ+
sp(t) =

∑

(r0,y,z0)∈P t
α(r0,y,z0)+1 +

∑

(r0,y,z0)∈Q t
α(r0,y,z0)

(1 − tϕ
2
2`+3)

.

Remark 2. If (r0,y, z0) ∈ P then 0 < z0−r0n1 . . . nN −∑N
k=1 yknk+1 . . . nN <

ϕ2`+3.

By (18), CP+
sp(t

ϕ2`+3) is equal to

(1 − tϕ2`+3)

(1 − tϕ
2
2`+3)

· 1

ϕ2`+3

∑

ξϕ2`+3=1

∑

(r0,y,z0)∈P (ξt)α(r0,y,z0)+1 +
∑

(r0,y,z0)∈Q(ξt)α(r0,y,z0)

(1 − ξt)
.

Claim: CP+
sp(tϕ2`+3) is also equal to:

(1 − tϕ2`+3)

(1 − tϕ
2
2`+3)

· 1

ϕ2`+3

∑

ξϕ2`+3=1

∑

(r0,y,z0)∈P (ξt)α(r0,y,z0) +
∑

(r0,y,z0)∈Q(ξt)α(r0,y,z0)

(1 − ξt)
.

For each (r0,y, z0) ∈ P consider the series tα(r0,y,z0)+1/(1 − t) = tα(r0,y,z0)+1(1 +
t+ t2 + ..). Then

1

ϕ2`+3

∑

ξϕ2`+3=1

(ξt)α(r0,y,z0)+1

(1 − ξt)

is nothing but the coefficients whose power is a multiple of ϕ2`+3 in tα(r0,y,z0)+1(1+
t + t2 + ..). Therefore to prove the claim it is enough to check that for every
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(r0,y, z0) ∈ P then α(r0,y, z0) 6= 0 modϕ2`+3. Write α(r0,y, z0) as

r0(ϕ2`+3 − ϕ2`+2) +

(

N
∑

k=1

ykn1 . . . nk−1 + z0n1 . . . nN

)

(ϕ2`+2 + 2ϕ2`+3).

Since gcd(ϕ2`+2, ϕ2`+3) = 1 (see property (iii) of the Fibonacci numbers) then
α(r0,y, z0) = 0 modϕ2`+3 if and only if

−r0 +

N
∑

k=1

ykn1 . . . nk−1 + z0n1 . . . nN = 0 modϕ2`+3.

Moreover, since for all k, nk = −1 modϕ2`+3 then

−r0 +
N
∑

k=1

yk(−1)k−1 + z0(−1)N = 0 modϕ2`+3

⇐⇒ −(−1)Nr0 −
N
∑

k=1

yk(−1)N−k + z0 = 0 modϕ2`+3.

But this last identity implies z0 − r0n1 . . . nN −∑N
k=1 yknk+1 . . . nN = sϕ2`+3 for

s ∈ Z which contradicts the definition of the set P , see also Remark 2.

Since
∑

(r0,y,z0)∈P t
α(r0,y,z0) +

∑

(r0,y,z0)∈Q t
α(r0,y,z0)

(1 − tϕ
2
2`+3)

=
(1 − tϕ2`+1ϕ2`+5)(1 − tϕ2`+3ϕ2`+5n1...nN )

(1 − tϕ
2
2`+3)(1 − tϕ2`+1)(1 − tϕ2`+5)

,

the claim implies that CP+
sp(t

ϕ2`+3) can be written as:

(1 − tϕ2`+3)(1 − tϕ2`+3ϕ2`+5n1...nN )

(1 − tϕ
2
2`+3) · ϕ2`+3

·
∑

ξϕ2`+3=1

∆(ξt)

(1 − ξt)2
=

(1 − tϕ2`+3ϕ2`+5n1...nN )

(1 − tϕ2`+3)2

where again ∆(t) is the characteristic polynomial of the rational unicuspidal curve
of degree ϕ2`+3 which has one characteristic pair (a, b) = (ϕ2`+1, ϕ2`+5), see (d)
in Examples 1. Since the degree of II+(`,N ;λ1, . . . , λN )sp is ϕ2`+5n1 . . . nN then
Theorem 7 is proved.

7. The case κ̄(P2 \ C) = 1 and ν = 1.

7.1. Tono’s classification theorem.

We recall the following classification result of K. Tono [39]. Let [x : y : z] be a
system of homogeneous coordinates in P2. Assume that C is a unicuspidal rational
plane curve with κ̄ = 1. Then C is projectively equivalent to one of the following
curves C ′:

Type I. C ′ is given by

((fs
1y +

s+1
∑

i=2

aif
s+1−i
1 xia−a+1)a − fas+1

1 )/xa−1 = 0,
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where f1 = xa−1z + ya, a ≥ 3, s ≥ 1, a2, . . . , as+1 ∈ C with as+1 6= 0.
In this case, d = a2s + 1, and the multiplicity sequence of (C ′, p) is [(a2 −

a)s, (sa)2a−1, a2s].

Type IIa. C ′ is given by

((yfn
2 + x2n+1)4n+1 − f2n+1

3 )/fn
2 = 0,

where f2 = xz − y2, f3 = f2n
2 z + 2x2nyfn

2 + x4n+1 and n ≥ 2.
In this case d = 8n2 + 4n+ 1 and the multiplicity sequence of (C ′, p) is [(n(4n+

1))4, (4n+ 1)2n, 3n+ 1, n3].

Type IIb. C ′ is given by

((f2s−1
3 (fn

2 y + x2n+1) +

s
∑

i=1

aif
2(s−i)
3 f

i(4n+1)−n
2 )4n+1 − f

2((4n+1)s−n)
3 )/fn

2 = 0,

where n ≥ 2, s ≥ 1, a1, . . . , as ∈ C with as 6= 0.
The degree of C ′ is d = 2(4n+1)2s−4n(2n+1). Set a∗ := 4n+1 and s∗ := 4s−1.

The multiplicity sequence for s = 1 is [(3na∗)4, (3a
∗)2n, (a

∗)3, 3n+1, n3], otherwise
it is

[(s∗a∗n)4, (s
∗a∗)2n, (sa

∗)3, (s− 1)a∗, (a∗)2(s−1), 3n+ 1, n3].

7.2. (C, p) in the case Type I.

After a computation, one has the following facts:
If s = 1, then (C ′, p) has two characteristic pairs. The decorations of the splice

diagram (for notation see 3.5) are the following:

p1 = a− 1, p2 = a, a1 = a, and a2 = a(d+ 1) + 1 = a3 + 2a+ 1.

In particular, the semigroup Γ is generated by the elements a2−a, a2 and a3+2a+1.
If s > 1 the (C ′, p) has three pairs: p1 = a− 1, p2 = s, p3 = a, a1 = a, a2 = d

and a3 = as(d+ 1) + 1. The semigroup is generated by

β̄0 = (a2 − a)s, β̄1 = a2s, β̄2 = a(a2s+ 1) = ad, β̄3 = 1 + as(d+ 1) = a3.

Notice that if in this second case we consider s = 1, we get a non-minimal splice
diagram (with p2 = 1) of the first case. In particular, any argument for general
s > 1 can be adopted to the s = 1 situation by a simple substitution s = 1 and by
elimination of the semigroup generator β̄2 = ad. Therefore, in the sequel we will
consider the general s ≥ 1 situation (which can be specialized to s = 1 as described
above).

Theorem 8. Type I satisfies the distribution property (CP ): R(t) ≡ 0.

Proof. We will use the notations of 3.3. We will prove the inequality

#Γ ∩ Il+1 ≤ 1 + #Γ ∩ Il, (inl)

for any l. Notice that this implies the negative distribution property, hence the
vanishing of R(t) would follow from Theorem 3.

Since Γ ∩ I0 = {0} and Γ ∩ I1 = {(a2 − a)s, a2s}, the inequality (in0) follows.
Since d(d − 3) + 1 is the largest element in N \ Γ, (inl) for l ≥ d − 2 also follows.
Next, we fix an l with 1 ≤ l ≤ d− 3. Denote by i0 := (l − 1)d+ 1 and consider the
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map

φl : Γ ∩ Il \ {i0} → Γ ∩ Il+1

defined by φl(x) = x+ β̄1 = x+ a2s. Clearly, φl is injective.
The following facts can be verified by elementary computations (using the short

hints):
(a) Using 2.1 (especially the formula for ∆) one gets that any γ ∈ Γ can be

written in a unique way in the form

γ = kβ̄3 +mβ̄0 + tβ̄2 + nβ̄1, (19)

where 0 ≤ k < a, 0 ≤ m < a, 0 ≤ t < s and n ≥ 0. Here k is the remainder of γ
modulo a.

(b) If in (19) n > 0 then γ = γ ′+a2s for some γ′ ∈ Γ. In particular, Γ∩Il+1\im(φl)
has two types of elements:

Type A. γ = kβ̄3 +mβ̄0 + tβ̄2 with 0 ≤ k < a, 0 ≤ m < a, 0 ≤ t < s; or

Type B. γ = (l + 1)d.

Here we do not exclude the situation when some semigroup element has both
types. Let SA (resp. SB) be the set of elements of type A (resp. B).

(c) #SA ≤ 2.
Indeed, assume that γ = kβ̄3 + mβ̄0 + tβ̄2 and γ′ = k′β̄3 + m′β̄0 + t′β̄2 are

both elements of SA. If k′ < k then (a − 1)(a2 − a)s + (s − 1)ad ≥ m′β̄0 + t′β̄2 >
ld − k′β̄3 ≥ −d + (k − k′)β̄3 ≥ −d + β̄3, a contradiction. Hence k = k′. Next,
consider the difference γ − γ ′ = (m − m′)β̄0 + (t − t′)da. Since |γ − γ′| < d and
|m −m′|β̄0 < (a − 1)d one gets |t − t′|ad < ad, hence t = t′. Therefore, if γ′ > γ
then γ′ = γ + (a2 − a)s (since 2(a2 − a)s ≥ d).

(d) One has the following identity for any γ of type A:

kβ̄3 +mβ̄0 + tβ̄2 = (kas+m+ at)d+ (k −m)(1 + sa), (20)

with |k −m| ≤ a− 1.

If SA = ∅, or SA = {γ} and (l+ 1)d 6∈ Γ, or SA = {(l+ 1)d} then obviously (inl)
follows. Hence we only have to analyze the following two cases:

Case 1. #SA = 2.

Write SA = {γ, γ′} where γ′ = γ+ (a2 − a)s (see the proof of (c)). Set γ = ld+ r
for some r > 0. Since ld+ r + (a2 − a)s = γ′ ≤ ld+ d, one gets r ≤ as+ 1.

Case 1a. First we verify that the case 0 < r ≤ as cannot occur. Indeed, assume
that r ≤ as and write γ in the form (20). Here there are two possibilities: either
kas+m+ at = l and k −m > 0, or kas+m+ at = l+ 1 and k −m < 0. The first
possibility is eliminated by r = (k−m)(as+1) > as ≥ r. Hence kas+m+ta = l+1,
and d−r = (m−k)(1+as). If m−k ≤ a−2 then a2s+1−as ≤ d−r ≤ (a−2)(1+sa),
a contradiction. Finally, if m − k = a − 1 then necessarily k = 0 and m = a − 1,
hence γ′ = tβ̄2 + (a− 1)β̄1 is not of type A, again a contradiction.

Case 1b. Therefore, r = as+1. In other words, γ = ld+as+1 and γ ′ = (l+1)d. In
particular, γ′ is of also of type B. This implies that #Γ∩ Il+1 = 2+#im(φl). Next,
write γ as in (20). Then an elementary computation shows that kas+m+at = l+1
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is not possible. Therefore kas+m+ at = l and k −m = 1. In particular,

i0 = mβ̄3 + (m+ a− 1)β̄0 + tβ̄2 + (a(s− 1) + 1)β̄1,

hence i0 ∈ Γ ∩ Il. This implies #Γ ∩ Il = 1 + #im(φl), hence (inl) follows with
equality.

Case 2. SA = {γ}, (l + 1)d ∈ Γ and γ 6= (l + 1)d.

Our goal is to show that i0 ∈ Γ. Since (l + 1)d is not of type A, it follows that
(l+ 1)d = γ̃ + a2s for some γ̃ ∈ Γ – in fact, for γ̃ = ld+ 1. Hence we have to verify
the following fact: If γ̃ = ld + 1 ∈ Γ, and there exists γ 6= (l + 1)d of type A in
Γ ∩ Il+1, then i0 ∈ Γ.

Write γ = kβ̄3 + mβ̄0 + tβ̄2 with 0 ≤ k < a, 0 ≤ m < a, 0 ≤ t < s. Similarly,
set some representation γ̃ = k′β̄3 +m′β̄0 + t′β̄2 + n′β̄1. Here we do not impose any
inequality for the coefficients k′, t′,m′, n′; hence k′ is uniquely determined by γ̃,
but m′ and n′ not (because of the relation a(a2 − a) = a2(a− 1)). Notice also that
i0 = γ̃ − d. Therefore, the identity

d = β̄3 + 2β̄0 − (1 + sa)β̄1

shows that if there is a representation of γ̃ with k′ ≥ 1 and some m′ ≥ 2 then
i0 ∈ Γ.

First we verify that (in any representation of γ̃ as above) k′ ≥ 1. Indeed, assume
that k′ = 0. Then (taking γ̃ = ld+1 modulo a) one gets that l = −1+La for some
1 ≤ L < as. Since ld+ 1 ≤ γ ≤ (l + 1)d− 1, one has

La(a2s+ 1) − a2s ≤ kβ̄3 +mβ̄0 + tβ̄2 ≤ La(a2s+ 1) − 1. (21)

This implies that
⌈kβ̄3 +mβ̄0 + tβ̄2

a(a2s+ 1)

⌉

= L.

But one also has

(t+ ks)a(a2s+ 1) < kβ̄3 +mβ̄0 + tβ̄2 ≤ (t+ ks+ 1)a(a2s+ 1).

Hence L = t+ ks+ 1. But for this L the left inequality of (21) fails.
Next, we show that there exists a representation with m′ ≥ 2. E.g., if in some

“bad” representation of γ̃ one has m′ = 0, then taking k′β̄3 + t′β̄2 + n′β̄1 modulo
d one gets n′ ≡ −1 + k′(as + 1) modulo d. Since 1 ≤ k′ ≤ a− 1, this implies that
n′ ≥ as, hence n′a2 can be rewritten as (n′−a+1)a2 +a(a2−a). Similar argument
works for m′ = 1 as well.

7.3. Addendum to the proof of Theorem 8.

In the verification of the conjecture for Type II curves we will use the results
valid for the Type I curves. We will need the following additional facts.

Assume that (C ′, p) is of Type I as above, and we keep the notations of 7.2 and
8. 8 shows that (∗) #Γ∩ [0, ld ] = (l+1)(l+2)/2 for any 0 ≤ l < d. We first assume
that d ≡ 0, a ≡ 1 and s ≡ −1 mod4.

Recall that any γ ∈ Γ can be written in a unique way as γ = kβ̄3+mβ̄0+tβ̄2+nβ̄1.
It is easy to see that γ ≡ −nmod4. Set #l,i := #{γ ∈ Γ, γ ≤ ld, n ≡ i mod 4}
for i = 0, 1, 2, 3 and 0 ≤ l < d. Then, using the function x 7→ x + β̄1 = x + d − 1,
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one gets

#l,1 = #l−1,2, #l,2 = #l−1,3, #l,3 = #l−1,0, #l,0 = #l−1,1 +A

for some A ∈ N. Here one uses that 4|ld. Taking the sum over i and using (∗), one
gets that A = l+ 1. Hence #l,i can be computed inductively. In particular, for any
l < d, #l,0 = (l + 1) + #l−4,0 = (l + 1) + (l − 3) + #l−8,0 = . . . . More precisely, if
l = 4k + r (with 0 ≤ r ≤ 3), then

#l,0 = (k + 1)(2k + r + 1) for any l < d.

E.g., this can be rewritten into

#2l,0 = (l + 1)(l + 2)/2, whenever 2l < d. (#2l)

The very last identity is true even if s = 1, a ≡ 1 and d ≡ 2 mod 4. Indeed, in
this case β̄2 is eliminated, β̄0 ≡ β̄3 ≡ β̄1 − 1 ≡ 0 mod 4, hence γ ≡ n mod4.
Therefore, #l,1 = #l−1,0 and #l,3 = #l−1,2 similarly as above, since ld is even.
Although #l,2 = #l−1,1 may not be true in general, but for l even it is true. Writing
#l,0 = #l−1,3+A, the formula for (#2l) works again by a similar argument as above.

7.4. (C ′, p) in the case Type II.

One can verify the following facts:
In case IIa one has two characteristic pairs, the splice decorations are: p1 =

n, p2 = 4n+ 1, a1 = 4n+ 1 and a2 = (2n+ 1)d− n(4n+ 1).
In case IIb one has three characteristic pairs, and the splice decorations can be

uniformly described for any s ≥ 1. They are: p1 = n, p2 = s∗, p3 = a∗, a1 =
a∗, a2 = d/2 and a3 = a∗s∗d/2 + (s− 1)a∗ + 3n+ 1.

In fact, the IIa case also can be considered as a ‘specialization’: if in the formulas
of IIb (including the formula of d as well) we substitute s = 1/2 then we get the
non-minimal splice diagram (with p2 = s∗ = 1) of the IIa case. Hence in the sequel
we will handle the case II uniformly (using the formulas of IIb, where s is any
positive integer or 1/2).

It is easy to verify that for Type II the degree d satisfies 2d = (a∗)2s∗ + 1, and
the generators of Γ are

β̄0 =
(a∗)2 − a∗

4
s∗; β̄1 = 2d− 1 = (a∗)2s∗; β̄2 = a∗d/2; β̄3 =

a∗s∗

4
(2d+ 1) +

1

4
.

If s = 1/2, or s∗ = 1, then one should eliminate β̄2.

Theorem 9. The Conjecture is true for Type II curves.

Proof. One can also think about the integers a∗ and s∗ as parameters of a Type
I curve (a∗, s∗ corresponding to a and s) with semigroup Γ∗. Their other Type I
invariants are (cf. 7.2):

d∗ = (a∗)2s∗ + 1; β̄∗
0 = ((a∗)2 − a∗)s∗; β̄∗

1 = d∗ − 1 = (a∗)2s∗;

β̄∗
2 = a∗d∗; β̄∗

3 = a∗s∗(d∗ + 1) + 1.

Notice that

d∗ = 2d, β̄∗
0 = 4β̄0, β̄

∗
1 = β̄1; β̄

∗
2 = 4β̄2; β̄

∗
3 = 4β̄3.
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We fix an integer l < d and we wish to determine

#{γ ∈ Γ : γ = kβ̄3 +mβ̄0 + tβ̄2 + nβ̄1 ≤ ld}.
Multiplying by 4, one gets that this equals

#{γ∗ ∈ Γ∗ : γ∗ = kβ̄∗
3 +mβ̄∗

0 + tβ̄∗
2 + 4nβ̄∗

1 ≤ 2ld∗}.
If s ≥ 1, then d∗ ≡ 0; a∗ ≡ 1; s∗ ≡ −1 mod4. If s = 1/2, then d∗ ≡ 2 and a∗ ≡ 1
mod 4, and s∗ = 1. Hence this wanted number is #2l,0 computed in 7.3 (notice that
2l < 2d = d∗), and equals (l + 1)(l + 2)/2. Hence

#{γ ∈ Γ : γ = kβ̄3 +mβ̄0 + tβ̄2 + nβ̄1 ≤ ld} = (l + 1)(l + 2)/2

for any s. In particular, conjecture follows for Type II as well.

8. Lin-Zaidenberg curves: κ̄ = 1 and ν = 2.

In this section we use an equivalent definition of Lin-Zaidenberg type curves
given in terms of automorphisms of the affine plane, (see section 4 for another
definition). Consider a coordinate system x, y in C2. Take a pair (p, q) of relatively
prime numbers with p > q. Let Cp,q be the curve of C2 defined by the equation
yp + xq = 0. Consider P2 together with a projective reference (X,Y, Z). We embed
C2 into P2 declaring that the image of the embedding is the open subset UZ defined
by Z 6= 0 and that (x, y) = (X/Z, Y/Z). We will denote by the same symbol
the curve Cp,q and its compactification to P2. Let φ : C2 → C2 be an algebraic
automorphism. The embedding of C2 into P2 allows us to view any automorphism
of C2 as a birational transformation of P2.

Definition 2. A curve C is said to be of Lin-Zaidenberg type, (LZ type for
short) if it is equal to φ−1(Cp,q) for a certain automorphism φ viewed as birational
transformation of P2. (Taking the inverse φ−1 instead of φ is just for notational
convenience).

For a rational bicuspidal plane curve, K. Tono [38] has proved that C is of LZ
type if and only if κ̄(P2 \ C) = 1.

Theorem 10. (CP ) is satisfied by any LZ type curve; in other words R(t) ≡ 0.

Let C be a LZ type curve. The curve C has two singularities, one at the origin of
C2 and the other at infinity. Let L1(t) and L2(t) denote respectively the Poincaré
series of their corresponding semigroups, see 2.1. From the very definition (4) of
R(t), the vanishing R(t) ≡ 0 is equivalent to

1

d

∑

ξd=1

L1(ξt)L2(ξt) =
1 − td

2

(1 − td)3
. (22)

The singularity at the origin is isomorphic to yp + xq = 0, therefore

L1(t) =
(1 − tpq)

(1 − tp)(1 − tq)
. (23)

The combinatorics of the minimal embedded resolution of the singularity at in-
finity of C are closely related to the combinatorics of the minimal resolution of the
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indeterminacy of φ as a birational transformation of P2, and to the combinatorics
of the minimal embedded resolution of the singularity that Cp,q has at infinity.

We will need the facts on algebraic automorphisms of C2 from section 4; we
refer to [10], [11] for details and more precise statements. Let π : X → P2 the
minimal resolution of the indeterminacy of φ. Let L := P2 \ C2 denote the line at
infinity and consider A the dual graph of the normal crossing divisor π∗L. Recall
that we have a total order of the vertices of the graph (this order is recovered
combinatorially by successively contracting (−1) vertices and adjusting weights at
each step). Denote by A∗ the graph A minus its first vertex (the one corresponding
to the line at infinity). The automorphism φ admits a unique decomposition as
ψ ◦H where H is an affine transformation of C2 and ψ is the automorphism of C2

which is composition of π−1 and the successive contraction of all the irreducible
components of π∗L with self intersection (−1). Moreover all the components except
the one corresponding to the last vertex of A are contracted. For our purposes it
is sufficient to consider automorphisms for which H is the identity; we will assume
this in the sequel. The automorphism φ admits a decomposition as φ = φr ◦ ... ◦φ1,
where φi is the result considering first the blowing ups whose exceptional divisors
belong to the i-th floor and then contracting all possible components with self-
intersection (−1). The graph associated to the resolution of indeterminacy of φi is
the elementary graph of length ni.

The singularity at infinity of Cp,q is at the point (1 : 0 : 0) of P2 and is defined
by the equation yp + zp−q = 0. Let σ : Y → P2 the composition of blowing ups
giving its minimal embedded resolution of this singularity. By the irreductibility of
Cp,q at (1 : 0 : 0) the blowing ups whose composition gives rise to σ are totally
ordered. Let E = σ−1(1 : 0 : 0) be the exceptional divisor of σ; denote by G its
dual graph. Each vertex of G corresponds to an irreducible component of E, and
hence to one of the blowing-ups whose composition is σ, and therefore they are
totally ordered. It is known that G is a linear graph whose first vertex is one of the
extremes. Although the ordering given to the vertices is not the same that the order
given by the linearity of the graph we will denote by v1 and v2 the two extremal
vertices of the graph (the vertex v1 is the first vertex in the given order, but v2
need not be the second). We decorate the graph adding an arrow to the vertex
corresponding with the irreducible component of E.

We must distinguish two cases:
Case 1: the first indetermination point of φ−1 is different to the point at infinity

of Cp,q . Let ψ : Z → P2 be the blowing up process giving the minimal embedded
resolution of the singularity that C has at infinity. It is easy to check that ψ is the
sequence of blowing ups needed to resolve the indeterminacy of φ, followed by the
sequence of blowing ups providing the embedded resolution of the singularity of
Cp,q at infinity. The divisor ψ∗C can be decomposed as

ψ∗C = C̃ +

k
∑

i=1

mkEk,

where C̃ is the strict transform of C and E1,..., Ek the irreducible components of
the exceptional divisor ordered by appearance.

In this case it is easy to see that the decorated dual graph B of the exceptional
divisor is obtained by joining with an edge the last vertex of A∗ with the first vertex
v1 of G. We give a total order to the vertices of the resulting graph are totally
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ordered by considering first the vertices of A∗ and after the vertices of G with the
previously given order. This order coincides with the natural order obtained defined
identifying the vertices with the divisors E1,...,Ek .

With this information it is easy to compute the multiplicity sequence of the
singularity, and to deduce from it the degree of C and the coefficients m1,...,mk.
The degree is d := deg(C) = pn1 . . . nr. For computing the Poincaré series L2 we
need to know the coefficients mi of the univalent and trivalent vertices of B. We
observe that the univalent vertices are the first vertex of each floor of A∗ (which in
the picture are the univalent central vertices of the floors), the second vertex of the
first floor, and the vertex v2 of G. We have exactly one trivalent vertex for each floor
in addition to the last vertex of G, where the arrow decorating the graph is attached.
The Poincaré series of the semigroup of the singularity at infinity obtained is:

L2(t) =
(1 − tn

2
1...n2

rp2−pq)
∏r

i=1(1 − t(n
2
1...n2

i−1)ni...nrp)

(1 − tn
2
1...n2

rp−q)(1 − tn1...nrp)
∏r

i=1(1 − t(n
2
1...n2

i −1)ni+1...nrp)
. (24)

Case 2: the first indetermination point of φ−1 is equal to the point at infinity
of Cp,q . We can further assume that the singularities at infinity of φ−1

r (Cp,q) and
C do not have the same resolution graph: if this were the case we could work with
φ−1

r (Cp,q) instead of Cp,q and with φr−1 ◦ ... ◦φ1 ◦H instead of φ, and we would be
in Case 1. Let k be the only integer such that p− kq < q < p− (k − 1)q; then the
condition that φ−1

r (Cp,q) and C do not have the same resolution graph is equivalent
to nr ≥ k + 1.

Let π′ : X → P2 be the minimal blowing-up process resolving the indeterminacy
of φ−1. Viewing φ as a composition of a sequence of blowing ups followed by a
sequence of contractions it is clear that the dual graph of (π′)∗L can be naturally
identified with the graph A, but with a different ordering of the vertices (in partic-
ular the first vertices are those of the r-th floor of A). Noticing that nr ≥ k + 1, a
comparison between the blowing up sequences π′ and σ shows that their first k+ 1
blowing up processes are the same in both sequences. Call σ′ the composition of
these blowing-ups and let W:={w′

1, ..., w
′
k+1} be the ordered set of vertices of G

corresponding to the exceptional divisors of these blowing-ups. We can decompose
σ as σ = σ2 ◦ σ1, where σ1 is the composition of blowing-ups whose associated ver-
tex does not belong to W and σ2 is the composition of the remaining blowing-ups.
Suppose that w′

i is the first of the vertices of W such that its associated exceptional
divisor meets the strict transform of Cp,q by σ2. Clearly w′

i can be regarded also as
a vertex of A. Denote by π1 the composition of those blowing ups of π such that
the vertex associated to their exceptional divisor is smaller or equal than w′

i with
the ordering in A induced by π.

Let ψ : Z → P2 be the blowing up process giving the minimal embedded resolu-
tion of the singularity that C has at infinity. Then it is easy to check that ψ = π1◦σ1.
Due to this decomposition the decorated dual graph B of the exceptional divisor of
ψ can be obtained as follows:

Let A′ be the graph obtained from A∗ by deleting the last k vertices. If k > 1 let
G′ be the graph obtained from G by deleting the first k − 1 vertices; if k = 1 let G ′

be the graph obtained by deletion of the first vertex of G. The graph G ′ is linear.
If k = 1 then its first vertex is a extreme of it, and is denoted by w. If k > 0 both
its first and second vertices are extremes of it; in this case we alter the ordering in
the vertices of G′ by interchanging the order of the first two vertices, and denote
by w the first vertex of G ′ with the altered order. The graph B is is obtained by
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identifying (not joining with an edge) the last vertex of A′ with the vertex w of
G′. We give a total order to the vertices of the resulting graph by considering first
the vertices of A′ and after the vertices of G ′ with the altered order. This order
coincides with the natural order obtained defined identifying the vertices with the
irreducible components of the exceptional divisor of ψ. The univalent vertices of B
are the first vertex of each floor of A (in the picture these are the univalent central
vertices of the floors), the second vertex of the first floor, and the extreme of G ′

different from w. We have exactly one trivalent vertex for each floor in addition to
the last vertex of G ′, where the arrow decorating the graph is attached. The degree
of C is d = n1 . . . nrq and the Poincaré series of the singularity at infinity is:

L2(t) =
(1 − tn

2
1...n2

rq2−pq)
∏r

i=1(1 − t(n
2
1...n2

i−1)ni...nrq)

(1 − tn
2
1...n2

rq−p)(1 − tn1...nrq)
∏r

i=1(1 − t(n
2
1...n2

i −1)ni+1...nrq)
. (25)

Remark 3. The formulas for the degree and L2(t) obtained in Case 2 are the
result of interchanging the role of p and q in the formulas obtained in Case 1.

Due to (22), (23), (24), (25) and 3, we need to prove the following fact. For any
two coprime positive integers p and q (without imposing p > q), for n1, . . . , nr

positive integers and d := n1 . . . nrp the following identity holds:

1

d

∑

ξd=1

(1 − (ξt)pq)(1 − (ξt)n2
1...n2

rp2−pq)

(1 − (ξt)p)(1 − tq)(1 − (ξt)n2
1 ...n2

rp−q)(1 − (ξt)n1 ...nrp)

�

r
∏

i=1

(1 − (ξt)(n
2
1...n2

i −1)ni...nrp)

(1 − (ξt)(n
2
1...n2

i−1)ni+1...nrp)
=

1 − td
2

(1 − td)3
.

Multiplying in both sides by d(1−td)3 and extracting common factors of numerator
and denominator we see that the last equality is equivalent to:

(1 − td)
∑

ξd=1

[(

p−1
∑

j=0

(ξt)jq)(

p−1
∑

j=0

(ξt)j(n2
1 ...n2

rp−q))(

n1...nr−1
∑

j=0

(ξt)jp)� (26)

�

r
∏

i=1

(

ni−1
∑

j=0

(ξt)j(n2
1 ...n2

i−1ni−1)ni+1...nrp)] = d(1 − td
2

).

The left hand side of (26) is equal to (1 − td) times

∑

ξd=1

[

p−1
∑

i,j=0

n1...nr−1
∑

l=0

r
∑

α=1

nα−1
∑

kα=0

(ξt)iq+j(n2
1 ...n2

rp−q)+lp+
Pr

α=1 kα(n2
1...n2

α−1nα−1)nα+1...nrp].

(27)
The exponent of (ξt) in the last expression can be written as A(i, j, l,k) +
dB(i, j, l,k), for

A(i, j, l,k) := (i− j)q + lp−
r
∑

α=1

kαnα+1 . . . nrp,

B(i, j, l,k) := jn1 . . . nr +

r
∑

α+1

kαn1 . . . nα−1.
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But
∑

ξm=1 ξ
m = 0 for any integer m non-divisible by d. In the present case m =

A(i, j, l,k).

Lemma 2. If A(i, j, l,k) is divisible by d then i = j and l =
∑r

α=1 nα+1 . . . nr.

As d = n1 . . . nrp we deduce that p|A(i, j, l,k). It immediately follows that i = j
and that

n1 . . . nr|l −
r
∑

α=1

kαnα+1 . . . nr.

We claim that then 0 = l −∑r
α=1 kαnα+1 . . . nr. The claim is proved by induction

on r. For r = 1 it is obvious since |l − k1| < n1. For the induction step we write

l−
r
∑

α=1

kαnα+1 . . . nr = l − kr + nr

r−1
∑

α=1

kαnα+1 . . . nr−1;

as n1 . . . nr divides the last quantity we have nr|l − kr. Therefore we can express l
as l = kr + nrl

′. Then

n1 . . . nr−1|l′ −
r−1
∑

α=1

kαnα+1 . . . nr−1,

and we conclude by induction.

Therefore, by Lemma 2 and a computation, the left hand side of (26) becomes

(1 − td) · d
p−1
∑

j=0

r
∑

α=1

nα−1
∑

kα=0

tjn2
1 ...n2

rp+
Pr

α=1 n2
1...n2

α−1nα...nrp.

A computation shows that the result equals d(1 − td
2

), as desired.

9. (CP ) for Orevkov’s curves.

In this section we will consider the families {C4k} and {C∗
4k} (k ≥ 2) of Orevkov

[34]. There is a special interest in these curves: Orevkov proved that they satisfy
d > αm (where α = (3 +

√
5)/2 as above); moreover he conjectured that these

are the only rational cuspidal curves (together with the curves C4 and C∗
4 from

Examples 1(e)-(f)) satisfying this inequality. Also, for these curves one has κ̄(P2 \
C) = 2, in contrast with the previous sections 3-7. In particular, Theorem 11 shows
that (CP ) is not a speciality of curves with κ̄ < 2 (and of some finitely many
sporadic curves of general type).

In this case the number of characteristic pairs of (C, p) is again two, which makes
the structure of the semigroups rather interesting. The numerical invariants of the
curves are the following (cf. [34]). In both cases j ≡ 0 mod 4, and j ≥ 8.

9.1. Cj has degree d = ϕj+2.

The germ (Cj , p) has two characteristic pairs with numerical invariants:

p1 = ϕj/3, p2 = 3; a1 = ϕj+4/3, a2 = 1 + ϕjϕj+4/3;

β̄0 = ϕj , β̄1 = ϕj+4, β̄2 = a2.
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9.2. C∗
j has degree d∗ = 2ϕj+2.

The germ (Cj , p) has two characteristic pairs with numerical invariants:

p1 = ϕj/3, p
∗
2 = 6; a1 = ϕj+4/3, a

∗
2 = 1 + 2ϕjϕj+4/3;

β̄∗
0 = 2ϕj , β̄

∗
1 = 2ϕj+4, β̄

∗
2 = a∗2.

Theorem 11. C4k and C∗
4k satisfy (CP ).

Proof. We start with the case Cj .
Step 1. Assume that l < d. Notice that gcd(β̄1, d) = 1, hence kβ̄1 = ld implies

l = k = 0. In all the other cases, by a similar argument as in the proof of 5, kβ̄1 < ld
is equivalent to k/l < 1/α. Hence kβ̄1 ∈ Il if and only if dkαe = l.

Step 2. Assume l < d. If iβ̄0 > ld then i/l > ϕj+2/ϕj > α. Conversely, if i/l > α
then consider ϕj+2/ϕj > ϕj+4/ϕj+2 > α. Similarly as in the proof of 5, we get that
i/l ≥ ϕj+2/ϕj . Hence, if l 6∈ {ϕj , ϕj + 1} then iβ̄0 ∈ Il if and only if di/αe = l.

Step 3. Notice that x := ϕjϕj+4/3 = (ϕ2
j+2 − 1)/3 is not a multiple of d, hence

x and a2 = x + 1 are in the same interval Il0 . Let Γ0 be the semigroup generated
by β̄0 and β̄1. Hence for l < l0 one has Γ0 ∩ Il = Γ ∩ Il.

Moreover, l0 − 1 < ϕj . Indeed, (l0 − 1)ϕj+2 < x = (ϕ2
j+2 − 1)/3 < ϕj+2ϕj

(because ϕj+2 < 3ϕj).
Notice also that the very first semigroup element iϕj + kϕj+4 of Γ0 which can

be written in two different ways is x = (ϕj+4/3)ϕj = (ϕj/3)ϕj+4.
Hence, for any l ≤ l0 − 1, by similar argument as in the proof of 5(d), and using

Step 1 and Step 2, we get that the distribution patern is true.

The proof now bifurcates in two cases.
First assume that d = ϕj+2 = 3t− 1 for some t. Then x = 3t2 − 2t and l0 = t.
Step 4. One can verify that the following numbers are in increasing order: x−2ϕj ,

(l0 − 1)d, x − ϕj , x, l0d, x + ϕj , x + 3ϕj , (l0 + 1)d, x + 4ϕj , x + 6ϕj , (l0 + 2)d,
x+ϕj+4, x+7ϕj . E.g., x+ϕj > l0d reduces to ϕj > t, or to 3ϕj > ϕj+2 +1 which
is true. The other verifications are similar.

Step 5. Since ϕj+4 + ϕj = 3ϕj+2, the map sl : Il−3 ∩ Γ0 → Il ∩ Γ0, given by
y 7→ y+ϕj+4 +ϕj is well-defined. Clearly, it is injective. For l = l0 the complement
of its image has two elements, namely x and x− ϕj (cf. Steps 3 and 4).

For l > l0 the map sl is surjective. This follows from Step 4 and the identities
iϕj = (i−ϕj+4/3)ϕj +(ϕj/3)ϕj+4 (for i > ϕj+4/3) and kϕj+4 = (k−ϕj/3)ϕj+4 +
(ϕj+4/3)ϕj (for k > ϕj/3). Therefore

∑

k∈Γ0

tdk/de = 1+2t+ . . .+ l0t
l0−1 +

(

l0 +(l0 − 1)t+ l0t
2
)

· (tl0 + tl0+3 + tl0+6 + . . .).

Step 6. Consider now the intervals l0 ≤ l ≤ 2l0 − 1. Since (cf. Step 4) 2x + d >
2x + 2ϕj > 2l0d, we get that 2a2 is not situating in these intervals.By a mod 3
argument, for any such l, Γ ∩ Il is the disjoint union of Il ∩ Γ0 and Il ∩ (a2 + Γ0).
Moreover, in all these intervals any element of a2 + Γ0 has a unique representation
in the form a2 + iϕj + kϕj+4.

In particular, we have to understand the distribution of a2 + Γ0. By a similar
computation as in Step 4, we get that Il0 contains only a2, Il0+1 contains a2 + iϕj
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for i = 1, 2, 3; Il0+2 contains a2 + iϕj for i = 4, 5, 6. In particular, for intervals
l = l0, l0 + 1, l0 + 2 the distribution of Γ follows.

Step 7. Assume again l0 ≤ l ≤ 2l0−1. Consider the injective map s′l : Il−3∩ (a2 +
Γ0) → Il∩(a2+Γ0) given by y 7→ y+ϕj +ϕj+4. We claim that for l0−3 ≤ l ≤ 2l0−1
the complement of the image of s′l has exactly three elements. There are two types
of elements in the complement. The first type is a2 +kϕj+4 = 1+(k+ϕj/3)ϕj+4 =
1 + k′ϕj+4. Since k′ϕj+4 is never a multiple of d (in the relevant intervals) we get
(via Step 1) that 1 + k′ϕj+4 ∈ Il if and only if k′ϕj+4 ∈ Il if and only if dk′αe = l.

The other type is a2 + iϕj = 1 + (i+ϕj+4/3)ϕj = 1 + i′ϕj . Notice that i′ϕj can
be a multiple of d in these intervals, namely for i′ = d. This fact combined with
Step 2 we get that 1 + i′ϕj ∈ Il if and only if di′/αe = l. Now, by the end of the
proof of 5(d) the above claim follows.

In particular, the distribution is true for any l < 2l0.
Step 8. Since (CPl) is true if and only if (CPd−2−l) is true, one gets (CPl) for all

the remaining cases.

The proof in the other case d = ϕj+2 = 3t+1 is similar. The only differences are
the following. First one has the following increasing numbers:
x − ϕj , (l0 − 1)d, x, x + ϕj , l0d, x + 2ϕj , x + 4ϕj , (l0 + 1)d, x + 5ϕj , x + 6ϕj ,

(l0 + 2)d, x+ 7ϕj . Also x+ ϕj+4 < (l0 + 2)d. In particular,
∑

k∈Γ0

tdk/de = 1+2t+. . .+l0t
l0−1+

(

(l0−1)+(l0−1)t+l0t
2
)

·(tl0 +tl0+3+tl0+6+. . .).

Moreover, a2 + Γ0 has 2, 3, resp. 3 elements in Il for l = l0, l0 + 1, resp. l0 + 2,
namely a2 + iϕj for i = 0, 1 (l = l0); a2 + iϕj for i = 2, 3, 4 (l = l0 + 1); and finally
a2 + iϕj for i = 5, 6 and a2 +ϕj+4 in the last case. Otherwise all the arguments are
similar.

In the next paragraph we show that the case C∗
j can be reduced to the case Cj .

Assume first that l < ϕj+2. In these intervals Il(Cj), for any element of the
semigroup of Cj , the coefficient c2 of a2 is ≤ 2. Indeed, 3a2 = 3 + ϕjϕj+4 =
2+ϕ2

j+2. Moreover, by a computation one can verify that there no elements of type
2a2 + iϕj + kϕj+4 (i.e. with c2 = 2) which equals some lϕj+2 + 1 (the first entry of
some interval). Using this, one gets a bijection Γ(Cj)∩Il(Cj) → Γ(C∗

j )∩Il(C∗
j ) given

by x 7→ 2x − c2 (which sends β̄i into β̄∗
i ). Therefore, (CPl) is true for C∗

j for any
l ≤ d∗/2−1. By symmetry, (CPl) is true for any l ≥ d∗−2− (d∗/2−1) = d∗/2−1,
hence for any l.
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(2002) 605–640.

6. J.L. Coolidge, A treatise of algebraic plane curves, (Oxford Univ. Press. Oxford, 1928).
7. D. Eisenbud and W. Neumann, Three-Dimensional Link Theory and Invariants of Plane

Curve Singularities, Ann. of Math. Studies 110, (Princeton University Press, Princeton,
1985).

8. T. Fenske, ‘Rational 1- and 2-cuspidal plane curves’, Beiträge Algebra Geom. 40 (1999)
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28. A. Némethi, ‘On the Ozsváth-Szabó invariant of negative definite plumbed 3-
manifolds’,arXiv preprint server arXiv:math.AG/0310083.

29. A. Némethi and L.I. Nicolaescu, Seiberg-Witten invariants and surface singularities, Ge-
ometry and Topology 6 (2002) 269–328.

30. A. Némethi and L.I. Nicolaescu, Seiberg-Witten invariants and surface singularities II
(singularities with good C

∗-action), Journal London Math. Soc. (2) 69 (2004) 593–607.
31. A. Némethi and L.I. Nicolaescu, Seiberg-Witten invariants and surface singularities III

(splicings and cyclic covers),to appear in Selecta Math. , New series, arXiv preprint server
arXiv:math.AG/0207018.

32. W. Neumann and J. Wahl, ‘Casson invariant of links of singularities’, Comment. Math.
Helv. 65 (1991) 58–78.

33. I. Niven and H. Zuckerman, An Introduction to the Theory of Numbers, (John Wiley &
Sons, Inc., second edition, 1967).

34. S.Yu. Orevkov, ‘On rational cuspidal curves, I. Sharp estimate for degree via multiplicity’,



on rational cuspidal projective plane curves 39

Math. Ann. 324 (2002) 657–673.
35. R. Rustamov, ‘A surgery formula for renormalized Euler characteristic of Heegaard Floer

homology’, arXiv preprint server arXiv:math.GT/0409294
36. B. Teissier and O. Zariski, Le problème des modules pour les branches planes, (Hermann,

Paris, 1986, Appendice).
37. K. Tono, ‘Defining equations of certain rational cuspidal plane curves’, Manuscripta Math.

103 (2000) 47–62.
38. K. Tono, ‘Defining equations of certain rational cuspidal plane curves’, doctoral thesis,

Saitama University, 2000.
39. K. Tono, ‘On rational unicuspidal plane curves with κ̄ = 1’, RIMS-Kôkyûroku 1233 (2001)
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Abstract for On-Line Publication

In 2002 L. Nicolaescu and the forth author formulated a very general conjecture
which relates the geometric genus of a Gorenstein surface singularity with rational
homology sphere link with the Seiberg-Witten invariant (or one of its candidates)
of the link. Recently, the last three authors found some counterexamples using
superisolated singularities. The theory of superisolated hypersurface singularities
with rational homology sphere link is equivalent with the theory of rational cus-
pidal projective plane curves. In the case when the corresponding curve has only
one singular point one knows no counterexample. In fact, in this case the above
Seiberg-Witten conjecture led us to a very interesting and deep set of ‘compat-
ibility properties’ of these curves (generalising the Seiberg-Witten invariant con-
jecture, but sitting deeply in algebraic geometry) which seems to generalise some
other famous conjectures and properties as well (e.g. the Noether-Nagata or the log
Bogomolov-Miyaoka-Yau inequalities). Namely, we provide a set of ‘compatibility
conditions’ which conjecturally is satisfied by a local embedded topological type of
a germ of plane curve singularity and an integer d if and only if the germ can be
realized as the unique singular point of a rational unicuspidal projective plane curve
of degree d. The conjectured compatibility properties have a weaker version too,
valid for any rational cuspidal curve with more than one singular point. The goal of
the present article is to formulate these conjectured properties, and to verify them
in all the situations when the logarithmic Kodaira dimension of the complement of
the corresponding plane curves is strictly less than two.


