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Abstract—We discuss the notion of a power structure over a ring and the geometric description
of the power structure over the Grothendieck ring of complex quasi-projective varieties and
show some examples of applications to generating series of classes of configuration spaces (for
example, nested Hilbert schemes of J. Cheah) and wreath product orbifolds.
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To a pre-λ ring there corresponds a so-called power structure. This means, in particular, that
one can give sense to an expression of the form

(1 + a1t + a2t
2 + . . .)m

for ai and m from a ring R. (Generally speaking, there are many pre-λ structures on a ring that
correspond to the same power structure.) A natural pre-λ structure on the Grothendieck ring
K0(VC) of complex quasi-projective varieties is defined by the Kapranov zeta-function

ζX(t) = 1 + [X]t + [S2X]t2 + [S3X]t3 + . . . ,

where SkX = Xk/Sk is the kth symmetric power of the variety X. In [8], we gave a geometric
description of the corresponding power structure over the Grothendieck ring K0(VC). In some cases
this permits one to give new (short and more transparent) proofs as well as certain refinements
of formulae for generating series of classes of moduli spaces in the ring K0(VC) and/or of their
invariants: the Euler characteristic and the Hodge–Deligne polynomial. An application of this sort
(for the generating series of classes of Hilbert schemes of 0-dimensional subschemes of a smooth
quasi-projective variety) was described in [9].

The aim of this paper is to describe the concept of a power structure (in a somewhat more general
context introduced in [10]) and to show its applications to proofs and to some improvements of the
results by J. Cheah in [4] on nested Hilbert schemes and by W.-P. Li and Zh. Qin in [12] on
moduli spaces of some 1-dimensional subschemes. Finally, we rewrite some results of W. Wang and
J. Zhou from [15, 16] on generating series of generalized orbifold Euler characteristics of wreath
product orbifolds in terms of the power structure. The improvements of these results consist in
the following: in the original papers, these results were formulated for some invariants (the Euler
characteristic, the Hodge–Deligne polynomial, orbifold Euler characteristics, etc.), whereas here
we formulate and prove them for the classes of the corresponding spaces in the Grothendieck ring
K0(VC).
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54 S.M. GUSEIN-ZADE et al.

1. POWER STRUCTURES

Definition. A pre-λ structure on a ring R is given by a series λa(t) ∈ 1 + t · R[[t]] defined for
each a ∈ R so that

(i) λa(t) = 1 + at mod t2,
(ii) λa+b(t) = λa(t)λb(t) for a, b ∈ R.

Examples. One has the following important examples of pre-λ structures.
1. R is the ring Z of integers, and λk(t) = (1 − t)−k.
2. R = Z and λk(t) = (1 + t)k.
3. R = Z[u1, . . . , ur] (the ring of polynomials in r variables u1, . . . , ur); for a polynomial

P = P (u) =
∑

pk uk, k ∈ Z
r
≥0, pk ∈ Z, we have

λP (t) =
∏

k∈Zr
≥0

(1 − uk t)−pk ,

where u = (u1, . . . , ur), k = (k1, . . . , kr), and uk = uk1
1 · . . . · ukr

r (see [9]).
4 (a more geometric example). Let R be the K-functor K(X) of a space X, i.e., the Grothendieck

ring of (say, real or complex) vector bundles over X. For a vector bundle E over X, let ΛkE be the
kth exterior power of the bundle E. The series

λE(t) = 1 + [E]t + [Λ2E]t2 + [Λ3E]t3 + . . .

defines a pre-λ structure on the ring K(X).
With a pre-λ structure on a ring R, one can associate a power structure over R; this notion was

introduced in [8].
Definition. A power structure over a (semi)ring R with a unit is a map (1 + t · R[[t]]) × R →

1 + t · R[[t]] : (A(t),m) �→ (A(t))m that possesses the following properties:

(i) (A(t))0 = 1,
(ii) (A(t))1 = A(t),
(iii) (A(t) · B(t))m = (A(t))m · (B(t))m,
(iv) (A(t))m+n = (A(t))m · (A(t))n,
(v) (A(t))mn = ((A(t))n)m,
(vi) (1 + t)m = 1 + mt + terms of higher degree,
(vii) (A(tk))m = (A(t))m

∣∣
t�→tk

.

Remark. For a ring, property (i) follows from the other ones. It is necessary to keep this
property only for a semiring.

Definition. A power structure is finitely determined if for each M > 0 there exists an N > 0
such that for any series A(t) the M -jet of the series (A(t))m (i.e., (A(t))m mod tM+1) is determined
by the N -jet of the series A(t).

Proposition 1. To define a finitely determined power structure over a ring R, it is sufficient
to define the series (A0(t))m for any fixed series A0(t) of the form 1 + t + terms of higher degree
and for each m ∈ R so that

(i) (A0(t))m = 1 + mt + terms of higher degree ,

(ii) (A0(t))m+n = (A0(t))m(A0(t))n.
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ON THE POWER STRUCTURE OVER THE GROTHENDIECK RING 55

Proof. By properties (vi) and (vii), each series A(t) ∈ 1+ t ·R[[t]] can be uniquely represented
as a product of the form

∏∞
i=1(A0(ti))bi with bi ∈ R. Then, by properties (iii) and (vii) (and the

finite determinacy of the power structure), one has

(A(t))m =
∞∏
i=1

(A0(ti))bim. (1)

Conversely, one can easily see that the power structure defined by equation (1) possesses proper-
ties (i)–(vii). �

Proposition 1 means that a pre-λ structure on the ring R defines a finitely determined power
structure over R. On the other hand, there are many pre-λ structures on the ring R that give the
same power structure: these are the structures defined by the series (A0(t))m for any fixed series
A0(t) of the form 1 + t + terms of higher degree. In what follows we will prefer to use the series
A0(t) = (1 − t)−1 = 1 + t + t2 + . . . ∈ R[[t]].

Let R[[t]] = R[[t1, . . . , tr]] be the ring of series in r variables t1, . . . , tr with coefficients in the
ring R, and let m be the ideal 〈t1, . . . , tr〉. A power structure over the ring R allows one to give
sense to expressions of the form (A(t))m in a natural way, where A(t) ∈ 1 + mR[[t]]. Namely, the
series A(t) can be uniquely represented in the form

A(t) =
∏

k∈Zr
≥0\{0}

(1 − tk)−bk , tk = tk1
1 · . . . · tkr

r .

Then
(A(t))m =

∏
k∈Zr

≥0\{0}
(1 − tk)−bkm.

Let R1 and R2 be rings with power structures over them. A ring homomorphism ϕ : R1 → R2

induces a natural homomorphism R1[[t]] → R2[[t]] (also denoted by ϕ) by the formula ϕ
(∑

ai t
i
)

=∑
ϕ(ai) ti.
Proposition 2. If a ring homomorphism ϕ : R1 → R2 is such that (1−t)−ϕ(m) = ϕ((1−t)−m)

for any m ∈ R1, then ϕ((A(t))m) = (ϕ(A(t)))ϕ(m) for A(t) ∈ 1 + mR1[[t]], m ∈ R1.
A quasi-projective variety is the difference of two (complex) projective (algebraic) varieties.
Definition. The Grothendieck ring K0(VC) of complex quasi-projective varieties is the abelian

group generated by the classes [X] of all quasi-projective varieties X modulo the following relations:

(i) if varieties X and Y are isomorphic, then [X] = [Y ];
(ii) if Y is a Zariski closed subvariety of X, then [X] = [Y ] + [X \ Y ].

The multiplication in K0(VC) is defined by the Cartesian product of varieties.
Remark. One can also consider the concept of the Grothendieck semiring S0(VC) of complex

quasi-projective varieties substituting the word “semigroup” for the word “group” in the above
definition. The elements of the semiring S0(VC) have somewhat more geometric sense: they are
represented by “genuine” quasi-projective varieties (not by virtual ones).

The class [A1
C
] ∈ K0(VC) of the complex affine line is denoted by L. In a number of cases it is

reasonable (or rather necessary) to consider the localization K0(VC)[L−1] of the Grothendieck ring
K0(VC) by the class L.

For a complex quasi-projective variety X, let SkX = Xk/Sk be the kth symmetric power of the
space X (here Sk is the group of permutations of k elements; SkX is a quasi-projective variety as
well).
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56 S.M. GUSEIN-ZADE et al.

Definition. The Kapranov zeta function of a quasi-projective variety X is the series

ζX(t) = 1 + [X] · t + [S2X] · t2 + [S3X] · t3 + . . . ∈ K0(VC)[[t]]

(see [11]).
One can see that

ζX+Y (t) = ζX(t) · ζY (t). (2)

This follows from the relation Sk(X � Y ) =
∐k

i=0 SiX × Sk−iY . In addition, we have

ζLn(t) =
1

1 − Lnt
.

For example, this implies that

ζCPn(t) =
n∏

i=0

1
1 − Lit

.

Equation (2) means that the series ζX(t) defines a pre-λ structure on the Grothendieck ring
K0(VC). The geometric description of the corresponding power structure over the ring K0(VC) was
given in [8]. We will formulate it here in the form adapted to series in r variables [10].

Let An, n = (n1, . . . , nr) ∈ Z
r
≥0 \ {0}, and M be quasi-projective varieties and A(t) = 1 +∑

n∈Zr
≥0

\{0}[An ]tn ∈ K0(VC)[[t]]. Let A be the disjoint union
∐

k∈Zr
≥0

\{0} Ak, and let k : A → Z
r
≥0

be the tautological map on it: it sends the points of Ak to k ∈ Z
r
≥0.

Geometric description of the power structure over the ring K0(VC). The coefficient
at tn in the series A(t)[M ] is represented by the configuration space of pairs (K,ϕ), where K is
a finite subset of the variety M and ϕ is a map from K to A such that

∑
x∈K k(ϕ(x)) = n. To

describe such a configuration space as a quasi-projective variety, one can write it as

∑
k :

∑
i ki=n

[((∏
i

Mki

)
\ ∆

)
×

∏
i

A
ki

i

/ ∏
i

Ski

]
, (3)

where k = {ki : i ∈ Z
r
≥0 \ {0}, ki ∈ Z} and ∆ is the “large diagonal” in MΣki , which consists

of
(∑

ki

)
-tuples of points of M at least two of which coincide; the permutation group Ski

acts by
permuting the corresponding ki factors in

∏
s Mki ⊃

(∏
i M

ki
)
\∆ and the spaces Ai simultaneously

(the connection between this formula and the description above is clear).
One can show (see [8]) that the operation described indeed gives a power structure over the ring

K0(VC); i.e., it satisfies conditions (i)–(vii) of the definition. The fact that this structure corresponds
to the Kapranov zeta function follows from the equation

(1 + t + t2 + . . .)[M ] = 1 + [M ] · t + [S2M ] · t2 + [S3M ] · t3 + . . . . (4)

Indeed, since there is only one map from M to a point (a coefficient in the series 1 + t + t2 + . . . ),
the coefficient of tn on the left-hand side of equation (4) is represented by the space a point of
which is a finite set of points of the variety M with positive multiplicities such that the sum of these
multiplicities is equal to n. This is just the definition of the nth symmetric power of the variety M .

It is also useful to describe the binomial (1 + t)[M ]. The coefficient of tn in it is represented by
the space a point of which is a finite subset of the variety M with n elements, i.e., the configuration
space (Mn \ ∆)/Sn of unordered n-tuples of distinct points of M .
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It seems that the power structure can be used to prove some combinatorial identities. For
instance, applying formula (3) to a finite set M with m elements and to finite sets An, one gets a
formula for the power of a series:(

1 +
∑

n∈Zr
≥0\{0}

an tn

)m

= 1 +
∑

n∈Zr
≥0\{0}

( ∑
k :

∑
iki=n

m!
(m − Σki)!

∏
i ki!

∏
i

a
ki

i

)
tn.

There are two natural homomorphisms from the Grothendieck ring K0(VC) to the ring Z of
integers and to the ring Z[u, v] of polynomials in two variables: the Euler characteristic (with
compact support) χ : K0(VC) → Z and the Hodge–Deligne polynomial e : K0(VC) → Z[u, v]:
e(X)(u, v) =

∑
ep,q(X)upvq.

Macdonald’s formula [13]

χ
(
1 + [X]t + [S2X]t2 + [S3X]t3 + . . .

)
= (1 − t)−χ(X)

and the corresponding formula for the Hodge–Deligne polynomial (see [2; 3, Proposition 1.2])

e
(
1 + [X]t + [S2X]t2 + . . .

)
(u, v) =

∏
p,q

(
1

1 − upvqt

)ep,q(X)

imply that these homomorphisms respect the above-described power structures over these rings (see
Example 3 and Proposition 2 or [9]). Therefore, if series in K0(VC)[[t]] satisfy a relation written
in terms of the power structure, then the corresponding relations hold for the Euler characteristics
and the Hodge–Deligne polynomials of these series.

Remark. It is also possible to define the power structure and give its geometric description
in the relative setting, i.e., over the Grothendieck ring K0(VS) of complex quasi-projective varieties
over a variety S. The ring K0(VS) is generated by classes of varieties with maps (“projections”)
to S. In this case the coefficient of the series (A(t))[M ] is the configuration space a point of which
is a pair (K,ϕ), where K ⊂ M is a finite subset contained in the preimage of one point of S and ϕ
is a map that commutes with the projections to S.

2. NESTED HILBERT SCHEMES OF J. CHEAH

Let Hilbn
X , n ≥ 1, be the Hilbert scheme of zero-dimensional subschemes of length n of a

complex quasi-projective variety X; for x ∈ X, let Hilbn
X,x be the Hilbert scheme of subschemes of

the variety X supported at the point x.
In [4], J. Cheah considered nested Hilbert schemes on a smooth d-dimensional complex quasi-

projective variety X. For n = (n1, . . . , nr) ∈ Z
r
≥0, the nested Hilbert scheme Z

n
X (of depth r) is

the scheme that parametrizes collections of the form (Z1, . . . , Zr), where Zi ∈ Hilbni
X and Zi is a

subscheme of Zj for i < j. The scheme Z
n
X is nonempty only if n1 ≤ n2 ≤ . . . ≤ nr. Notice that

Z
(n)
X = Hilbn

X
∼= Z

(n,...,n)
X .

For Y ⊂ X, let Z
n
X,Y be the scheme that parametrizes collections (Z1, . . . , Zr) from Z

n
X with

suppZi ⊂ Y . For Y = {x}, x ∈ X, we will use the notation Z
n
X,x.

For r ≥ 1, let t = (t1, . . . , tr) and

Z(r)
X (t) :=

∑
n∈Zr

≥0

[
Z

n
X

]
tn, Z(r)

X,x(t) :=
∑

n∈Zr
≥0

[
Z

n
X,x

]
tn

be the generating series of classes (in K0(VC)) of nested Hilbert schemes Z
n
X (respectively, supported

at the point x) of depth r.
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Theorem 1. For a smooth quasi-projective variety X of dimension d, the following identity
holds in the semiring S0(VC)[[t]] (and therefore also in the ring K0(VC)[[t]]):

Z(r)
X (t) =

(
Z(r)

Ad,0
(t)

)[X]
. (5)

Proof. For a Zariski closed subset Y ⊂ X, one has Z(r)
X (t) = Z(r)

X,Y (t) · Z(r)
X,X\Y (t). Therefore,

it is sufficient to prove equation (5) for Zariski open subsets U of X that form a covering of X and
for their intersections.

One can take U that lies in an affine chart A
N
C

and is such that its projection to a d-dimensional
coordinate subspace (say, generated by the first d coordinates) is everywhere nondegenerate (i.e., is
an étale morphism). For any point x ∈ U , this projection identifies n-nested Hilbert schemes Z

n
U,x

with Z
n

Ad
C
,0
.

A nested (zero-dimensional) subscheme of U of type n is defined by a finite subset K ⊂ U with
a nested subscheme from Z

k(x)
X,x at each point x ∈ K such that

∑
x∈K k(x) = n. This coincides with

the description of the coefficient of tn on the right-hand side of equation (5). �
Similar considerations yield a short proof of a somewhat refined version of the main result of [4].

Following J. Cheah, set

F
n
X =

{
(x,Z) ∈ X × Hilbn

X : x ∈ suppZ
}
,

F
n−1,n
X =

{
(x1, x2, Z1, Z2) ∈ X × X × Z

(n−1,n)
X : xi ∈ suppZi, i = 1, 2

}
,

T
n
X =

{
(x1, x2, Z) ∈ X × X × Hilbn

X : xi ∈ suppZ, i = 1, 2
}
,

Gn
X =

{
(x,Z1, Z2) ∈ X × Z

(n−1,n)
X : x ∈ suppZ2

}
.

Let series PX(t0, t1, t2, t3) and fd(t0, t1, t2, t3) in K0(VC)[[t0, t1, t2, t3]] be defined by

PX(t0, t1, t2, t3) :=

[ ∑
n≥0

[
Hilbn

X

]
tn0

]
+

[ ∑
n≥1

[Fn
X ]tn0

]
t1 +

[ ∑
n≥1

[Fn
X ]tn0

]
t2 +

[ ∑
n≥1

[Tn
X ]tn0

]
t1t2

+

[ ∑
n≥1

[
Z

(n−1,n)
X

]
tn0

]
t3 +

[ ∑
n≥2

[
Z

(1,n−1,n)
X

]
tn0

]
t1t3 +

[ ∑
n≥1

[Gn
X ]tn0

]
t2t3

+

[ ∑
n≥2

[
F

n−1,n
X

]
tn0

]
t1t2t3,

fd(t0, t1, t2, t3) :=
∑
k≥0

[
Hilbk

Ad,0

]
tk0 +

∑
k≥1

[
Z

(k−1,k)

Ad,0

]
tk0t3 +

∑
k≥1

[
Hilbk

Ad,0

]
tk0t2

+
∑
k≥1

[
Z

(k−1,k)

Ad,0

]
tk0t2t3 +

∑
k≥1

[
Hilbk

Ad,0

]
tk0t1 +

∑
k≥1

[
Hilbk

Ad,0

]
tk0t1t2

+
∑
k≥2

[
Z

(k−1,k)

Ad,0

]
tk0t1t3 +

∑
k≥2

[
Z

(k−1,k)

Ad,0

]
tk0t1t2t3.

Theorem 2 (cf. the main theorem in [4]). Let X be a smooth quasi-projective variety of di-
mension d. Then

PX(t0, t1, t2, t3) = (fd(t0, t1, t2, t3))[X] mod (t21, t
2
2, t

2
3). (6)
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Proof. Using the arguments of the proof of Theorem 1, we may suppose that X lies in an affine
chart A

N
C

and its projection to a d-dimensional coordinate subspace is nondegenerate. This identifies
Hilbs

X,x and Z
(s−1,s)
X,x with Hilbs

Ad,0 and Z
(s−1,s)

Ad,0
, respectively, for each point x ∈ X. To prove equa-

tion (6), one has to give an interpretation of the coefficients of the monomials tn0 , tn0 t1, . . . , t
n
0 t1t2t3

on the right-hand side of (6). Let us make this for the coefficients of tn0 t3 and tn0 t2t3 (the other cases
are treated in the same way).

The coefficient of the monomial tn0 t3 is represented by the space a point of which is defined by
a point x0 of X with a zero-dimensional nested subscheme from Z

(k(x0)−1,k(x0))
X,x0

at it plus several

other points x of X with a zero-dimensional subscheme from Hilbk(x)
X,x

∼= Z
(k(x),k(x))
X,x at each of them,

such that k(x0) +
∑

k(x) = n. This is just the definition of a point of the space Z
(n−1,n)
X .

The monomial tn0 t2t3 can be obtained either as the product of two monomials of the form t∗0t2
and t∗0t3 and several monomials of the form t∗0 or as the product of a monomial of the form t∗0t2t3 and
several monomials of the form t∗0. Therefore, the coefficient of the monomial tn0 t2t3 is represented
by a space consisting of two parts.

A point of the first part is defined by a point x1 of X with a subscheme from Hilbk(x1)
X,x1

∼=
Z

(k(x1),k(x1))
X,x1

at it, with k ≥ 1 (i.e., it is not empty: x1 belongs to its support), a point x2 ∈ X with
a subscheme from Z

(k(x2)−1,k(x2))
X,x2

at it, plus several points of X with a 0-dimensional subscheme
from Hilbk(x)

X,x at each of them, such that k(x1) + k(x2) +
∑

k(x) = n.
A point of the second part is defined by a point x1 of X with a nested subscheme (z1, z2)

from Z
(k(x1)−1,k(x1))
X,x1

at it (in this case z2 is not empty: x1 belongs to its support) plus several
points x of X with a 0-dimensional subscheme from Hilbk(x)

X,x
∼= Z

(k(x),k(x))
X,x at each of them such

that k(x1) +
∑

k(x) = n. Therefore, a point of the union of these two subspaces can be described
by a nested subscheme (Z1, Z2) from Z

(n−1,n)
X plus a point that belongs to the support of the

subscheme Z2. This is just the description of the space Gn
X . �

Applying the Hodge–Deligne polynomial homomorphism to (6), one gets the main theorem
of [4].

Example. Let S be a smooth quasi-projective surface. Consider the incidence variety
Z

(n−1,n)
S = {(Z1, Z2) ∈ Hilbn−1

S × Hilbn
S : Z1 ⊂ Z2}. Using the results of J. Cheah on the cellular

decomposition of Z
(n−1,n)

A2
C
,0

[5], one gets the result of L. Göttsche [7, Theorem 5.1]:

∑
n≥1

[
Zn−1,n

S

]
tn =

[S]t
1 − Lt

( ∏
k≥1

1
1 − Lk−1tk

)[S]

.

3. ON MODULI SPACES OF CURVES AND POINTS
(AFTER W.-P. LI AND ZH. QIN)

In [12], certain moduli spaces of 1-dimensional subschemes in a smooth d-dimensional projective
complex variety were considered. Let X be a smooth d-dimensional projective complex variety with
a Zariski locally trivial fibration µ : X → S, where S is smooth of dimension d − 1 and the fibers
Cs = µ−1(s), s ∈ S, are smooth irreducible curves of genus g. Let β ∈ H2(X, Z) be the class of the
fiber.

Let In(X,β) be the moduli space of 1-dimensional closed subschemes Z of X such that
χ(OZ) = n and [Z] = β, where [Z] is the fundamental class of the subscheme Z, and let
Mn := I(1−g)+n(X,β). Let Mn

X,Cs,x be the moduli space of 1-dimensional closed subschemes Θ
in X such that IΘ ⊂ ICs , the support supp(ICs/IΘ) ⊂ {x}, and dimx(ICs/IΘ) = n. The number n
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will be called the length of the subscheme Θ. Let Mn
Cd−1×C,{0}×C,0

have the same meaning: it
is the moduli space of 1-dimensional closed subschemes Θ in C

d−1 × C such that IΘ ⊂ I{0}×C,
supp

(
I{0}×C/IΘ

)
⊂ {0}, and dim0

(
I{0}×C/IΘ

)
= n.

Theorem 3 (cf. Proposition 5.3, Lemma 6.1, and Proposition 6.2 in [12]). Let X be a smooth
d-dimensional projective complex variety with a Zariski locally trivial fibration µ : X → S, where S
is smooth of dimension d− 1 and the fibers Cs

∼= C are smooth irreducible curves of genus g. Then

∑
n≥0

[Mn]tn = [S]

( ∑
n≥0

[
Hilbn

Cd,0

]
tn

)[X]−[C]( ∑
n≥0

[
M

n
Cd−1×C,{0}×C,0

]
tn

)[C]

. (7)

Proof. A point of Mn can be considered as consisting of a fiber Cs = µ−1(s) of the bundle
µ : X → S (this fiber is determined by a point s ∈ S) and of several fixed points x, both outside Cs

and on it, with a 0-dimensional subscheme (i.e., an element of Hilb∗
X,x) at each point x that lies

outside Cs and a subscheme of M∗
X,Cs,x at each point x that lies on Cs, such that the sum of their

lengths is equal to n. Thus, there is a natural map (projection) from Mn to S. Over a point s ∈ S,
there are somewhat different objects (subschemes) at points outside and on the curve Cs.

It is sufficient to prove equation (7) for the preimages of elements of a covering of S by Zariski
open subsets and of their intersections. Therefore, without any loss of generality, we can suppose
that X = S × C. Moreover, let us choose a fixed point s0 ∈ S. A constructible map that sends
Mn

X,Cs
to Mn

X,Cs0
and is an isomorphism of strata can be defined as follows. One takes 0-dimensional

subschemes that lie on the curve Cs0 and puts them to the corresponding points of the curve Cs,
and vice versa, one takes the elements of Mn

X,Cs,x and puts them to the corresponding points of the
curve Cs0 . Thus, in the Grothendieck ring of quasi-projective varieties, one has [Mn] = [S]

[
Mn

X,Cs0

]
.

Therefore, to prove (7), one should show that

∑
n≥0

[
Mn

X,Cs0

]
tn =

( ∑
n≥0

[
Hilbn

Cd,0

]
tn

)[X]−[Cs0 ]( ∑
n≥0

[
Mn

Cd−1×C,{0}×C,0

]
tn

)[Cs0 ]

. (8)

Just as in the proofs in Section 2, we may suppose that at each point of the manifold X the space
Hilbk

X,x is identified with the space Hilbk
Cd,0 and at each point of the curve Cs0 ⊂ X the space

Mk
X,Cs0 ,x is identified with the space Mk

Cd−1×C,{0}×C,0
. The coefficient of the monomial tn on the

right-hand side of equation (8) is represented by the space a point of which is defined by several
points x of the curve Cs0 ⊂ X with a (1-dimensional) scheme from M

k(x)
X,Cs0 ,x at each of them and

several points x from X \ Cs0 with a (0-dimensional) scheme from Hilbk(x)
X,x at each of them, such

that the sum of the lengths k(x) over all these points is equal to n. This is just the description of
a point of the space Mn

X,Cs0
. �

4. GENERALIZED ORBIFOLD EULER CHARACTERISTIC
AND THE POWER STRUCTURE

Here we rewrite some results of [15] and [16] in terms of the power structure. To this end, we
need the power structure over a somewhat modified version of the Grothendieck ring K0(VC). For
a fixed positive integer m, consider the ring K0(VC)[L1/m]. The pre-λ structure on (and therefore
the corresponding power structure over) the ring K0(VC) can be extended to one on K0(VC)[L1/m]
by the formula

ζ[X]Ls/m(t) = ζ[X](L
s/mt).
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In a similar way the corresponding pre-λ structure on the ring Z[u1/m
1 , . . . , u

1/m
r ] can be defined by

the formula

λP (t) =
∏

k∈(1/m)Zr
≥0

(1 − ukt)−pk

for a polynomial (with fractional exponents) P = P (u) =
∑

k∈(1/m)Zr
≥0

pk uk. There are natural

homomorphisms (χ and e) from the ring K0(VC)[L1/m] to the rings Z and Z
[
u1/m, v1/m

]
that send

the element L
1/m to 1 and (uv)(1/m), respectively. One can easily see that these are homomorphisms

of the pre-λ-rings, and therefore they respect the power structures.

Let X be a smooth quasi-projective complex algebraic variety of dimension d with an action of a
finite group G of order m. For an element g ∈ G, let Xg be the set (a manifold) {x ∈ X : gx = x} of
g-invariant points of the action. If h = vgv−1 in the group G, the element v defines an isomorphism
v : Xg → Xh. Let G∗ be the set of conjugacy classes of elements of the group G. For a conjugacy
class c ∈ G∗ choose its representative g ∈ G. Let CG(g) be the centralizer of the element g in the
group G. The centralizer CG(g) acts on the set Xg of fixed points of the element g. Suppose that its
action on the set of connected components of the manifold Xg has Nc orbits, and let Xg

1 , . . . ,Xg
Nc

be the unions of the components of each of these orbits. At each point x ∈ Xg
αc , the differential

dg of the map g is an automorphism of the tangent space TxX that acts as a diagonal matrix
diag(exp(2πiθ1), . . . , exp(2πiθd)), where 0 ≤ θi < 1, θi ∈ (1/m)Z. The shift number F g

αc associated
with Xg

αc is F g
αc :=

∑d
j=1 θj ∈ Z/m (it was introduced by E. Zaslow in [17]).

Definition. The generalized orbifold Euler characteristic [X,G] of the pair (X,G) is

[X,G] :=
∑
c∈G∗

Nc∑
αc=1

[
Xg

αc
/CG(g)

]
· LF g

αc ∈ K0(VC)[L1/m].

Application of the Euler characteristic morphism leads to the notion of the orbifold Euler char-
acteristic invented in the study of string theory of orbifolds by L. Dixon et al. [6]:

χ(X,G) :=
∑
c∈G∗

Nc∑
αc=1

χ
(
Xg

αc
/CG(g)

)
=

∑
c∈G∗

χ(Xg/CG(g)).

Application of the Hodge–Deligne polynomial morphism leads to the notion of the orbifold E-func-
tion introduced by V. Batyrev in [1]:

Eorb(X,G;u, v) :=
∑
c∈G∗

Nc∑
αc=1

e
(
Xg

αc
/CG(g)

)
(u, v) (uv)F

g
αc ∈ Z

[
u1/m, v1/m

]
.

Let Gn = G × . . . × G be the Cartesian power of the group G. The symmetric group Sn acts
on Gn by permutation of the factors: s(g1, . . . , gn) =

(
gs−1(1), . . . , gs−1(n)

)
. The wreath product

Gn = G ∼ Sn is the semidirect product of the groups Gn and Sn defined by the described action.
Namely, the multiplication in the group Gn is given by the formula (g, s)(h, t) = (g ·s(h), st), where
g, h ∈ Gn and s, t ∈ Sn. The group Gn is a normal subgroup of the group Gn via the identification
of g ∈ Gn with (g, 1) ∈ Gn. For a variety X with a G-action, the corresponding action of the
group Gn on the Cartesian power Xn is given by the formula

((g1, . . . , gn), s)(x1, . . . , xn) =
(
g1xs−1(1), . . . , gnxs−1(n)

)
,
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where x1, . . . , xn ∈ X, g1, . . . , gn ∈ G, and s ∈ Sn. One can see that the factor variety Xn/Gn

is naturally isomorphic to the space (X/G)n/Sn. In particular, [Xn/Gn] = [(X/G)n/Sn] in the
Grothendieck ring K0(VC). Therefore,∑

n≥0

[Xn/Gn]tn = (1 − t)−[X/G] ∈ K0(VC)[[t]].

Theorem 4 (cf. [15, 16]). Let X be a smooth complex quasi-projective variety of dimension d
with an action of a finite group G of order m. Then

∑
n≥0

[Xn, Gn]tn =

( ∞∏
r=1

(
1 − L

(r−1)d/2tr
))−[X,G]

. (9)

Proof. One can say that, essentially, the proof is already contained in [16], where invariants
of the Gn-action on the space Xn are related to those of the G-action on the space X (see also [15]
and [14]).

Let a = (g, s) ∈ Gn, g = (g1, . . . , gn). Let z = (i1, . . . , ir) be one of the cycles in the per-
mutation s. The cycle product of the element a corresponding to the cycle z is the product
girgir−1 . . . gi1 ∈ G. The conjugacy class of the cycle product is well-defined by the element g
and the cycle z of the permutation s. For c ∈ G∗ and r ≥ 0, let mr(c) be the number of r-cycles
in the permutation s whose cycle products lie in c. Let ρ(c) be the partition that contains mr(c)
summands equal to r, and let ρ = (ρ(c))c∈G∗ be the corresponding partition-valued function on G∗.
One has

‖ρ‖ :=
∑
c∈G∗

|ρ(c)| =
∑

c∈G∗, r≥1

rmr(c) = n.

The function ρ, or, equivalently, the data {mr(c)}r,c, is called the type of the element a = (g, s) ∈ Gn.
Two elements of the group Gn are conjugate to each other if and only if they are of the same type.

In [16] the following was shown:
1. For a conjugacy class of elements of the group Gn containing an element a of type

ρ = {mr(c)}r≥1, c∈G∗ (
∑

r,c rmr(c) = n), the subspace (Xn)a can be naturally identified with∏
c,r(X

c)mr(c). The factor space (Xn)a/ZGn(a) is naturally isomorphic to the product∏
c∈G∗, r≥1 Smr(c)(Xc/ZG(c)). The connected components of the space (Xn)a/ZGn(a) are numbered

by collections of integers (mr,c(1), . . . ,mr,c(Nc)) satisfying the relation
∑Nc

αc=1 mr,c(αc) = mr(c).
They are

(Xn)a{mr,c(αc)} =
∏

c∈G∗, r≥1

Nc∏
αc=1

Smr,c(αc)
(
Xc

αc
/ZG(c)

)
.

2. The shift for the component (Xn)a{mr,c(αc)} is equal to

F{mr,c(αc)} =
∑

c∈G∗, r≥1

Nc∑
αc=1

mr,c(αc)
(
F c

αc
(r − 1)d/2

)
.

These two facts imply that

∑
n≥0

[Xn, Gn]tn =
∑
n≥0

( ∑
mr(c)

∏
c,r

Nc∏
αc=1

[
Smr,c

(
Xg

αc
/ZG(g)

)]
L

mr(c)(F g
αc+ (r−1)d

2
)
)

tn

=
∑

mr(c)

∏
c,r

(
Nc∏

αc=1

[
Smr,c(αc)

(
Xg

αc
/ZG(g)

)]
L

mr(c)(F g
αc+

(r−1)d
2

)
)

trmr(c)
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=
∏
c,r

Nc∏
αc=1

( ∑
mr,c(αc)

[
Smr,c(αc)

(
Xg

αc
/ZG(g)

)]
L

mr(c)(F g
αc+ (r−1)d

2
)trmr,c(αc)

)

=
∏
c,r

Nc∏
αc=1

(
1 − L

(F g
αc+ (r−1)d

2
)tr

)−[Xg
αc/ZG(g)]

=
∏
c,r

Nc∏
αc=1

(
1 − L

(r−1)d
2 tr

)−L
F

g
αc [Xg

αc/ZG(g)]

=
∏
r≥1

(
1 − L

(r−1)d
2 tr

)−[X,G]
=

∏
r≥1

(
1 −

(
L

d
2 t

)r
)−L−d/2[X,G]

. �

Taking the Euler characteristic of both sides of equation (9), one gets Theorem 5 of [15]:

∑
n≥0

χ(Xn, Gn)tn =
∞∏

r=1

(1 − tr)−χ(X,G).

Applying the Hodge–Deligne polynomial homomorphism, one gets the main result of [16]:

∞∑
n=1

e(Xn, Gn;u, v)tn =
∞∏

r=1

∏
p,q

(
1

1 − upvqtr(uv)(r−1)d/2

)ep,q
(X,G)

.
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