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Abstract—The notions of integration of motivic type over the space of arcs factorized by the
natural C∗-action and over the space of nonparametrized arcs (branches) are developed. As an
application, two motivic versions of the zeta function of the classical monodromy transformation
of a germ of an analytic function on Cd are given that correspond to these notions. Another
key ingredient in the construction of these motivic versions of the zeta function is the use of the
so-called power structure, introduced by the authors, over the Grothendieck ring of varieties.
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INTRODUCTION

The notion of motivic integration invented by M. Kontsevich and developed by V. Batyrev,
J. Denef, F. Loeser, et al. (see, e.g., [7, 8, 13]) is an analogue of p-adic integration. It can also be
considered as a generalization of the notion of integration with respect to the Euler characteristic
(see [15]) in two directions. First, instead of the usual Euler characteristic (with values in the
ring of integers Z), one considers a generalized (universal) Euler characteristic with values in the
Grothendieck ring K0(VC) of complex algebraic varieties or/and in a modification (localization,
completion) of it. Second, instead of integration over, say, a (finite-dimensional) algebraic variety,
one integrates over the infinite-dimensional space of arcs. This notion, in particular, allows one to
construct (or to define) motivic versions of some classical invariants of varieties or of singularities.
The notion of a motivic version of an invariant is not well defined. There are only two obvious
requirements: such a version should be an invariant itself, and it should reduce to the classical one
under a corresponding additive homomorphism: Euler characteristic, Hodge–Deligne polynomial,
etc. Sometimes such invariants can be defined as certain integrals with respect to the universal
Euler characteristic. However, one may meet the following problem.

On the space of arcs, there is a natural C∗-action defined by a ∗ ϕ(τ) = ϕ(aτ), a ∈ C∗. Most
natural constructible functions on the space of arcs that could participate in the definition of an
invariant (say, the order of a fixed function along an arc) are invariant with respect to this action.
The integral of such a function over the space of arcs with respect to the universal Euler characteristic
is divisible by the class (L − 1) of the punctured complex line. Therefore, the specialization of this
integral by the usual Euler characteristic morphism is equal to zero, and no motivic version of
a usual invariant can be constructed in this way (as such an integral). For example, the Euler
characteristic of the naive zeta function of J. Denef and F. Loeser (see [8]) is equal to zero.

To define motivic versions of (integer-valued) invariants of singularities, one has “to kill” this
C∗-action. One can imagine several ways to do this. One way is to consider a certain subspace
of the space of arcs (that is not invariant under the C∗-action) rather than the whole space of
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64 S.M. GUSEIN-ZADE et al.

arcs. This was made in [9], where, instead of the space of arcs, the authors considered its subspace
consisting of arcs with the prescribed first coefficient of the Taylor expansion of the function under
consideration along an arc (see also [2, 10, 13]).

As another possibility, one can imagine the replacement of integration over the space of arcs
by integration over another (infinite-dimensional) space. For example, integration over the space of
functions or over its projectivization proved useful for certain problems: in [11, 3] and other papers,
it was used for computing the Poincaré series of some (multi-index) filtrations. For instance, one
can factorize the space of arcs by the C∗-action. One can say that this method is inspired by the
notion of projectivization. (It is not really the projectivization since this C∗-action is not free.) For
integration over the space of functions, it was used, e.g., in [3].

Instead of arcs, we can also try to consider branches, under which we understand arcs without
parametrization. In other words, we consider the space of arcs (space of maps ϕ : (C, 0) → W )
factorized by the group AutC,0 of changes of coordinates (C, 0) → (C, 0). One can say that this
notion has more geometric meaning than the space of arcs modulo the described C∗-action, in
particular, since this action itself depends on the choice of the coordinate in the source (C, 0).
Moreover, it seems that integration over the set of branches should be easier to generalize to possible
constructions of integration over sets of higher dimensional subspaces. The aim of the present paper
is to define the notions of motivic integration over the space of arcs factorized by the C∗-action and
over the space of branches. We believe that generalizations of the notion of motivic integration to
other infinite-dimensional spaces (different from the space of arcs) may be useful for applications.

As an application of these constructions, we consider possible motivic versions of the classical
monodromy zeta function

ζf (t) =
∏
q≥0

{
det
[
id − th∗

∣∣
Hq(Vf ;C)

]}(−1)q+1

of the germ of a function f : (Cd, 0) → (C, 0) (Vf is the Milnor fiber and h : Vf → Vf is the classical
monodromy transformation of the germ f). By the A’Campo formula [1], the zeta function ζf (t)
can be written as the integral of the expression 1− tm over the exceptional divisor of a resolution of
the germ f (in the group 1 + t ·Z[[t]] with respect to multiplication). The arcs on Cd correspond to
the points of the exceptional divisor. Thus, one can replace integration over the exceptional divisor
by integration over the space of arcs. However, for the reasons described above, the corresponding
integral over the space of arcs degenerates to 1 under the usual Euler characteristic homomorphism.
To avoid this problem, we shall elaborate the notions of integration over the space of arcs factorized
by the C∗-action and over the space of branches. Here we discuss these notions only in the smooth
case. An integral over the space of arcs factorized by the C∗-action can be considered as a well-
defined division by (L − 1) of the corresponding integral over the space of arcs itself (which is
otherwise defined only up to torsion; see, e.g., [6]).

Another problem that can be met in this way is to give meaning to an expression of the form
(1− tm)−χ(Z) in the A’Campo formula when the usual Euler characteristic χ(Z) is replaced by the
universal one (i.e., to give sense to the expression (1 − tm)−[Z] for [Z] from the Grothendieck ring
K0(VC) or from its localization K0(VC)[L−1] by the class L of the complex affine line). This is done
with the use of the so-called power structure over the Grothendieck ring of varieties; this power
structure was introduced by the authors in [12].

The zeta function ζf (t) of the monodromy transformation can be obtained from the motivic
Milnor fiber defined by Denef and Loeser (see [9]). This zeta function is the limit at infinity of the
Igusa motivic zeta function. The motivic Milnor fiber can be described in terms of ramified coverings
of components of the exceptional divisor of a resolution of the germ f . The motivic invariants
proposed here, which reduce to the zeta function ζf (t), are expressed in terms of the components of

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 252 2006



INTEGRATION OVER SPACES OF NONPARAMETRIZED ARCS 65

the exceptional divisor themselves rather than in terms of their coverings. In particular, for d = 2,
i.e., for a function of two variables, all coefficients of the constructed series lie in the subring, of the
Grothendieck ring K0(VC), generated by the class L of the affine line.

The zeta function of the monodromy transformation can also be extracted from the motivic
Milnor fiber with the C∗-action considered in [10].

A motivic version of the monodromy zeta function can be constructed as the exponent of the
generating series of Lefschetz numbers of iterates of the monodromy transformation of a singularity
(see [9]). However, it seems that this can be done only after tensor multiplication by the field Q of
rational numbers.

The Grothendieck semiring S0(VC) of complex quasi-projective varieties is the semigroup gen-
erated by isomorphism classes [X] of such varieties modulo the relation [X] = [X − Y ] + [Y ]
for a Zariski closed subvariety Y ⊂ X; the multiplication is defined by the Cartesian product:
[X1] · [X2] = [X1 × X2]. The Grothendieck ring K0(VC) is the group generated by these classes
with the same relation and the same multiplication. Let L ∈ K0(VC) be the class of the complex
affine line, and let K0(VC)[L−1] be the localization of the Grothendieck ring K0(VC) with respect
to the class L. The class [X] ∈ S0(VC) can be defined for any constructible subset X (as

∑
[Xi] for

a partition X =
⋃

Xi of the set X into a finite union of quasi-projective varieties).
In what follows, R will denote one of the discussed (semi)rings. There is a natural (semi)ring

homomorphism χ : R → Z that sends the class [X] of a variety X to the Euler characteristic
χ(X) with compact support of the set X. For a series A(t) =

∑∞
i=0 Ait

i with coefficients Ai

in R, its specialization χ(A(t)) under the Euler characteristic homomorphism is the power series∑∞
i=0 χ(Ai)ti ∈ Z[[t]].
The definition of the space of arcs on an algebraic variety and of the motivic measure on it can

be found, e.g., in [7, 13] (here we use them only for smooth varieties).

1. THE SPACE OF ARCS FACTORIZED BY THE C∗-ACTION

Let L0 be the space of arcs on the affine space Cd at the origin, i.e., the space of maps
ϕ : (C, 0) → (Cd, 0) (in particular, L0 ⊂ mOd

C,0, where m is the maximal ideal in the ring OC,0

of germs of functions). For n ≥ 0, let Ln
0 be the space of n-jets of arcs, i.e., the space L0/m

nL0

of arcs truncated at the level n. There is a natural C∗-action on the spaces L0 and Ln
0 defined

by a ∗ ϕ(τ) = ϕ(aτ) (a ∈ C∗ = C \ {0}). Let L∗
0 := L0 \ {0} and Ln∗

0 := Ln
0 \ {0}, and let

L∗
0/C∗ and Ln∗

0 /C∗ be the corresponding spaces factorized by the C∗-action. The space Ln∗
0 /C∗

is a (finite-dimensional) projective variety. Therefore, for a constructible subset Y of it, its gen-
eralized (universal) Euler characteristic χg(Y ) = [Y ] ∈ K0(VC) is defined. For n ≥ 0, there
exists a natural map πn : L∗

0/C∗ → (Ln∗
0 /C∗) ∪ {0}, and for n ≥ m, there exists a natural map

πn,m : (Ln∗
0 /C∗) ∪ {0} → (Lm∗

0 /C∗) ∪ {0}. The latter map is constructible. The space Lm∗
0 /C∗ can

be decomposed into finitely many constructible subsets so that over each of them the map πn,m

is a locally trivial fibration (in the Zariski topology) whose fiber is a vector space of dimension
d(n − m) factorized by a finite cyclic group action (the isotropy group of the corresponding jet).
Since the class in K0(VC) of a vector space of dimension d factorized by a representation of a finite
abelian group is equal to Ld (see [13, Lemma 5.1]), for a constructible subset Y in Lm∗

0 /C∗ one has
[π−1

n,m(Y )] = Ld(n−m) · [Y ]. This inspires the following definitions.
Definition. A subset X ⊂ L∗

0/C∗ is called cylindric if there exist n ≥ 0 and a constructible
subset Y ⊂ Ln∗

0 /C∗ such that X = π−1
n (Y ).

Definition. The motivic measure (or the universal Euler characteristic) of a cylindric subset
X ⊂ L∗

0/C∗, X = π−1
n (Y ) for Y ⊂ Ln∗

0 /C∗, is χg(X) := [Y ] · L−dn ∈ K0(VC)[L−1].
Definition. A function ψ : L∗

0/C∗ → G with values in an abelian group G is constructible if it
has countably many values and, for each a ∈ G, a �= 0, the level set ψ−1(a) is constructible.
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In the usual way (see, e.g., [7, 13]), one can define the integral of the function ψ with respect to
the generalized Euler characteristic (the motivic measure) as∫

L∗
0/C∗

ψ dχg :=
∑

a∈G, a�=0

χg(ψ
−1(a)) · a.

Warning: not all constructible functions are integrable since the sum of a series may make no
sense in the group K0(VC)[L−1] ⊗Z G.

Let p be the factorization map L∗
0 → L∗

0/C∗. For a constructible subset X ⊂ L∗
0/C∗, let

X̃ = p−1(X) be the corresponding C∗-invariant subset of the space L0 of arcs. One can easily see
that χg(X̃) = (L − 1)χg(X). This implies the following statement.

Proposition 1. Let ψ : L∗
0/C∗ → G be a constructible integrable function, and let ψ̃ = ψ ◦ p :

L∗
0 → G be the corresponding C∗-invariant function on the space of arcs. Then the function ψ̃ is

integrable and ∫
L0

ψ̃ dχg = (L − 1)
∫

L∗
0/C∗

ψ dχg.

This means that integrals over the space L∗
0/C∗ can be considered as well-defined versions of the

corresponding integrals over the space of arcs itself divided by (L− 1). It is not quite clear whether
such division is well defined in the ring K0(VC)[L−1]. Usually, this division can be made formally
when such an integral is computed (say, in terms of a resolution); however, either the result should
be considered modulo elements from the annihilator of (L − 1), or one should prove that the result
does not depend on a resolution. For instance, in [9] it was shown that the motivic Milnor fiber
(introduced in [6] up to (L−1)-torsion) is well defined. Therefore, integration over the space L∗

0/C∗

of arcs modulo C∗ can be considered as a formalization of this procedure.

2. THE SPACE OF BRANCHES ON (Cd, 0)

Now we adapt the construction described above to the space of arcs factorized by the group
AutC,0 of (formal) local changes of coordinates in (C, 0). For an arc ϕ : (C, 0) → (Cd, 0) and
h ∈ AutC,0 (h : (C, 0) → (C, 0)), let h ∗ ϕ(τ) := ϕ(h−1(τ)). This defines an action of the group
AutC,0 on the space of arcs.

Definition. An orbit of the described action is called a branch (on (Cd, 0)).
The group AutC,0 also acts on the jet space Ln

0 . Moreover, such an action coincides with the
induced action of the group Aut(n)

C,0 of n-jets of coordinate changes on Ln
0 , whose elements are (or

can be considered as) polynomials a1τ + a2τ
2 + . . . + anτn, a1 �= 0. Let B0 := L0/AutC,0 and

Bn
0 := Ln

0/AutC,0 be the factor spaces of this action, and let Bn∗
0 := Bn

0 \ {0} = Ln∗
0 /AutC,0. All

these spaces are considered simply as sets without an additional structure.
The jet space Ln

0 has a natural filtration defined by powers of the maximal ideal m of the ring
OC,0 of germs of functions at the origin in C:

{0} ⊂ mn−1Ln
0 ⊂ mn−2Ln

0 ⊂ . . . ⊂ m1Ln
0 ⊂ m0Ln

0 = Ln
0 .

This filtration respects the action of the group AutC,0. Let

Ln∗
0 =

n−1⋃
i=0

m
iLn

0 \ m
i+1Ln

0
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be the corresponding decomposition of the punctured jet space Ln∗
0 = Ln

0 \ {0}. The space miLn
0 \

mi+1Ln
0 consists of n-jets of arcs for which all d coordinate functions start at least with monomials

τ i+1 and at least one of them starts precisely with this monomial. The isotropy group of such a
jet for the action of the group Aut(n)

C,0 consists of series (coordinate changes in (C, 0)) of the form
τ + an−i+1τ

n−i+1 + . . . + anτn up to elements of finite order. Thus, the dimension of the isotropy
group is equal to i, and the dimension of the orbit is equal to n − i. Therefore, the factor space
(miLn

0 \ mi+1Ln
0 )/Aut(n)

C,0 is a quasi-projective variety.

Definition. A subset Y ⊂ Bn∗
0 is called constructible if, for each i = 0, . . . , n − 1, the set

Yi := Y ∩
(
(miLn

0 \ mi+1Ln
0 )/Aut(n)

C,0

)
is a constructible subset of the set (miLn

0 \ mi+1Ln
0 )/Aut(n)

C,0.
The generalized Euler characteristic χg(Y ) = [Y ] of the set Y is the sum

∑n
i=0[Yi] of the classes of

its parts Yi.
Let πn : B0 → Bn

0 and, for n ≥ m, πn,m : Bn
0 → Bm

0 be the natural maps. For n ≥ m, there exists
a stratification of Bm∗

0 such that over each stratum the map πn,m : Bn
0 → Bm

0 is a locally trivial
fibration (in the Zariski topology) whose fiber is the factor of a (d − 1)(n − m)-dimensional vector
space by a finite cyclic group action. Therefore, for a constructible subset Y in Bm∗

0 , n ≥ m, one
has [π−1

n,m(Y )] = L(d−1)(n−m)[Y ]. This inspires the following definitions.

Definition. A subset X ⊂ B0 is called cylindric if there exist n ≥ 0 and a constructible subset
Y ⊂ Bn∗

0 ⊂ Bn
0 such that X = π−1

n (Y ).
Definition. The motivic measure (or the universal Euler characteristic) of a cylindric subset

X ⊂ B0, X = π−1
n (Y ) for Y ⊂ Bn∗

0 , is χg(X) = [Y ] · L−(d−1)n ∈ K0(VC)[L−1].

This measure induces the corresponding notion of integration over the space of branches.
Let pb be the factorization map L0 → L0/AutC,0 = B0, and let pn

b be the same map Ln
0 →

Ln
0/Aut(n)

C,0 = Bn
0 :

L0
πn−−−−→ Ln

0

pb

⏐⏐� ⏐⏐�pn
b

B0
πn−−−−→ Bn

0

For a cylindric subset X ⊂ B0, X = π−1
n (Y ), Y ⊂ Bn∗

0 , let X̃ = p−1
b (X) be the corresponding

AutC,0-invariant set of arcs. Let Yi = Y ∩
(
(miLn

0 \ mi+1Ln
0 )/AutC,0

)
and Ỹi = (pn

b)−1(Yi) for
i = 0, 1, . . . , n − 1. One has Y =

⋃n
i=0 Yi. Let Xi := (πn)−1(Yi) and X̃i = (πn ◦ pb)−1(Yi). Then

X =
⋃n−1

i=0 Xi and X̃ =
⋃n−1

i=0 X̃i. One has [Ỹi] = (L − 1)Ln−i−1[Yi]. Therefore,

χg(X̃i) = L−dn[Ỹi] = (L − 1) Ln−i−1−dn[Yi] = (L − 1) L−i−1χg(Xi).

This implies the following statement. Let ord be the order function on the space of arcs:
ord(ϕ) = i+1 if ϕ ∈ miL0\mi+1L0, i.e., ord(ϕ) = i+1 for ϕ ∈ X̃i (ord is an AutC,0-invariant function
on the space of arcs). Let T ord be the corresponding map L0 → Z[[T ]] (where Z[[T ]] is considered
as an abelian group with respect to summation). For a constructible function ψ : B0 → G (G is an
abelian group), let ψ̃ = ψ ◦pb : L0 → G be the corresponding AutC,0-invariant function on the space
of arcs and let ψ̃∗ = ψ̃ ⊗ T ord be the corresponding function with values in G ⊗Z Z[[T ]] = G[[T ]].

Proposition 2. If the function ψ is constructible and integrable, then the function ψ̃∗ is inte-
grable and ∫

L0

ψ̃∗ dχg

∣∣
T �→L

= (L − 1)
∫
B0

ψ dχg.
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Thus, an integral over the space of branches of a G-valued function, multiplied by (L − 1), is
defined by a certain integral over the space of arcs, but of a G[[T ]]-valued function.

Proof. Let Xa := ψ−1(a). Then

(L − 1)
∫
B0

ψ dχg = (L − 1)
∑

a∈G, a�=0

χg(Xa) · a = (L − 1)
∑

a∈G, a�=0

( n(a)−1∑
i=0

χg(Xa,i)

)
· a

=
∑

a∈G, a�=0

( n(a)−1∑
i=0

Li+1χg(X̃a,i)

)
· a =

∑
a∈G, a�=0

( n(a)−1∑
i=0

T ordχg(X̃a,i)

)∣∣
T �→L

· a

=
∫
L0

ψ̃∗ dχg

∣∣
T �→L

(since ord(ϕ) = i + 1 for ϕ ∈ X̃a,i). �

3. INTEGRALS IN TERMS OF A RESOLUTION

Let f : (Cd, 0) → (C, 0) be a germ of an analytic function, and let π : (X ,D) → (C, 0) be a
resolution of the germ f , i.e., a proper modification of (Cd, 0) which is an isomorphism outside
the zero-level set {f = 0}; X is smooth, and the exceptional divisor D = π−1(0) and the total
transform E = (f ◦π)−1(0) of the zero-level set of f are normal crossing divisors on X . For ϕ ∈ L0,
let vf (ϕ) = ordf (ϕ) be the order of the function f on the arc ϕ, vf = ordf : L0 → Z ∪ {∞}. The
function vf is AutC,0-invariant (and therefore C∗-invariant). The function

∫
L0

tvf dχg is the (local)
naive zeta function Znaive(t) of Denef and Loeser (see [8]), which is a rational function (this follows
from its description in terms of a resolution).

Let E =
⋃

i∈I0
Ei be the decomposition of the total transform E into the union of irreducible

components, and let I0 = I ′0∪I ′′0 , where, for i ∈ I ′0 (respectively, for i ∈ I ′′0 ), Ei ⊂ D (respectively, Ei

is a component of the strict transform of {f = 0}). For i ∈ I0, let Ni be the multiplicity of the lifting
f ◦π of the function f to the space X of the resolution along the component Ei, and let νi−1 be the
multiplicity of the d-form π∗ dx along the corresponding component Ei (dx = dx1 ∧ . . .∧ dxd is the
volume form on Cd). For i ∈ I0, let

◦
Ei := Ei \

⋃
j �=i Ej be “the smooth part” of the component Ei;

for I ⊂ I0, I �= ∅, let EI :=
⋂

i∈I Ei and
◦

EI := EI \
⋃

j∈I0\I Ej.
The arguments of [6, Theorem 2.2.1] imply the following statement.
Proposition 3.

Znaive,L∗
0/C∗(t) :=

∫
L∗

0/C∗

tvf dχg =
∑

I⊂I0, ∅�=I �⊂I′′0

(L − 1)|I|−1
[ ◦
EI

]∏
i∈I

L−νi tNi

1 − L−νi tNi
.

Now suppose that the resolution π : (X ,D) → (Cd, 0) factorizes through the blowing-up
π0 : (X0, CPd−1) → (Cd, 0) of the origin in (Cd, 0), i.e., π = π0 ◦ π′, π′ : (X ,D) → (X0, CPd−1).
For i ∈ I0, let Mi be the multiplicity of the component Ei in the divisor π′∗(CPd−1). The same
arguments as those used in Proposition 2 give the following statement.

Proposition 4.

Znaive,B0(t) :=
∫
B0

tvf dχg =
∑

I⊂I0, ∅�=I �⊂I′′0

(L − 1)|I|−1
[ ◦
EI

]∏
i∈I

L−νi−Mi tNi

1 − L−νi−Mi tNi
.
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4. POWER STRUCTURE OVER THE GROTHENDIECK RING OF VARIETIES

In what follows, we will focus on integrals with respect to the motivic measure of a function
(1 − tvf )−1 whose values are considered as elements of the group 1 + t · K0(VC)[L−1][[t]] with the
product as a group operation. Let S be either the space L0 of arcs, or L∗

0/C∗, or the space B0

of branches. To emphasize that the integration is with respect to the multiplicative structure, we
denote such an integral by ∫

S

(1 − tvf )−dχg .

If Xn = {ϕ ∈ S : vf (ϕ) = n}, then ∫
S

tvf dχg =
∞∑

n=1

χg(Xn) · tn.

For the integral of (1 − tvf )−1, we have∫
S

(1 − tvf )−dχg =
∞∏

n=1

(1 − tn)−χg(Xn),

where the expression (1− tn)a, a ∈ K0(VC)[L−1], is understood in the sense of [12]. There, we con-
structed a so-called power structure over a (semi)ring R (any of S0(VC), K0(VC), and K0(VC)[L−1]).

Definition. A power structure over a (semi)ring R is a map

(1 + t · R[[t]]) × R → 1 + t · R[[t]] : (A(t),m) 
→ (A(t))m

that possesses the following properties:
(i) (A(t))0 = 1,
(ii) (A(t))1 = A(t),
(iii) (A(t) · B(t))m = (A(t))m · (B(t))m,
(iv) (A(t))m+n = (A(t))m · (A(t))n,
(v) (A(t))mn = ((A(t))n)m.

According to the construction in [12], for a = −[Z], where Z is a quasi-projective variety, we
have

(1 − t)a = ζZ(t) = 1 +
∞∑

k=1

[SkZ] · tk,

where SkZ = Zk/Sk is the kth symmetric power of the space Z (ζZ(t) is the Kapranov zeta function
of the variety Z, see [13]) and (1 − t)a/Li

= (1 − t)a
∣∣
t�→t/Li .

In [12], we also defined a map Exp : t · K0(VC)[L−1][[t]] → 1 + t · K0(VC)[L−1][[t]] that is an
isomorphism of abelian groups (with addition and multiplication as group operations, respectively).
It is defined by the equation

Exp

( ∞∑
i=1

ait
i

)
=

∞∏
i=1

(1 − ti)−ai .

One can easily see that ∫
S

(1 − tvf )−dχg = Exp

⎛⎝∫
S

tvf dχg

⎞⎠ . (1)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 252 2006



70 S.M. GUSEIN-ZADE et al.

By definition, a power structure defines the powers of power series in one variable. If one intends
to apply the constructions of this paper to the (multivariable) Alexander invariants of a collection
of functions f1, . . . , fr on (Cd, 0), one can consider integrals of the form∫

S

(1 − tv(ϕ))dχg ,

where v(ϕ) = (v1(ϕ), . . . , vr(ϕ)), vi(ϕ) = vfi
(ϕ), t = (t1, . . . , tr), and tv = tv1

1 · . . . · tvr
r . Another

reason to consider power series in several variables can be seen from Proposition 2 (if, say, G =
K0(VC)[[t]] and ψ(ϕ) = tvf (ϕ)). This makes it reasonable to consider expressions of the form A(t)M ,
where A(t) = 1 +

∑
k∈Zr

≥0, k �=0 Ak tk, Ak ∈ R, and M ∈ R. If there exists a power structure over
a ring R, there is a natural way to define the corresponding expression in the multivariable case
as well. However, if R is a semiring, this does not work in general. Since the elements of the
Grothendieck semiring S0(VC) of complex quasi-projective varieties have more geometric meaning
(they are represented by “genuine” varieties rather than by virtual ones), it is reasonable to give a
geometric definition of this operation over this semiring.

It is possible (and convenient) to give the definition in a slightly more general setting. Let
S be an ordered abelian semigroup, with zero as the smallest element, such that each element
s ∈ S has only finitely many representations as a sum of elements of S. For a (semi)ring R, the
corresponding (semi)group (semi)ring R[[S]] is defined, which consists of formal sums (series) of
the form

∑
s∈S rss, where rs ∈ R, with the natural operations

∑
r′ss +

∑
r′′ss =

∑
(r′s + r′′s )s and(∑

r′ss
)
·
(∑

r′′ss
)

=
∑

(r′s1
·r′′s2

)(s1+s2), where one should combine summands with the same s1+s2

in the last expression. Let R+[[S]] be the set (an ideal in R[[S]]) of series of the form
∑

s∈S, s>0 rss,
rs ∈ R. The (semi)ring R[[t]] of formal power series in r variables t = (t1, . . . , tr) with coefficients
in R is the semigroup (semi)ring R[[S]] for S = Zr

≥0.
It is convenient to describe the power structure over the Grothendieck semiring S0(VC) in terms

of graded spaces (sets). A graded space (with grading from S>0) is a space A with a function IA
on it with values in S>0. The element IA(a) of the semigroup S is called the weight of the point
a ∈ A. With a series A ∈ 1+S0(VC)+[[S]], A = 1+

∑
s∈S, s>0[As]s, one associates the graded space

A =
∐

s∈S, s>0 As with the weight function IA that sends all points of As to s ∈ S. Conversely, to
a graded space (A, IA), there corresponds the series A = 1 +

∑
s∈S, s>0[As]s with As = I−1

A (s). To
describe the series A[M ], we will first describe the corresponding graded space AM . The space AM

consists of pairs (K,ϕ), where K is a finite subset of the variety M and ϕ is a map from K to
the graded space A. The weight function IAM on AM is defined by IAM (K,ϕ) =

∑
k∈K IA(ϕ(k)).

This gives a set-theoretic description of the series A[M ]. To describe the coefficients of this series as
elements of the Grothendieck semiring S0(VC), one can write the series as

A[M ] = 1 +
∑

s0∈S, s0>0

⎧⎨⎩ ∑
k :
∑

sks=s0

[((∏
s

Mks

)
\ ∆

)
×
∏
s

Aks
s /
∏
s

Sks

]⎫⎬⎭ · s0,

where k = {ks : s ∈ S, s > 0, ks ∈ Z≥0}, ∆ is the “large diagonal” in MΣks , which consists of
(
∑

ks)-tuples of points of M with at least two coinciding ones, and the permutation group Sks

acts by permuting the corresponding ks factors in
∏

s Mks ⊃
(∏

s Mks
)
\ ∆ and the spaces As

simultaneously (the connection between this formula and the description above is clear).
The same structure can be constructed over the Grothendieck (semi)ring of varieties with an

action of a group.
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5. MOTIVIC VERSIONS OF THE MONODROMY ZETA FUNCTION

Let

ηS(t) :=
∫
S

(1 − tvf )−dχg = Exp(Znaive,S(t)),

where S is L0, L∗
0/C∗, or the space of branches B0. Let us compute the specialization of the series

ηS(t) under the (usual) Euler characteristic morphism.

Proposition 5. For S = L0, we have χ(ηS(t)) = 1; for S = L∗
0/C∗ or B0, we have

η(t) = χ(ηS(t)) =
∞∏

k=1

ζf (tk),

where ζf (t) is the classical monodromy zeta function of the germ f .

Proof. For S = L0, this follows from the expression for the integral
∫
L0

tvf dχg in terms of
a resolution since all terms in it are divisible by (L − 1). For S = L∗

0/C∗ or B0, it follows from
Propositions 3 and 4 that under the Euler characteristic morphism, all terms corresponding to
nontrivial intersections of the components (i.e., to I with |I| > 1) vanish and

η(t) = χ(ηS(t)) =
∏
i∈I′0

∞∏
k=1

(
1 − tkNi

)−χ(
◦
Ei) =

∞∏
k=1

(∏
i∈I′0

(
1 − tkNi

)−χ(
◦
Ei)

)

(this follows from the equation χ
(
(A(t))[M ]

)
= (χ(A(t)))χ(M), see [12]). According to the A’Campo

formula [1], this expression is equal to

η(t) =
∞∏

k=1

ζf (tk). � (2)

Let µ(n) be the Möbius function:

µ(n) =

⎧⎪⎨⎪⎩
0 if n has one or more repeated prime factors,
1 if n = 1,
(−1)k if n is a product of k distinct primes.

The property µ(1) = 1 and
∑

i|n µ(i) = 0 for n > 1 implies the following statement.

Corollary 1.

ζf (t) =
∞∏
i=1

(η(ti))µ(i).

This leads to the following motivic versions of the monodromy zeta function.

Definition. For S = L∗
0/C∗ or B0, the series

ζf,S(t) :=
∞∏
i=1

(ηS(ti))µ(i)

is called a motivic version of the monodromy zeta function for arcs/C∗ or branches, respectively.
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In other words,

ζf,S(t) = Exp

⎛⎝∫
S

∞∑
i=1

µ(i)tivf dχg

⎞⎠ = Exp

( ∞∑
n=1

(∑
k|n

µ(k)χg

(
Xn/k

))
tn

)

=
∏
n≥1

(1 − tn)−(
∑

k|n µ(k)χg(Xn/k)).

Proposition 6. The series ζf,S(t) ∈ K0(VC)[L−1][[t]] is an invariant of the germ f, and its
specialization under the Euler characteristic morphism coincides with (the Taylor expansion of ) the
monodromy zeta function ζf (t).

Propositions 3 and 4 yield the following theorem.
Theorem 1. For a resolution π : (X ,D) → (Cd, 0) of the germ f, one has

ζf,L∗
0/C∗(t) =

∞∏
m=1

∏
I⊂I0, ∅�=I �⊂I′′0

⎛⎝ ∏
{ki : i∈I}

(1 − L−k ν tmk N )

⎞⎠−µ(m)(L−1)#I−1 [
◦
EI ]

(here k = {ki : i ∈ I}, ν = {νi : i ∈ I}, N = {Ni : i ∈ I}, k ν =
∑

i∈I kiνi, . . . ).
If the resolution π factorizes through the blowing-up π0 : (X0, CPd−1) → (Cd, 0) of the origin

in Cd, then

ζf,B0(t) =
∞∏

m=1

∏
I⊂I0, ∅�=I �⊂I′′0

⎛⎝ ∏
{ki : i∈I}

(1 − L−k(ν+M)tmk N )

⎞⎠−µ(m)(L−1)#I−1 [
◦
EI ]

(M = {Mi : i ∈ I}).

6. FINAL REMARKS

One of the most interesting problems about the naive Denef–Loeser zeta function, the “mon-
odromy conjecture,” states that there exists a set S of pairs (ν,N) of nonnegative integers with N > 0
such that the naive zeta function Znaive(t) always belongs to K0(VC)[L−1][(1 − L−νtN )−1]{(ν,N)}∈S

and if q = −ν/N for (ν,N) ∈ S, then exp(−2iπq) is an eigenvalue of the classical local monodromy
operator around zero at some point P ∈ f−1(0) (see [6]).

Proposition 2 makes it clear that the monodromy conjecture for Znaive(t) =
∫
L0

tvf dχg is equiv-
alent to the monodromy conjecture for Znaive,L∗

0/C∗(t) =
∫
L∗

0/C∗ tvf dχg. Because of identities (1)
and (2), one has

ζf,S(t) = Exp

( ∞∑
i=1

µ(i)Znaive,L∗
0/C∗(ti)

)
and χ

(
Exp

(
Znaive,L∗

0/C∗(t)
))

=
∞∏

k=1

ζf (tk).

The monodromy conjecture was originally stated in the p-adic case for the Igusa local zeta
functions (see, e.g., [4]). In [5] Denef and Loeser introduced an analytic invariant, called the local
topological zeta function of a germ f (as a kind of a limit of the local Igusa zeta function), whose
initial definition was written in terms of a resolution,

Ztop,0(f, s) =
∑

I⊂I0, ∅�=I �⊂I′′0

χ(
◦

EI)
∏
i∈I

1
Nis + νi

,

although it does not depend on a resolution. If one first replaces t by L−s in Znaive(t), expands L−s

and (L − 1)
(
1 − L−ν+Ns

)−1 in series in L − 1, and finally takes the Euler characteristic, then one
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gets Ztop,0(f, s). The monodromy conjecture was also stated for this function in [5]. See [14] for
more information about this conjecture.

In the case of integration over the space of branches, one can apply the same procedure in order
to get a new analytic invariant of the germ f . The function

ZB,0(f, s) := χ
(
(L − 1)Znaive,B0(L

−s)
)

is rational, and in terms of a resolution that factorizes through the blowing-up π0 : (X0, CPd−1) →
(Cd, 0) of the origin in Cd, one has

ZB,0(f, s) =
∑

I⊂I0, ∅�=I �⊂I′′0

χ(
◦

EI)
∏
i∈I

1
Nis + νi + Mi

.

In particular, one may ask if the monodromy conjecture holds for ZB,0(f, s). The example f(x, y) =
(x2 + y3)(y2 + x3) shows that this is not the case. The monodromy zeta function ζf (t) is equal to
(1 − t10)2/(1 − t5)2, while

ZB,0(f, s) =
8s2 + 24s + 14

(10s + 7)(4s + 3)(1 + s)
.
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