Generating Series of Classes of Hilbert Schemes of Points on Orbifolds

S. M. Gusein-Zade^a, I. Luengo^b, and A. Melle-Hernández^b

Received March 2008

Abstract—The notion of power structure over the Grothendieck ring of complex quasiprojective varieties is used for describing generating series of classes of Hilbert schemes of zero-dimensional subschemes ("fat points") on complex orbifolds.

DOI: 10.1134/S0081543809040105

Let $K_0(\mathcal{V}_{\mathbb{C}})$ be the Grothendieck ring of complex quasi-projective varieties. This is an abelian group generated by classes [X] of all quasi-projective varieties X modulo the following relations:

(1) if varieties X and Y are isomorphic, then [X] = [Y];

(2) if Y is a Zariski closed subvariety of X, then $[X] = [Y] + [X \setminus Y]$

(a quasi-projective variety is the difference of two (complex) projective (algebraic) varieties). The multiplication in $K_0(\mathcal{V}_{\mathbb{C}})$ is defined by the Cartesian product of varieties: $[X_1] \cdot [X_2] = [X_1 \times X_2]$.

Let Hilb_X^n be the Hilbert scheme of zero-dimensional subschemes of length n of a complex quasiprojective variety X. According to [4], Hilb_X^n is a quasi-projective variety. For a point $x \in X$, let us denote by $\operatorname{Hilb}_{X,x}^n$ the Hilbert scheme of zero-dimensional subschemes of the variety X that are supported at the point x.

Let

$$\mathbb{H}_X(T) := 1 + \sum_{n=1}^{\infty} \left[\mathrm{Hilb}_X^n \right] T^n \in 1 + TK_0(\mathcal{V}_{\mathbb{C}})[[T]]$$

and

$$\mathbb{H}_{X,x}(T) := 1 + \sum_{n=1}^{\infty} \left[\operatorname{Hilb}_{X,x}^{n} \right] T^{n} \in 1 + TK_{0}(\mathcal{V}_{\mathbb{C}})[[T]]$$

be the generating series of classes of Hilbert schemes $\operatorname{Hilb}_{X}^{n}$ and $\operatorname{Hilb}_{X,x}^{n}$ in the Grothendieck ring $K_{0}(\mathcal{V}_{\mathbb{C}})$.

In [5], a notion of power structure over a ring was defined. A *power structure* over a commutative ring R is a method to assign a certain meaning to expressions of the form $(1 + a_1T + a_2T^2 + ...)^m$, where a_i and m are elements of the ring R. In other words, a power structure is defined by a map $(1 + T \cdot R[[T]]) \times R \to 1 + T \cdot R[[T]]$:

$$(A(T), m) \mapsto (A(T))^m, \qquad A(T) = 1 + a_1 T + a_2 T^2 + \dots, \quad a_i \in \mathbb{R}, \quad m \in \mathbb{R},$$

such that all the usual properties of the exponential function hold. In [5], a natural power structure over the Grothendieck ring $K_0(\mathcal{V}_{\mathbb{C}})$ of complex quasi-projective varieties was described. It is closely

 $[^]a$ Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia.

^b Departamento de Álgebra, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain.

E-mail addresses: sabir@mccme.ru (S.M. Gusein-Zade), iluengo@mat.ucm.es (I. Luengo), amelle@mat.ucm.es (A. Melle-Hernández).

S.M. GUSEIN-ZADE et al.

connected with the λ -structure (see, e.g., [9]) on $K_0(\mathcal{V}_{\mathbb{C}})$ defined by the Kapranov zeta function of a quasi-projective variety [8]:

$$\zeta_X(t) = 1 + [X]t + [S^2X]t^2 + [S^3X]t^3 + \ldots \in K_0(\mathcal{V}_{\mathbb{C}})[[t]].$$

The geometric description of this power structure is as follows: if A_1, A_2, \ldots, M are quasi-projective varieties, then the coefficient of T^n in the series

$$(1 + [A_1]T + [A_2]T^2 + \ldots)^{[M]}$$

is represented by the configuration space of pairs (K, φ) consisting of a finite subset K of the variety M and a map φ from K to the disjoint union $\coprod_{i=1}^{\infty} A_i$ of the varieties A_i , such that $\sum_{x \in K} I(\varphi(x)) = n$, where $I: \coprod_{i=1}^{\infty} A_i \to \mathbb{Z}$ is the tautological function sending the component A_i of the disjoint union to i.

There are two natural homomorphisms from the Grothendieck ring $K_0(\mathcal{V}_{\mathbb{C}})$ to the ring \mathbb{Z} of integers and to the ring $\mathbb{Z}[u, v]$ of polynomials in two variables: the Euler characteristic (alternating sum of ranks of cohomology groups with compact support) $\chi \colon K_0(\mathcal{V}_{\mathbb{C}}) \to \mathbb{Z}$ and the Hodge–Deligne polynomial $e \colon K_0(\mathcal{V}_{\mathbb{C}}) \to \mathbb{Z}[u, v] \colon e(X)(u, v) = \sum e^{p,q}(X)u^pv^q$. These homomorphisms respect the power structures on the corresponding rings (see, e.g., [7]).

For a smooth quasi-projective variety X of dimension d, the following equation holds in $K_0(\mathcal{V}_{\mathbb{C}})[[T]]$ (see [6]):

$$\mathbb{H}_X(T) = \left(\mathbb{H}_{\mathbb{A}^d,0}(T)\right)^{\lfloor X \rfloor},\tag{1}$$

where \mathbb{A}^d is the complex affine space of dimension d. For d = 2, i.e., for surfaces, this equation was proved in other terms in the Grothendieck ring of motives by L. Göttsche [3]. For an arbitrary dimension d, the reduction of equation (1) for the Hodge–Deligne polynomial was proved by J. Cheah in [1].

Since, for a point x of a smooth variety X of dimension d, the Hilbert scheme $\operatorname{Hilb}_{X,x}^n$ can be identified with the Hilbert scheme $\operatorname{Hilb}_{\mathbb{A}^d,0}^n$, equation (1) can be written as an integral with respect to the universal Euler characteristic $\chi_{g}(Y) = [Y] \in K_0(\mathcal{V}_{\mathbb{C}})$ as follows:

$$\mathbb{H}_X(T) := \int\limits_X \mathbb{H}_{X,x}(T)^{d\chi_g}.$$
(2)

Here $d\chi_g$ is placed in the exponent since the group operation in $1 + T \cdot K_0(\mathcal{V}_{\mathbb{C}})[[T]]$ is the multiplication. For a constructible function ψ on a quasi-projective variety X with values in the abelian group $1 + T \cdot K_0(\mathcal{V}_{\mathbb{C}})[[T]]$, constant and equal to $\psi_{\Sigma}(T)$ on a stratum Σ from a stratification $\mathcal{S} = \{\Sigma\}$ of the variety X, by definition one has

$$\int_{X} \psi^{d\chi_{g}} = \prod_{\Sigma \in \mathcal{S}} (\psi_{\Sigma}(T))^{[\Sigma]}.$$
(3)

If a variety X is not smooth but has only isolated singularities, one can easily see that equation (2) holds. However, this could not be the case in general. Even the function $\mathbb{H}_{X,x}(T)$ (with values in $1 + T \cdot K_0(\mathcal{V}_{\mathbb{C}})[[T]]$) may be nonconstructible: singularities of the variety X at points of some strata may have moduli. It is interesting to understand to what extent equation (2) holds for varieties X such that the function $\mathbb{H}_{X,x}(T)$ is constructible.

The problem described does not occur for orbifolds: their singularities have finitely many local models. Here we prove equation (2) for complex (algebraic) orbifolds.

An orbifold of dimension d is a complex quasi-projective variety X with an atlas of uniformizing systems for Zariski open subsets of the variety X (see, e.g., [10]). For a Zariski open subset $U \subset X$, a uniformizing system is a triple (\tilde{U}, G, φ) , where G is a finite group (depending on U), \tilde{U} is a smooth complex d-dimensional quasi-projective variety with an action of the group G, and φ is an isomorphism $\tilde{U}/G \to U$ of quasi-projective varieties (considered with the reduced structures).

For a point $x \in X$, let (U, G, φ) be a uniformizing system for a Zariski open neighbourhood Uof the point x. Let $\pi_{\widetilde{U}}$ be the natural map $\widetilde{U} \to \widetilde{U}/G$ and let $\widetilde{x} \in (\varphi \circ \pi_{\widetilde{U}})^{-1}(x)$ be a representative of the corresponding orbit. The isotropy group $G_{\widetilde{x}} = \{g \in G : g\widetilde{x} = \widetilde{x}\}$ of the point \widetilde{x} acts on the tangent space $T_{\widetilde{x}}\widetilde{U}$ by a representation $\alpha = \alpha_{\widetilde{x}} : G_{\widetilde{x}} \to \operatorname{GL}(d, \mathbb{C})$. Moreover, there exists a system of local parameters z_1, \ldots, z_d at the point \widetilde{x} such that the action of the group $G_{\widetilde{x}}$ on the manifold \widetilde{U} is given by standard linear equations corresponding to the representation:

$$g^* z_i = \sum_{j=1}^d \alpha_{i,j}(g) z_j, \tag{4}$$

where $(\alpha_{i,j}(g)) = \alpha(g)$.

We have the following:

- (i) the Hilbert scheme $\operatorname{Hilb}_{X,x}^n$ of 0-dimensional subschemes on X supported at the point x is isomorphic to the Hilbert scheme $\operatorname{Hilb}_{\mathbb{A}^d/G_{\tilde{\tau}},0}^n$;
- (ii) the partition of the neighbourhood U into parts corresponding to different conjugacy classes of isotropy subgroups $G_{\tilde{x}} \subset G$ and to different (nonisomorphic) representations of the group $G_{\tilde{x}}$ is a stratification of the neighbourhood U.

Therefore, $\mathbb{H}_{X,x}(T)$ is a constructible function on the variety X with values in $1 + T \cdot K_0(\mathcal{V}_{\mathbb{C}})[[T]]$. **Theorem 1.** For an orbifold X, the following equation holds in the group $1 + T \cdot K_0(\mathcal{V}_{\mathbb{C}})[[T]]$:

$$\mathbb{H}_X(T) = \int\limits_X \mathbb{H}_{X,x}(T)^{d\chi_{g}}.$$
(5)

Proof. For a locally closed subvariety $Y \subset X$, let us denote by $\operatorname{Hilb}_{X,Y}^n$ the Hilbert scheme of subschemes of length n of the variety X that are supported at points of the variety Y, and let

$$\mathbb{H}_{X,Y}(T) := 1 + \sum_{n=1}^{\infty} \left[\text{Hilb}_{X,Y}^n \right] T^k$$

be the corresponding generating series. If Y is a Zariski closed subset of the variety X, then

$$\mathbb{H}_X(T) = \mathbb{H}_{X,Y}(T) \cdot \mathbb{H}_{X,X \setminus Y}(T).$$
(6)

Therefore, it is sufficient to prove equation (2) for the case when X is covered by one uniformizing system (\tilde{U}, G, φ) such that \tilde{U} lies in an affine space \mathbb{A}^N .

Let us fix a subgroup G' of the group G and a representation $\alpha \colon G' \to \operatorname{GL}(d, \mathbb{C})$. Let $X_{G',\alpha}$ be the image under the map $\varphi \circ \pi_G$ of the set of points $\widetilde{x} \in \widetilde{U}$ such that $G_{\widetilde{x}} = G'$ and the representation of the group G' on the tangent space $T_{\widetilde{x}}\widetilde{U}$ is isomorphic to α . Using (6) again, one can see that it is sufficient to prove the formula

$$\mathbb{H}_{X,Y}(T) = \left(\mathbb{H}_{\mathbb{A}^d/(G',\alpha),0}(T)\right)^{[Y]} \tag{7}$$

for each point $x \in X_{G',\alpha}$ and for a certain Zariski open neighbourhood Y of this point in an irreducible component of the set $X_{G',\alpha}$.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 267 2009

S.M. GUSEIN-ZADE et al.

Let $\tilde{x} \in (\varphi \circ \pi_{\widetilde{U}})^{-1}(x)$ be a point of the manifold \widetilde{U} such that $G_{\widetilde{x}} = G'$. The representation of the group G' on the tangent space $T_{\widetilde{x}}\widetilde{U}$ is isomorphic to the representation α . Let u_1, \ldots, u_d be a regular system of parameters at the point \widetilde{x} (for example, one may suppose that $\widetilde{x} = 0$ and u_1, \ldots, u_d are d of the standard coordinates on the space \mathbb{A}^N such that the projection of the tangent space $T_{\widetilde{x}}\widetilde{U}$ to the corresponding d-dimensional coordinate plane is nondegenerate). (In this case $u_1 - u_1^0, \ldots, u_d - u_d^0$ is a regular system of parameters at each point from a Zariski open neighbourhood of the point \widetilde{x} .)

Suppose that the parameters u_1, \ldots, u_d are chosen in such a way that, in the corresponding coordinates on the tangent space $T_{\widetilde{x}}\widetilde{U}$, the action of the group G' is given by the standard equations (4). Define a new regular system of parameters $\widetilde{u}_1, \ldots, \widetilde{u}_d$ at the point \widetilde{x} by the equations

$$\widetilde{u}_i = \frac{1}{|G'|} \sum_{g \in G'} \sum_j \alpha_{i,j} (g^{-1}) g^* u_j.$$

We have

$$g^*\widetilde{u}_i = \sum_j \alpha_{i,j}(g)\widetilde{u}_j$$

Therefore, $\tilde{u}_1 - \tilde{u}_1^0, \ldots, \tilde{u}_d - \tilde{u}_d^0$ is a regular system of parameters at each point \tilde{x}' from a Zariski open neighbourhood of the point \tilde{x} in the corresponding irreducible component of the set $(\varphi \circ \pi_G)^{-1} X_{G',\alpha}$. This defines a map $\underline{\tilde{u}} - \underline{\tilde{u}}^0 : \tilde{U}, \tilde{x}' \to \mathbb{A}^d, 0$. There is a commutative diagram

where the lower map identifies the Hilbert scheme of points on X supported at the point x' with the Hilbert scheme of points on $\mathbb{A}^d/(G', \alpha)$ supported at the origin.

Thus, a zero-dimensional subscheme on the orbifold X supported at points of the subvariety Y is defined by a finite subset $K \subset Y$ to each point x of which there corresponds a zero-dimensional subscheme on $\mathbb{A}^d/(G', \alpha)$ supported at the origin. The length of the subscheme is equal to the sum of lengths of the corresponding subschemes of $\mathbb{A}^d/(G', \alpha)$. As follows from the geometric description of the power structure over the Grothendieck ring of quasi-projective varieties, the coefficient of T^n on the right-hand side of equation (7) is represented just by the configuration space of such objects. This proves the theorem. \Box

Reductions of equation (2) under the Euler characteristic homomorphism and the Hodge–Deligne polynomial homomorphism give equations for the generating series of the corresponding invariants of Hilbert schemes of zero-dimensional subschemes of an orbifold. In particular,

$$1 + \sum_{n=1}^{\infty} \chi(\operatorname{Hilb}_{X}^{n}) T^{n} = \int_{X} \left(1 + \sum_{n=1}^{\infty} \chi(\operatorname{Hilb}_{X,x}^{n}) T^{n} \right)^{d\chi}.$$
(8)

In [2], J. Cheah considered nested Hilbert schemes on a smooth *d*-dimensional complex quasiprojective variety X. For $\underline{n} = (n_1, \ldots, n_r) \in \mathbb{Z}_{\geq 0}^r$, the nested Hilbert scheme $Z_X^{\underline{n}}$ of depth r is the scheme that parametrizes collections of the form (Z_1, \ldots, Z_r) , where $Z_i \in \operatorname{Hilb}_X^{n_i}$ and Z_i is a subscheme of Z_j for i < j. The scheme $Z_X^{\underline{n}}$ is nonempty only if $n_1 \leq n_2 \leq \ldots \leq n_r$; notice that $Z_X^{(n)} = \operatorname{Hilb}_X^n \cong Z_X^{(n,\ldots,n)}$.

For $Y \subset X$, denote by $Z_{\overline{X},Y}^{\underline{n}}$ the scheme that parametrizes collections (Z_1, \ldots, Z_r) from $Z_{\overline{X}}^{\underline{n}}$ with $\operatorname{supp} Z_i \subset Y$. For $Y = \{x\}, x \in X$, we will use the notation $Z_{\overline{X},x}^{\underline{n}}$.

For $r \geq 1$, let $\underline{T} = (T_1, \ldots, T_r)$ and let

$$\mathcal{Z}_{X}^{(r)}(\underline{T}) := 1 + \sum_{\underline{n} \in \mathbb{Z}_{\geq 0}^{r} \setminus \{0\}} [Z_{X}^{\underline{n}}] \underline{T}^{\underline{n}}, \qquad \mathcal{Z}_{X,x}^{(r)}(\underline{T}) := 1 + \sum_{\underline{n} \in \mathbb{Z}_{\geq 0}^{r} \setminus \{0\}} [Z_{X,x}^{\underline{n}}] \underline{T}^{\underline{n}}$$

be the generating series of classes of the nested Hilbert schemes Z_X^n of depth r (respectively, of those supported at the point x).

A series

$$A(\underline{T}) = 1 + \sum_{\underline{n} \in \mathbb{Z}_{\geq 0}^{r} \setminus \{0\}} a_{\underline{n}} \underline{T}^{\underline{n}}, \qquad \underline{T}^{\underline{n}} := T_{1}^{n_{1}} \cdot \ldots \cdot T_{r}^{n_{r}}, \quad a_{\underline{n}} \in K_{0}(\mathcal{V}_{\mathbb{C}}),$$

has a unique representation of the form

$$A(\underline{T}) = \prod_{\underline{k} \in \mathbb{Z}_{\geq 0}^r \setminus \{0\}} \left(1 - \underline{T^{\underline{k}}}\right)^{-s_{\underline{k}}}, \qquad s_{\underline{k}} \in K_0(\mathcal{V}_{\mathbb{C}}).$$

Then, for $m \in K_0(\mathcal{V}_{\mathbb{C}})$,

$$A(\underline{T})^m := \prod_{\underline{k} \in \mathbb{Z}_{\geq 0}^r \setminus \{0\}} \left(1 - \underline{T^k}\right)^{-ms_{\underline{k}}}$$

(see [7]).

For a smooth quasi-projective variety X of dimension d, the following equation holds [7]:

$$\mathcal{Z}_X^{(r)}(\underline{T}) = \left(\mathcal{Z}_{\mathbb{A}^d,0}^{(r)}(\underline{T})\right)^{[X]}$$

Using the same arguments as in the proof of Theorem 1, one can obtain the following statement: **Theorem 2.** For an orbifold X, the following equation holds:

$$\mathcal{Z}_{X}^{(r)}(\underline{T}) = \int_{X} \left(\mathcal{Z}_{X,x}^{(r)}(\underline{T}) \right)^{d\chi_{g}}.$$

ACKNOWLEDGMENTS

S.M. Gusein-Zade was partially supported by the Russian Foundation for Basic Research (project no. 07-01-00593) and by a grant of the President of the Russian Federation (project no. NSh-709.2008.1). I. Luengo and A. Melle–Hernández were partially supported by the grant MTM2007-67908-C02-02.

REFERENCES

- 1. J. Cheah, "On the Cohomology of Hilbert Schemes of Points," J. Algebr. Geom. 5, 479–511 (1996).
- J. Cheah, "The Virtual Hodge Polynomials of Nested Hilbert Schemes and Related Varieties," Math. Z. 227, 479–504 (1998).
- 3. L. Göttsche, "On the Motive of the Hilbert Scheme of Points on a Surface," Math. Res. Lett. 8, 613-627 (2001).
- A. Grothendieck, "Techniques de construction et théorèmes d'existence en géométrie algébrique. IV: Les schémas de Hilbert," in Séminaire Bourbaki (Soc. Math. France, Paris, 1995), Vol. 6, Exp. 221, pp. 249–276.
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, "A Power Structure over the Grothendieck Ring of Varieties," Math. Res. Lett. 11, 49–57 (2004).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 267 2009

S.M. GUSEIN-ZADE et al.

- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, "Power Structure over the Grothendieck Ring of Varieties and Generating Series of Hilbert Schemes of Points," Mich. Math. J. 54, 353–359 (2006).
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, "On the Power Structure over the Grothendieck Ring of Varieties and Its Applications," Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 258, 58–69 (2007) [Proc. Steklov Inst. Math. 258, 53–64 (2007)].
- 8. M. Kapranov, "The Elliptic Curve in the S-Duality Theory and Eisenstein Series for Kac–Moody Groups," arXiv: math.AG/0001005.
- D. Knutson, λ-Rings and the Representation Theory of the Symmetric Group (Springer, Berlin, 1973), Lect. Notes Math. 308.
- 10. I. Moerdijk and D. A. Pronk, "Orbifolds, Sheaves and Groupoids," K-Theory 12 (1), 3–21 (1997).

Translated by S.M. Gusein-Zade

130