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Departamento de Álgebra, Universidad Complutense, Plaza de Cien-
cias 3, E-28040 Madrid SPAIN

E-mail address: iluengo@mat.ucm.es, amelle@mat.ucm.es



Contents

Introduction 1

Chapter 1. Motivic integration 7
1. Grothendieck ring of varieties 7
2. The arc space of a variety 7
3. Local Denef-Loeser motivic zeta function 8

Chapter 2. Generating functions and Newton polyhedra 11
1. Generating functions for integer points in rational polyhedra 11
2. Motivic zeta function and Newton polyhedra 13

Chapter 3. Quasi-ordinary power series 21
1. Characteristic exponents 22
2. Newton polyhedron and good coordinates 23
3. Dual decomposition 26
4. Newton map associated with a Newton component 29
5. Transversal sections of a quasi-ordinary power series 37

Chapter 4. Denef-Loeser motivic zeta function under the Newton maps 41
1. Vertices of the dual decomposition 46
2. Edges of the Newton polytope 49
3. Zeta functions along strata 59

Chapter 5. Consequences of the main theorems 63
1. Essential variables 63
2. Curve case 63
3. The topological zeta function 64
4. A special candidate pole 65

Chapter 6. Monodromy conjecture for quasi-ordinary power series 77
1. Monodromy conjecture for curves 77
2. Monodromy conjecture: general case 79
3. Monodromy conjecture for the Igusa zeta-function 80

Bibliography 83

v



Abstract

The main objective of this paper is to prove the monodromy conjecture for
the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension
defined over a number field. In order to do it, we compute the local Denef-Loeser
motivic zeta function ZDL(h, T ) of a quasi-ordinary power series h of arbitrary
dimension over an algebraically closed field of characteristic zero from its charac-
teristic exponents without using embedded resolution of singularities. This allows
us to effectively represent ZDL(h, T ) = P (T )/Q(T ) such that almost all the candi-
date poles given by Q(T ) are poles. Anyway, these candidate poles give eigenvalues
of the monodromy action on the complex Rψh of nearby cycles on h−1(0). In par-
ticular we prove in this case the monodromy conjecture made by Denef-Loeser for
the local motivic zeta function and the local topological zeta function. As a con-
sequence, if h is a quasi-ordinary polynomial defined over a number field we prove
the Igusa monodromy conjecture for its local Igusa zeta function.
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Introduction

Let h be a polynomial in Z[x1, . . . , xd] and fix p ∈ Z a prime number. In order
to study the number Nk of solutions of the congruence h ≡ 0 mod pk, classically
one associates with h the Poincaré series

P (T ) =
∞∑

k=0

NkT
k.

J. Igusa proved in [25, 26] that P (T ) is a rational function on T by relating it with
the following p-adic integral

(0.1) I(h, s) :=
∫

Zd
p

|h(x)|s|dx|,

for s ∈ C, Re(s) > 0, where |dx| denotes the Haar measure on Qd
p normalized in

such a way that Zd
p is of volume 1.

Igusa proved the identity P (p−d−s) = 1−p−sI(h,s)
1−p−s and he used an embedded

resolution of h−1(0) to show that I(h, s) is a rational function of p−s (see [9] for
a proof without resolution of singularities). In fact each exceptional divisor of an
embedded resolution gives a candidate pole of I(h, s) but many of them are not
actually poles.

Igusa conjectured that poles of I(h, s) are related to eigenvalues of the com-
plex monodromy at some point of h−1(0), see [10]. More precisely he raised the
conjecture:

Igusa Monodromy Conjecture. If h ∈ F [x1, . . . , xd] \F , for some number
field F ⊂ C, then for almost all p-adic completions K of F, if s0 is a pole of
I(h,K, s), then exp(2iπ<(s0)) is an eigenvalue of the local monodromy of h at
some complex point of h−1(0).

Since then, some partial results have been obtained, see the Bourbaki Seminar
talk by J. Denef [10] for a survey of these results until 1991, and for instance the
papers [33, 34, 44, 45, 40, 2] for more recent results. We recall two cases where
Igusa monodromy conjecture has been proved. In fact in both cases, the following
stronger version of the Igusa monodromy conjecture was proved:

For almost all p-adic completions K of F, if s0 is a pole of I(h,K, s), then
<(s0) is a root of the Bernstein polynomial bh(s) of h.

Firstly, F. Loeser in [33] gave a proof for reduced polynomials in two vari-
ables. One other interesting case is the case of polynomials (in arbitrary dimen-
sion) non-degenerate with respect to their Newton polyhedron and satisfying some
“resonance” conditions. This result was also proved by F. Loeser in [34]. For plane
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2 INTRODUCTION

curves, the strong candidate poles come from the rupture components in an em-
bedded resolution of h−1(0), see [45, 46]. For non-degenerate polynomials J. Denef
gave a set of strong candidate poles which comes from faces of codimension 1 in
the Newton polyhedron of h, see [11].

In this paper we will prove the Igusa monodromy conjecture for the local Igusa
zeta function I0(h,K, s), which is the local version of I(h,K, s), for quasi-ordinary
polynomials in arbitrary dimension. As we will see quasi-ordinary polynomials
behave in many aspects as plane curves. In our proof we use in an essential way
motivic integration on the space of arcs on an algebraic variety.

Motivic measures take values in a completion of the Grothendieck ring of alge-
braic varieties. Let K0(Vark) be the Grothendieck ring of algebraic varieties over
k. Let L = [A1

k] denote the class in K0(Vark) of the affine line. The naive motivic
ring Mk of algebraic varieties over k is the polynomial ring Mk = K0(Vark)[L−1].

Let X be a non singular irreducible complex algebraic variety of pure dimension
d. For any n ∈ N, let Ln(X) denote the space of arcs modulo tn+1 on X; it has a
structure of complex variety. The arc space L(X) of X is the projective limit of the
algebraic varieties Ln(X). For any n ∈ N, let πn : L(X) → Ln(X) be the natural
projection. For any arc ϕ ∈ L(X), the origin of the arc is π0(ϕ). For each closed
point x ∈ X, let Lx(X) (resp. Ln,x(X)) be the set of arcs on X (resp. truncated
arcs) with origin at x.

Consider X = Ad the d-dimensional complex affine space and x = 0 its origin.
Let h ∈ C[x1, . . . , xd] be a complex polynomial, with h(0) = 0. Set Vn := {ϕ ∈
Lx(X) : ord(h ◦ ϕ) = n}. Denef and Loeser in [17] defined the naive motivic zeta
function of h by

Znaive(h, T ) :=
∑
n≥1

[πn(Vn)]L−ndTn ∈Mk[[T ]].

In fact we will consider the local Denef-Loeser motivic zeta function which is
ZDL(h, T ) = L−dZnaive(h, T ). They showed in [15], using embedded resolution of
singularities, that ZDL(h, T ) is a rational function. It belongs to the subring N
of the ring M̂k[[T ]] which is generated by the image in M̂k[[T ]] of Mk[T ] and
(1− L−aT b)−1, a, b ∈ N, b > 0. The monodromy conjecture in this case states, see
[15, section 2.4]:

Motivic Monodromy Conjecture. There is a set S = {(a, b) : a, b ∈
N, b > 0} such that ZDL(h, T ) ∈Mk[T ][(1−L−aT b)−1](a,b)∈S and if q = a/b, (a, b) ∈
S, then exp(2iπq) is an eigenvalue of the local complex algebraic monodromy around
zero at some P ∈ h−1(0).

It turns out that ZDL(h, T ) is the right function to study several monodromy
conjectures with because it specializes to the local Igusa zeta function and to the
local topological zeta function:

• If h is a non-constant polynomial defined over a number field F then it
follows from [15], see also [17], that for almost all finite places of F, the real parts
Ns+ ν of poles of I0(h,K, s) come from factors (1− L−νTN ) in the denominator
of Znaive(h, T ).

• The local topological zeta function Ztop,0(h, s) of a complex polynomial h
was introduced by Denef and Loeser in [14] as a kind of limit of the local Igusa
zeta function. Later on, they obtained Ztop,0(h, s) from ZDL(h, T ) by the following
procedure, cf. [15, § 2.3]. First substitute L−s for T in ZDL(h, T ), then expand
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L−s and (L − 1)(1 − L−ν+Ns)−1 into series in L − 1. Finally take the usual Euler
characteristic χtop of the result (this works because χtop(L) = 1). Then the local
topological zeta function is the following rational function, see [17, 15]:

Ztop,0(h, s) := χtop(ZDL(h,L−s)).

The local topological zeta function is a subtle analytic invariant (but not topo-
logical, see [3]) of the local singularity. The poles of Ztop,0(h, s) induce poles of
ZDL(h, T ). The other way around is not true, see Example 2.10. In this case Denef
and Loeser conjectured in [14]:

Topological Monodromy Conjecture. If s0 = − ν
N is a pole of Ztop,0(h, s)

then exp(2iπ(−s0)) is an eigenvalue of the monodromy action at some point of
h−1(0).

One result of this paper is that if h defines a quasi-ordinary singularity of
hypersurface of arbitrary dimension then the monodromy conjecture for ZDL(h, T )
is true, see Corollary 6.5. This fact implies the Igusa monodromy conjecture for
I0(h,K, s) and the Denef-Loeser monodromy conjecture for Ztop,0(h, s). In fact we
prove a stronger result.

A germ of a complex analytic variety (V, 0) is called a quasi-ordinary singularity
if there is a finite morphism (proper with finite fiber map) of analytic germs π :
(V, 0) → (Cd, 0) whose discriminant locus is contained in x1x2 . . . xd = 0, for some
local coordinates (x1, . . . , xd).We are only interested in quasi-ordinary hypersurface
singularities (V, 0) ⊂ (Cd+1, 0).

A convergent power series h ∈ C{x, z}, h(0) = 0, defines a quasi-ordinary
singularity at zero if the germ of its zero locus (V, 0) ⊂ (Cd+1, 0) is a quasi-ordinary
singularity. These singularities behave in many aspects as singularities of plane
curves mainly because, after Jung-Abhyankar theorem, they admit fractional power
series parameterizations and a finite set of characteristic exponents, see [28] and [1]
for an algebraic proof.

Quasi-ordinary singularities appears early in the problem of resolution of sin-
gularities of surfaces through the work of Jung ([28], [49]) as follows. Let p : S ⊂
C3 → C2 be a finite linear projection of the algebraic surface S with discriminant
locus ∆ ⊂ C2. Take an embedded resolution π : C̃2 → C2 of the curve ∆ where
the exceptional locus D := π−1(∆) is a normal crossing divisor. The pull-back
p̃ : S̃ → C̃2 of p is a finite map whose discriminant is contained in D. Thus the
singularities of S̃ are all quasi-ordinary and can be resolved easily. Namely, if
n : Z → S̃ is the normalization of S̃ then Z is smooth over simple points of (D)red
and above the remaining points Z have cyclic quotient singularities, see for instance
Laufer’s book [30] for a detailed explanation and several examples.

In fact, for surfaces the resolution can be done without normalization which
allows one to get also an embedded resolution, as explained by O. Zariski in the nice
papers [50, 51], in which he introduced the name quasi-ordinary singularities and
defined the characteristic exponents. J. Lipman in his Harvard thesis [31] studied in
more details the resolution of quasi-ordinary singularities of surfaces proving that
the characteristic exponents, suitable normalized, are independent of the chosen
coordinates. In recent years the interest on quasi-ordinary singularities in any
dimension has been renewed thanks to many interested results and many interested
open problems (see for instance the paper by L.J. McEwan and A. Némethi in [37]).
We cite some of them and of course the list is far to be complete.
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J. Lipman and Y. Gau proved that in the irreducible case these exponents de-
termine the embedded topology of (V, 0), [19, 32]. Popescu-Pampu [39] defined
the semigroup of a quasi-ordinary singularity proving its invariance, see also [21].
P.D. González Pérez [20, 22] has constructed an embedded resolution of a quasi-
ordinary singularity which depends only on its characteristic exponents. This last
result and a different embedded resolution method for quasi-ordinary singularites
constructed by O. Villamayor [48], allows in principle to compute the Denef-Loeser
zeta function for quasi-ordinary singularites. Here we will propose a different ap-
proach based on Newton maps.

In [36], I. Luengo showed that the usual Newton-Puiseux method for curves
can be used in arbitrary dimension to find the roots with fractional exponents of
a quasi-ordinary polynomial by means of Newton maps (see Chapter 4). The key
point to find the roots is that after a Newton map we get a new quasi-ordinary poly-
nomial with fewer characteristic exponents and one proceeds by finite induction.
Instead of using the embedded resolution of quasi-ordinary singularities to compute
ZDL(h, T ), we use the above procedure given by Newton maps. This method allows
us to decompose ZDL(h, T ) as a sum of two rational motivic zeta functions:

ZDL(h, T ) = ZA
DL(h, T ) + ZB

DL(h, T ).

The A-part corresponds to arcs ϕ ∈ L0(X) such that the t-order ordt(h◦ϕ) can
be computed from the (degenerate or not) Newton polytope of h. The computation
of ZA

DL(h, T ) from the Newton polytope follows ideas of J. Denef and K. Hoornaert
in the p-adic case, see [12]. In fact we will show an interesting description of
ZA

DL(h, T ) in terms of generating functions of some rational polyhedra obtained
from the Newton polytope of h, see Chapters 1 and 2. As an application, a formula
for ZDL(h, T ) for any germ of complex analytic function h with non-degenerate
Newton polytope is given, see theorem 2.4. G. Guibert has recently obtained a
similar formula, see [24].

In order to compute the measure of the arcs ϕ ∈ L0(X) in the B-part we pull
back these arcs under Newton maps. In particular ZB

DL(h, T ) is the sum of some
motivic zeta functions depending on the pull-back of h under all its Newton maps.
There is one major technical problem here. In dimension higher than 1, usually
there exist some arcs which cannot be lifted under usual Newton maps. To solve
this problem we need to consider Newton maps with coefficients in C{t}. Thus our
results really deal with quasi-ordinary power series with coefficients in C{t} instead
of C. Now Newton maps are C{t}-morphisms in the terminology introduced by
Denef and Loeser in [18] and we can apply the change of variables formula. The
differential form plays a role here but throughout this introduction we omit it.
In fact, we perform all these computations for an algebraically closed field k of
characteristic zero.

Essentially in ZB
DL(h, T ) we get quasi-ordinary singularities with fewer char-

acteristic exponents and we can apply recursively this formula. In this way, for
Ztop,0(h, s) a very effective and closed recursive formula is given only depending on
the tree of characteristic exponents, cf. Theorem 5.3. For ZDL(h, T ) the formula,
also recursive, is enough to give a short list of candidate poles. Each characteris-
tic exponent is a rational d-tuple. Each non-zero coordinate of each characteristic
exponent will give a candidate pole of ZDL(h, T ). In section 6 some of them are
excluded to get a smallest set SCP (h) of strong candidate poles. Our main result
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is

(0.2) ZDL(h, T ) ∈ Z[L,L−1, (1− L−νTN )−1][T ](N,ν)∈SCP (h).

The proof of the above result gives some extra information. Namely all elements
in SCP (h), but one concrete case (∗) when d = 2 (cf. Proposition 5.10), appear also
as strong candidate poles of a transversal section of h at some point of the singular
locus of h−1(0). Transversal sections at generic points are also quasi-ordinary singu-
larities, this fact allows us to prove the motivic monodromy conjecture by induction
on the dimension. For curves, this method gives a closed formula for ZDL(h, T ), cf.
(5.1), and from this formula a new proof of the monodromy conjecture follows di-
rectly. In the (∗)-case, there is only one strong candidate pole not appearing in the
transversal sections. We use the formula, proved by L.J. McEwan and A. Némethi
in [38] (in the irreducible case) and by P.D. González Pérez, L.J. McEwan and
A. Némethi in [23] (in general), for the zeta function of the monodromy at the
origin of quasi-ordinary singularities to show that this strong candidate pole also
gives an eigenvalue of the monodromy of h at the origin.

The computation of Ztop,0(h, s) for quasi-ordinary singularities gives a very
effective way to compute the poles of Ztop,0(h, s) for a general surface singularity.
To shorten this work we will provide the details in a forthcoming paper. The basic
idea is to use the well-known Jung-method as follows.

Let p : (S, 0) ⊂ (C3, 0) → (C2, 0) be a finite morphism of a (hyper)surface
singularity (S, 0), defined by h, with discriminant locus (∆, 0) ⊂ (C2, 0). Take
an embedded resolution π : (C̃2,D) → (C2, 0) of the germ of curve (∆, 0) where
the exceptional locus D = π−1(0) is a normal crossing divisor. The pull-back
p̃ : (S̃, E) → (C̃2,D) is a finite map whose discriminant is contained in the pull-
back of (∆, 0). Thus the singularities of (S̃, E) are all quasi-ordinary. We have
proved that the poles of Ztop,0(h, s) are contained in the set of poles of either the
transversal sections (now curves) at the rupture components of the resolution or
components of the singular locus of (S, 0). This gives a short list of strong candidate
poles which are in general poles of Ztop,0(h, s). The next step will be to prove that
they induce eigenvalues of the monodromy.

Conventions. Throughout this paper we denote by N the set of the non-
negative integers, P the set of positive integers, R+ = {x ∈ R : x ≥ 0 } and
R>0 = {x ∈ R : x > 0 }. To shorten the notation we will use bold symbols for
d-tuples, for instance x = (x1, . . . , xd).

In this paper we work over a field k of characteristic zero. A variety over
k will mean a reduced separated scheme of finite type over the field k, Gd

m,k :=
Spec k[x1, . . . , xd, x

−1
1 , . . . , x−1

d ] denote the d-dimensional torus over k and Ad
k :=

Spec k[x1, . . . , xd] the d-dimensional affine space over k.

Acknowledgment. The authors thank the referees for many interesting com-
ments and remarks about this paper which have really improved the quality of
the text. The authors also thank H. Cobo Pablos, J.I. Cogolludo Agust́ın and
M. González Villa for their help while preparing this manuscript.





CHAPTER 1

Motivic integration

In this chapter we recall several results from [15, 16, 17, 18]. We refer to
these papers for the proofs of such results. In the first two sections we work over a
field k of characteristic zero.

1. Grothendieck ring of varieties

The Grothendieck ring of algebraic varieties over k, denoted by K0(Vark), is
the free Abelian group on isomorphism classes [X] of algebraic varieties X over k
subject to the relations [X] = [X − Y ] + [Y ] where Y ⊂ X is a closed subvariety
of X. The Cartesian product of varieties gives the ring structure. The following
properties that we will freely use throughout the paper, hold in K0(Vark).
(1) If f : Y → Z is a fiber bundle with fiber F which is locally trivial in the Zariski

topology, then [Y ] = [F ][Z].
(2) If a variety X is partitioned by locally closed subvarieties X1, . . . , Xn, then

[X] = [X1] + . . .+ [Xn].
(3) If f : Y → Z is a bijective morphism, then [Y ] = [Z]. The proof of this property

is deduced from the proof of the same property at the level of virtual Hodge
polynomials which can be found for instance in [8].
Let L = [A1

k] denote the class in K0(Vark) of the affine line. The naive motivic
ring Mk of algebraic varieties over k is the polynomial ring Mk = K0(Vark)[L−1].
Let FmMk denote the subgroup of Mk generated by [X]L−i with dimX − i ≤
−m and M̂k denote the completion of Mk with respect to the filtration F ·. This
completion was first introduced by M. Kontsevich.

2. The arc space of a variety

Let X be a nonsingular irreducible algebraic variety over k of pure dimension
d. For any n ∈ N, let Ln(X) denote the space of arcs modulo tn+1 on X which has
a structure of k-variety, whose K-rational points, for any field K containing k, are
the K[t]/(tn+1)K[t]-rational points of X. The arc space L(X) of X is the projective
limit of the algebraic varieties Ln(X). For any n ∈ N, let πn : L(X) → Ln(X) be
the natural projection. For any arc ϕ ∈ L(X), the origin of the arc is π0(ϕ). For
any closed point x ∈ X, let Lx(X) (resp. Ln,x(X)) be the arcs (resp. truncated
arcs) with origin at x. The above definitions extend to the case where X is a reduced
and separated scheme of finite type over k[t]. For any n ∈ N, Ln(X) is the k-scheme
which represents the functor

R 7→ Mork[t]−schemes(SpecR[t]/tn+1R[t], X)

defined in the category of k-algebras and again L(X) is its projective limit. The
truncation map will be also denoted by πn : L(X) → Ln(X).

7



8 1. MOTIVIC INTEGRATION

Let A be a semialgebraic, resp. k[t]-semialgebraic, subset of L(X); it is called
stable at level n ∈ N if A = π−1

n πn(A). We remark that if A is stable at level n then
it is stable at level n′ ≥ n. The set A is called stable if it is stable at some level n.
A subset A ∈ L(X) is cylindrical at level n if A = π−1

n (C) with C a constructible
set, and A is cylindrical if it is cylindrical at some level. Denote by Bt the set of
all k[t]-semialgebraic subsets of L(X).

The motivic measure on L(X) is the unique map µX : Bt → M̂k such that:
(a) If A ∈ Bt is stable at level n, then µX(A) = [πn(A)]L−(n+1)d.
(b) If A ∈ Bt is contained in L(S) with S a reduced closed subscheme of X ⊗k k[t]

with dimk[t] S < dimX, then µX(A) = 0.
(c) Let Ai ∈ Bt for all i ∈ N. Assume that the Ai’s are mutually disjoint and that

A :=
⋃

i∈N Ai is k[t]-semialgebraic. Then
∑

i∈N µX(Ai) converges in M̂k to
µX(A).
Because there might exist cylindrical subsets of L(X) which are not semialge-

braic the motivic measure has been extended to a measure, also denoted µX , defined
over the Boolean algebra of the measurable subsets of L(X), see [18, Appendix].
The above properties hold for measurable subsets of L(X) too.

For a measurable subset A in L(X) and a function α : A → Z ∪ {∞}, we say
that L−α is integrable on A if the fibres of α are measurable, α−1(∞) has measure
zero and the motivic integral∫

A

L−αdµX :=
∑
n∈Z

µX(A ∩ α−1(n))L−n ∈ M̂k

converges in M̂k.

Definition 1.1. Let X and Y be k-varieties. A function π : L(Y ) → L(X) will
be call a k[t]-morphism if it is induced by a morphism of k[t]-schemes Y ⊗k k[t] →
X ⊗k k[t].

Theorem 1.2 (Change variables formula). Let X and Y be smooth k-varieties
of pure dimension d. Let π : L(Y ) → L(X) be a k[t]-morphism. Let A and B be
k[t]-semialgebraic subsets of L(X) and L(Y ), respectively. Assume that π induces
a bijection between B and A. Then, for any function α : A → Z ∪ {∞} such that
L−α is integrable on A, we have∫

A

L−αdµX =
∫

B

L−α◦π−ordtJπ(y)dµY ,

where ordtJπ(y), for any y ∈ L(Y ), denotes the t-order of the Jacobian of π at y.

3. Local Denef-Loeser motivic zeta function

Let h ∈ k[[x1, . . . , xd]] be a formal power series in the maximal ideal of the
formal power series ring. Let X := Ad

k be the d-dimensional affine space and x = 0
its origin. Set Vn := {ϕ ∈ Lx(X) : ord(h◦ϕ) = n}. The local Denef-Loeser motivic
zeta function of h is the power series

(1.1) ZDL(h, T ) :=
∑
n≥1

µX(Vn)Tn ∈Mk[[T ]].

Since Vn is a stable semialgebraic set at level n of Ln,x(X), then we have

µX(Vn) = [πn(Vn)]L−(n+1)d ∈Mk.
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In fact ZDL(h, T ) belongs to the subring N of the ring M̂k[[T ]] which is generated
by the image in M̂k[[T ]] of Mk[T ] and (1 − L−aT b)−1, a ∈ N, b ∈ P. Denef and
Loeser in [17] introduced the naive motivic zeta function of h as

Znaive(h, T ) :=
∑
n≥1

[πn(Vn)]L−ndTn,

then LdZDL(h, T ) = Znaive(h, T ).
We will work in a slightly more general set up. In order to be able to use the

change variables formula we consider ZDL(h, ω, T ) where ω is a regular differential
form on X and the pair (h, ω) will satisfy the following condition.

Support Condition 1.3. The pair (h,w) satisfies the support condition if and
only if

(1) h(x) =
∏d

j=1 x
Nj

j f(x), Nj ∈ N, with xj does not divide f for any j = 1, . . . , d,

(2) ω is a regular differential form of type ω =
∏d

j=1 x
νj−1
j dx1 ∧ . . . ∧ dxd, νj ≥ 1,

(3) Nj = 0 implies νj = 1, for any j = 1, . . . , d.

Set Vn,m := {ϕ ∈ Vn | ord(
d∏

j=1

x
νj−1
j ◦ϕ) = m}. For a given n, there are finitely

many m such that Vn,m 6= ∅, because of the support condition, cf. [47]. The local
Denef-Loeser motivic zeta function of a pair (h, ω) is the rational function

(1.2) ZDL(h,w, T ) :=
∑
n∈N

(∑
m∈N

L−mµX(Vn,m)

)
Tn ∈ N .

The local topological zeta function Ztop,0(h, ω, s) is obtained from ZDL(h,w, T )
by the following procedure, see [15, § 2.3]. First substitute T by L−s in ZDL(h, ω, T ),
then expand L−s and (L − 1)(1 − L−ν+Ns)−1 into series in L − 1. Finally take
the usual Euler characteristic χtop in étale Q`-cohomology, this works because
χtop(L) = 1. Then Ztop,0(h, ω, s) is the rational function

(1.3) Ztop,0(h, ω, s) := χtop(ZDL(h, ω,L−s)).

We will use the symbol χtop(•(L−s)) to denote the composition of the above three
operations whenever it makes sense.

Remark 1.4. See [18, Remark 1.19] to generalize the results presented here to
schemes over k[[t]] instead over k[t].





CHAPTER 2

Generating functions and Newton polyhedra

1. Generating functions for integer points in rational polyhedra

In this section some well known facts about generating functions of rational
polyhedra are reviewed. We use as a reference [42, Section 4.6] and [5].

Let Rd be the Euclidean d-space with the standard scalar product x · y =∑d
l=1 xlyl. A rational polyhedron P ⊂ Rd is the set of solutions of a finite system

of linear inequalities with integer coefficients:

P := {x ∈ Rd : βi · x ≤ ci for i = 1, . . . ,m}, where βi ∈ Zd and ci ∈ Z.

A bounded rational polyhedron is called a polytope. A nonempty polyhedron is
called a cone if λx ∈ P whenever x ∈ P and λ ≥ 0. A pointed polyhedral cone is a
cone which does not contain a line.

The algebra of polyhedra P(Rd) is the Q-vector space spanned by the indicator
functions [P ] of all polyhedra P ⊂ Rd, where the indicator function [P ] : Rd → R
of P is defined by

[P ](x) =

{
1 if x ∈ P,
0 if x 6∈ P.

We will use the same notation [•] for indicator functions and for elements in
the Grothendieck ring of algebraic varieties, nevertheless we hope no confusion will
arise.

Let P ⊂ Qd be a rational polyhedron, with the set of integral points in P we
associate the generating function

ΦP (x) :=
∑

α∈P∩Zd

xα1
1 . . . xαd

d .

These series define a map Φ : P(Qd) → Q(x) with the following properties:
(1) if P1, . . . , Pr ⊂ Rd are rational polyhedra whose indicator functions satisfy

a linear identity α1[P1] + . . .+ αr[Pr] = 0, with αi ∈ Q, then

α1ΦP1(x) + . . .+ αrΦPr
(x) = 0.

(2) If g+P is a translation of P by an integer vector g ∈ Zd then Φg+P (x) =
xg ΦP (x).

(3) Φ{0}(x) = 1.
Let C be a pointed polyhedral cone. The one dimensional faces of C are called

extreme rays. A pointed polyhedral cone has only finitely many extreme rays and
it is the convex hull of its extreme rays. A simplicial cone σ is an e-dimensional
pointed convex polyhedral cone with e extreme rays; it may be also defined as
a cone generated by e linearly independent integer vectors β1, . . . ,βe, thus σ =
{λ1β1 + . . .+ λeβe, λi ∈ R+}.

11
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A triangulation of C consists of a finite collection Γ = {σ1, ..., σt} of simplicial
cones such that

i)
⋃
σi = C;

ii) if σ ∈ Γ, then every face of σ is in Γ;
iii) σi ∩ σj is a common face of σi and σj .

It is proved that a pointed convex polyhedral cone C possesses a triangulation Γ
whose 1-dim elements are the extreme rays of C. We will always consider these
triangulations in the following.

We are mainly interested in positive points in a pointed convex polyhedral cone
C. Define E := C ∩Nd, resp. E := C ∩Pd. Their generating functions are computed
using triangulations. The boundary of C, denoted ∂C, is the union of all the facets
of C. If Γ is a triangulation of C, let ∂Γ denote the set {σ ∈ Γ, σ ∈ ∂C}, and
Γ = Γ \ ∂Γ. Let σ ∈ Γ be a simplicial cone, we set Eσ := σ ∩ Nd and Eσ := {v ∈
Eσ : v /∈ Eτ ,∀τ ⊂ σ}. Then E is the disjoint union

⋃
σ∈ΓEσ and

ΦE(x) =
∑
σ∈Γ

ΦEσ
(x).

Therefore to compute generating functions of cones, we compute generating
functions of simplicial cones. Let a1, ...,at be a set of linearly independent integer
vectors which generate the cone

F := {λ ∈ Nd : nλ = λ1a1 + . . .+ λtat, n ∈ N, λi ∈ N},

a1, ...,at will be called a set of quasi generators of F . Define the interior F of F as

F := {λ ∈ Pd : nλ = λ1a1 + . . .+ λtat, n ∈ P, λi ∈ P}.

Consider the finite set DF := {λ ∈ F : λ = λ1a1 + . . . + λtat, 0 < λi ≤ 1}.
For any λ ∈ F , there exist unique β ∈ DF and λ1, . . . , λt ∈ N such that λ =
β + λ1a1 + . . .+ λtat. Then [42, Prop. 4.6.8] yields:

(2.1) ΦF (x) =

( ∑
β∈DF

xβ

)
t∏

i=1

(1− xai)
.

Given F , there is a unique set CF (F ) := {β1, ...,βt} of primitive quasi gener-
ators. We say that F is strictly generated by β1, ...,βt and call

GF := {λ ∈ Pd : λ = λ1β1 + . . .+ λtβt, 0 < λi ≤ 1}

the fundamental set of F .
If C is a pointed polyhedral cone and Γ a triangulation of C, from [42, Prop. 4.6.10],

we know that CF (E) :=
⋃

σ∈Γ CF (Fσ) is the set of β ∈ C ∩ Pd, which lie on ex-
treme rays of C such that β 6= nβ′ for some n > 1 and β′ ∈ C ∩Pd. Furthermore in
[42, Theorem 4.6.11] it is proved that the rational function ΦE(x) ∈ Q[x][D(x)−1]
where

(2.2) D(x) =
∏

β∈CF (E)

(
1− xβ

)
.
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The last result we need is the following. Let C be a pointed polyhedral cone,
let b1, ..., bd ∈ Z such that for each r ∈ N, the number g(r) of points in E = C ∩ Pd

such that b1a1 + ...+ adbd = r is finite. Let G(λ) =
∑

r∈N g(r)λ
r. Then

(2.3) G(λ) = ΦE(λb1 , ..., λbd).

2. Motivic zeta function and Newton polyhedra

Newton diagrams for series. Let h =
∑

n∈Nd anxn ∈ k[[x]] be a formal
power series with h(0) = 0. The support of h is the set supp(h) = {n ∈ Nd :
an 6= 0}. The Newton polyhedron Γ(h) of h is the convex hull in Rd

+ of the set⋃
n∈supp(h)(n + (R+)d). The Newton polytope or Newton diagram ND(h) of h is

the union of all compact faces of Γ(h); the set of all compact faces is denoted by
CF (h). The principal part of h is the polynomial h|ND(h) :=

∑
n∈ND(h) anx

n. For
any τ ∈ CF (h) we denote by hτ the polynomial

∑
n∈τ anx

n. The principal part of
h is called non-degenerate if for each closed proper face τ ∈ CF (h), the subscheme
of Gd

m,k defined by
∂hτ

∂x1
= . . . =

∂hτ

∂xd
= 0

is empty.

Newton diagrams for polynomials. Let h : Ad
k → A1

k be a regular mor-
phism, h(x) =

∑
n∈Nd anxn. The support of h is the set supp(h) = {n ∈ Nd :

an 6= 0}. The global Newton polytope Γgl(h) of h is the convex hull in Rd
+ of the

set supp(h). The polynomial h is called 0-non-degenerate if for each closed face
τ ⊂ Γgl(h), including τ = Γgl(h), the subscheme of Gd

m,k defined by hτ = 0 is
smooth over k.

The Newton polyhedron Γ∞(h) of h at infinity is the convex hull of supp(h) ∪
{0}. The polynomial h is non-degenerate with respect to Γ∞(h) if for every face τ
of Γ∞(h) (of any dimension), which does not contain the origin, the subscheme of
Gd

m,k defined by
∂hτ

∂x1
= . . . =

∂hτ

∂xd
= 0

is empty. If k is algebraically closed then the subscheme of Gd
m,k defined by hτ = 0

is smooth over k if and only if hτ , ∂hτ

∂x1
, . . . , ∂hτ

∂xd
have no common zero on the torus

Gd
m,k.

Let h ∈ k[[x]] be a formal power series and let ω be a regular differential
form such that (h, ω) satisfies the support condition 1.3. Assume that h(x) =∏d

j=1 x
Nj

j f(x), Nj ∈ N, where xj does not divide f for any j = 1, . . . , d, and the

form ω equals
d∏

j=1

x
νj−1
j dx1 ∧ . . . ∧ dxd, νj ≥ 1.

We recall more known definitions and properties. For k = (k1, . . . , kd) ∈ Rd
+,

we define mh(k) := infx∈Γ(h){k · x} and σω(k) := ν1k1 + . . . + νdkd. Since h is
obtained from f multiplying by a monomial then Γ(h) is a translation of Γ(f). In
particular mh(k) = mf (k) +N1k1 + . . .+Ndkd.

The first meet locus of k ∈ Rd
+ is F (k) := {x ∈ Γ(h) : k · x = mh(k) }. If τ is

a face of Γ(h) (or Γ(f)) the cone associated with τ is the convex polyhedral cone,
in the dual space, defined by ∆τ := {k ∈ Rd

+ : F (k) = τ }.
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It is well-known that the cones associated with the elements of CF (h) give a
partition of (the dual space) Rd

>0 in a disjoint union
⋃

τ∈CF (h) ∆τ . It turns out
that for each k = (k1, . . . , kd) ∈ Pd there exists a unique compact face τ such that
k ∈ ∆τ . Given τ ∈ CF (h) we define, see [12] for a similar definition in the p-adic
case,

(2.4) S∆τ
(h, ω, T ) :=

∑
k∈Pd∩∆τ

L−σω(k)Tmh(k).

Using the recalled results on generating functions, in particular (2.3), one has

(2.5) S∆τ (h, ω, T ) = ΦPd∩∆τ
(L−ν1T p1 , . . . ,L−νdT pd),

where (p1, . . . , pd) ∈ τ , for instance one of its vertices. In what follows we write
Φ∆τ

(x) := ΦPd∩∆τ
(x). The term S∆τ

(h, ω, T ) can be computed as follows. Take
a partition of the cone ∆τ into rational simplicial cones ∆i, i = 1, . . . , s, then
S∆τ

(h, ω, T ) =
∑s

i=1 S∆i
(h, ω, T ). If ∆i is the cone strictly generated by linearly

independent vectors a1, . . . ,ar ∈ Nd then (2.1) implies

(2.6) S∆i
(h, ω, T ) =

∑
g∈Gi

L−σω(g)Tmh(g)

 r∏
j=1

1
1− L−σω(aj)Tmh(aj)

,

where Gi is the fundamental set of ∆i ∩ Pd:

Gi := Nd ∩


r∑

j=1

µjaj

∣∣∣ 0 < µj ≤ 1 for j = 1, . . . , r

 .

The multiplicity mult(∆i) of ∆i is the cardinality of Gi. It is also equal to
the volume of the parallelepiped spanned by a1, . . . ,ar with respect to the volume
form ω̃ on the vector space V generated by {a1, . . . ,ar} normalized such that the
parallelepiped spanned by a lattice basis of Zd ∩ V has volume 1. We define

(2.7) J∆i(h, ω, s) :=
mult(∆i)∏

(σω(aj) +mh(aj)s)
.

If ∆τ is a r-dimensional rational convex cone and ∆τ =
⋃

∆i is a decomposition in
rational simplicial cones ∆i of dimension r such that dim(∆i ∩∆j) < r for i 6= j,
then we define J∆τ

(h, ω, s) :=
∑
J∆i

(h, ω, s). In fact J∆τ
(h, ω, s) is J∆τ

(h, ω, s) =
χtop((L− 1)rS∆τ (h, ω,L−s)) and it does not depend on the decomposition.

The following lemma follows from (2.2), (2.6) and the main theorem in [11].

Lemma 2.1. S∆τ (h, ω, T ) ∈ Z[L,L−1, (1 − L−σω(a)Tmh(a))−1][T ], where a be-
longs to the set of vectors such that a · x = M is a reduced integral equation of an
affine hyperplane containing τ ∈ CF (h).

We denote by Nτ the subvariety of Gd
m,k defined by {hτ = 0}, that is

Nτ := {hτ = 0} ∩Gd
m,k

and the symbol [Nτ ] means its class in the ring K0(Vark). We also define LA
τ (h) :=

L−d
(
(L− 1)d − [Nτ ]

)
∈ Mk. Since Γ(h) is a translation of Γ(f), there exists a

natural bijection between CF (h) and CF (f). Thus we can also write [Nτ ] =
[Gd

m,k ∩ {fτ = 0}]. Let τ ∈ CF (h) with dim(τ) = d− r′, 1 ≤ r′ ≤ d.
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If r′ = d, it means τ is a vertex of Γ(h), then [Nτ ] = 0, ∆τ is a d-dimensional
rational convex polyhedron and

LA
τ (h) = L−d(L− 1)d.

In such a case
(2.8)

χtop

(
LA

τ (h)S∆τ (h, ω,L−s)
)

= χtop

(
(L− 1)dS∆τ (h, ω,L−s)

)
= J∆τ (h, ω, s).

If r′ ∈ {1, . . . , d − 1}, then hτ (x) is a weighted homogeneous polynomial with
more than one monomial. The quasi-projective variety W := Ad

k \ {hτ (x) = 0} is
k-isomorphic to the affine algebraic variety Y := {(x, z) ∈ Ad

k ×A1
k : zhτ (x) = 1 }.

Under such an isomorphism, W ∩Gd
m,k is isomorphic to Y ∩Gd+1

m,k . It implies that
[Nτ ] = [Gd

m,k]− [W ∩Gd
m,k] = (L− 1)d − [Y ∩Gd+1

m,k ] in K0(Vark). Thus

LA
τ (h) = L−d[Y ∩Gd+1

m,k ].

Lemma 2.2 (see e.g. [12]). Let g ∈ k[x1, . . . , xd]. If d − r′ := dim Γ∞(g) < d
then there exists a coordinate change U on the torus Gd

m,k such that g(x) = (g ◦
U−1)(y) = g̃(y1, . . . , yd−r′), where g̃ ∈ k[y1, . . . , yd−r′ , (y1 . . . yd−r′)−1].

Moreover if τ is a face of Γ∞(g) then U−1(τ) is a face of g̃ and g is non-
degenerate with respect to Γ∞(g) if and only if g̃ is non-degenerate with respect to
Γ∞(g̃)

In our case gτ := zhτ (x) is a weighted homogeneous polynomial whose Newton
polyhedron has dimension d − r′ + 1 < d + 1. Applying Lemma 2.2 we find a
homogeneous polynomial g̃τ (y) in d−r′+1 variables such that the variety Y ∩Gd+1

m,k

is k-isomorphic to Gr′

m,k ×G∗τ where G∗τ = {y ∈ Gd−r′+1
m,k : g̃τ (y) = 1}. It turns out

that LdLA
τ (h) = [Y ∩Gd+1

m,k ] = (L− 1)r′ [G∗τ ] in K0(Vark). The convex rational cone
∆τ has dimension r′, thus

(2.9) χtop

(
LA

τ (h)S∆τ
(h, ω,L−s)

)
= χtop([G∗τ ])J∆τ

(h, ω, s).

Later on we will consider germs which are degenerate with respect to their
Newton polyhedra. In the following definition we collect the terms corresponding
to the A-part in the decomposition of the arc space according to these polyhedra.

Definition 2.3. Let h ∈ k[[x]] be a power series and ω a differential form such
that (h, ω) satisfies condition (1.3). The A-part or the part corresponding to the
Newton polyhedron of h is defined by the rational function

ZA
DL(h, ω, T ) :=

∑
τ∈CF (h)

LA
τ (h)S∆τ

(h, ω) ∈Mk[(1− L−σω(a)Tmh(a))−1][T ],

where a belongs to the set of vectors such that a · x = M is a reduced integer
equation of an affine hyperplane containing some τ ∈ CF (h). In the same way we
define the A-part of (h, ω) for the local topological zeta function as the rational
function

ZA
top,0(h, ω, s) =

∑
τ∈CF (h)

χtop([G∗τ ])J∆τ (h, ω, s),

where χtop([G∗τ ]) := 1 if dim(τ) = 0.
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If h has non-degenerate Newton principal part, ZDL(h, ω, T ) is written in terms
of some invariants of CF (h) and ω. This formula has been proved by J. Denef and
K. Hoornaert in the p-adic setting, [12]. Our proof is based on their results, so we
follow their notation too. In fact we provide the proof because it will give some
light in the arc decomposition that we have to do in the quasi-ordinary case. G.
Guibert has communicated to the authors that he has recently obtained a similar
formula, see [24].

Theorem 2.4. Let h(x) =
∏d

j=1 x
Nj

j f(x), Nj ∈ N, be a regular function with
h non-degenerate with respect to (all the compact faces of) its Newton polyhedron
and let ω =

∏d
j=1 x

νj−1
j dx1 ∧ . . . ∧ dxd, νj ≥ 1 be a differential form satisfying the

support condition 1.3. Then

ZDL(h, ω, T ) =
∑

τ∈CF (h)

Lτ (h)S∆τ (h, ω, T )

where Lτ (h) := LA
τ (h) + LB

τ (h) and LB
τ (h) := L−d(L− 1)[Nτ ] L−1T

1−L−1T .

We break the proof in several steps.

Step 1. Classifying arcs.

Let S be the affine hypersurface x1 · · ·xd = 0. Since S has dimension less than
d then by property (b) of the motivic measure the set L0(S) has measure zero.
Then we only consider arcs ϕ ∈ L0(Ad

k) \ L0(S), i.e., ϕ = (ϕ1, . . . , ϕd) where
ϕi(t) = aki

tki + higher degree terms. As usual we write k(ϕ) := (k1, . . . , kd) ∈ Pd

and a(ϕ) := (ak1 , . . . , akd
) ∈ Gd

m,k.
Let τ be the unique compact face of ND(h) such that k = k(ϕ) ∈ ∆τ ∩ Pd.

If a = a(ϕ) ∈ Gd
m,k \ Nτ then ord(h ◦ ϕ) = ord(hτ ◦ ϕ) = mh(k). Otherwise, if

a ∈ Nτ then ord(h ◦ϕ) > mh(k).

The set V n,m = {ϕ ∈ L0(Ad
k)\L0(S) : ord(h◦ϕ) = n, ord(

d∏
j=1

x
νj−1
j ◦ϕ) = m }

can be decomposed as V n,m =
⋃

τ∈CF (f)

(
V τ

n,A,m ∪ V τ
n,B,m

)
, where

V τ
n,A,m := {ϕ ∈ V n,m : k(ϕ) ∈ ∆τ , a(ϕ) ∈ Gd

m,k \Nτ },

V τ
n,B,m := {ϕ ∈ V n,m : k(ϕ) ∈ ∆τ , a(ϕ) ∈ Nτ }.

Rewrite the formula (1.2) as:

ZDL(h,w, T ) =
∑

τ∈CF (h)

∑
n≥1

(∑
m∈P

L−mµX(V τ
n,A,m)

)
Tn+

+
∑
n≥1

(∑
m∈P

L−mµX(V τ
n,B,m)

)
Tn

 .

(2.10)

Step 2. Computation of the A-part of the series.

Let τ ∈ CF (h) and k ∈ ∆τ . Define

V k
A := {ϕ ∈ L0(Ad

k) \ L0(S) : k(ϕ) = k, fτ (a(ϕ)) 6= 0}.
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Given ϕ ∈ V k
A then ord(h ◦ ϕ) and ord(

d∏
j=1

x
νj−1
j ◦ ϕ) depend only on k, therefore

V k
A ⊂ V τ

nk,A,mk
where nk := mh(k) = mf (k) +

∑d
i=1Niki and mk := σω(k) −∑d

i=1 ki. The stable semialgebraic set V k
A are stable at some level n

′

k ≥ nk. Thus

it has measure µX(V k
A ) = [πn

′
k
(V k

A )]L−(n
′
k+1)d. Since

[πn
′
k
(V k

A )] = [Gd
m,k \ {fτ = 0}]Ldn

′
k−k1−...−kd

then L−mkµX(V k
A ) = L−d

(
(L− 1)d − [Nτ ]

)
L−σω(k).

It turns out that∑
n≥1

(∑
m∈P

L−mµX(V τ
n,A,m)

)
Tn =

∑
k∈Pd∩∆τ

L−mkµX(V k
A )Tnk =

=
∑

k∈Pd∩∆τ

L−d
(
(L− 1)d − [Nτ ]

)
L−σω(k)Tm(k)+N1k1+...+Ndkd =

= L−d
(
(L− 1)d − [Nτ ]

) ∑
k∈Pd∩∆τ

L−σω(k)Tmh(k) = LA
τ (h)S∆τ

(h, ω, T ).

Step 3. Computation of the B-part of the series.

Let τ ∈ CF (h). As before for any k ∈ Pd ∩∆τ we define the sets V k
n,B of arcs

ϕ in V τ
n,B such that k(ϕ) = k. Note that V k

n,B ⊂ V τ
n,B,mk

.

Lemma 2.5. Fix k ∈ Pd ∩∆τ as before. Then∑
n≥1

L−mkµX(V k
n,B)Tn = L−d(L− 1)[Nτ ]

L−1T

1− L−1T
L−σω(k)Tmh(k).

The formula in Theorem 2.4 is deduced from the following equality which is a
consequence of the above lemma:∑

k∈Pd∩∆τ

∑
n≥1

L−mkµX(V k
n,B)Tn = L−d(L− 1)[Nτ ]

L−1T

1− L−1T
S∆τ

(h, ω, T ).

Proof of Lemma 2.5. Given k ∈ Pd ∩ ∆τ , consider the k[t]-morphism πk :
Y → Ad

k[t] defined by πk(y1, . . . , yd) = (tk1y1, . . . , t
kdyd), where Y := Ad

k. Let
ϕ ∈ V k

n,B be an arc, then the equalities ϕi(t) = tkiψi(t), i = 1, . . . , d, define a unique
arc ψ(t) := (ψ1(t), . . . , ψd(t)) ∈ L(Y ) centered at ψ(0) = a(ϕ) ∈ Gd

m,k ∩ {fτ = 0}.
It satisfies ord(f ◦ πk ◦ψ) = ord(f ◦ϕ) = n and because of the quasi-homogeneity
of fτ :

f ◦ πk(y1, . . . , yd) = tm(k)(fτ (y1, . . . , yd) + tg(y1, . . . , yd)),
where the function g has coefficients in k[t]. In particular n = mf (k)+n′ with n′ :=
ord(f1◦ψ) ≥ 1 where f1(y1, . . . , yd) := fτ (y1, . . . , yd)+tg(y1, . . . , yd). The algebraic
set fτ (y1, . . . , yd) = 0 is nonsingular at points of Gd

m,k ∩ {fτ = 0} because of the
non-degeneracy condition. In particular at any of such points there are coordinates
such that fτ = ȳ1 and in the same way at such a point f1 = 0 will be non-
singular. Applying the change variables formula the proof of the lemma is finished.
Remark that the pull-back by πk of the regular differential form dx1 ∧ . . . ∧ dxd is
tσω(k)dy1 ∧ . . . ∧ dyd. �
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A formula for Ztop,0(h, ω, s) for a non-degenerate function h was given in [14].
We apply Theorem 2.4 to reprove that formula. We need several standard defini-
tions.

Definition 2.6. Let γ be the convex hull in Rd of some subset of Zd. The
volume form ωγ on the affine space Aff(γ) generated by γ is defined such that the
parallelepiped generated by a base of the lattice Aff(γ) ∩ Zd has volume 1. For
any τ ∈ CF (h), V (τ) is the volume of τ relative to the induced lattice; i.e. to the
volume form ωτ .

Theorem 2.7. [14] If h has non-degenerate principal part and the pair (h, ω)
satisfies the support condition (1.3) then

Ztop,0(h, ω, s) =
∑

τ∈CF (h),dim τ=0

J∆τ
(h, ω, s)

+
(

s

s+ 1

) ∑
τ∈CF (h),dim τ≥1

(−1)dim(τ) dim(τ)!V (τ)J∆τ
(h, ω, s).

The proof follows the same ideas as in equations (2.8) and (2.9). Let τ ∈ CF (h).
If τ is zero dimensional we have the identity (2.8). Otherwise, following the same
notation as in equation (2.9), if dim(τ) = d− r′ then

Lτ (h) = L−d

(
(L− 1)d+1 L−1T

1− L−1T
+ (L− 1)[Y ∩Gd+1

m,k ]
1− T

1− L−1T

)
.

Since d− r′ < d, the denominator of S∆τ
(h, ω, T ) has at most d− 1 factors and

χtop

(
L−d(L− 1)d+1 L−1T

1− L−1T
S∆τ

(h, ω,L−s)
)

= 0.

Therefore we have again the term [Y ∩Gd+1
m,k ]. Applying Lemma 2.2 to gτ := zhτ (x)

we have [Y ∩Gd+1
m,k ] = (L−1)r′ [G∗τ ] inK0(Vark) whereG∗τ = {y ∈ Gd−r′+1

m,k : g̃τ (y) =
1} for some non-degenerate weighted homogeneous polynomial g̃τ (y). Finally we
also need the following result.

Lemma 2.8. [6, 13] Let g(y1, . . . , yn) be a 0-non-degenerate polynomial and let
Z∗ = {y ∈ Gn

m,k : g(y) = 0}. Then the `-adic Euler characteristic χtop(Z∗) is given
by

χtop(Z∗) = (−1)n−1n! Voln(∆(g)).
Here Voln(∆(g)) is the n-dimensional Euclidean volume.

In our case the polynomial g = g̃τ − 1 is 0-non-degenerate and satisfies the
hypothesis of the Lemma 2.8, then χtop(G∗) = (−1)r(r + 1)!Volr+1(∆(g)). Since
∆(g) is a cone over the origin, (r + 1)!Volr+1(∆(g)) = r!V (τ) (this last volume as
in definition 2.6). Hence we get the formula in Theorem 2.7.

Remark 2.9. All the results in this section are also valid in the complex ana-
lytic set up.

Example 2.10. It is clear that the poles of Ztop,0(h, ω, s) are included in the
poles of ZDL(h, ω, T ) but in general the other way around is not true. Consider for
instance h = x3

1 +x3
2 +x3

3 +x3
4 +x6

5 and the differential form ω = dx. This example
has been recently studied by Ishii-Kollar in [27] to disprove a J. Nash conjecture.
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Then h has non-degenerate principal part and its Newton polyhedron has only
one compact facet τ which, in the dual, corresponds with the extreme ray vτ :=
(2, 2, 2, 2, 1). Take the vertex (3, 0, 0, 0, 0) of the face τ, then

S∆τ
(h, ω, T ) = Φ∆τ

(L−1T 3,L−1T 0,L−1T 0,L−1T 0,L−1T 0) =
L−9T 6

1− L−9T 6
.

After Lemma 2.1, (1−L−9T 6) is a possible factor of the denominator of ZDL(h, ω, T ).
In fact in this case it is. To prove it, one considers the Igusa p-adic zeta func-
tion of h and applies [12, Theorem 5.17] which guarantees that t0 = −3/2 is
one of the poles for p � 0. Nevertheless the local topological zeta function is
Ztop,0(h, ω, s) = 1/(1+ s). This gives an example where poles of the p-adic and the
local topological zeta functions are not the same.





CHAPTER 3

Quasi-ordinary power series

In this chapter we recall some known properties of the quasi-ordinary power
series. We give the necessary details to describe the method we will use to compute
their local zeta functions. Let k be an algebraically closed field of characteristic
zero.

Let h ∈ k[[x]][z] be a z-polynomial of degree s with coefficients in the formal
power series k[[x]], x = (x1, . . . , xd). Assume that h(x, z) = xN1

1 . . . xNd

d g(x, z)
where Nl ≥ 0 and xl doesn’t divide g(x, z), ∀l, l = 1, . . . , d,.

The power series h is called quasi-ordinary (or k-quasi-ordinary if we want to
emphasize the base field) if its z-discriminant Dz(g) (or equivalently Dz(h)) is

Dz(g) = xα1
1 xα2

2 . . . xαd

d ε(x),

where ε(0) 6= 0 and αi ∈ N. The condition on the z-discriminant implies that
g(x, z) is squarefree in the ring k[[x, z]]. Since q is quasi-ordinary one can write
g(0, z) as g(0, z) = u

∏
(z − zb)sb , with s =

∑
sb, u ∈ Gm,k and zb ∈ A1

k.
For each root zb of g(0, z), the Jung-Abhyankar Theorem, [1, 36], states that

there are exactly sb distinct roots of g(x, z) centred at zb in k[[x1/mb

1 , . . . , x
1/mb

d ]],
for some mb ∈ P. Thus for each j ∈ {1, . . . , sb}, there exists a fractional power
series ζbj

∈ k[[x1/mb

1 , . . . , x
1/mb

d ]] with ζbj
(0) = zb such that

(3.1) g(x, z) =
∏
b

sb∏
j=1

(
z − ζbj (x

1/mb

1 , . . . , x
1/mb

d )
)
.

In fact, for each root zb, the product
∏sb

j=1

(
z − ζbj (x

1/mb

1 , . . . , x
1/mb

d )
)

is a well de-
fined element in k[[x]][z]. Moreover, this power series is quasi-ordinary too because
of the properties of the discriminant.

In principle we are interested just in one of the roots, say zb = 0, otherwise we
can make a translation of type z̄ = z−zb to study the corresponding root. Later on
when the transversal sections are described we will deal with other roots different
from zb = 0, see Chapter 5.

Therefore we may assume

(3.2) h(x, z) = xN1
1 . . . xNd

d f(x, z)u(x, z),

where f(x, z) is a degree n quasi-ordinary z-Weierstrass polynomial, n being the
multiplicity of the root zb = 0 in g(0, z), u(x, z) is a unity in k[[x, z]], u(x, z)
being the product of all other roots centred at points different from zb = 0, and
Nl ≥ 0 for any l = 1, . . . , d. Therefore, for each j ∈ {1, . . . , n}, there exist ζj ∈

21
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k[[x1/m
1 , . . . , x

1/m
d ]] (for some positive integer m) with ζj(0) = 0 such that

(3.3) f(x, z) =
n∏

j=1

(
z − ζj(x

1/m
1 , . . . , x

1/m
d )

)
.

Let ζ be a root of f, all its conjugates ζ̃ε := ζ(ε1x
1/m
1 , . . . , εdx

1/m
d ), where

εm
l = 1, for all l = 1, . . . , d, are also roots of f. If f is irreducible in k[[x]][z], then

all its roots are conjugate to one of them, say ζ, and the set {ζ̃ε} has exactly n
distinct elements {ζ = ζ1, . . . , ζn} which satisfy

f(x, z) =
n∏

p=1

(z − ζp).

The irreducible factors of f in k[[x]][z] are also k-quasi-ordinary power series.
Let {f (i)}i∈I be the set of irreducible factors of f. Then

f(x, z) =
∏
i∈I

n(i)∏
j=1

(z − ζ
(i)
j )

The set of indexes I is decomposed in two disjoint subsets: I ′ and I \ I ′ such that
#(I \ I ′) ≤ 1, where in #(I \ I ′) = 1 if and only if z is an irreducible component of
f (i.e. if 0 is root of f).

Definition 3.1. We will say that a variable xi is essential for h if xi divides
Dz(h). The number of essential variables will be denoted by ev(h).

Remark 3.2. All our results for the local Denef-Loeser motivic zeta function
of quasi-ordinary power series are proved in the case where g is reduced. Never-
theless they can be proved in the nonreduced case. This means that g can have
multiple components in k[[x, z]]. In such a case the power series h(x, z) will be
called quasi-ordinary if xN1

1 . . . xNd

d gred(x, z) is quasi-ordinary in the above sense.

We are only interested in the local Denef-Loeser motivic zeta function. Since
for any arc ϕ(t), with ϕ(0) = 0, the t-order ord(h◦ϕ) does not depend on the unit
u(x, z), we usually suppose that u(x, z) = 1.

1. Characteristic exponents

Given h(x, z) =
∏d

l=1 x
Nl

l f(x, z) =
∏d

l=1 x
Nl

l

∏
i∈I(z − ζi), for I indexing the

number of roots of f , one has Dz(f) =
∏

(ζk − ζj). For two different roots ζk and
ζj of f , using the unique factorization of the discriminant, we have

ζk − ζj = x
λkj,1
1 x

λkj,2
2 . . . x

λkj,d

d εkj(x
1/m
1 , . . . , x

1/m
d ),

where εkj(0) 6= 0, and λkj,t ∈ 1
mz≥0.

Definition 3.3. The set ΛCE(f) := {λkj} = {(λkj,1, . . . , λkj,d)}kj ⊂ 1
mzd

≥0

will be called characteristic exponents set of f . We usually identify ΛCE(h) with
ΛCE(f) because ΛCE(f) is the characteristic exponents set of h at the root zero.
We usually omit “at the root zero” whenever it is clear.

For each element λ = (λ1, . . . , λd) ∈ ΛCE(f), the corresponding monomial xλ

is called characteristic monomial of f . In the same way we identify characteristic
monomials of h at zero with characteristic monomials of f .
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Since the irreducible factors f (i) of f are also quasi-ordinary, the characteristic
exponent set ΛCE(f (i)) has the property that ΛCE(f (i)) ⊂ ΛCE(f) for every i ∈ I.
The other characteristic exponents of f measure the order of coincidence between
distinct irreducible factors of f (as in the case of plane curves).

The following partial ordering will be used in the paper. For any λ,µ ∈ Qd,
then λ ≤ µ if λl ≤ µl for all l = 1, . . . , d. We say that λ < µ if λ ≤ µ and there
is an l such that λl < µl. If f(x, z) is irreducible in k[[x, z]], then the elements
of ΛCE(f) are totally ordered, see [32] and the references therein. But this is no
longer true in the non-irreducible case.

Up to now to have the same characteristic exponents set is just that two sets
coincide. Later on, we will give a new definition of having the same characteristic
exponents (which will extend the usual definition for curves).

2. Newton polyhedron and good coordinates

In this section we show that for every quasi-ordinary power series h(x, z) there
exist coordinates, called good coordinates, such that the compact faces of ND(h)
have only dimension 1 and 0. This means that the 1-dimensional compact faces of
ND(h) are totally ordered by their slopes and they form a monotone polygonal path.
Our definition is slightly more general than the definition of good coordinates given
by P. González in [20], [23, Lemma 3.16]; we will call his good coordinates P -good
coordinates. He proves the existence of P -good coordinates for quasi-ordinary power
series; in fact his P -good coordinates are a particular case of our good coordinates,
see Remark 3.9. The essential difference between both set of coordinates appears
in the characteristic exponents which are integers. The advantage of our good
coordinated with respect to P -good coordinates is that ours are preserved when
passing to transversal sections, see section 5 in this chapter; this is not the case for
P -good coordinates.

Definition 3.4. A quasi-ordinary power series h ∈ k[[x]][z] is in good coordi-
nates if ND(h) is a monotone polygonal path such that either z is a component of
h or hγ is not the product of a monomial in x and a power of a linear form, where
γ is the compact 1-dimensional face of ND(h) which meets the plane z = 0, i.e.
hγ 6= xa1

1 . . . xad

d (z − αxb1
1 . . . xbd

d )a for all α ∈ Gm,k.

Proposition 3.5. There exists a system of coordinates which are good for h.

Proof. Since h and f essentially differ by a monomial, the Newton polyhe-
dron Γ(h) is obtained from Γ(f) by the translation induced by the corresponding
monomial. Thus it is enough to prove the result for f being a Weierstrass quasi-
ordinary polynomial of degree n. We proceed by induction on n. The case n = 1 is
clear: we have f = z + a(x), with a(x) ∈ k[[x]], and the change z1 = z + a(x) is
enough.

In order to proceed by induction we need the following notion introduced by
Hironaka and studied in [36].

Definition 3.6. Let f(x, z) = zn + an−1(x)zn−1 + . . . + a0(x) be a quasi-
ordinary Weierstrass polynomial, set τ0 = (0, . . . , 0, n) the corresponding vertex in
ND(f). We say that f is ν-quasi-ordinary with respect to z if there is a vertex τ1
in ND(f), τ1 6= τ0, such that if τ is the projection of τ1 over Qd ×{0} from τ0 and
γ is the segment joining τ0 and τ then ND(f) is contained in

⋃
n∈γ(n+ Rd+1

+ ) and
fγ is a polynomial which is not a power of a linear form.
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Example 3.7. The polynomial f(x, y, z) := z2(z2 − xy)2 + x3y5 + x5y3 is
ν-quasi-ordinary with respect to z but it is not quasi-ordinary (compute the dis-
criminant).

In [36] it is proved that if we make the change z = z1− an−1(x)
n the polynomial

f becomes ν-quasi-ordinary. If ND(f) = γ (with the above notations) then γ is the
only 1-dimensional compact face, therefore the last one, and fγ is not a power of a
linear form so we are done. Otherwise, in [36] it is shown that f can be decomposed
as a product f = f0(x, z) f1(x, z), fi(x, z) ∈ k[[x]][z], such that fγ corresponds with
the factor f0. Recall that the Newton polytope of f is the Minkowski sum of the
Newton polytopes of each factor. The factor f1 is a quasi-ordinary Weierstrass
polynomial of degree less than n and we apply induction to conclude. In fact the
change of variables we need for the induction step are of type z1 = z2+b(x) and they
do not affect the first segment of Newton polytope of f because of the condition
ND(f) is contained in

⋃
n∈γ(n + Rd+1

+ ) in the definition of ν-quasi-ordinary. �

Remark 3.8. Observe that from the proof of the proposition 3.5 one gets that
it is enough to make change of variables of type z = z1 + a(x), a(x) ∈ k[[x]] to get
good coordinates. The procedure to get good coordinates is far from being unique.
For instance f(x, z) = (z2−x5)(z−x2)(z3−x2) is already in good coordinates but
the described method gives us different good coordinates.

Let h be a quasi-ordinary power series in good coordinates. Since ND(h) is
a monotone polygonal path we order the set {γ} of compact 1-dimensional faces
according to the slopes (which are rational d-tuples) of the edges using the reversed
partial order defined before. In fact they are totally ordered and the highest one
will be the z-highest. Assume that there are exactly r of them which are ordered as
γ1, . . . , γr. For q ∈ {1, . . . , r}, since γq is 1-dim, the weighted-homogeneous polyno-

mial fγq = zk
∏

xal

l (znq
1mq + . . .+α(xbq

1
1 . . . x

bq
d

d )mq ), for some non negative integers
k, al and (nq

1, b
q
1, . . . , b

q
d) relatively prime. Since γq is an edge of the Newton poly-

tope then nq
1 is a positive integer, the d-tuple (bq1, . . . , b

q
d) ∈ Nd is non-zero and

α ∈ Gm,k. The polynomial z−kfγq
(1, z1/nq

1) of degree mq in k[z] can be factored.
There are some positive integers mq,j , j = 1, . . . , v(q), such that fγq

= zk
∏

xal

l fλq

where

fλq
:=

v(q)∏
j=1

(fq,j)mq,j , where fq,j := znq
1 − βq

j x
nq

1λq = znq
1 − βq

jx
bq
1

1 . . . x
bq

d

d .

We define the rational d-tuple λq := (λq,1, . . . , λq,d) ∈ Qd, where λq,l = bq
l

nq
1

for
each l = 1, . . . , d. We will say that fλq

is the weighted-homogeneous polynomial
associated with the compact 1-dimensional face γq of Γ(f).

Remark 3.9. Let us see that we can find good coordinates which are not P -
good coordinates for f(x, z) = (z2 − x5)(z − x2)(z3 − x2). The problem arises
in the characteristic exponents which are integers. The definition-construction of
P -good coordinates shows that there exists a change of coordinates of type z1 =
z + a(x), a(x) ∈ k[[x]], such that in the set ΛND(h) := {λ1, . . . ,λr}, the greatest
characteristic exponent λ1 is the only one which can be in Zd. The polynomial
fλ1 is called the Newton initial form; and in this case its Newton initial form
fλ1 cannot be a power of a linear form. In the above example doing the change
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z1 = z + 2x2 we get a new Newton polytope which is a polygonal path with
only two 1-dimensional faces. We observe two facts. The first one is that for
each quasi-ordinary power series in good coordinates, the method described in
[23, Lemma 3.16] provides P -good coordinates. The second one is that in any
case, the characteristic exponents appearing in both Newton polyhedra which are
smaller than the first integer characteristic exponent coincide in both polytopes.
Our constructions work in P -good coordinates but proofs must be slightly modified.

Proposition 3.10. If h is in good coordinates then each λq belongs to ΛCE(f).

Proof. Since h is in good coordinates we can use the process given in [36] to
compute the roots of f from the Newton polytope. In fact each root, different from
zero, is found in only one of the edges of ND(h). Assume γ1, . . . , γr are the edges
ordered as before. Then any pair ζ ∈ γq and ζ ′ ∈ γq−1 gives λq as characteristic
exponent, that is ζ− ζ ′ = xλqε(x), ε(0) 6= 0. If γq = γ1, as h is in good coordinates,
either z is a factor of h and ζ − 0 = xλ1 , ζ ∈ γ1 or fγ1 is not a power of a linear
form and taking two distinct roots in γ1 gives λ1. �

Thus each root ζi of f is written in a unique way as

(3.4) ζi(x) = α
(i)
1 xλ(i) +

∑
λ(i)<λ

α
(i)
λ xλ, (α(i)

1 6= 0).

We define fq to be the product of all roots ζ of f whose initial term gives the
Newton polytope of fλq

. This means that

fq(x, z) :=
∏

roots:λ(i)=λq

(z − ζi).

Remark 3.11. Since all the conjugates under the Galois group of a root ζi
have the same λ(i), the irreducible component in k[[x]][z] of f(x, z) determined by
ζi divides fq(x, z). Thus fq ∈ k[[x]][z] because it is a product of some irreducible
components of f(x, z).

Thus we define the set ΛND(h) := {λ1, . . . ,λr} which is a subset of the char-
acteristic exponents of h and which are ordered λr < . . . < λ1.

Let fq
j be the element in k[[x]][z] defined by

fq
j (x, z) :=

∏
roots:λ(i)=λq and β(i)=βq

j

(z − ζi).

The same ideas as in Remark 3.11 show that fq
j ∈ k[[x]][z]. Hence

fq =
v(q)∏
j=1

fq
j and f =



r∏
q=1

v(q)∏
j=1

fq
j , if I = I ′ and

z

r∏
q=1

v(q)∏
j=1

fq
j , otherwise.

Definition 3.12. If h is in good coordinates then we call {fq
j }q,j the Newton

components of f ; each fq
j defines a quasi-ordinary power series.
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3. Dual decomposition

Assume a pair (h, ω) satisfying the support condition 1.3 is given, where h is a
quasi-ordinary power series in good coordinates as in (3.2) and ω =

∏d
j=1 x

νj−1
j dx1∧

. . .∧dxd∧dz, νj ≥ 1. The compact faces of Γ(f) (or Γ(h)) are 1-dim edges γ1, . . . , γr

with their corresponding vertices τ0, τ1, . . . , τr.

Remark 3.13. The main point in the Newton polytope is that its set of com-
pact faces (and then its vertices) is totally ordered. We recall that τr has the highest
z-coordinate.

Let e1, . . . , ed+1 denote the canonical basis of the dual space (Rd+1)∗ where
we choose coordinates (v1, . . . , vd, vd+1). The fan Σ(Γ(h)) ⊂ (Rd+1)∗ is obtained
subdividing the cone (Rd+1

+ )∗ with linear hyperplanes lq : ηq = 0 where

(3.5) ηq :=
d∑

l=1

bql vl − nq
1vd+1 = nq

1

(
d∑

l=1

λq,lvl − vd+1

)
, q = 1, . . . , r.

Let ∆γq
= {k ∈ Rd+1

+ | k · (bq1, . . . , b
q
d,−n

q
1) = 0} be its dual cone.

Lemma 3.14. ∆γq is the strictly positive simplicial cone ∆γq = {λ1w
q
1 + . . .+

λdw
q
d, λi ∈ R+ }, where wq

l := 1
cq

l
(nq

1el + bql ed+1) ∈ Nd+1, cql := gcd(nq
1, b

q
l ) with

l = 1 . . . , d.

The linearly independent vectors {wq
l }l=1,..d are primitive, so the proof is clear.

Let Gq be the fundamental set of ∆γq
, then (2.1) implies

(3.6) Φ∆γq
(y) := Φ∆γq∩Pd+1(y) =

∑
β∈Gq

yβ

d∏
l=1

(
1− ywq

l

) .
If p = (p1, . . . , pd, pd+1) is an element in the closure of γq then (2.5) gives

(3.7) S∆γq
(h, ω, T ) = Φ∆γq

(L−ν1T p1 , . . . ,L−νd+1T pd+1).

The edge γq is defined by the affine equations nq
1xl + bql z = Mq

l , l = 1, . . . , d, for
some positive integers Mq

l .

Lemma 3.15. S∆γq
(h, ω, T ) ∈ Z[L,L−1, (1− L−(νlp

q
l +b̄q

l )T
M

q
l

c
q
l )−1][T ], for every

1 ≤ l ≤ d, and

Jγq (h, ω, s) =
(nq

1)
d−1

T̃1
q
. . . T̃d

q ,

where b̄ql := bq
l

cq
l
, pq

l := nq
1

cq
l
, T̃l

q
:= (Mq

l s+ νln
q
1 + bql ), l = 1, . . . , d and q = 1, . . . , r.

Proof. Since mh(wq
l ) = wq

l · a, where a ∈ γq, then mh(wq
l ) = Mq

l

cq
l
. On

the other hand, σw(wq
l ) = wq

l · (ν1, . . . , νd, 1) = 1
cq

l
(νln

q
1 + bql ). Let us compute

Jγq
(h, ω, s). Because of gcd(bq1, . . . , b

q
d,−n

q
1) = 1 we choose β := (a1, . . . , al, u) in or-

der to obtain (bq1, . . . , b
q
d,−n

q
1)·β = 1. Computing mult(∆γq

) = |det(wq
1, . . . ,w

q
d, β)|
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by induction one can prove that

det(wq
1, . . . ,w

q
d, β) = −(n1)d−1 (bq1, . . . , b

q
d,−n

q
1) · β∏d

l=1 c
q
l

= − (nq
1)

d−1

d∏
l=1

cql

.

The result follows from (2.7). �

Consider next the first vertex τ0 with coordinates (a, d0) in Γ(h). The rational
simplicial cone ∆τ0 is the (d+1)-dimensional cone: R+w1

1 + · · ·+R+w1
d +R+ed+1.

In a similar manner as above if Gτ0 is the fundamental set of ∆τ0 then

Φ∆τ0
(y) =

(∑
β∈Gτ0

yβ
)

(1− yd+1)
∏d

l=1

(
1− yw1

l

) ,
and

(3.8) S∆τ0
(h, ω, T ) = Φ∆τ0

(L−ν1T a1 , . . . ,L−νdT ad ,L−1T d0).

Recall that I = I ′ if and only if d0 = 0; otherwise d0 = 1.

Lemma 3.16.

S∆τ0
(h, ω, T ) ∈ Z[L,L−1, (1− L−1T )−ε, (1− L−(νlp

1
1+b̄1l )T

Mr
l

c1
l )−1][T ]

for every 1 ≤ l ≤ d, and

Jτ0(h, ω, s) =
(n1

1)
d

(s+ 1)εT̃ 1
1 . . . T̃

1
d

, see Lemma 3.15,

where ε = 0 or 1 when I = I ′ or not.

Proof. If I = I ′, mh(ed+1) = 0 and σω(ed+1) = 1. Furthermore, mult(∆τ0) =

|det(w1
1, . . . ,w

1
d, ed+1)| =

(n1
1)

d

d∏
l=1

c1l

, and we are done. The other case is similar. �

Finally consider any other vertex τq of Γ(h), different from τ0, which is the
intersection of the edges γq and γq+1, q = 1, . . . , r. If q = r then γr+1 is a (non-
compact) line parallel to z-axis.

The dual cone ∆τq
is
∑d

i=1(R+wq
i + R+wq+1

i ), where if q = r then wr+1
l := el,

for l = 1, . . . , d. For any q = 1, . . . , r, consider the strictly positive simplicial cone

∆c
q :=

d∑
l=1

R+wq
l + R+ed+1.

For instance ∆c
r+1 is the whole positive cone Pd+1. Moreover its multiplicity satisfies

(3.9) mult(∆c
q) = |det(wq

1, . . . ,w
q
d, ed+1)| =

(nq
1)

d∏d
l=1 c

q
l

.

The following relation holds for the indicator functions of these cones:

(3.10) [∆τq
]− [∆c

q+1] + [∆γq
] + [∆c

q] = 0, q = 1 . . . , r,
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which implies the same relation among the corresponding generating functions.
Since ∆c

q and ∆γq are simplicial cones,

(3.11) Φ∆τq
(y) = Φ∆c

q+1
(y)−

(
Φ∆γq

(y) + Φ∆c
q
(y)
)
.

If Gc
q is the fundamental set of ∆c

q then

Φ∆τq
(y) =

(∑
β∈Gc

q+1
yβ
)

(1− yd+1)
∏d

l=1

(
1− ywq+1

l

)−
−


(∑

β∈Gq
yβ
)

∏d
l=1

(
1− ywq

l

) +

(∑
β∈Gc

q
yβ
)

(1− yd+1)
∏d

l=1

(
1− ywq

l

)
 .

If τq ∈ Γ(h) has z-height dq then

(3.12) S∆τq
(h, ω, T ) = Φ∆τq

(L−ν1T a1 , . . . ,L−νdT ad ,L−1T dq ).

Hence since mh(ej) = Nj and σω(ej) = νj then

(3.13) S∆τr
(h, ω, T ) ∈ Z

L±1,
1

1− L−νjTNj
,

1

1− L−(νlpr
l +b̄r

l )T
Mr

l
cr
l

 [T ],

with j, l ∈ {1, . . . , d}. In the same way, for each q ∈ {1, . . . , r − 1},
(3.14)

S∆τq
(h, ω, T ) ∈ Z

L±1,
1

1− L−(νlp
q
l +b̄q

l )T
M

q
l

c
q
l

,
1

1− L−(νlp
q+1
l +b̄q+1

l )T

M
q+1
l

c
q+1
l

 [T ],

with l = 1, . . . , d.
To compute the local topological zeta function more explicitly we argue as

follows. Recall that Jτq
(h, ω, s) can be computed using an adequate simplicial

decomposition of ∆τq
. We use the decomposition from (3.11). Then

Jτq (h, ω, s) = χtop

(
(L− 1)d+1

(
Φ∆c

q+1
(a)−

(
Φ∆γq

(a) + Φ∆c
q
(a)
)))

,

where a := (L−(ν1+a1s), . . . ,L−(νd+ads),L−(1+dqs)). Since Φ∆γq
(a) has at most d

poles then

Jτq (h, ω, s) = χtop

(
(L− 1)d+1

(
Φ∆c

q+1
(a)− Φ∆c

q
(a)
))

.

Moreover we know from equation (3.9) that mult(∆c
q) =

(nq
1)

d∏d
l=1 c

q
l

.

Corollary 3.17. For each q ∈ {1, . . . , r − 1}, then

Jτq (h, ω, s) =
1

(1 + dqs)

(
(nq+1

1 )d

T̃1
q+1

. . . T̃d
q+1 −

(nq
1)

d

T̃1
q
. . . T̃d

q

)
,

and if q = r then

Jτr
(h, ω, s) =

1
(1 + drs)

(
1

T1 . . . Td
− (nr

1)
d

T̃1
r
. . . T̃d

r

)
,

where Ti := Nis+ νi, T̃ r
l have been defined in Lemma 3.15, and i, l ∈ {1, . . . , d}.
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Remark 3.18. It follows from the above discussion, Definition 2.3 and Re-
mark 3.19 that

(3.15) ZA
DL(h, ω, T ) =

r∑
j=0

LA
τj

(h)S∆τj
(h, ω, T ) +

r∑
q=1

LA
γq

(h)S∆γq
(h, ω, T ) =

=L−(d+1)(L− 1)d+1

 r∑
j=0

S∆τj
(h, ω, T )+

r∑
q=1

(
1− v(q)

L− 1

)
S∆γq

(h, ω, T )

 ,

(3.16) ZA
top,0(h, ω, s) =

r∑
j=0

Jτj
(h, ω, s)−

r∑
q=1

v(q)Jγq
(h, ω, s).

After Lemma 2.1, each (1 − L−1T dq ) or (1 + dqs) appearing in (3.12) and Corol-
lary 3.17 does not contribute to the denominator of the A-part of the corresponding
zeta functions of (h, ω).

4. Newton map associated with a Newton component

We have already discussed the dual decomposition associated with the Newton
polyhedra of quasi-ordinary power series in good coordinates. In general these
power series are degenerate with respect to their Newton polyhedron. In this section
we describe how to improve a quasi-ordinary power series in terms of the complexity
of the series.

Each compact 1-dimensional face γq of Γ(f) corresponds to a polynomial

fλq =
v(q)∏
j=1

(znq
1 − βq

j x
nq

1λq )mq,j =
v(q)∏
j=1

(znq
1 − βq

jx
bq
1

1 . . . x
bq

d

d )mq,j .

Fix j ∈ {1, . . . , v(q)}, the corresponding polynomial fq,j = znq
1 − βq

j x
nq

1λq and
the series fq

j , see Definition 3.12. We denote by ev(fq,j) =: r ≤ d, the number
of essential variables of the irreducible factor fq,j . For the sake of simplicity we
assume that x1, . . . , xr are the essential variables of fq,j . Fix πq

j : Ar
k → V q

j ⊂ Ar+1
k

a morphism (a parametrization) of the irreducible variety defined by fq,j :

(s1, . . . , sr) 7→ (spq
1

1 , . . . , s
pq

r
r , α

q
js

b̄q
1

1 . . . s
b̄r

d
r ),

where (αq
j)

nq
1 = βq

j .

Remark 3.19. The morphism πq
j is surjective but it is not injective. The

variety V q
j is the quotient of Ar

k under the action of a finite abelian group G. By
[35, Lemma 5.1] (see also [18]) inK0(Vark) the following classes are the same object
[V q

j ] = [Ar
k/G] = Lr. Later on we will consider the subvariety (V q

j × Ad−r
k ) ∩Gd+1

m,k

on the torus; its class in K0(Vark) is (L − 1)d. Since fλq
has v(q) irreducible

components, [Nγq ] = v(q)(L− 1)d.

Definition 3.20. Let X = Spec k[[x, z]], Y = Spec k[[y, z1]]. The Newton map
associated with the Newton component fq

j (or with the polynomial fq,j) of f is the
morphism πq,j : Y → X, πq,j(y, z1) := (x, z) defined by the equations

xl = y
pq

l

l , l = 1, . . . , d and z = (z1 + αq
j)

d∏
l=1

y
b̄q

l

l .
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The integers b̄ql , p
q
l were defined in Lemma 3.14 and if l = r+ 1, . . . , d, then b̄ql := 0

and pq
l := 1.

Lemma 3.21. Let h be a quasi-ordinary power series in good coordinates. The
pull-back h̄q,j of h under the Newton map πq,j associated with a Newton component
fq

j of f defines a quasi-ordinary power series at the root 0. Moreover under any
Newton map ev(h) does not increase. More precisely the set of essential variables
of h̄q,j is contained in the one of h (identifying xl and yl).

Proof. From the well-known properties of the discriminant the following iden-
tities will give the proof of the lemma.

Dz1(h ◦ πq,j) = ym1
1 ym2

2 . . . ymd

d (Dz(h) ◦ πq,j) = yr1
1 y

r2
2 . . . yrd

d ε(y),

where ε(0) 6= 0,mi ≥ 0, ri ≥ 0. The conditions on ev(h) and the essential variables
are also clear. �

Let f i
k be a Newton component of f , hence it defines a quasi-ordinary power

series. The previous lemma shows that the pull-back f i
k ◦ πq,j can be decomposed

as ya1
1 ya2

2 . . . yad

d f̄ i
k, for some power series f̄ i

k ∈ k[[y, z1]].

Lemma 3.22.
(1) If λ(i) = λq and βi

k = βq
j then f̄ i

k(0) = 0, therefore f̄ i
k defines a quasi-ordinary

power series.
(2) Otherwise, f̄ i

k(0) 6= 0, and f̄ i
k is a unit in k[[y, z1]].

Proof. The proof of the lemma will follow from the following description.
Take one of the roots ζ of f different from z = 0. Since we are in a good system of
coordinates, ζ is written as, see identity (3.4),

ζ = α
(i)
1 xλ(i) +

∑
λ(i)<λ

α
(i)
λ xλ.

The pull-back of ζ under the Newton map πq,j is as follows.

(1) If λ(i) = λq and (α(i)
1 )n

(i)
1 = βq

j then

(z − ζ) ◦ πq,j(y, z1) = yλq (z1 −
∑

λq<λ

α
(i)
λ yλ−λq ).

(2) If λ(i) = λq but (α(i)
1 )n

(i)
1 6= (αq

j)
nq

1 = βq
j then

(z − ζ) ◦ πq,j(y, z1) = yλq (z1 + αq
j − α

(i)
1 −

∑
λq<λ

α
(i)
λ yλ−λq ).

(3) If λ(i) < λq then

(z − ζ) ◦ πq,j(y, z1) = yλ(i)((z1 + αq
j)y

λq−λ(i) − α
(i)
1 −

∑
λ(i)<λ

α
(i)
λ yλ−λ(i)).

(4) If λq < λ(i) then

(z − ζ) ◦ πq,j(y, z1) = yλq (z1 + αq
j − α

(i)
1 yλ(i)−λq −

∑
λ(i)<λ

α
(i)
λ yλ−λq ).

�
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The pull-back h̄q,j of h is
∏d

l=1 y
Nl

l f̄q,j(y, z1)w(y, z1) where w(0) 6= 0. Moreover
the characteristic exponents of the quasi-ordinary power series f̄q,j(y, z1) are easily
deduced from the characteristic exponents of f . In general the new quasi-ordinary
power series h̄q,j is not given in a good system of coordinates. Nevertheless the
change of coordinates we need to put it in good coordinates is described in Re-
mark 3.8.

Remark 3.23. If βq
j is a simple root of the polynomial fλκq

(1, z) then f̄q
j (0, z1) =

z1 + · · · . Using the Implicit Function Theorem the root of f̄q
j is a series in k[[y]].

As in the Puiseux Theorem (d = 1), all roots of f can be found by using a sequence
of Newton maps, (see [36, Theorem 2] for details).

If f (or h) has non-degenerate Newton principal part then all roots of all
fλq

(1, z) are simple roots. Otherwise f has degenerate principal part and following
the proof of [36, Theorem 2] one can use successive Newton maps and maps of type
z1 = z−m(x) to get again a good system of coordinates and reach a point at which
all pull-backs of f have non-degenerate principal part.

Definition 3.24. We define the depth of a quasi-ordinary power series h, and
denote it by depth(h), as follows. First we put h in P -good coordinates; assume h
is represented using its Newton components as follows:

h = xN1
1 xN2

2 . . . xNd

d zε
r∏

q=1

u(q)∏
j=1

fq
j (x, z)u(x, z), with u(0, 0) 6= 0.

If h = xN1
1 xN2

2 . . . xNd

d zεu(x, z), ε = 0, 1, then we will say that depth(h) := 0.
Otherwise

depth(h) := max{depth(h̄q,j)}+ 1,
where the maximum is taken over all pull-backs h̄q,j under the composition of the
Newton maps associated with Newton components fq

j of f and a coordinate change
to obtain P -good coordinates. If h appears in good coordinates and a choice η of
good coordinates has been given after each Newton mapping, then we define in the
same way depthη(h).

Remark 3.25. The above discussion shows that depth(h) ∈ N and decreases
under the Newton maps. Moreover h has non-degenerate Newton principal part and
h 6= xN1

1 xN2
2 . . . xNd

d zεu(x, z) (u unity) if and only if depth(h) = 1. The finiteness
of the invariant depth(h) will be used in the proof of the main result. It is easily
seen that for any recursive choice η of good coordinates, depthη(h) ≤ depth(h).
Note that the components which correspond to edges appearing after an edge with
integer multi-slope need less Newton mappings to be improved.

Newton Trees 3.26. We can keep all the information about the Newton
process in a tree, the same way that Eisenbud and Neumann diagrams do for curves.
Assume we have chosen a system of coordinates such that the Newton polygon of h
is a polygonal path. In our tree, each compact face will be represented by a vertex,
and two vertices are connected by an edge (a vertical edge) if and only if the two
faces intersect. The non compact faces are represented by arrows connected to the
face they intersect. The arrow F0,..,0 representing xi = Ni, i = 1, ..., d is decorated
by (N1, ..., Nd), and the arrow F0, representing the hyperplane z = 0 or z = 1, is
decorated by 0 or 1. If the polygonal line consists in one point (N1, N2, ..., Nd, N), its
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associated graph is a vertical edge, with two arrows at the ends which represent the
above non compact faces: the arrow at the top is decorated with (N1, N2, · · · , Nd)
and the arrow at the bottom is decorated with N .

More generally, each compact face γq is defined by the affine equations nq
1xl +

bql z = Mq
l , l = 1, . . . , d, for some positive integers Mq

l , see (3.7). If γq is repre-
sented by the vertex vq we decorate vq with (Mq

1 , . . . ,M
q
d ) and the end of the edge

under the vertex vq is decorated with nq
1. The numerical datum of the vertex vq is

((Mq
1 , . . . ,M

q
d ), nq

1).
Now if f is non-degenerate with respect to γq, we attached to vq as many non

vertical edges ending with arrows as the number of integer points on γq minus one
(recall that this is v(q)). If not, we consider a Newton map attached to γq and
one of its factors. We consider the pull back of h under this map, and put it in
coordinates such that the Newton polygon is a polygonal path. We consider the
part of the tree corresponding to the new Newton polygon and we delete its arrow
F0,..,0 and attached the edge to the vertex vq, so that the edge is not vertical.
Because after a finite number of steps we have something non-degenerate, at the
end we have a tree whose edges are attached to vertices or arrows. We can make
this diagram minimal by first erasing the edges at the bottom of the tree ending
with an arrow decorated with a 0 (we also erase this arrow) and decorated with
1, and then the vertex on the other end of the edge if it is connected only to two
other vertices. Diagrams in good and P -good coordinates have the same vertices
with the same numerical data, see [4].

Example 3.27. Newton trees for quasi-ordinary power series. It is easy
to check that the quasi-ordinary power series

h := (((z2 − x3
1)

2 − 4x7
1)

2 − x20
1 x

3
2)((z

2 − x4
1x

3
2)

2 − x11
1 x

7
2) ∈ C[[x1, x2]][z]

is in good coordinates. Its Newton principal part is given by (z2−x3
1)

4(z2−x4
1x

3
2)

2

which is degenerate. Its Newton polygon has two compact 1-dimensional faces γ1

(corresponding to z2− x3
1) and γ2 (corresponding to z2− x4

1x
3
2). Below we give the

affine equations defining the edges of the Newton polygon:

γ1 : 2x1 + 3z = 36, x2 = 0,

γ2 : 2x1 + 4z = 40, 2x2 + 3z = 12.

We have two Newton components

f1
1 := ((z2 − x3

1)
2 − 4x7

1)
2 − x20

1 x
3
2 and f2

1 := (z2 − x4
1x

3
2)

2 − x11
1 x

7
2.

The invariants for such faces are n1
1 = 2, λ1 = (3/2, 0), (b11, b

1
2) = (3, 0) and

n2
1 = 2, λ2 = (2, 3/2), (b21, b

2
2) = (4, 3). On the other hand (M1

1 ,M
1
2 ) = (36, 0) and

(M2
1 ,M

2
2 ) = (40, 12). These are the numerical data {((Mq

1 ,M
q
2 ), nq

1)}2q=1 which
appear in the (LHS) of the corresponding splice diagram in Figure 1.

Since h is degenerate and we have to start the process with two Newton compo-
nents we must do two Newton maps. The map π1,1 (corresponding to f1

1 ) is given
by

x1 = y2
1 , x2 = y2, z = (z1 + 1)y3

1

and the map π2,1 (corresponding to f2
1 ) is given by

x1 = ȳ1, x2 = ȳ2
2 , z = (z̄1 + 1)ȳ2

1 ȳ
3
2 .
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2

2

2

2

2

1

(0,0)

(0) (0)

(1)

(0)

(0)
(1)

(1)

(0)

(36,0)

(40,12)

(40,0)

(46,28)

(104,6)

(104,6)

Figure 1.

In Figure 1, for each Newton map we have an edge from each corresponding vertex.
The pull-backs of h under such maps, up to a unit, are given by

h̄1,1 := y36
1 ((((z1+1)2−1)2−4y2

1)2−y16
1 y3

2) and h̄2,1 := ȳ20
1 ȳ12

2 (((z̄1+1)2−1)2−ȳ3
1 ȳ

2
2).

For h̄2,1, after a change of local coordinates only involving z̄1, the new quasi-
ordinary power series is given ȳ20

1 ȳ12
2 (z̃2

1 − ȳ3
1 ȳ

2
2). The equations for the unique face

γ are γ : 2x1 + 3z = 46, 2x2 + 2z = 28. Here we are in a non-degenerate case and
we get the decorations ((46, 28), 2) in the diagram of the Figure 1.

The quasi-ordinary power series h̄1,1 has one compact 1-dimensional face given
by y36

1 ((2z1 + 2y1)(2z1 − 2y1))2 with two Newton components:

h̄1,1 = y36
1 (((z2

1 + 2z1 + 2y1)(z2
1 + 2z1 − 2y1))2 − y16

1 y3
2);

the decoration ((40, 0), 1) comes from this edge. We deal with one of the Newton
components since the other one behaves in a similar way. The Newton map π
corresponding to it is given by

y1 = w1, y2 = w2, z1 = (z2 + 1)w1.

The pull back h̃ of h̄1,1 under π is

h̃ = w40
1 (((w1z

2
2 + 2w1z2 + 2z2 + w1 + 4)(w1z

2
2 + 2w1z2 + 2z2 + w1))2 − w12

1 w
3
2)

and after a local change of the z2 coordinate, we can write down the equation of
h̃ as w40

1 (z̃2
2 − w12

1 w
3
2) which is non-degenerate. This provides the numerical data

((104, 6); 2) in the diagram of the Figure 1.
We can do the diagram minimal erasing the edge with a (1) down the vertex

corresponding to (40, 0).



34 3. QUASI-ORDINARY POWER SERIES

Definition 3.28. Let h be a quasi-ordinary power series with a recursive choice
η of good coordinates. As usual suppose h = xN1

1 xN2
2 . . . xNd

d f(x, z)u(x, z) and
assume f is represented using its Newton components as: f = zε

∏r
q=1

∏v(q)
j=1 f

q
j ,

ε = 0 or 1. Let ω be a differential form such that the pair (h, ω) satisfies the support
condition (1.3). According to Lemmas 3.15, 3.16, and equations (3.13) and (3.14)
we consider a set CPη(h, ω) of candidate poles for (h, ω) recursively as follows:

CPη(h, ω) := {(1, 1)ε, (Ni, νi)}d
i=1∪

r⋃
q=1

{(
Mq

l

cql
, νlp

q
l + b̄ql

)}d

l=1

∪
⋃

CPη(h̄q,j , ω̄q,j),

where the last union runs over all pull-backs (h̄q,j , ω̄q,j) of (h, ω) under the Newton
maps associated with Newton components fq

j of f, q = 1, . . . , r and j = 1, . . . , v(q).
We will drop η if P -good coordinates have been chosen.

Example 3.29. We continue with the quasi-ordinary power series h from Ex-
ample 3.27. We also consider the differential form ω = dx1∧dx2∧dz which satisfies
the support condition. Here ε = 0, Ni = 0 and νi = 1 for 1 ≤ i ≤ 2.

Below we give the affine equations defining the edges of the Newton polygon
and the equations of the candidate pole:

γ1 : 2x1 + 3z = 36, x2 = 0, (36s+ 5);

γ2 : 2x1 + 4z = 40, 2x2 + 3z = 12, (20s+ 3) (12s+ 5).

This data can be also encoded in the corresponding splice diagram (see Fig-
ure 2).

2

2

2

2

s+1

s+1

s+1

2

104s+24

104s+24

14s+6

46s+9

40s+6

40s+6

12s+5

6s+5

6s+5

36s+5

1

(0,0)

(0) (0)

(1)

(0)

(0)
(1)

(1)

(0)

Figure 2.
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The pull-back form ω̄2,1 in its corresponding coordinates is given by ω̄2,1 =
ȳ2
1 ȳ

4
2dȳ1∧dȳ2∧dz̃1. Since h̄2,1 is given ȳ20

1 ȳ12
2 (z̃2

1−ȳ3
1 ȳ

2
2) and its non-degenerate then

the set of candidates poles for the pair (h̄2,1, ω̄2,1) is the union of {(20s+3), (12s+5)}
(from the previous polygon) and {(46s+ 9), (14s+ 6), (s+ 1)}. All these candidate
poles are encoded in the bottom part of the diagram.

In the top part of the diagram we consider the pull-back form ω̄1,1 given by
ω̄1,1 = y4

1dy1 ∧ dy2 ∧ dz1 (up to a unit). For (h̄1,1, ω̄1,1) we get as candidate poles
{(36s+5), (40s+6)} (recall that we have only one compact dimensional face). This
compact face have; since they behave in a similar way, we deal with one of them.
The pull back ω̃ of ω̄1,1 under π is ω̃ = w5

1dw1∧dw2∧dz̃2. Since h̃ is non-degenerate
then set of candidate poles of (h̃, ω̃) is {(40s+ 6), (6s+ 5), (104s+ 24), (s+ 1)}.

Remark 3.30. Let h ∈ k[[x]][z] be a quasi-ordinary function with h(0, 0) = 0
such that Dz(h) = xα1

1 xα2
2 . . . xαd

d ε(x), where ε ∈ k[[x]], ε(0) 6= 0. After relabeling
the variables xi, one of the following conditions occurs. Either ev(h) = 0, therefore
αi = 0 for all i = 1, . . . , d (which is is equivalent to h = zε, ε = 0, 1, in good
coordinates) or αk > 0 for all k = 1, . . . ,m ≤ d and αk = 0 for all k ∈ {m+1, . . . , d}.
In such a case the last d − m coordinates of any characteristic exponents of f
always are zero. In particular compact faces of Γ(h) are contained in the (m+ 1)-
dimensional coordinate plane xm+1 = . . . = xd = 0. The Newton maps never
involve the last d − m coordinates and therefore all compact faces of the new
Newton polyhedra just only depend on the pull-back under the Newton maps of
the coordinates x1, . . . , xm, z.

Lemma 3.31. The set of candidate poles does not depend on η, i.e., it always
equals the result obtained for P -good coordinates.

Proof. This is essentially a consequence of the fact that the candidate poles
can be read from the tree defined in 3.26; note that the multiplicities of the differ-
ential form can be deduced from the decorated tree.

Let us fix a choice η such that at a given stage we have chosen good coordinates
x, z which are not P -good coordinates; we could consider another choice η′ such
that at this level, we have coordinates x, z1 which are P -good coordinates. This
fact happens because

• z is not a factor of f ;
• there is and edge γ in the Newton polygon for x, z1 such that

fγ = wxN
r∏

i=1

(z − aixn)ni ,

w, ai ∈ C∗, ni ∈ P, N,n ∈ Nd, r ≥ 1;
• this edge does not intersect the hyperplane z = 0.

The coordinate z1 for η′ is obtained by a generic change z1 = z + axn; in the
new Newton polygon, the corresponding edge γ′ intersects the hyperplane z = 0.
The sets of candidate poles obtained for the edges γ and above (in the choice η)
and for the whole set of edges in the choice η′ are the same.

For the choice η one must consider the candidate poles corresponding to the
edges below γ. These candidate poles appear also in the choice η′ but further in
the Newton process, see [4]. The Newton mapping for these edges are composition
of several Newton mappings in the choice η′. �
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Remark 3.32. In Remark 3.9 we have described how the method that we
are using is affected for being in P -good coordinates or in good coordinates. The
following diagrams show the two possible diagramas of f(x, z) = (z2 − x5)(z −
x2)(z3− x2) depending if we are in good coordinates (LHS) or P -good coordinates
(RHS). One can say that one finds in both cases vertices with the same numerical
data which will provide the same set of candidate poles.

2

2

(0)

1

(15)

(9)

(20)

(0)

(1)

(1)

(1)

(0)

(15)

(9)

2

1

(1)

(1)

(1)

(0) (0)

2

(20)

Figure 3.

Definition 3.33. We will say that two quasi-ordinary power series with recur-
sive choices η, η′ of good coordinates have the same (η, η′)-characteristic exponents
if their graphs are equal. We will drop the term (η, η′) if P -good coordinates is the
common choice or if (η, η′) are clear in the context.

Next lemma states the behavior of these graphs under the Newton mappings.

Lemma 3.34. Let f ∈ k[[x]][z] be a quasi-ordinary power series with a recursive
choice η of good coordinates. Let g ∈ k′[[x]][z] be another quasi-ordinary power
series (maybe defined over distinct algebraically closed fields of characteristic zero
k′) with a recursive choice η′. Then f and g have the same (η, η′)-characteristic
exponents if and only if
(1) ΛND(f) = ΛND(g),
(2) there exists a bijection between the roots of the polynomials fλq

and gλq
and

(3) under this bijection if the Newton component fq
j (or the root fq,j) corresponds

to the Newton component gq
j (or the root gq,j) then the quasi-ordinary power

series f̄q,j and ḡq,j have the same (η, η′)-characteristic exponents.

It is possible to prove that the data η-characteristic exponents, that is the tree
defined in 3.26, is the same as the characteristic exponents set of each irreducible
component of f and the order of coincidence between distinct irreducible factors of
f (as in the case of plane curves).
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Remark 3.35. Under any linear change of coordinates of type z = βd+1z1,
xl = βlyl, l = 1 . . . , d, with β1, . . . , βd+1 ∈ Gm,k, the characteristic exponents,
resp. monomials, of f do not change.

5. Transversal sections of a quasi-ordinary power series

Consider a quasi-ordinary h ∈ k[[x]][z] with h(x, z) = xN1
1 xN2

2 . . . xNd

d g(x, z),
where no xi divides g(x, z) and Nl ≥ 0 for any l = 1, . . . , d. As usual we write
h(x, z) = xN1

1 xN2
2 . . . xNd

d f(x, z)u(x, z), f(x, z) being the quasi-ordinary Weierstrass
z-polynomial of degree n in k[[x]][z] whose roots are centred at (0, 0) and u(0, 0) 6=
0. Assume that h is given in good coordinates. Suppose that a pair (h, ω) satisfying
the support condition 1.3 is given, where ω =

∏d
j=1 x

νj−1
j dx1∧. . .∧dxd∧dz, νj ≥ 1.

Fix i ∈ {1, . . . , d}, and suppose that d ≥ 2. Let ki denote an algebraic closure of
the fraction field of the formal power series ring k[[xi]]. The i-th transversal section
of h will be a finitely many disjoint union of ki-quasi-ordinary formal power series
obtained from h and their corresponding differential forms satisfying the support
condition 1.3. Let 0i denote the d-tuple which has all coordinates but the i-th one,
which is xi, equal 0. Consider the polynomial f(0i, z) over ki of degree n :

f(0i, z) = zn + lower degree terms =
vi∏

m=1

(z − αm)δm ∈ ki[z],

αm ∈ ki and n =
∑
δm. By the Jung-Abhyankar Theorem for each root αm of

f(0i, z) = 0 in ki[z] there exists a ki-quasi-ordinary formal power series hαm
i ∈

ki[[x̂i]][z] centred at (0̂i, αm), x̂i being all variables but xi.

Definition 3.36. The i-transversal section of h consists in the set {hαm
i : m =

1, . . . , vi} of ki-quasi-ordinary formal power series, hαm
i centred at (0̂i, αm). It is

clear that ev(hαm
i ) < d. If the root αm 6= 0 then we need a translation of type

z1 = z − αm to describe the corresponding hαm
i . On the other hand, if xi is not an

essential variable for h then the only root is α = 0.
Since we are also interested in keeping the differential form, the i-transversal

section of a pair (h, ω) consists in the set of finitely many pairs (hαm
i , ωi) where

ωi =
∏d

j=1,j 6=i x
νj−1
j dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxd ∧ dz.

Example 3.37. Consider f(x1, x2, z) = ((z2 − x3
1)

2 + x7
1)

3 + x25
1 x

3
2. For i = 1,

the 1-transversal sections are the k1-quasi-ordinary power series centred at the four
roots of ((z2 − x3

1)
2 + x7

1)
3 = 0 in k1. In fact these roots can be found using the

Newton-Puiseux algorithm in k1 for the previous polynomial. If α is one of these
roots and z̃ := z − α then the translated quasi-ordinary power series is

z̃3u(x1, z̃) + (x25
1 )x3

2, u(0, 0) 6= 0.

Its Newton polygon is the projection over the plane x1 = 0 of the result of applying
several Newton maps involving x1, z to f .

For i = 2, the 2-transversal section is the k2-quasi-ordinary power series f0
2 =

((z2− x3
1)

2 + x7
1)

3 + (x3
2)x

25
1 ∈ k2[x1, z] centred at the root α = 0. In fact it is clear

that the Newton polyhedron of f0
2 is the projection over the plane x2 = 0 of Γ(f).
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A description of the components hα
i of the i-transversal section is as follows.

Assume that

(3.17) f(x, z) =
n∏

j=1

(
z − ζj(x

1/m
1 , . . . , x

1/m
d )

)
,

with ζj(0) = 0. If ζj 6= 0, since f is given in good coordinates, then

ζj(x) = α
(j)
1 xλ(j) +

∑
λ(j)<λ

α
(j)
λ xλ, (α(j)

1 6= 0).

The characteristic exponents of type (0, bi

n1
,0) ∈ Qd, correspond to 1-dimensional

faces in CF (f) contained in the (xi, z)-plane. We write in a unique way ζj(x) as
sum of two formal power series pj(x

1/m
i ) + tj(x) such that pj(x

1/m
i ) ∈ k[[x1/m

i ]] is
the sum of monomials of ζj depending only on xi and tj = ζj − pj(xi). It is clear
that tj(0i) = 0.

If α ∈ ki is a root of f(0i, z) = 0, hα
i (x̂i, z) is

(3.18)

hα
i = u(x, z)

d∏
l=1

xNl

l

∏
j:pj(x

1/m
i )=α

(
z − (α+ tj(x

1/m
1 , . . . , x̂i, . . . , x

1/m
d )

)
∈ ki[[x̂i]][z],

where tj is seen as an element in ki[[x
1/m
1 , . . . , x̂i, . . . , x

1/m
d ]]. The last product gives

a decomposition of hα
i into its irreducible roots too, because each factor has z-degree

one. To work with hα
i we first perform, if necessary, the translation z1 = z − α,

α ∈ ki. Such a translation is a composition of some Newton maps of h associated
with their corresponding Newton components (all of them of type (0, ai/wi,0))
and some change of variables in order to obtain good coordinates. The Newton
map π1 associated with a Newton component of h of type (0, bi/n1,0) is given by
xi = ypi

i , z = (z1 + α)yb̄i
i and xj = yj , if j 6= i. After π1, we need a translation

of type z1 = z̃ − φ(x) to get good coordinates. This translation does not change
the position of the i-th variable. If in order to find α we will need eventually, more
Newton maps of type (0, ai/wi,0). We finish when no more characteristic exponent
of the mentioned type appear in the process to get α. Therefore the composition
of these Newton maps and their corresponding translations, which we denote by
π, is the same as the Newton-Puiseux algorithm to find the root α of f(0i, z) in
ki[z]. The map π does nothing onto the set of variables different from i-th one. Let
f̃ (resp. h̃) denote the pull-back of f (resp. h) under the map π. Up to a factor

x
k/m
i , f̃(x, z) =

n∏
j=1

(
z − tj(x

1/m
1 , . . . , x

1/m
d

)
and

hα
i (x̂i, z) = ũ

d∏
l=1

xNl

l u(x, z)
∏

j:pj(x
1/m
i )=α

(
z − tj(x

1/m
1 , . . . , x̂i, . . . , x

1/m
d )

)
.

Moreover, ωi and the pull-back π∗ω are the same, up to a constant, as differential
forms over ki.

Once this translation is done, the Newton polyhedron Γi(hα
i ) of hα

i as ki-quasi-
ordinary power series is the projection over the hyperplane xi = 0 of the Newton
polyhedron of the pull-back f̃ ; this is clear for α = 0 and for the other case is
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similar. In particular Γi(hα
i ) is a monotone polygonal path. In fact, the ki-quasi-

ordinary power series hα
i is in good coordinates because the condition not to be a

power of a linear form is generic.

Remark 3.38. Note that if h is given in P -good coordinates, we cannot deduce
that hα

i is also in P -good coordinates. This is the main reason for introducing the
more general concept of good coordinates.

Example 3.39. Let us consider several examples concerning good coordinates,
Newton polygons and transversal sections.
(1) Consider f(x1, x2, z) = (z2 − x2

1x
5
2)(z

2 − x3
1x

7
2) which is given in P -good coor-

dinates. The 2-transversal section is not in P -good coordinates.
(2) Consider f(x1, x2, z) = (z2 − x2

1x
5
2)(z

2 − x2
1x

7
2). The Newton polygon Γ(f) has

two edges which are projected over only one edge if we project over x2 = 0.
The 2-transversal section has at least two different components with the same
characteristic exponent.

(3) Considerf(x1, x2, z) := (z2− x2
1x

5
2)

2 + x4
1x

17
2 . The 2-transversal section is f0

2 =
z4 − (2x5

2)x
2
1z

2 + (x10
2 + x17

2 )x4
1. In this case some more monomials of x4

1 have
appeared. These monomials are hidden in ND(f).

To sum up:

Proposition 3.40. With the above notations,
(1) The formal power series hαm

i ∈ ki[[x̂i]][z] centred at (0̂i, αm), defines a quasi-
ordinary power series with ev(hαm

i ) < d.
(2) The Newton process for h induces Newton process for hαm

i . Each step of the
Newton process for h is necessary for at least one hαm

i , i ∈ {1, . . . , d}, and
m ∈ {1, . . . , vi}.

(3) Fix i ∈ {1, . . . , d} and m ∈ {1, . . . , vi}. Then
i) If αm = 0 then the quasi-ordinary power series h0

i is in good coordinates.
ii) At each step of the Newton process for h, Γ(h0

i ) is the projection of Γ(h)
on the hyperplane xi = 0.

iii) If αm 6= 0, then some steps of the Newton process for h firstly provide the
translation z = z1 − αm we need to put αm at zero. After that we apply i)
and ii).

iv) Every pair (hαm
i , ωi) satisfies the support condition 1.3.

(4) In fact

(3.19) CP (h, ω) ⊂
d⋃

i=1

v⋃
m=1

CP (hαm
i , ωi),

Recall that the second union runs over all roots of f(0i, z) = 0 in ki[z].

The only fact in the proposition that is not yet proved is the inclusion (3.19).
The set CP (h, ω) of candidate poles for (h, ω) can be written as CP (h, ω) =
CP1(h, ω) ∪

⋃
CP (h̄q,j , ω̄q,j), see definition 3.28, where the set CP1(h, ω) is com-

pletely described from ND(h) and ω. Since this monotone polygonal path is de-
termined by (and determines) its projections over all hyperplanes {xi = 0}, i =
1, . . . , d, then CP1(h, ω) =

⋃d
i=1 CP1(h0

i , wi). In the previous identity we forget the
roots which are not centred at zero because some Newton maps are needed to find
them.
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In general, (3.19) follows from the fact that candidate poles are determined by
the characteristic monomials of the quasi-ordinary power series. The characteristic
monomials are determined by differences of its roots. In particular for each of the
i-transversal section the difference of two of its roots in ki[[x

1/m
1 , . . . , x̂i, . . . , x

1/m
d ]]

can be computed as the specialization of the difference of the corresponding roots
in k[[x1/m

1 , . . . , xi
1/m, . . . , x

1/m
d ]].

In fact we can say more. Fix a characteristic exponent of f and a Newton com-
ponent with such a characteristic exponent. Fix i ∈ {1, . . . , d}. If the characteristic
exponent is (0, bi/n1,0) then we have already described what is going on with the
Newton map π associated with the Newton component. Otherwise, reading the
characteristic exponents and the roots from equations (3.17) and (3.18), the char-
acteristic exponents of the i-transversal section of f ◦ π are the same as those of
the pull-back under the corresponding Newton map for the i-transversal section.
In particular at each step the Newton polyhedron of the i-transversal section is the
projection of the Newton polyhedron of h.

The fact that we get the same differential form, up to a constant factor, in xi

is clear because this is a general fact not related to quasi-ordinary formal power
series.



CHAPTER 4

Denef-Loeser motivic zeta function under the
Newton maps

We keep the field k being algebraically closed and of characteristic zero. We
denote an algebraic closure of the quotient field k((t)) of the domain R := k[[t]] by
K. The goal is to compute zeta functions for a k-quasi-ordinary power series using
induction on its depth. In Section 3.3 we have computed the A-part. In order to
compute the B-part we must take into account that a quasi-ordinary power series
may be degenerate with respect to its Newton polyhedron. The main idea is to
use Newton maps to measure the remaining arcs in terms of the quasi-ordinary
power series obtained after these Newton maps. The problem is the existence of
some arcs which cannot be lifted under such maps. We need to combine Newton
maps and k[t]-morphisms to solve this problem. Therefore we introduce technical
objects, called W and W̃-quasi-ordinary series in order to have families of power
series closed under Newton maps to deal with. We will compute the Denef-Loeser
motivic zeta functions for these series following the ideas of Sections 3.2 and 3.3;
the computation of the A-part is similar to the one in Section 3.3 but there are
some small differences and we will compute inductively the whole zeta function.

Definition 4.1. Let ht(x, z) ∈ R[[x1, . . . , xd]][z] be a formal power series such
that ht = tθxN1

1 xN2
2 . . . xNd

d f t(x, z)ut(x, z) where xj does not divide f t(x, z) ∀j =
1, . . . , d, t does not divide f t(x, z)ut(x, z), θ ∈ N and ut(0, 0) 6= 0. We say that ht

is W-quasi-ordinary if its z-discriminant is

(4.1) Dz(f t) = tβxα1
1 xα2

2 . . . xαd

d ε(t,x),

where ε(0,0) 6= 0; therefore if we consider t as a variable, f t ∈ k[[t,x]][z] is a k-
quasi-ordinary power series. Let J ⊂ {1 . . . , d} and let J ′ be its complement; we
say that ht is J-bounded if its roots ζt satisfy

(4.2) ζt ∈ k[x1/m
J ][[x1/m

J′ , t]], for some m.

Remark 4.2. The main property of a J-bounded W-quasi-ordinary series ht

is that ∀y0
J ∈ Cd such that the entries in J ′ are zero the series ht(x + y0

J , z) is a
well-defined W-quasi-ordinary series.

Let f(x̄, z̄) ∈ k[x̄1, . . . , x̄d][z̄] be a quasi-ordinary polynomial whose roots only
contain the (finite set of) characteristic monomials of f t as K-quasi-ordinary power
series in a new set of variables x̄1, . . . , x̄d, z̄. Let h := x̄N1

1 . . . x̄Nd

d f(x̄, z̄). In partic-
ular the K-quasi-ordinary power series ht and the k-quasi-ordinary power series h
have the same characteristic exponents and the same characteristic monomials.

If f t(x, z) ∈ k[[t]][[x]][z] is not in good coordinates, by Remark 3.8, the change
of coordinates to put f t(x, z) in good coordinates is an automorphism of k[[t]][[x]][z]
of type z 7→ z +mt(x), m ∈ k[[t]][[x]]. In particular the t-variable does not change

41
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and condition (4.1) on the discriminant is preserved. It is easily seen that if ht

is J-bounded then condition (4.2) is also preserved because mt(x) comes from
some monomials of the roots of ht. Then we assume f t and f(x̄, z̄) are in good
coordinates.

Consider differential forms ω =
∏d

j=1 x
νj−1
j dx∧dz and ω̄ =

∏d
j=1 x̄

νj−1
j dx̄∧dz̄,

with νj ≥ 1. From now on we assume that (h, ω̄) satisfies the support condition 1.3.
Let X := Ad+1

k and set

(4.3) V t
n,m := {ϕ ∈ L0(X) : ord(ht ◦ϕ) = n+ θ, ord(

d∏
j=1

x
νj−1
j ◦ϕ) = m};

define Vn,m in the same way for h (forgetting θ). The sets V t
n,m are measurable

because of the support condition. We define the power series

ZWDL(ht, ω, T ) := T θ
∑
n∈N

(∑
m∈N

L−mµX(V t
n,m)

)
Tn ∈ M̂k[[T ]],

ZWtop,0(h
t, ω, s) := χtop(ZWDL(ht, ω,L−s)).

(4.4)

Recall that

ZDL(h, ω̄, T ) =
∑
n∈N

(∑
m∈N

L−mµX(Vn,m)

)
Tn,

Ztop,0(h, ω̄, s) = χtop(ZDL(h, ω̄,L−s)).

We know from the results of Denef and Loeser that ZDL(h, ω̄, T ) is a rational
function. The last part of the section is devoted to proving the rationality of
ZWDL(ht, ω, T ) and to provide a small set of candidate poles for such functions, see
Definition 3.28. Recent interesting results of J. Sebag [41] prove the rationality of
this power series.

Theorem 4.3. If ht is W-quasi-ordinary then the zeta function

ZWDL(ht, ω, T ) ∈ Z
[
L,L−1,

(
1− L−νTN

)−1
]
[T ]

where (N, ν) ∈ CP (h, ω̄). Moreover, ZWtop,0(h
t, ω, s) exists.

We need to define a subfamily of W-quasi-ordinary series in order to obtain
more information on the local topological zeta function.

Definition 4.4. A symbol W̃ := (p; g1, . . . , gd), where p ∈ P, gi ∈ N, i =
1, . . . , d, is called a weight. The semigroup ΓfW ⊂ Nd associated with W̃ is the
additive set of α ∈ Nd such that

wfW(α) :=
d∑

i=1

αigi

p
∈ N.

Definition 4.5. Let ht(x, z) ∈ R[[x1, . . . , xd]][z] be a formal power series such
that ht = tθxN1

1 xN2
2 . . . xNd

d f t(x, z)ut(x, z) with xj does not divide f t(x, z) ∀j =
1, . . . , d, ut(0, 0) 6= 0, t does not divide f t(x, z)ut(x, z) and θ ∈ N. We call it
W̃-quasi-ordinary if it is W-quasi-ordinary and all monomials in ht are of type
tw fW(α)xαzn, where α ∈ ΓfW (and some non-zero coefficient in k).
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Remark 4.6. If ht is W̃-quasi-ordinary then the power series h1 := ht
|t=1 is

k-quasi-ordinary and has the same characteristic exponents as ht. If ht is W̃-
quasi-ordinary, it is true also for f t because the d-tuple (N1, . . . , Nd) ∈ ΓfW and
θ = wfW(N1, . . . , Nd). Moreover, if we put ht in good coordinates, the new series is
also W̃-quasi-ordinary.

Remark 4.7. Let ht be a W̃-quasi-ordinary power series, W̃ := (p; g1, . . . , gd).
Then, if J := {j | 1 ≤ j ≤ d, gj 6= 0} then ht is J-bounded.

Definition 4.8. Let ht be a W̃-quasi-ordinary power series. We say that
ht is Newton compatible if the number of irreducible factors (different from t) of
ht
|ND(ht) in R equals the number of irreducible factors of h1

|ND(h1) in k. For instance

z2− tx2y2 is not Newton compatible and it is W̃-quasi-ordinary for some adequate
weight.

Theorem 4.9. If ht is W̃-quasi-ordinary and Newton compatible then

ZWtop,0(h
t, ω, s) = Ztop,0(h, ω̄, s).

From now on we suppose that ht is W-quasi-ordinary; we will indicate explicitly
when we consider it as W̃-quasi-ordinary. The rest of this section is devoted to the
proof of Theorems 4.3 and 4.9. We will focus on the proof of Theorem 4.3 and we
will point out the special arguments required for the proof of Theorem 4.9. Since
the results do not depend on the factor T θ, we do not take care of it. We also
assume from now on that ht (or f t) is given in good coordinates. The proofs are
given by induction on the depth, see Definition 3.24. Example 4.36 illustrates the
main steps of the induction.

Step 1. depth(h) = depth(ht) = 0.

Then ND(h) has only one compact face which is 0-dimensional,

ZWDL(ht, ω, T ) = L−(d+1)(L− 1)d+1 L−(1+
P

νj)T 1+
P

Nj

1− L−1T

d∏
j=1

1
1− L−νjTNj

,

and ZWDL(ht, ω, T ) = ZDL(h, ω̄, T ). Then ZWtop,0(h
t, ω, s) = Ztop,0(h, ω̄, s).

Step 2. Assume that depth(h) > 0.

We keep the notation of Chapter 2. Let S be defined by x1 · · ·xdz = 0, (or
x̄1 · · · x̄dz̄ = 0); we consider arcs in ϕ ∈ L0(X) \ L0(S) and define k(ϕ) and a(ϕ)
as in Chapter 2.

The following easy remark will be a key point for understanding the dual de-
composition associated with f t(x, z) ∈ R[[x]][z]. Each ϕ ∈ L0(X) uniquely deter-
mines an arc ψ := (t,ϕ) ∈ L0(A1

k ×X) so that ordt(f t ◦ ϕ) = ordt(g ◦ ψ), where
g(y,x, z) ∈ k[[y,x]][z] is the same function as f t but t is substituted by a new
variable y.

Step 3. Newton polyhedron of h ∈ k[x̄, z̄].

This Newton polyhedron Γ(h) and its dual decomposition have been described
in Section 3.3. Denote by γ̄1, . . . , γ̄r its 1-dimensional faces with corresponding
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vertices τ̄0, τ̄1, . . . , τ̄r. We assume that τ̄r is the z̄-highest vertex as in Remark 3.13.
Thus we can write

fND(f) = zε
r∏

q=1

v(q)∏
j̄=1

(fq,j̄)
mq,j̄ where fq,j̄ := z̄nq

1 − β̄q
j̄
x̄

bq
1

1 . . . x̄
bq

d

d ,

with ε = 0 (resp. 1) if I = I ′ (resp. I 6= I ′). Recall that in the dual space, the
reduced integer equation of the hyperplane lq is ηq(v1, . . . , vd, vd+1) = 0, see equa-
tion (3.5). The intersection of these hyperplanes with Rd+1

>0 are the d-dimensional
cones ∆γ̄q . They determine the (d+ 1)-dimensional cones ∆τ̄q , q = 0, 1, . . . , r. The
cones associated with compact faces of Γ(h) (or Γ(f)) give a partition of Rd+1

>0 in
the disjoint union

⋃
∆τ̄ .

If ϕ ∈ L0(X) \ L0(S) and k := k(ϕ), the order of the differential form ω̄ is
m(k) := σω̄(k)− k. If k ∈ Pd+1 is fixed, the semialgebraic subset V k

n,m is naturally
defined. It is empty unless m = m(k). Then for each compact face τ̄ define

Z τ̄
DL(h, ω̄, T ) :=

∑
k∈∆τ̄∩Pd+1

Zk
DL(T ).

Step 4. Description of the Newton polyhedron Γt(f t) of f t ∈ k[[t,x]][z].

The discriminant condition (4.1) implies that f t is a k-quasi-ordinary power
series in good coordinates in (d+ 2) variables. Then its Newton polyhedron Γt(f t)
has only 0 and 1-dimensional compact faces, say m edges γ̃1, . . . , γ̃m and the m+1
corresponding vertices. We can write

(4.5) f t
ND(ft) = zε

m∏
p=1

v(p)∏
s=1

(zñp
1 − βp

s t
b̃p
0x

b̃p
1

1 . . . x
b̃p

d

d )mp,s ,

where gcd(ñp
1, b̃

p
0, b̃

p
1, . . . , b̃

p
d) = 1 and ε = 0 (resp. 1) if I = I ′ (resp. I 6= I ′).

The characteristic exponents associated with Γt(f t) are of type ( b̃p
0

ñp
1
,λt

p) ∈ Qd+1

where ñp
1λ

t
p = (b̃p1, . . . , b̃

p
d) ∈ Nd. We need also to define np

1, b
p
1, . . . , b

p
d such that

gcd(np
1, b

p
1, . . . , b

p
d) = 1 and np

1λ
t
p = (bp1, . . . , b

p
d).

Given λq from a compact face γ̄q of Γ(h), q = 1, . . . , r, we collect the set Sq

of rationals b
n such that there exists a compact face γ̃p of Γt(ht) whose associated

characteristic exponent is ( b
n ,λq); all characteristic exponents of ht are obtained in

this way.
Let u(q) be the cardinality of Sq; we denote by αq,j

nq,j
1

, j = 1, . . . , u(q), the

elements of Sq, where αq,j ∈ N and nq,j
1 = ñp

1 for the corresponding p ∈ {1, . . . ,m}.
We denote also sq,j

1 := nq,j
1
nq

1
∈ N. Then identity (4.5) can be rewritten as follows

f t
ND(ft) = zε

r∏
q=1

u(q)∏
j=1

w(q,j)∏
w=1

((znq
1)sq,j

1 − βwt
αq,j (xbq

1
1 . . . x

bq
d

d )sq,j
1 )mq,j,w ,

where v(q) =
∑u(q)

j=1 s
q,j
1 w(q, j) since f t and f have by hypothesis the same charac-

teristic exponents.

Remark 4.10. If ht is W̃-quasi-ordinary and Newton compatible then r = m,
it means that for each q = 1, . . . , r we have #Sq = 1 and Sq ∈ N. In this case
sq,j
1 = 1, b̃qj = bqj .
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In the dual space (Rd+2)∗, with coordinates (v0, v1, . . . , vd, vd+1), the dual de-
composition induced by Γt(ht) is given by dual cones ∆γ̃p associated with the hyper-
planes, l̃p : b̃p0v0 + b̃p1v1 + . . .+ b̃pdvd− ñp

1vd+1 = 0, for p ∈ {1, . . . ,m}, and dual cones
∆τ̃ associated with a vertex τ̃ . We identify the affine hyperplane H = {v0 = 1}
with (Rd+1)∗ and H ∩ (Rd+2

+ )∗ with (Rd+1
+ )∗ and consider the decomposition in-

duced by ∆γ̃p
and ∆τ̃ in (Rd+1

+ )∗. This decomposition has the same properties as
the initial one. It has exactly m ordered d-dimensional planes in H and m + 1
pieces of dimension (d+ 1) between them. Let us describe them better.

For q = 1, . . . , r, and j ∈ {1, . . . , u(q)} define the cone ∆t
q,j as the intersection

with Rd+1
>0 of the hyperplane lq,j

t with integral equation:

(4.6) sq,j
1 ηq(v1, . . . , vd, vd+1) + αq,j = 0, see (3.5).

Observe that m =
∑r

q=1 u(q).
The (d + 1)-dimensional convex rational polyhedra ∆t

s, s = 1, . . . ,m − 1, are
either the region Mq,j

t (that we will call of type M) contained between two parallel
hyperplanes lq,j

t and lq,j+1
t or the region Nq

t (of type N) contained between the
hyperplanes lq,u(q)

t and lq+1,1
t for some q = 1, . . . ,m− 1. The first one ∆t

0 and the
last one ∆t

m are

∆t
0 := {v ∈ Rd+1

>0 : s1,1
1 η1(v1, . . . , vd, vd+1) + α1,1 < 0},

∆t
m := {v ∈ Rd+1

>0 : sr,u(r)
1 ηr(v1, . . . , vd, vd+1) + αr,u(r) > 0}.

(4.7)

Thus we fix the partition of Rd+1
>0 (identified with H) as disjoint union of three

distinct types of convex rational polyhedra ∆t
τ :

• d-dimensional cones ∆t
q,j corresponding to the hyperplanes lq,j

t ,
• convex rational polyhedra of type N , and
• convex rational polyhedra of type M .

Following the conventions of this work the convex rational polyhedra of type
M or N will be called vertices and those of the first type will be called an edge.

Let ϕ ∈ L0(X) \ L0(S) and let k := k(ϕ). The order of the differential form ω
is the same as for ω̄, i.e., m(k) = σω(k)− k. Fix k ∈ Pd+1 and define

V k,t
n,m := {ϕ ∈ L0(X)\L0(S) : k(ϕ) = k, ord(ht◦ϕ) = n+θ, ord(

d∏
j=1

x̄
νj−1
j ◦ϕ) = m};

These sets are empty unless m = m(k), then we define

Zk,W
DL (T ) :=

∑
n∈N

L−m(k)µX(V k,t
n,m(k))T

n.

For each convex rational polyhedron ∆t
τ in the previous partition, define

Z
∆t

τ ,W
DL (ht, ω, T ) :=

∑
k∈∆t

τ∩Pd+1

Zk,W
DL (T ).

Remark 4.11. Each hyperplane lq is parallel to the hyperplanes lq,j
t . The

region associated with a vertex τ̄q is a cone delimited by two hyperplanes which
are parallel to the hyperplanes delimiting Nq

t (different from the coordinate hyper-
planes).
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Remark 4.12. If ht is W̃-quasi-ordinary and Newton compatible then no region
of type M exists.

Step 5. Newton polyhedron of ht as a K-quasi-ordinary function.

This Newton polyhedron ΓK(ht) of ht is the projection over the hyperplane
t = 0 of the Newton polyhedron of ht and it coincides with Γ(h). For q ∈ {1, . . . , r},
we define

f̂ t
λq

:=
u(q)∏

j=1,αq,j∈Sq

f̂ t
q,j , where f̂ t

q,j :=
w(q,j)∏
w=1

((znq
1)sq,j

1 −βwt
αq,j (xbq

1
1 . . . x

bq
d

d )sq,j
1 )mq,j,w .

1. Vertices of the dual decomposition

In the following, the aim is to compute Z∆t
τ ,W

DL (ht, ω, T ) for τ a vertex of type M
or N and compare it with the computations we have already done for Z τ̄

DL(h, ω̄, T ),
see (3.15).

Take a convex rational polyhedron ∆t
τ of the dual decomposition of Rd+1

+ which
belongs to any of the two types M or N . It corresponds to a monomial tδxαzn

whose support is the intersection of two 1-dimensional compact faces of ΓK(ht).
The cone ∆t

τ is the positive region delimited by two inequalities, say

η̃1(v1, . . . , vd, vd+1) + α̃1 > 0,

η̃2(v1, . . . , vd, vd+1) + α̃2 < 0,

where η̃1 and η̃2 can define parallel (or not) hyperplanes. Let ϕ ∈ L0(X) \ L0(S)
and let k := k(ϕ) and nτ (k) := α1k1 + · · ·+αdkd + nkd+1. We have ord(ht ◦ϕ) =
nτ (k) +N(k) + δ, with N(k) :=

∑d
j=1Njkj (we are forgetting the exponent θ).

Lemma 4.13. If k ∈ ∆t
τ , then

L−m(k)µX(V k,t
nτ (k)+δ+N(k),m(k)) = L−(d+1+σω(k))(L− 1)d+1.

Proof. The measure of the cylindrical sets can be computed as in Step 2 in 2.2.
Denote nτ (k) + δ +N(k) by n̄; hence µX(V k,t

n̄,m(k)) = [πn̄(V k,t
n̄,m(k))]L

−(n̄+1)(d+1). It
comes from a monomial since it is a vertex then

[πn̄(V k,t
n̄,m(k))] = (L− 1)d+1L(d+1)n̄−(k1+...+kd+1).

�

Hence the contribution in terms of generating functions of convex rational poly-
hedra is written as

Z
∆t

τ ,W
DL =T δ(L− 1)d+1L−(d+1)

∑
k∈∆t

τ∩Pd+1

L−σω(k)Tnτ (k)+N(k) =

=T δ(L− 1)d+1L−(d+1)Φ∆t
τ
(y),

where y := (L−ν1Tα1 , . . . ,L−νdTαd ,L−1Tn).
For any integer linear form η(v1, . . . , vd, vd+1) and any α ∈ N define ∆α

η :=
Pd+1 ∩{η+α = 0} and ∆c,α

η := Pd+1 ∩{η+α < 0}. The indicator functions satisfy
the identity:

[∆c,α
η ] = [∆c,0

η ]−
∑

0<α′≤α

[∆α′

η ].
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In Section 3.3 we have already used ∆c,0
η without the superscript 0. Since [∆t

τ ∩
Pd+1] = [∆c,α2

η2
]−
(
[∆c,α1

η1
] + [∆α1

η1
]
)

then

(4.8) [∆t
τ ∩ Pd+1] =

(
[∆c,0

η2
]− [∆c,0

η1
]
)
−

 ∑
0<α≤α2

[∆α
η2

]−
∑

0<α<α1

[∆α
η1

]

 .

If the corresponding hyperplanes are parallel, then [∆t
τ∩Pd+1] =

∑
α2<α<α1

[∆α
η ]

being η = η̃1 = η̃2.
Since ηq has integer coefficients, ∆c,0

ηq
is a convex (simplicial) cone with the

origin as vertex. But in general the vertex of the convex rational cone ∆c,α
ηq

is a
rational (d+ 1)-tuple which may have a non-integer coordinate and then its gener-
ating function cannot be computed from the one of ∆c,0

ηq
with an integer translation.

To avoid this problem we do the following.
Let Hα

q be the hyperplane of equation ηq + α = 0, α ∈ N. The difference of
two elements in a given Hα

q belongs to lq ∩ Zd+1. Recall that

lq ∩ Zd+1 = Gq + Zwq
1 + · · ·+ Zwq

d and lq ∩ Pd+1 = Gq + Nwq
1 + · · ·+ Nwq

d,

where ∆0
ηq

= lq ∩ Pd+1 and Gq is the fundamental set of ∆0
ηq

:

Gq := Nd ∩

{
d∑

l=1

µlw
q
l : 0 < µl ≤ 1 for l = 1, . . . , d

}
.

We need the following lemma which we will prove later.

Lemma 4.14. For every α ∈ N, there exists a subset Gq,α ⊂ Hα
q with a bijection

between Gq and Gq,α such that Hα
q ∩ Pd+1 = Gq,α + Nwq

1 + · · ·+ Nwq
d.

In particular for any k ∈ Ωq,α there exists a unique g ∈ Gq,α and (l1, . . . , ld) ∈
Nd such that k = g + l1w

q
1 + · · ·+ ldw

q
d.

As a consequence of equation (2.1), for every α ∈ N, we have

(4.9) Φ∆α
ηq

(y) =

(∑
g∈Gq,α yg

)
∏d

l=1

(
1− ywq

l

) .
Assume ∆t

τ is of type N and is the region delimited by the inequalities ηq +
αq,u(q) > 0, ηq+1 + αq+1,1 < 0. Assume also that ∆t

τ is different from ∆t
m and ∆t

0

(these will be studied later on). The associated vertex τ̄ of Γ(h) gives a convex cone
∆τ̄ delimited by the inequalities ηq > 0, ηq+1 < 0. Thus the monomial x̄αz̄n appears
in the sum defining h. Moreover if k ∈ ∆τ̄ and k(ϕ) = k then ord(h◦ϕ) = nτ (k)+
N(k). As in lemma 4.13, L−m(k)µX(V k

nτ (k)+N(k),m(k)) = L−(d+1)(L−1)d+1L−σω̄(k).

In this case we can be more explicit in equality (4.8) because [∆c,0
ηq+1

]− [∆c,0
ηq

] =
[∆τ̄q

]+[∆γ̄q
], see equation (3.10). Moreover both generating functions are evaluated

at the same value y := (L−ν1Tα1 , . . . ,L−νdTαd ,L−1Tn). Thus

Z
∆t

τ ,W
DL (T ) = T δ(L−1)d+1L−(d+1)

Φ∆τ̄q
(y) +

∑
0<α≤α2

Φ∆α
ηq+1

(y)−
∑

0≤α<α1

Φ∆α
ηq

(y)

 .

Lemma 4.15. For each ∆t
τ of type N its contribution to the topological zeta

function is χtop(Z∆t
τ ,W

DL (ht, ω,L−s)) = χtop(Z τ̄
DL(h, ω̄,L−s)).
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Proof. The proof follows directly first from the description in equation (4.9)
and the fact that in the denominator of any Φ∆α

η
(y) there are at most d factors. �

Remark 4.16. This fact will be used for both theorems 4.3 and 4.9.

The indicator function [∆t
0] for the first convex rational polyhedron ∆t

0 =
{η1 + α1,1 < 0} also satisfies the identity [∆t

0] = [∆c,0
η1

] −
∑

0<α≤α1,1
[∆α

η1
]. In

particular one has for this convex polyhedron a lemma similar to Lemma 4.15 too.
For the last convex rational polyhedron ∆t

m = {ηr + αr,u(r) > 0}, [∆t
m] =

[∆c,0
ηr

] +
∑

0≤α<αr,u(r)
[∆α

ηr
]. Thus

(4.10)

Z
∆t

m,W
DL (ht, ω, T ) = T δ(L− 1)d+1L−(d+1)

Φ∆τ̄r
(y) +

∑
0≤α<αr,u(r)

Φ∆α
ηr

(y)

 .

And again one gets for this polyhedron a lemma similar to Lemma 4.15.
If the convex rational polyhedron ∆t

τ is of type M limited by two parallel
hyperplanes, say for instance ltq,j and ltq,j+1, then ∆t

τ also comes from a vertex, say
tδxαzn. Consider γ̄q the corresponding compact face of Γ(h) such that it defines
lq in the dual. One of the vertices of γ̄q has to be x̄αz̄n because it is connected
with one of the vertices of type N. We have already mentioned that [∆t

τ ∩ Pd+1] is∑
αq,j+1<α<αq,j

[∆α
ηq

]. Then

(4.11) Z
∆t

τ ,W
DL (ht, ω, T ) = T δ(L− 1)d+1L−(d+1)

 ∑
αq,j+1<α<αq,j

Φ∆α
ηq

(y)

 ,

where y := (L−ν1Tα1 , . . . ,L−νdTαd ,L−1Tn). We observe that (α1, . . . , αd, n) also
belongs to the closure of γ̄q. Therefore using identity (4.9) we have proved the next
proposition.

Proposition 4.17. If ∆t
τ is of type M , then χtop(Z∆t

τ ,W
DL (ht, ω,L−s)) = 0.

We summarize the previous results and we collect also the information about
the denominators of the partial motivic zeta functions, using the above arguments
and the description of the corresponding cones given in Lemmas 3.14, 3.15 and 3.16.

Proposition 4.18. For each vertex τ̄ ∈ Γ(h) and each of the vertices ∆t
τ of type

M or N of Γt(ht), the functions Z∆t
τ ,W

DL (ht, ω, T ) and Z τ̄
DL(h, ω̄, T ) belong to the

subring Z[L,L−1, (1−L−1T )−1, (1−L−σω(wq
j )Tmh(wq

j ))−1, (1−L−νiTNi)−1][T ], j, i ∈
{1, . . . , d}, and q = 1, . . . , r.

There is a one-to-one correspondence between elements of type N and vertices
of Γ(h). If ∆t

τ is of type N and under this bijection corresponds with τ̄ ∈ Γ(h) then
χtop(Z∆t

τ ,W
DL (ht, ω,L−s)) = χtop(Z τ̄

DL(h, ω̄,L−s)).

Moreover, if ∆t
τ is of type M then χtop(Z∆t

τ ,W
DL (ht, ω,L−s)) = 0.

Proof of Lemma 4.14. Let h ∈ Hα
q ∩ Zd+1, and let g ∈ Gq. Write

h + g = (h1, h2, ..., hd, hd+1).

Using the division algorithm, for l = 1, ..., d+1, we decompose hl = slp
q
l +rl, where

sl ∈ Z and 0 < rl ≤ pq
l . Since h ∈ Hα

q and g ∈ lq, then h + g ∈ Hα
q . This implies
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that
d∑

l=1

bql rl + α = hd+1n
q
1 −

d∑
l=1

bql slp
q
l = (hd+1 −

d∑
l=1

b̄ql sl)n
q
l , i.e. hd+1 −

d∑
l=1

b̄ql sl ∈ P.

Let us denote

h1
g = (r1, ..., rd, hd+1 −

d∑
l=1

b̄ql sl) ∈ Hα
q ∩ Pd+1.

We have h + g = h1
g + s1w

q
1 + · · ·+ sdw

q
d.

Let h′ ∈ Hα
q ∩ Pd+1. Then h′ − h ∈ lq ∩ Zd+1. There exist g ∈ Gq and

(u1, ..., ud) ∈ Zd such that

h′ = h + g + u1w
q
1 + · · ·+ udw

q
d, i.e. h′ = h1

g +
d∑

l=1

(ul − sl)w
q
l .

If h′ = (h′1, . . . , h
′
d, h

′
d+1) then, for l = 1, ..., d, we have h′l = rl + (ul − sl)p

q
l .

Since h′l ∈ P and 0 < rl ≤ pq
l , then (ul − sl) ∈ N. We define

(4.12) Gq,α := {h1
g | g ∈ Gq}.

We have proved that Hα
q ∩ Nd+1

>0 = Gq,α + Nwq
1 + · · ·+ Nwq

d.
It is enough to prove that Gq and Gq,α are bijective. Now let us suppose that

h1
g = h1

g′ for some g,g′ ∈ Gq. We can write:

h + g = h1
g +

d∑
l=1

slw
q
l and h + g′ = h1

g′ +
d∑

l=1

s′lw
q
l .

We have g − g′ =
∑d

l=1(sl − s′l)w
q
l ∈ lq ∩ Zd+1. Since the elements of this set can

be written in a unique form as elements of Gq + Zwq
1 + · · ·+ Zwq

d then g = g′. �

2. Edges of the Newton polytope

We now deal with edges. Consider the edges γ̄1, . . . , γ̄r of Γ(h). Fix q = 1, . . . , r.
Since fλq

=
∏v(q)

j̄=1
(znq

1 − β̄q
j̄
xnq

1λq )mq,j is the quasihomogeneous part of f corre-

sponding to this face, [Nγ̄q
] = [Gd+1

m,k ∩ {fλq
= 0}] = v(q)(L − 1)d, see Remark

3.19.
In Step 5, for each j ∈ {1, . . . , u(q)}, the polynomial f̂ t

q,j :=
∏w(q,j)

w=1 ((znq
1)sq,j

1 −
βwt

αq,j (xnq
1λκ,q )sq,j

1 )mq,j,w was defined. This polynomial is associated with a region
Mq,j

t which is contained in a hyperplane parallel to lq. Next result is trivial because
under the hypothesis of the proposition there are no points with positive integer
coordinates in Mq,j

t .

Proposition 4.19. If sq,j
1 > 1 then Mq,j

t ∩Nd+1 = ∅ and ZMq,j
t ,W

DL (ht, ω, T ) =
0.

From now on we will suppose sq,j
1 = 1. Because of this proposition we cannot state

the equality for the topological zeta function in Theorem 4.3. For the other edges,
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following the notation in §2 we break the sets of arcs in A- and B-parts. We will
consider,

f̂ t
q,j|t=1 :=

w(q,j)∏
w=1

(znq
1 − βwxnq

1λκ,q )mq,j,w .

Remark 4.20. Observe that for W̃-quasi-ordinary and Newton compatible se-
ries, for each q we have u(q) = 1. The extra hypothesis sq,j

1 = 1 is fulfilled by
W̃-quasi-ordinary and Newton compatible series and this is why equality for topo-
logical zeta functions may be obtained in Theorem 4.9.

Step 6. Edges in the A-part.

Take a convex rational cone ∆t
q,j corresponding to an edge. We decompose its

contribution into two disjoint parts as in the non-degenerate case. Given k ∈ ∆t
q,j ,

we set:

V k,t
n,A,m := {ϕ ∈ L0(X) \ L0(S) :

k(ϕ) = k, ord(ht ◦ϕ) = n+ θ, ord(
d∏

j=1

x̄
νj−1
j ◦ϕ) = m, f̂ t

q,j|t=1(a(ϕ)) 6= 0}.

These semialgebraic subsets are empty unless m = m(k) and n = ηq(k) + αq,j +
N(k). In particular [Gd+1

m,k ∩ {f̂ t
q,j|t=1 = 0}] = w(q, j)(L − 1)d ∈ K0(Vark), see

Remark 3.19.
Let us (re)define

ZWq,j,A(ht, ω, T ) :=
∑

k∈∆t
q,j

L−m(k)µX(V k,t
n̂q(k)+αq,j+N(k),A,m(k))T

ηq(k)+αq,j+N(k).

In the same way, given k ∈ ∆γ̄q we set:

V k
n,A,m := {ϕ ∈ L0(X) \ L0(S) :

k(ϕ) = k, ord(h ◦ϕ) = n, ord(
d∏

j=1

x
νj−1
j ◦ϕ) = m, fλκ,q

(a(ϕ)) 6= 0}.

Again the semialgebraic subsets are empty unless m = m(k) and n = ηq(k)+N(k).
We recall that

Zγ̄q,A(h, ω̄, T ) =
∑

k∈∆γ̄q

L−m(k)µX(V k
n̂q(k)+N(k),A,m(k))T

ηq(k)+N(k).

Lemma 4.21. For each q = 1, . . . , r, j = 1, . . . , u(q), the functions ZWq,j,A(ht, ω, T )
and Zγ̄q,A(h, ω̄, T ) belong to the subring Z[L,L−1, (1−L−σω(wq

l )Tmh(wq
l ))−1][T ], l =

1, . . . , d. Moreover, the following equality holds:
u(q)∑
j=1

χtop(ZWq,j,A(ht, ω,L−s)) = χtop(Zγ̄q,A(h, ω̄,L−s)).

Proof. We can follow the proofs of Theorem 2.4, Lemma 4.13 and Lemma
4.15. Since we are in the A-part of the decomposition, the measure of the sets
V k

ηq(k)+N(k),A,m(k) and V k,t
ηq(k)+αq,j+N(k),A,m(k) can be explicitly computed. Since ht
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and h have the same characteristic exponents then the Newton polyhedra ΓK(ht)
and Γ(h) coincide and we get a sum as (4.11) but with only one α = αq,j . Then

(4.13) ZWq,j,A(ht, ω, T ) = L−(d+1)
(
(L− 1)d+1 − w(q, j)(L− 1)d

)
Tαq,j Φ

∆
αq,j
ηq

(y),

where y := (L−ν1Tα1 , . . . ,L−νdTαd ,L−1Tn) and (α1, . . . , αd, n) is an element in
the closure of γ̄. In the same way

Zγ̄q,A(h, ω̄, T ) = L−(d+1)
(
(L− 1)d+1 − v(q)(L− 1)d

)
Φ

∆
αq,j
ηq

(y).

Since there is a bijection between the sets Gq and Gq,αq,j and v(q) =
∑
w(q, j) for

j = 1, . . . , u(q) then taking the usual Euler characteristic the lemma is proved. �

To sum up we collect the A-part in the arc decomposition as follows:

ZA
DL(h, ω̄, T ) =

∑
τ̄ vertex

Z τ̄
DL(h, w̄, T ) +

r∑
q=1

Zγ̄q,A(h, ω̄, T ),

ZWA (ht, ω, T ) :=
∑

∆t
τ vertex

Z
∆t

τ ,W
DL (ht, ω, T ) +

r∑
q=1

u(q)∑
j=1

ZWq,j,A(ht, ω, T ).

(4.14)

Remark 4.22. Up to now we have proved two facts:
• For a W-quasi-ordinary power series the denominators of the A-part of

the motivic zeta function are controlled.
• For a W̃-quasi-ordinary power series which is Newton compatible, identity

(3.16) also holds.
We need to replace k by k[[t]] because of the computations of the B-part. Observe
that in the B-part there are no vertices.

Step 7. Edges in the B-part.

Given k ∈ ∆t
q,j , consider the semialgebraic subsets

V k,t
n,B,m := {ϕ ∈ L0(X) \ L0(S) :

k(ϕ) = k, ord(ht ◦ϕ) = n+ θ, ord(
d∏

j=1

x̄
νj−1
j ◦ϕ) = m, f̂ t

q,j|t=1(a(ϕ)) = 0}.

If k ∈ ∆γ̄q we define V k
n,B,m in the same way. We have to compute ZWq,j,B(ht, ω, T )

and Zγ̄q,B(h, ω̄, T ) which have obvious definitions.
The sets ∆γ̄q ∩ Pd+1, resp. ∆t

q,j ∩ Pd+1, are the disjoint unions of the sets
g + wq

1N + . . .+ wq
dN where g ∈ Gq, resp. g ∈ Gq,αq,j . Accordingly, we define the

sets
V

γ̄q,g
n,B,m :=

⋃
k∈g+wq

1N+...+wq
dN

V k
n,B,m, g ∈ Gq,

and
V q,j,g,t

n,B,m :=
⋃

k∈g+wq
1N+...+wq

dN

V k,t
n,B,m, g ∈ Gq,αq,j .

Let ϕ ∈ V
γ̄q,g
n,B,m, with g ∈ Gq; this arc is related to exactly one Newton

component of f , see Section 3.4. There is a unique j̄ = 1, . . . , v(q) such that
a(ϕ) ∈ Gd+1

m,k belongs to the zero locus V q
j̄
⊂ Ad+1

k of the quasi-ordinary polyno-

mial fq,j = znq
1 − β̄q

j̄
xnq

1λq .



52 4. DENEF-LOESER MOTIVIC ZETA FUNCTION UNDER THE NEWTON MAPS

Remark 4.23. Let Jq be the subset of {1, . . . , d} of the non-zero coordinates
of λq. It may happen that Jq $ {1, . . . , d}. For the sake of simplicity we suppose
that there is equality and we will point out where the non-equality may appear.

We decompose the set V γ̄q,g
n,B,m in v(q) disjoint sets according to this property:

V
γ̄q,g
n,B,m =

v(q)⋃
j̄=1

V
γ̄q,g,j̄
n,B,m .

In the same way the sets V t,q,j,g,w
n,B,m , w = 1, . . . , w(q, j), are defined. It is also

possible to decompose

V
γ̄q,g,j̄
n,B,m =

⋃
r:=(r1,...,rd)∈Nd

V
γ̄q,g,j,r
n,B,m ,

where V γ̄q,g,j̄,r
n,B,m := {ϕ ∈ V γ̄q,g,j̄

n,B,m : k(ϕ) = g + r1w
q
1 + . . .+ rdw

q
d }, and consider in

the same way V t,q,j,g,w,r
n,B,m . Define

Z γ̄q,g,j̄,r(T ) :=
∑
n≥1

∑
m≥1

L−mµX(V γ̄q,g,j̄,r
n,B,m )

Tn,

and also ZW,g,w,r
q,j (T ). We define Z γ̄q,g,j(T ) :=

∑
r∈Nd Z γ̄q,g,j̄,r(T ) and the corre-

sponding ZW,g,w
q,j (T ); then we have the decompositions:

ZWDL(ht, ω, T ) = ZWA (ht, ω, T ) +
r∑

q=1

u(q)∑
j=1

∑
g∈Gq,αq,j

w(q,j)∑
w=1

ZW,g,w
q,j (T )

ZDL(h, ω̄, T ) = ZA
DL(h, ω̄, T ) +

r∑
q=1

∑
g∈Gq

v(q)∑
j̄=1

Z γ̄q,g,j̄(T ),

(4.15)

where v(q) =
∑u(q)

j=1 w(q, j). Using Proposition 4.18 and Lemma 4.21 we have proved
that ZWA (ht, ω, T ) satisfies Theorems 4.3 and 4.9 in their respective cases. Then we
have to prove them for arcs in the B-part of the decomposition. In particular we
will describe in the following steps the computations in the identities of (4.15).

Step 8. Computations for h and g = g1 := wq
1 + . . . + wq

d ∈ Gq, and j̄ =
1, . . . , v(q).

We use the notation of Section 3.4. To compute Z γ̄q,g1,j̄,r(T ), for r ∈ Nd, then
k = (r1+1)wq

1+. . .+(rd+1)wq
d has coordinates kl = (rl+1)pq

l with l = 1, . . . , d, and

kd+1 =
∑d

l=1(rl+1)b̄ql . If ϕ satisfies that k(ϕ) = k then mk := ord(
d∏

j=1

x̄
νj−1
j ◦ϕ) =∑d

l=1(rl + 1)pq
l (νl − 1). Therefore mk is the unique value of m for which V γ̄q,g1,j̄,r

n,B,m

may be non-empty. Hence

Z γ̄q,g1,j̄,r(T ) =
∑
n≥1

L−mkµX(V γ̄q,g1,j̄,r
n,B,mk

)Tn.

Fix the parametrization πq
j̄

: Ad
k → V q

j̄
as in Section 3.4. Take ϕ ∈ V

γ̄q,g1,j̄,r
n,B,mk

and
the unique s0 ∈ Gd

m,k such that πq
j̄
(s0) = a(ϕ). The idea is to lift ϕ to an affine
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space Y := Ad+1
k with coordinates (y, z1) using the Newton map πq,j̄ associated

with fq
j̄
.

This Newton map defines a k[t]-morphism πq,j̄ : L(Y ) → L(X) (in fact nothing
is done on the variable t). We can apply to πq,j̄ the change of variables formula,
see Theorem 1.2.

For l = 1, . . . , d, the l-th component of ϕ is ϕl(t) = t(rl+1)pq
l vl(t), where vl(t) ∈

k[[t]] such that vl(0) = (s0l )
pq

l . There exists a unique wl(t) ∈ k[[t]] such that
wl(0) = s0l and wl(t)pq

l = vl(t). If ψl(t) := t(rl+1)wl(t) then

ϕd+1(t) = t(r1+1)b̄q
1+...+(rd+1)b̄q

dvd+1(t) and vd+1(0) =
d∏

l=1

(s0l )
b̄q

l .

The identity

t(r1+1)b̄q
1+...+(rd+1)b̄q

dvd+1(t) =(ψd+1(t) + β̄q
j̄
)ψ1(t)b̄q

1 . . . ψd(t)b̄q
d =

=(ψd+1(t) + β̄q
j̄
)t(r1+1)b̄q

1+...+(rd+1)b̄q
dw1(t)b̄q

1 . . . wd(t)b̄q
d

completely determines a series ψd+1(t) such that ψd+1(0) = 0. So there is a unique
ψ := (ψ1, . . . , ψd, ψd+1) ∈ L0(Y ) such that πq,j̄(ψ) = ϕ.

Moreover, if h̄q,j̄ := h ◦ πq,j̄ , we denote by Br
n,mk

the set of arcs ψ ∈ L0(Y )
such that

• ord(h̄q,j̄ ◦ψ) = n,

• ord(
d∏

j=1

x
νj−1
j ◦ πq,j̄ ◦ψ) = mk =

∑d
l=1(rl + 1)pq

l (νl − 1),

• if k(ψ) = (k̃1, . . . , k̃d, k̃d+1) then k̃l = rl + 1, for l = 1, . . . , d.

Then πq,j̄ defines a bijection between Br
n,mk

and V γ̄q,g1,j̄,r
n,B,mk

. The order of the Jaco-
bian of the k[t]-morphism πq,j̄ is constant on Br

n,mk
and equals to:

ordt(Jπq,j̄
) =

d∑
l=1

(rl + 1)(pq
l + b̄ql − 1).

The set Br
n,mk

is strongly measurable in L(Y ). Hence V γ̄q,g1,j̄,r
n,B,mk

, its bijective image
by πq,j̄ , is also strongly measurable in L(X), [18, Theorem A.8]. To measure

V
γ̄q,g1,j̄,r
n,B,mk

the change variables formula gives

µX(V γ̄q,g1,j̄,r
n,B,mk

) =
∫

V
γ̄q,g1,j̄,r

n,B,mk

dµX =
∫

Br
n,mk

L−ordtJπq,j̄
(y)
dµY .

If ω̂1 is the pullback by πq,j̄ of the differential form dx̄1 ∧ · · · ∧ dx̄d ∧ dz̄ then the

measure µX(V γ̄q,g1,j̄,r
n,B,mk

) is equal to∑
k∈P

L−kµY (Br
n,mk

∩ {ordt(ω̂1) = k})=L−
Pd

l=1(rl+1)(pq
l +b̄q

l−1)µY (Br
n,mk

).

Putting all these terms together

Z γ̄q,g1,j̄,r(T ) =
∑
n≥1

L−mk−
Pd

l=1(rl+1)(pq
l +b̄q

l−1)µY (Br
n,mk

)Tn

=
∑
n≥1

L−
Pd

l=1(rl+1)(pq
l νl+b̄q

l−1)µY (Br
n,mk

)Tn.
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The pull-back ωq,j̄ := ω̄◦πq,j̄ of ω̄ under πq,j̄ is ωq,j̄ =
d∏

l=1

ȳl
(pq

l νl+b̄q
l−1)dȳ1∧dȳd∧dz1.

In particular ordt(
d∏

l=1

ȳl
(pq

l νl+b̄q
l−1) ◦ ψ) =

d∑
l=1

(rl + 1)(pq
l νl + b̄ql − 1) for every arc

ψ ∈ Br
n,mk

. If m̃k := ordt(
d∏

l=1

ȳl
(pq

l νl+b̄q
l−1) ◦ψ) then

Z γ̄q,g1,j̄,r(T ) =
∑
n≥1

L−m̃kµY (Br
n,mk

)Tn.

The sets Br
n,m are empty if m 6= m̃k so for all j̄ = 1, . . . , v(q)

(4.16) Z γ̄q,g1,j̄(T ) =
∑
r∈Nd

∑
n≥1

L−m̃kµY (Br
n,mk

)Tn = ZDL(h̄q,j̄ , ωq,j̄ , T ).

Remark 4.24. If h has ev(h) = 1, no more steps are needed to get a formula
for ZDL(h, ω, T ), see Corollary 5.2. This happens because each fundamental set Gq

has only one element.

Step 9. Computations for ht, g ∈ Gq,αq,j and w = 1, . . . , w(q, j).

By the proof of Lemma 4.14, and more precisely by identity (4.12), one can
write g = (0,

αq,j

nq
1

) +
∑d

l=1 µ
g
l w

q
l . Thus

g = (µg
1p

q
1, . . . , µ

g
dp

q
d,
αq

nq
1

+
d∑

l=1

µg
l b̄

q
l ) ∈ Pd+1.

By definition of Gq,αq,j , 0 < µg
l ≤ 1 is rational. Choose v1, . . . , vd ∈ P such that

µg
l =

vl

pq
l

, l = 1, . . . , d and let cg ∈ P the (d+ 1)th-coordinate of g.

Fix r ∈ Nd. Let ϕ ∈ V t,q,j,g,w,r
n,B,m = {ϕ ∈ V t,q,j,g

n,B,m : k(ϕ) = g+r1w1+ . . .+rdwd}
be an arc and denote:

• k := k(ϕ) =

(
(µg

1 + r1)p
q
1, . . . , (µ

g
d + rd)p

q
d,
αq,j

nq
1

+
d∑

l=1

(µg
l + rl)b̄

q
l

)
.

• a := a(ϕ) ∈ Gd+1
m,k ∩ {f̂

t,w
q,j = 0}, where f̂ t,w

q,j = znq
1 − βwxnq

1λκq . Consider

a = πq,w
j (s0), s0 ∈ Gd

m,k with the fixed parametrization of {f̂ t,w
q,j = 0} induced by

πq,w
j : Ad

k → Gd+1
m,k ∩ {f̂

t,w
q,j = 0}: (s1, . . . , sd) 7→ (spq

1
1 , . . . , s

pq
d

d , αws
b̄q
1

1 . . . s
b̄q

d

d ) where
(αw)nq

1 = βw.

For each ϕ with k(ϕ) = k thenmk := ord(
d∏

j=1

x
νj−1
j ◦ϕ) =

d∑
l=1

(rl+µ
g
l )pq

l (νl−1).

Since mk is the unique value of m for which V t,q,j,g,w,r
n,B,m may be non-empty then

ZW,g,w
q,j (T ) =

∑
r∈Nd

ZW,g,w,r
q,j (T ) =

∑
r∈Nd

L−mkµX(V t,q,j,g,w,r
n,B,mk

)Tn.

Let Y = Ad+1
k and let πg : L(Y ) → L(X) be the k[t]-morphism defined by

xl = tvlyl, for every l = 1, . . . , d, and z = tc
g

z1.

Lemma 4.25. Under the above conditions:
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(1) The map πg defines a k[t]-morphism.

(2) The Jacobian of πg has constant order νg := ordt(Jπg) =
d∑

l=1

vl +cg on the arcs

of L(Y ).
(3) The K-quasi-ordinary function h{t} := ht ◦ πg has the same characteristic

exponents (and monomials) as ht, and consequently the same as h (this follows
directly from Remark 3.35).

Recall that ht = tθxN1
1 xN2

2 . . . xNd

d f t(x, z)ut(x, z) but we are assuming for sim-
plicity that θ = 0. Then h{t} = tÃgyN1

1 . . . yNd

d f{t}(y, z1)u{t}(y, z1).
Fix r ∈ Nd, and take an arc ϕ ∈ V t,q,j,g,w,r

n,B,mk
. There exists a unique arc ψ ∈ L(Y )

such that ϕ = πg ◦ψ. Properties of ψ will depend on r:
(2.a) r ∈ Pd; in this case ψ ∈ L0(Y ), a(ψ) = a and

k(ψ) =

(
r1p

q
1, . . . , rdp

q
d,

d∑
l=1

rlb̄
q
l

)
.

(2.b) r ∈ Nd \ Pd; in this case ψ ∈ L(y,0)(Y ). More precisely; let Jr $ {1, . . . , d}
be the set of indices such that rl = 0 ⇔ l ∈ Jr; we observe that ∅ 6= Jr $
{1, . . . , d}. The point y corresponds to (y1, . . . , yd) where yl = (s0l )

pq
l if l ∈ Jr

and yl = 0 otherwise. We include in this case the case where r = 0 ∈ Nd and
J = {1, . . . , d}.

Remark 4.26. Note that in fact J ⊂ Jq, see Remark 4.23.

Decompose ZW,g,w
q,j (T ) = ZW,g,w

1,q,j (T ) +
∑

∅$J⊂{1,...,d}

ZW,g,w
J,q,j (T ), where

ZW,g,w
1,q,j (T ) :=

∑
r∈Pd

∑
n≥1

L−mkµX(V t,q,j,g,w,r
n,B,mk

)Tn

and
ZW,g,w

J,q,j (T ) :=
∑

r∈Nd:J=Jr

∑
n≥1

L−mkµX(V t,q,j,g,w,r
n,B,mk

)Tn.

Define ω{t}g := π∗gω and for r ∈ Pd denote by W t,q,j,g,w,r
n,B,mk

the semialgebraic
subset of arcs ψ ∈ L0(Y ) such that:

• ord(h{t} ◦ ψ) = n + θ (but θ = 0 for simplicity). If n′ := n − Ãg then
ord(h{t} ◦ψ) = n′ + Ãg.

• k(ψ) = (r1p
q
1, . . . , rdp

q
d,

d∑
l=1

rlb̄
q
l ).

• ord(
d∏

j=1

x
νj−1
j ◦ πg ◦ ψ) = mk. The differential form ω

{t}
g is defined as

tAgωg where ωg :=
d∏

l=1

yνl−1
l dy ∧ dz1 and Ag :=

d∑
l=1

vl(νl − 1). If m̃k :=

ord(
d∏

l=1

yνl−1
l ◦ψ) then mk = m̃k +Ag and

νg +Ag =
αq

nq
1

+
d∑

l=1

µg
l (pq

l νl + b̄ql ).
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The map πg induces a bijection between the sets V t,q,j,g,w,r
n,B,mk

and W t,q,j,g,w,r
n,B,mk

.
Since µX(V t,q,j,g,w,r

n,B,mk
) = L−νgµY (W t,q,j,g,w,r

n,B,mk
), applying the change of variables for-

mula to πg we have

ZW,g,w
1,q,j (T ) =

∑
r∈Pd

∑
n≥1

L−mk−νgµY (W t,q,j,g,w,r
n,B,mk

)Tn

=
∑
r∈Pd

∑
n≥1

L−νg−Ag−ordt(ωg)µY (W t,q,j,g,w,r
n,B,mk

)Tn

=L−(νg+Ag)
∑
r∈Pd

∑
n≥1

L−m̃kµY (W t,q,j,g1,w,r
n,B,m̃k

)Tn

=L−(νg+Ag)
∑
r∈Pd

T Ãg

∑
n′≥1

L−m̃kµY (W t,q,j,g1,w,r
n,B,m̃k

)Tn′ .

(4.17)

Consider the following Newton map associated with the Newton component of
ht (as a K-quasi-ordinary power series) we are dealing with. Its Newton polyhedron
is defined by znq

1−βq
j,w(t)xbq

1
1 . . . x

bq
d

d , where βq
j,w(t) = βwt

αq,j +higher order terms ∈
k[[t]] and βw ∈ Gm,k. We can write βq

j,w(t) = tαq,jα(t) with α(t) = (αw + . . .)nq
1 ∈

k[[t]] because (αw)nq
1 = βw.

Let πq,w
j,t be the k[[t]]-morphism associated to the transformation yl = ỹ

pq
l

l for

all i = 1, . . . , d and z1 = (z2 + α(t))
d∏

l=1

ỹ
b̄q

l

l . Recall the change of variables formula

is also applied here, see Remark 1.4.
Taking into account the pull-back of the discriminants and applying the same

proof as in Step 8, the following proposition follows.

Proposition 4.27. Let ht
q,j,g,w := h{t} ◦ πq,w

j,t = ht ◦ πg ◦ πq,w
j,t and ω̃q,j,g,w =

(πq,w
j,t )∗ωg. Then:

(1) The series ht
q,j,g,w is W-quasi-ordinary and its depth is strictly less than that

of ht. We have

(4.18) ZW,g,w
1,q,j (T ) = L−(νg+Ag)ZWDL(ht

q,j,g,w, ω̃q,j,g,w, T ).

(2) If ht is W̃-quasi-ordinary and Newton compatible then there exists a weight W̃ ′

such that ht
q,j,g,w is W̃ ′-quasi-ordinary and Newton compatible.

(3) The series ht
q,j,g,w is Jq-bounded, see Remark 4.23.

Remark 4.28. In the identity (4.18) we recall the definition (4.4) of the zeta
function ZWDL(ht

q,j,g,w, ω̃q,j,g,w, T ):

T Ãg

∑
n′∈N

(∑
m∈N

L−mµ(V t
n,m)

)
Tn′ .

Proof. The only non trivial facts are the two last ones. It is easy to prove
from the Newton map that ht

q,j,g,w is W̃ ′-quasi-ordinary, where

W̃ ′ := (pnq
1; (pv1 + g1)c

q
1, . . . , (pvd + gd)c

q
d).



2. EDGES OF THE NEWTON POLYTOPE 57

This is due to the following equalities:

αq,j =
1
p

d∑
l=1

bql gl, cg =
αq,j

nq
1

+
d∑

l=1

vl

pq
l

b̄ql =
αq,j

nq
1

+
d∑

l=1

vl

nq
1

bql =
1
nq

1

d∑
l=1

(vl +
gl

p
)bql .

The W̃ ′ depends only on W̃ and on the Newton map. This implies that we can
choose a generic W̃-quasi-ordinary series h̃t with the same characteristic monomials
and then Newton compatible. Then, h̃t

q,j,g,w is also W̃ ′-quasi-ordinary. If we pass
to good coordinates the weight W̃ ′ remains and both power series have the same
Newton polyhedron. For h̃t

q,j,g,w all the coefficients in its restriction to the Newton
polyhedron will be non zero and it is easily seen that it implies that h̃t

q,j,g,w is
Newton compatible and it is also the case for ht

q,j,g,w.
The fact that ht

q,j,g,w is Jq-bounded follows from the behavior of the t-morphism
πg; note that each variable of Jq is replaced by this variable times a power of t;
then for a fixed power of t only a finite number of monomials in t and the variables
of Jq can contribute. �

Consider now arcs in Case (2.b). Let ∅ ( J ⊂ {1, . . . , d}; in fact, from Re-
mark 4.26, we are only interested in the case ∅ ( J ⊂ Jq. Let us fix a point (y, 0)
corresponding to the subset J . Since ht

q,j,g,w is W-quasi-ordinary J-bounded power
series the germ of ht

q,j,g,w at (y, 0) is also a W-quasi-ordinary power series, see Re-
mark 4.2. We can indeed evaluate at (y, 0) because the coefficients of its monomials
in t belong to k[ỹ, z]. Since ht

q,j,g,w is W-quasi-ordinary its discriminant is com-
puted from the pull-back of Dz(ht) = tβxα1

1 . . . xαd

d ε(x, t) where ε(0, 0) 6= 0. Since
g ∈ Pd+1 then ε̃ := ε ◦ πg ◦ πq,w

t,j (ỹ, t) also satisfies ε̃(0, 0) 6= 0. The characteristic
exponents do not depend on the particular y but only on J and the depth has
decreased. Namely, by induction ZWDL((ht

q,j,g,w)(y,0), (ω̃q,j,g,w)(y,0), T ) satisfies the
theorem. Observe also that the variety of such y’s is G#J

m,k.

Proposition 4.29. The following equality holds:

(4.19) ZW,g,w
J,q,j (T ) = (L− 1)#JL−(νg+Ag)ZWDL((ht

q,j,g,w)(y,0), (ω̃q,j,g,w)(y,0), T ),

where (y,0) means the germ at this point.

Proof. This result is a consequence of Proposition 4.35. �

Remark 4.30. We note that (ht
q,j,g,w)(y,0) is a W-quasi-ordinary series in good

coordinates but its depth is strictly less than depth(ht
q,j,g,w). Moreover its Newton

polyhedron is obtained by projecting the Newton polyhedron of ht
q,j,g,w on the

corresponding coordinate planes.

Step 10. Computations for h and g = µg
1w

q
1 + . . . + µg

dw
q
d ∈ Gq such that

0 < µg
l < 1 for some l ∈ {1, . . . , d}.

This case can be computed as in Step 9 since we may consider h as W̃-quasi-
ordinary where W̃ = (1; 0, . . . , 0).

We are going to collect all the results in this section to compare motivic zeta
functions for the functions ht and h in order to obtain recurrence formulæ.
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By the identities in (4.15),

ZWDL(ht, ω, T ) = ZWA (ht, ω, T )+

+
r∑

q=1

u(q)∑
j=1

sj,q
1 =1

 ∑
g∈Gq,αq,j

L−(νg+Ag)(
w(q,j)∑
w=1

(ZWDL(ht
q,j,g,w, ω̃

t
q,j,g,w, T )+

+
∑

∅(J⊂{1,...,d}

(L− 1)#JZWDL((ht
q,j,g,w)(y,0), (ω̃q,j,g,w)(y,0), T ) ) )

 ,

(4.20)

where νg + Ag = αq,j

nq
1

+
d∑

l=1

µg
l (pq

l νl + b̄ql ). In the same way the following identities

hold

ZDL(h, ω̄, T ) = ZA
DL(h, ω̄, T ) +

r∑
q=1

v(q)∑
j̄=1

(ZDL(h̄q,j̄ , ω̄q,j̄ , T )

+
∑

g∈Gq,g 6=g1

(L−(νg+Ag)(ZWDL(h̃t
q,g,j̄ , ω̃q,g,j̄ , T )+

+
∑

∅(J⊂{1,...,d}

(L− 1)#JZWDL((h̃t
q,g,j̄)(y,0), (ω̃q,g,j̄)(y,0), T ) ) ) ).

(4.21)

where v(q) =
u(q)∑
j=1

w(q, j) and νg +Ag =
d∑

l=1

µg
l (pq

l νl + b̄ql ).

Proof of Theorem 4.3. The starting point of the induction has been done
in Step 1.

Let us attack the general case. Since ht and h (as K-quasi-ordinary power
series) have the same characteristic exponents then by Lemma 3.34 there exist one-
to-one correspondences between the sets of faces of their Newton polyhedra and
their sets of roots on such faces for ht and h. Assume that under these bijections
the root βq

j,w(t), where sq,j
1 = 1, corresponds to β̄q

j̄
, namely the polynomial znq

1 −

βq
j,w(t)xbq

1
1 . . . x

bq
d

d corresponds to z̄nq
1 − β̄q

j̄
x̄

bq
1

1 . . . x̄
bq

d

d . Let ht
β and h̄q,j̄ denote the

pull-back of ht and h under the corresponding Newton maps associated with the
roots βq

j,w(t) and β̄q
j̄
.

(1) By Lemma 3.34, the characteristic exponents of ht
β and h̄q,j̄ are equal.

(2) For each g ∈ Gq (resp. g ∈ Gq,αq,j ) the K-quasi-ordinary power series
h ◦ πg (resp. ht ◦ πg) has the same characteristic exponents as h (resp.
ht). This is Remark 3.35.

(3) Applying (1) and (2) for each g ∈ Gq \ {g1}, then h̃q,g,j̄ has the same
characteristic exponents as h̄q,j̄ (recall that h̄q,j̄ is obtained in Step 8).

(4) In the same way, for each g ∈ Gq,αq,j , ht
q,j,g,w has the same characteristic

exponents as ht
β which has the same as h̄q,j̄ . In all these cases, the depths

of all these quasi-ordinary power series are smaller than depth(h). In
particular we can follow by induction.
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(5) For the statement of the Theorem the terms L−ν are not essential then
we have that

ZWDL(h̃t
q,g,j̄ , ω̃q,g,j̄ , T ) ∈ Z[L,L−1, (1− L−νTN )−1][T ],

where (N, ν) ∈ CP (h̄q,j̄ , ω̄q,j̄).
�

Proof of Theorem 4.9. The starting point of the induction was done in
Step 1.

For the general case we consider the formulæ (4.20) and (4.21). In this case the
restriction sj,q

1 = 1 is empty and the series appearing in the second line of (4.20) are
W̃

′
-quasi-ordinary for some weights and they have depth less than h. The series in

the third line are only W-quasi-ordinary.
Because of Theorem 4.3 we can compute χtop(•, (L−s)) for each term. For the

second line terms we deduce by induction that

χtop(L−(νg+Ag)ZWDL(ht
q,j,g,w, ω̃q,j,g,w, (L−s))) = Ztop,0(h̄q,j̄ , ωq,j̄ , s).

By Theorem 4.3 and (4.19), the terms in the third line vanish when applying
χtop(•(L−s)). �

3. Zeta functions along strata

To finish the proof of Theorems 4.3 and 4.9 we must prove the identity (4.19)
in Proposition 4.29. We will proceed by induction in families of W-quasi-ordinary
power series.

Definition 4.31. Let ht ∈ k[[t]][[x,y]][z] be a W-quasi-ordinary power series,
x = (x1, . . . , xd), y = (y1, . . . , ye) which is bounded for the y-variables. We say
that ht is a family of W-quasi-ordinary power series if for any y0 ∈ Ge

k,m, the
well-defined germ ht

y0 := ht(x,y + y0) is also W-quasi-ordinary power series with
the same characteristic monomials.

Definition 4.32. The Denef-Loeser zeta function of a family of W-quasi-
ordinary power series and a form ω satisfying the support condition (1.3) is defined
by

ZW,y
DL (ht, ω, T ) :=T θ

∑
n∈N

(∑
m∈N

L−mµX(V t
n,m)

)
Tn ∈ M̂k[[T ]],

ZWtop,0(h
t, ω, s) :=χtop(ZWDL(ht, ω,L−s)).

where we are considering arcs having their origin along {0} ×Ge
k,m.

Remark 4.33. The powers of the variables in y for ω are negligible.

Lemma 4.34. ZW,y
DL (ht, ω, T ) = ZW,y

DL (h̃t, ω, T ) where h̃t(x,y) = ht(x,yn).

Proposition 4.35. Let ht be a family of W-quasi-ordinary power series and
ω a form satisfying the support condition (1.3). Then for all y0 ∈ Ge

k,m,

ZW,y
DL (ht, ω, T ) = (L− 1)eZWDL(ht

y0 , ω, T ).
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Proof. The proof is by induction on the depth of ht; if depthht = 0, the
result is trivial. We compute ZW,y

DL (ht, ω, T ) following the Newton polyhedron and
the Newton maps.

We begin with the A-part. If we consider a vertex, it is related to a monomial
tαxnymzn. It is clear that both terms in the equality differ by an (L− 1)e factor.
Let us fix an edge of the Newton polytope and a factor of the principal part which
will give the key for the Newton map, i.e., we fix some factor (zn − βtαxnym)m.

The mapping

(x,y, z) 7→ (x, yn
1 , . . . , y

n
e , y

m1
1 . . . yme

e z)

does not change ZW,y
DL (ht, ω, T ). Thus we may suppose that the factor is (zn −

βtαxn)m. Since the computations for the A-part depend only on this Newton
principal part, it is clear that both terms in the equality differ by an (L − 1)e

factor.
Let us consider now the B-part. For the sake of simplicity we can suppose

that all coordinates of n are non-zero. Following the argument of Step 9, the zeta
function corresponding to the B-part is the zeta function associated with a power
series h̃t and a form ω̃ where we must consider arcs based at Ad

k ×Ge
k,m. We can

perform a stratification of this space and decompose the result in a sum of zeta
functions of families of W-quasi-ordinary power series, where variables correspond-
ing to J ⊂ {1, . . . , d}, pass to y. Since these power series have strictly smaller
depth we also obtain the (L− 1)e factor. �

The Theorems 4.3 and 4.9 are proved.

Example 4.36. Consider the quasi-ordinary power series h := (z2 − x3
1x

5
2)

2 −
4x7

1x
13
2 ∈ C[[x1, x2]][z] and the differential form ω̄ =: dx1 ∧ dx2 ∧ dz, the pair

(h, ω̄) satisfies the support condition. Its depth equals 2, it has only one compact
1-dimensional face γ1 (q = 1) with only one Newton component (v(q) = v(1) = 1).
For the face, in the dual the linearly independent vectors are w1 := (2, 0, 3) and
w2 := (0, 2, 5). Thus the set G1 has two elements g1 := (2, 2, 8) and g := (1, 1, 4).
Applying (4.15),

ZDL(h, ω̄, T ) = ZA
DL(h, ω̄, T ) + Z γ̄1,g1,1(T ) + Z γ̄1,g,1(T ),

where ZA
DL(h, ω̄, T ) has been explicitly described in (4.14) and Remark 3.18.

In Step 8 we have described how to compute Z γ̄1,g1,1(T ), see (4.16). The
Newton map π1,1 is defined by x1 = y2

1 , x2 = y2
2 and z = (z1 + 1)y3

1y
5
2 . Then

the pull-back of h is given by h̄1,1 := y12
1 y20

2 (((z1 + 1)2 − 1)2 − 4y2
1y

6
2) which is

quasi-ordinary with depth equals 1, (i.e. h̄1,1 is non-degenerate). The pull-back
ω̄1,1 of the differential form is y4

1y
6
2dy1 ∧ dy2 ∧ dz1, up to a constant factor. Then

Z γ̄1,g1,1(T ) = ZDL(h̄1,1, ω̄1,1, T ).
To compute Z γ̄1,g,1(T ) we follow Step 10, see also Step 9. Under this process

we first consider the C[t]-morphism πg given by x1 = tȳ1, x2 = tȳ2 and z = t4z̄1,
(see Lemma 4.25) and after the map π1

1,t defined by ȳ1 = y2
1 , ȳ2 = y2

2 and z̄ =
(z1 + 1)y3

1y
5
2 . The pull-back h̄t

2 := h ◦ πg ◦ π1
1,t of h under the composition map is

h̄t
2 = t16y12

1 y20
2 (((z1 +1)2−1)2−4t4y2

1y
6
2). Then h̄t

2 has depth equals to 1. Applying
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(4.20) the following identity holds

Z γ̄1,g,1(T ) = L−6

ZWDL(h̄t
2, ω̃g, T ) +

∑
∅(J⊂{1,2}

(L− 1)#JZWDL((h̄t
2)(y,0), (ω̃g)(y,0), T )

 ,

where 6 = νg + Ag and ω̃g in this case coincides with ω̄1,1. Thus we can apply
induction on the depth.





CHAPTER 5

Consequences of the main theorems

In this section we describe several consequences of the previous results. Firstly
the local Denef-Loeser motivic zeta function of a quasi-ordinary power series h ∈
k[[x]][z] essentially depends on its essential variables. Secondly, in the ev(h) = 1
case, there exists a recursive formula to compute ZDL(h, ω, T ) for any differential
form such that (h, ω) satisfies the support condition 1.3. If ev(h) > 1 the recursive
formula can be only obtained at the level of the topological zeta function. Another,
even more interesting, consequence is the inductive definition of a set of strong
candidate poles SCP (h, ω) which is in general smaller than the set CP (h, ω) of
candidate poles. Moreover the local Denef-Loeser motivic zeta function satisfies

ZDL(h, ω, T ) ∈ Z[L,L−1, (1− L−νTN )−1][T ](N,ν)∈SCP (h,ω).

Furthermore the set SCP (h, ω) is a subset of the union of all strong candidate poles
of the of all the transversal sections of (h, ω). We will use this fact to prove the
monodromy conjecture by induction on ev(h).

1. Essential variables

Let h ∈ k[[x]][z] be a quasi-ordinary power series. For any subset ∅ ( I (
{1, . . . , d}, let kI be an algebraic closure of the quotient field of the domain k[[xi]]i∈I .
Thus hI ∈ kI [[x̂I ]][z] is a kI -quasi-ordinary power series, where x̂I are the variables
not in I.

Assume h ∈ k[[x]][z] is a quasi-ordinary power series with ev(h) = e < d.
Relabeling the variables we assume that x1, . . . , xe are the essential variables. Set

I = {e+ 1, . . . , d}. Let ω =
d∏

l=1

x
νj−1
j dx ∧ dz be a differential form such that (h, ω)

satisfies the support condition 1.3. Whenever the variable xj is not essential then

the support condition implies νj = 1. In particular if ωI =
e∏

l=1

x
νj−1
j dx̂I ∧ dz then

the pair (hI , wI) also satisfies the support condition 1.3 over the field kI .

Corollary 5.1. Given the previous conditions, the following formal identity
holds:

ZDL(h, ω, T ) = L−(d+1−e)ZDL(hI , wI , T ).

Here formal means that in the RHS, resp. LHS, the varieties are over k, resp.
kI . The proof of the corollary follows essentially from the proof of theorems 4.3 and
4.9. In fact Newton maps do affect the non-essential variables.

2. Curve case

Suppose a W-quasi-ordinary power series ht has ev(ht) = 1. After relabeling
the variables xi, assume Dz(ht) = tαxα1

1 ε(t,x), with ε(0,0) 6= 0. We assume the

63
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same for the quasi-ordinary power series h. Then the compact faces of their Newton
polyhedra are contained in 2-dim plane x2 = . . . = xd = 0. In particular, in the
dual space one has the same property. The dual hyperplanes ltq,j are defined by
αq,j + sq,j

1 (bq1v1 − nq
1vd+1) = 0, where gcd(bq1, n

q
1) = 1. The dual hyperplanes are

determined by the linearly independent vectors wq
1 and wq

l = el for l = 2, . . . , d.
Therefore the sets Gq and Gq,αq,j have one element. Then we can conclude that

ZWDL(ht, ω, T ) =ZWA (ht, ω, T ) +
r∑

q=1

u(q)∑
j=1

sq,j
1 =1

L−(νg+Ag)

w(q,j)∑
w=1

ZWDL(ht
q,j,g,w, ω̃

t
q,j,g,w, T ),

ZDL(h, ω̄, T ) =ZA
DL(h, ω̄, T ) +

r∑
q=1

v(q)∑
j̄=1

ZDL(h̄q,j̄ , ωq,j̄ , T ),

(5.1)

where νg +Ag = αq,j

nq
1

+ µg
1 (pq

1νl + b̄q1) and v(q) =
u(q)∑
j=1

w(q, j).

Corollary 5.2. For a quasi-ordinary power series h with ev(h) = 1 and a
form ω such that (h, ω) satisfies condition (1.3) the second line in equations (5.1)
can be used as recursive formula to compute ZDL(h, ω̄, T ).

A general formula for the topological zeta function will be given in Theorem
5.3.

3. The topological zeta function

Assume the quasi-ordinary power series h(x, z) :=
∏d

l=1 x
Nl

l f(x, z)u(x, z), Nl ∈
N, is given in a good system of coordinates and that the differential form ω =∏d

j=1 x
νj−1
j dx1 ∧ . . . ∧ dxd ∧ dz, νj ≥ 1, satisfies condition (1.3). Assume that

γ1, . . . , γr (resp. τ0, . . . , τr) are the 1-dimensional (resp. 0-dimensional) compact
faces of its Newton polyhedron. Assume for each q = 1, . . . , r, on γq there are
exactly v(q) distinct roots. Let πq,j be the Newton map associated with the Newton
component fq

j of f.

Theorem 5.3. Under the above conditions the following equality holds

Ztop,0(h,w, s) =
r∑

l=0

Jτl
(h, ω, s)−

r∑
q=1

v(q)Jγq (h, ω, s)

+
r∑

q=1

mult(∆γq
)

v(q)∑
j=1

Ztop,0(h ◦ πq,j , w ◦ πq,j , s).

Moreover if h has a non-degenerate principal part then for each q = 1, . . . , r
the integer number v(q) is V (γq) and for any j = 1, . . . , v(q), the following identity
holds

Ztop,0(h ◦ πq,j , w ◦ πq,j , s) =
Jγq

(h, ω, s)
(s+ 1)mult(∆γq )

.
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Proof. The same ideas as in the construction of the above section give ZDL(h, ω, T )
as

ZDL(h, ω, T ) = ZA
DL(h, ω, T ) +

r∑
q=1

v(q)∑
j=1

∑
g∈Gq

Zγq,g,j(T ),

see equation (4.15). The contribution of the A-part was given in equation (3.16).

Contribution of the B-part. Fix a 1-dim face γq, a root βq
j of γq and g

in Gq.
(1) If g = g1 then Zγq,g1,j(T ) = ZDL(h̃, ω̃, T ), where h̃ = h ◦πq,j and ω̃ = ω ◦πq,j ,

see equation (4.16) in Step 8.
(2) If g 6= g1 then Zγq,g,j(T ) = Z

γq,g,j
1 (T ) +

∑
∅$J⊂{1,...,d}

Z
γq,g,j
J (T ), see Step 9.

Recall that the following properties hold.

(1) χtop(Zγq,g,j
1 (L−s)) = Ztop,0(h ◦ πq,j , ω ◦ πq,j , s), see equation (4.18).

(2) χtop(Zγq,g,j
J (L−s)) = 0, see equation (4.19).

Hence the contribution to Ztop,0(h,w, s) of the B-part is

r∑
q=1

v(q)∑
j=1

∑
g∈Gq

Ztop,0(h ◦ πq,j , ω ◦ πq,j , s).

Finally the cardinality of Gq is mult(∆γq ).
The second part of the theorem follows from the results of Chapter 2, in par-

ticular from Lemma 2.5. �

Algorithm. Our method gives an effective algorithm to compute Ztop,0(h,w, s).
After a Newton map πq,j , h ◦ πq,j(y, z1) = yN1

1 · · · yNd

d f̃(y, z1)ũ(y, z1) where f̃ ∈
k[[y]][z1] is a z1-quasi-ordinary power series. Hence f̃(0) = 0 andNl = inf

x∈Γ(h)
{wl·x}

for any l = 1, . . . , d. Apply again Theorem 5.3 until depth 0. This algorithm can
be implemented in Maple based on a Maple program made by K. Hoornaert and
D. Loots for the non-degenerate case, [29].

4. A special candidate pole

In this paragraph we will show that some candidate poles disappear when we
add their local contributions. For a candidate pole s0 = (N, ν) coming from a
compact 1-dimensional face γ, its local contribution is defined as the sum of the
A-part of the local Denef-Loeser motivic zeta function which corresponds to γ
and its two vertices plus the sum of the contributions of the B-part. The latter
is the contribution of the highest vertex in the new Newton polyhedron after all
Newton maps of Newton components associated with γ and at all possible new
quasi-ordinary power series.

Consider the following formal power series

ht(x, z) :=xN1
1 . . . x

Nd−1
d−1 zn−n1m(zn1 − βtαxb1

1 . . . x
bd−1
d−1 xd)m + . . . ,

h(x, z) :=xN1
1 . . . x

Nd−1
d−1 zn−n1m(zn1 − βxb1

1 . . . x
bd−1
d−1 xd)m + . . . ,
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where the other terms appears behind their Newton polyhedra and α ∈ P, β ∈ Gm,k.
Assume ht ∈ k[[t]][[x]][z] is W-quasi-ordinary and h ∈ k[[x]][z] is a quasi-ordinary
power series.

Consider the differential form ω := xν1−1
1 . . . x

νd−1−1
d−1 dx1 ∧ · · · ∧ dxd ∧ dz, in

such a way (ht, ω) and (h, ω) satisfy the support condition 1.3. In other words
the pair (Nd, bd) = (0, 1). In this section the local contribution of the candidate
pole s0 := 1− L−(n1+1)Tn which corresponds with the d-th coordinate of the first
characteristic exponent of ht and h is computed. Under the above conditions we
have the following result.

Proposition 5.4. If there is no pair (Ni, bi) equal to (0, 1) other than (Nd, bd)
then s0 = 1 − L−(n1+1)Tn does not appear in the denominator of the local contri-
bution of s0 to ZWDL(ht, ω, T ) and ZDL(h, ω, T ).

Proof. The compact faces of Γ(h) and Γt(ht) are the same and consist of a
face γ with vertices τ0 := (N1 + mb1, . . . , Nd−1 + mbd−1,m, n − n1m) and τ1 :=
(N1, . . . , Nd−1, 0, n).

Let η := b1v1 + . . . bd−1vd−1 + vd − n1vd+1. In the dual space, the dual de-
composition induced by Γ(h) has only three convex rational cones ∆τ1 = {η > 0},
∆τ0 = {η < 0} and ∆γ = {η = 0}. In the same way, the decomposition induced by
Γt(h) is given by the convex rational polyhedron ∆t

τ1
= {η+α > 0}, and the cones

∆t
τ0

= {η+ α < 0} and ∆t
γ = {η+ α = 0}. Since there is only one exponent α of t,

convex polyhedra delimited by parallel hyperplanes do not exist.
To compute the contributions of the candidate pole s0 := 1 − L−(n1+1)Tn we

multiply ZWDL(ht, ω, T ) and ZDL(h, ω, T ) by s0 and simplify the result under the
condition L−(n1+1)Tn = 1.

The contribution coming from the Newton polyhedra of h and ht written in
terms of generating functions are:

Z
∆t

τ0
,W

DL (T ) =Tmα(L− 1)d+1L−(d+1)Φ∆t
τ0

(y),

Z
∆t

τ1
,W

DL (T ) =(L− 1)d+1L−(d+1)Φ∆t
τ0

(a),

Z
∆t

γ ,W
DL (T ) =L−(d+1)

(
(L− 1)d+1 − (L− 1)d

)
Φ∆t

γ
(a),

Z
∆τ0
DL (T ) =(L− 1)d+1L−(d+1)Φ∆τ0

(y),

Z
∆τ1
DL (T ) =(L− 1)d+1L−(d+1)Φ∆τ0

(a),

Z
∆γ

DL(T ) =L−(d+1)
(
(L− 1)d+1 − (L− 1)d

)
Φ∆γ

(a),

where a := (a1, . . . , ad−1, ad, ad+1) = (L−ν1TN1 , . . . ,L−νd−1TNd−1 ,L−1,L−1Tn)
and y := (y1, . . . , yd, yd+1) is equal to

(L−ν1TN1+mb1 , . . . ,L−νd−1TNd−1+mbd−1 ,L−1Tm,L−1Tn−n1m).

If ∆1 denotes the positive cone Pd+1 then the following identities among indicator
functions hold: [∆t

τ1
] = [∆1]−[∆t

τ0
]−[∆t

γ ] and [∆τ1 ] = [∆1]−[∆τ0 ]−[∆γ ]. Summing
and looking only at the terms where 1 − L−(n1+1)Tn appears, the contribution of
s0 is given by

(5.2) L−(d+1)(L− 1)d+1

(
−At(a) + TmαAt(y)−

L−1Φ∆t
γ
(a)

(1− L−1)

)
, for ht and
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L−(d+1)(L− 1)d+1

(
−A(a) +A(y)−

L−1Φ∆γ
(a)

(1− L−1)

)
, for h,

where

At(x) :=

∑
β∈Gt

0

xβ

(1− xd+1)
d∏

l=1

(1− xwl)
, A(x) :=

∑
β∈G0

xβ

(1− xd+1)
d∏

l=1

(1− xwl)
,

and Gt
0 (resp. G0) is the fundamental set of ∆t

τ0
(resp. ∆τ0).

We will compute the terms

At
1 := (1− L−(n1+1)Tn)

(
−At(a) + TmαAt(y)−

L−1Φ∆t
γ
(a)

(1− L−1)

)

and A1 := (1 − L−(n1+1)Tn)
(
−A(a) +A(y)− L−1Φ∆γ (a)

(1−L−1)

)
under the given condi-

tion L−(n1+1)Tn = 1.
Consider the vertex τ1. The simplification L−(n1+1)Tn = 1 gives an1

d ad+1 = 1.

Define wj := a
pj

j a
b̄j

d+1, 1 ≤ j ≤ d − 1, and ci := gcd(n1, bi) and pi := n1
ci

, b̄i := bi

ci
,

i = 1, . . . , d− 1. Thus wj = L−(νjpj+b̄j)T pjNj+nb̄j = L(bj−νj)pjT pjNj , and wj = u
pj

j

with uj := Lbj−νjTNj .
The elements of ∆τ0 are written as

d−1∑
j=1

µj(pjej + b̄jed+1) + µd(n1ed + ed+1) + µd+1ed+1 ∈ Pd+1, µi ∈ Q>0.

The elements of ∆t
τ0

can be written as

d−1∑
j=1

µj(pjej + b̄jed+1) + µd(n1ed + ed+1) + µd+1ed+1 ∈ Pd+1, µi ∈ Q>0, µd+1 >
α

n1
.

To parametrize the sets Gt
0 and G0 we may replace µd by µd + s, s ∈ Z, because

of the substitution a−n1
d = ad+1. Thus the elements in Gt

0 (and in G0 when α = 0)
are obtained with

(µ1, . . . , µd−1, µd, µd+1) =

(
i1
p1
, . . . ,

id−1

pd−1
,−

α+ k +
∑d−1

j=1 ijbj

n1
,
α+ k

n1

)
,

ij = 1, . . . , pj , j = 1, . . . , d − 1, and k = 1, . . . , n1. Therefore At(a) (resp. A(a))
multiplied by (1− an1

d ad+1) = 1− L−(n1+1)Tn is:

p1∑
i1=1

· · ·
pd−1∑

id−1=1

n1∑
k=1

a
−(α+k+

Pd−1
j=1 ijbj)

d

d−1∏
j=1

a
ij

j

(1− ad+1)
d−1∏
j=1

(1− a
pj

j a
b̄j

d+1)

=

a−α
d (

n1∑
k=1

a−k
d )

d−1∏
j=1

pj∑
ij=1

(aja
−bj

d )ij

(1− ad+1)
d−1∏
j=1

(1− a
pj

j a
b̄j

d+1)

=
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(5.3) = −

a−α
d (1− a−n1

d )
d−1∏
j=1

(
aja

−bj

d (1− (aja
−bj

d )pj )
)

(1− ad)(1− ad+1)
d−1∏
j=1

(
(1− aja

−bj

d )(1− a
pj

j a
b̄j

d+1)
) .

The first summand At(a)(1− an1
d ad+1) (resp. A(a)(1− an1

d ad+1) when α = 0) is:

(5.4) −

a−α
d

d−1∏
j=1

uj

(1− ad)
d−1∏
j=1

(1− uj)

.

Consider the term from γ. The elements of ∆t
γ (resp. ∆γ when α = 0) are

d−1∑
j=1

µ′j(pjej + b̄jed+1) + . . .+ µ′d(n1ed + ed+1) +
α

n1
ed+1 ∈ Pd+1, µ′i ∈ Q>0.

After simplifying, the fundamental set Gt
γ (resp. Gγ) of ∆t

γ (resp. ∆γ) is obtained
from

(5.5) (µ′1, . . . , µ
′
d−1, µ

′
d) =

(
i1
p1
, . . . ,

id−1

pd−1
,−

α+
∑d−1

j=1 ijbj

n1

)
,

ij = 1, . . . , pj , j = 1, . . . , d− 1.
Since we have to multiply the factor by L−1

1−L−1 and L−1 = ad, then the product

(1− an1
d ad+1)

L−1Φ∆t
γ
(a)

(1−L−1) equals

ad

p1∑
i1=1

· · ·
pd−1∑

id−1=1

a
−(α+

Pd−1
j=1 ijbj)

d

d−1∏
j=1

a
ij

j

(1− ad)
d−1∏
j=1

(1− a
pj

j a
b̄j

d+1)

=

a1−α
d

d−1∏
j=1

pj∑
ij=1

(aja
−bj

d )ij

(1− ad)
d−1∏
j=1

(1− a
pj

j a
b̄j

d+1)

=

(5.6) =

a1−α
d

d−1∏
j=1

(
aja

−bj

d (1− (aja
−bj

d )pj )
)

(1− ad)
d−1∏
j=1

(
(1− aja

−bj

d )(1− a
pj

j a
b̄j

d+1)
) =

a1−α
d

d−1∏
j=1

uj

(1− ad)
d−1∏
j=1

(1− uj)

.

The term (1− an1
d ad+1)

L−1Φ∆γ (a)

(1−L−1) is obtained from equation (5.6) when α = 0.

For the vertex τ0, after the simplification, yn1
d yd+1 = L−(n1+1)Tn = 1, yjy

−bj

d =
uj and y

pj

j y
b̄1
d+1 = wj , for j = 1, . . . , d − 1. The term At(y) multiplied by 1 −
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L−(n1+1)Tn = (1− yn1
d yd+1) is the same as (5.3) with ai replaced by yi. Therefore

the term we are interested in is

(5.7) −

Tmαy−α
d

d−1∏
j=1

uj

(1− yd)
d−1∏
j=1

(1− uj)

= −

a−α
d

d−1∏
j=1

uj

(1− yd)
d−1∏
j=1

(1− uj)

,

because T−1yd = ad. Furthermore A(y)(1−L−(n1+1)Tn) is obtained from equation
(5.7) when α = 0. Thus

At
1 = (5.7)− (5.4)− (5.6) = −

a−α
d yd

d−1∏
j=1

uj

(1− yd)
d−1∏
j=1

(1− uj)

.

And substituting α = 0 in the last identity we get A1 :

(5.8) A1 = −

yd

d−1∏
j=1

uj

(1− yd)
d−1∏
j=1

(1− uj)

.

Finally we compute the contribution of the B part in the arc decomposition for
both power series. Let πγ be the map defined by xl = x̄pl

l and z = (z1 + β̄)
∏d

l=1 x̄
b̄l

l

where β̄n1 = β. We compute the contribution using the Newton map πγ associated
with the unique Newton component of h and the corresponding k[t]-morphisms
associated with each g ∈ Gγ . For a pair (h, ω) in equation (4.21) we show that the
contribution is

ZDL(h̄, ω̄, T )+
∑

g∈Gγ ,g 6=g1

L−(νg+Ag)ZWDL(h̃t
g, ω̃g, T )+

+
∑

g∈Gγ ,g 6=g1

L−(νg+Ag)
∑

∅(J⊂{1,...,d−1}

(L− 1)#JZWDL((h̃t
g)(y,0), (ω̃g)(y,0), T ),

(5.9)

where the pair (h̄, ω̄) is the pull-back by πγ of (h, ω), that is

h̄ = x̄Ñ1
1 . . . x̄Ñd

d (zmr
1 + . . .)u(x̄, z1), u(0, 0) 6= 0,

with Ñl = plNl + b̄ln, l = 1, . . . , d, and ω̄ = x̄ν̃1−1
1 . . . x̄ν̃d−1

d dx̄ ∧ dz1.
For (h̃t

g, ω̃g) the form ω̃g is ω̄. Fix g ∈ Gγ\{g1}. The map πγ◦πg is xl = tµ
g
l pl x̄pl

l

and z = tc
g

(z1 + β̄)
∏d

l=1 x̄
b̄l

l . Then h̃t
g = h ◦ πγ ◦ πg, that is

h̃t
g := tncg+

Pd−1
l=1 µg

l plNl x̄Ñ1
1 . . . x̄Ñd

d (zmr
1 + . . .)u(x̄, z1), u(0, 0) 6= 0.

For ht the maps associated with the corresponding k[t]-morphisms associated
with each g ∈ Gt

γ appear. Looking at equation (4.20) we have r = 1, u(r) = 1 and
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s1,1
1 = 1. This shows that the contribution is

∑
g∈Gt

γ

L−(νg+Ag)

ZWDL(h̃t
γ,g, ω̃γ,g, T ) +

+
∑

∅(J⊂{1,...,d−1}

(L− 1)#J ZWDL((h̃t
γ,g)(y,0), (ω̃γ,g)(y,0), T )

 .

(5.10)

In this case, once g ∈ Gt
γ is fixed, the mapping considered πγ ◦πg is defined by

xl = tµ
g
l pl x̄pl

l and z = tc
g

(z1 + β̄)
∏d

l=1 x̄
b̄l

l . The pull-back h̃t
γ,g is

tncg+
Pd−1

l=1 µg
l plNl x̄Ñ1

1 . . . x̄Ñd

d (zmr
1 + . . .)u(x̄, z1), u(0, 0) 6= 0,

and ω̃γ,g = ω̄.
Computations for (5.10) and for all terms but the first one in (5.9) are similar.

In both cases, if either g ∈ Gt
γ or g ∈ Gγ \{g1} are fixed, then the local contribution

from ZWDL(h̃t
γ,g, ω̃γ,g, T ) or from ZWDL(h̃t

g, ω̃g, T ) is given by the z1-highest vertex τ̃
which corresponds in both cases to the monomial

t
Pd−1

l=1 µg
l plNl+ncg x̄Ñ1

1 . . . x̄Ñd

d zmr
1 .

We showed in Step 6 of the proof of theorems 4.3 and 4.9 that the factor coming
from τ̃ is T

Pd−1
l=1 µg

l plNl+ncgL−(d+1)(L− 1)d+1Φ∆τ̃
(z), where z is equal to

z := (L−(ν1p1+b̄1)TN1p1+nb̄1 , . . . ,L−(νd−1pd−1+b̄d−1)TNd−1pd−1+nb̄d−1 ,L−(n1+1)Tn,L−1Tm).

Since the corresponding cone ∆c
τ̃ is the positive cone Pd+1 (whose fundamental set

G̃ has only one element G̃ = {1}), its contribution is

T

d−1P
l=1

µg
l plNl+ncg

L−(d+1)(L− 1)d+1S1(z),

where

(5.11) S1(x) :=
x1

d+1∏
j=1

(1− xj)
=
x1x2 . . . xd+1

d+1∏
j=1

(1− xj)
.

Take any ∅ ( J ( {1, . . . , d − 1}. The number e of essential variables of
(h̃t

γ,g)(y,0) and of (h̃t
g)(y,0) is e = d+1−#J. By Corollary 5.1, ZWDL((h̃t

γ,g)(y,0), (ω̃γ,g)(y,0), T )
is L−#J(L − 1)eL−eT

Pd−1
l=1 µg

l plNl+ncgS1
J(z) where S1

J(x) := 1
(1−xd+1)

∏
j 6∈J

xj

(1−xj)
.

And the same identity is true for the zeta function ZWDL((h̃t
g)(y,0), (ω̃g)(y,0), T ).

Thus we get all contributions we are interested in for (5.10) adding all previous
results:

L−(d+1)(L−1)d+1
∑

g∈Gt
γ

L−(νg+Ag)T
Pd−1

l=1 µg
l plNl+ncg

S1(z) +
∑

∅(J⊂{1,...,d−1}

S1
J(z)

 .
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The formula S1(x) +
∑

∅(J⊂{1,...,d−1} S
1
J(x) = S(x) is proved by induction where

S(x) := xdxd+1Qd+1
l=1 (1−xl)

. Thus we must simplify the contribution

Bt
1 := (1− L−(n1+1)Tn)

∑
g∈Gt

γ

L−(νg+Ag)T
Pd−1

l=1 µg
l plNl+ncgS(z)


under our hypothesis L−(n1+1)Tn = 1.

In the other case, equation (5.9), the contribution of ZDL(h̄, ω̄, T ) comes from
the z1-highest vertex τ̃ which corresponds to the monomial x̄Ñ1

1 . . . x̄Ñd

d zmr
1 . Thus

it comes from L−(d+1)(L − 1)d+1Φ∆τ̃
(z), where (z) was defined before. In fact

since the corresponding cone ∆c
τ̃ is the positive cone Pd+1 then the contribution is

L−(d+1)(L − 1)d+1S1(z) where S1(x) is given by equation (5.11). Thus all contri-
butions we get when the Newton maps of (5.9) are done are

L−(d+1)(L− 1)d+1

S1(z) +
∑

g∈Gγ ,g 6=g1

L−(νg+Ag)T
Pd−1

l=1 µg
l plNl+ncgS(z)

 .

We should simplify under our hypothesis L−(n1+1)Tn = 1 the formula

B1 := (1− L−(n1+1)Tn)

S1(z) +
∑

g∈Gγ ,g 6=g1

L−(νg+Ag)T
Pd−1

l=1 µg
l plNl+ncgS(z)

 .

Recall that the (d+ 1)-tuple z is (w1, . . . , wd−1, 1, yd).
Let us study the case Bt

1. For every g parametrized by (i1, . . . , id−1) from equa-
tion (5.5) we have the following identity, which is only valid after the simplification
below:

νg +Ag =
α

n1
+

d−1∑
j=1

ij
pj

(pjνj + b̄j)−

α+
d−1∑
j=1

ijbj

n1
(n1 + 1).

It turns out that νg +Ag = −α−
∑d−1

j=1 ij(bj−νj). Since cg = α
n1

+
∑d

l=1 µlb̄l then,

under our simplification, cg = 0 and the exponent of T is
∑d−1

j=1 ijNj .
Therefore Bt

1 equals:

Lαzd+1

d−1∏
j=1

pj∑
k=1

(L(bj−νj)TNj )k

(1− zd+1)
d−1∏
j=1

(1− zj)

=

Lαzd+1

d−1∏
j=1

(
uj(1− u

pj

j )
)

(1− zd+1)
d−1∏
j=1

((1− zj)(1− uj))

.

Written as before we have

(5.12) Bt
1 =

a−α
d yd

d−1∏
j=1

uj

(1− yd)
d−1∏
j=1

(1− uj)

.
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Thus
At

1 +Bt
1 = (5.7)− (5.4)− (5.6) + (5.12) = 0.

Let us study the case B1. For every g 6= g1 parametrized by (i1, . . . , id−1) from
equation (5.5) with ij ∈ {1, . . . , pj − 1}, we have νg +Ag = −

∑d−1
j=1 ij(bj − νj). In

the same way the exponent T is
∑d−1

j=1 ijNj .
The first term of B1 is

(5.13) (1− zd)S1(z) =

yd

d−1∏
j=1

wj

(1− yd)
d−1∏
j=1

(1− wj)

=

yd

d−1∏
j=1

u
pj

j

(1− yd)
d−1∏
j=1

(1− u
pj

j )

.

The other terms come from

zd+1

(1− zd+1)
d−1∏
j=1

(1− zj)

d−1∏
j=1

pj−1∑
k=1

(
L(bj−νj)TNj

)k

.

This is
(5.14)

yd

(1− yd)
d−1∏
j=1

(1− u
pj

j )

d−1∏
j=1

pj−1∑
k=1

(uj)k =
yd

(1− yd)
d−1∏
j=1

(1− u
pj

j )

d−1∏
j=1

uj

(
1− u

pj

j

1− u
− u

pj−1
j

)
.

Thus A1 +B1 = (5.8) + (5.13) + (5.14) = 0.
�

Let h ∈ k[[x]][z] be a quasi-ordinary power series in good coordinates with
h(x, z) = xN1

1 xN2
2 . . . xNd

d g(x, z), where no xi divides g(x, z) and Nl ≥ 0 for any
l = 1, . . . , d. Write h(x, z) = xN1

1 xN2
2 . . . xNd

d f(x, z)u(x, z), where f(x, z) is a quasi-

ordinary z-polynomial of degree n in k[[x]][z]. Let ω =
d∏

j=1

x
νj−1
j dx1 ∧ . . . ∧ dxd ∧

dz, νj ≥ 1 define a form such that (h, ω) satisfies the support condition (1.3). The
set CP (h, ω) of candidate poles was defined in (3.28). Proposition 5.4 will allow us
to consider a smaller set of candidate poles than the set CP (h, ω).

Definition 5.5. A compact 1-dimensional face γq in ND(h) will be called spe-
cial in the i-th coordinate if the pair (hγq , ω) satisfies the conditions of Proposition
5.4 in the i-th coordinate (instead of d-th coordinate). The face γq will be called
special if it is special in one of the coordinates. If γq is special in the i-th and j-th,
(i 6= j), coordinates then the corresponding candidate poles coincide. Define

CP (h, ω)q :=
{(

Mq
l

cql
, νlp

q
l + b̄ql

)}
l=1,...,bi,...,d if γq is special,

where we assume that γq is special in the i-th coordinate and î means that we omit
i. In particular, if γq is special in more than one variable then the corresponding
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pair (N, ν) appears in CP (h, ω)q. Otherwise, define

CP (h, ω)q :=
{(

Mq
l

cql
, νlp

q
l + b̄ql

)}d

l=1

if γq is not special.

Let us define by induction the sets

C̃P (h, ω) :=
r⋃

q=1

CP (h, ω)q ∪
⋃

C̃P (h̄q,j , ω̄q,j)

where the union is over all pull-back (h̄q,j , ω̄q,j) under the Newton maps associated
with Newton components fq

j of f. The set of strong candidate poles of a pair (h, ω)
is defined by

SCP (h, ω) := {(Ni, νi)}d
i=1 ∪ C̃P (h, ω).

After Proposition 5.4 and Theorem 5.3 the following result is clear.

Proposition 5.6. If Ns + ν is the equation of a pole of Ztop,0(h, ω, s) then
(N, ν) ∈ SCP (h, ω).

In fact Proposition 5.4 and equations (4.20) and (4.21) show that the same
result is true for the local Denef-Loeser motivic zeta function.

Proposition 5.7.

ZDL(h, ω, T ) ∈ Z[L,L−1, (1− L−νTN )−1][T ](N,ν)∈SCP (h,ω).

Remark 5.8. Let h =
∏

l=1 x
Nl

l f(x, z)u(x, z), with u(0, 0) 6= 0. Take any
compact 1-dimensional face γ of Γ(h). For each j ∈ {1, . . . , d} such that γ is not
contained in the (xj , z)-plane, consider the j-transversal section h0

j with root α = 0.
Let γ̃ be the compact face of Γ(h0

j ) on which γ is projected. The face γ̃ can be the
projection of several distinct compact faces of Γ(h). Thus if γ is not special then
its projection γ̃ cannot be special in any coordinate.

Strong candidate poles for ev(h) = 1. Assume h = xN1
1 f(x1, z)u(x1, z) ∈

k[[x1]][z] is a quasi-ordinary power series in good coordinates with ev(h) = 1. Let γ
be a compact 1-dim face of Γ(h). Then γ is special if and only if γ is the highest (with
respect to z) compact face of Γ(h) and hγ is of type zn−n1m(zn1 − βx1)n−n1 , β ∈
Gm,k. In particular N1 = 0. We observe that γ is special if and only we can apply
the inversion formula to h permuting coordinates. If γ is special then CP (h, ω)γ =
∅, for each pair (h, ω) satisfying the support condition (1.3). After a Newton map
associated with a Newton component of f, the pull-back of h is of type yag(y, z1)
with a > 0. In particular Proposition 5.4 cannot be applied anymore.

If ev(h) > 1, more general facts occur. Take for instance any of the following
examples: f(x, y, z) = (z2−x3)2+x11y and g(x, y, u, z) = ((z2−x3y)2+x7y2)((z2−
x3yu)2 + x7y2u3). For f , after the unique possible Newton map π, a special face
for f ◦ π appears. In the other case, Γ(g) has two compact 1-dimensional faces and
both are special, in different coordinates.

Strong candidate poles for ev(h) = 2. Let h ∈ k[[x1, x2]][z] be a quasi-
ordinary power series in good coordinates with ev(h) = 2. Assume that we can
decompose h = xN1

1 xN2
2 f(x1, x2, z)u(x1, x2, z), with u(0) 6= 0 and f is a Weierstrass

polynomial of degree n. Let γ denote the highest (with respect to z) compact face
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of Γ(h) and let hγ = xN1
1 xN2

2 zn−n1m
u∏

j=1

(zn1 − βjx
b1
1 x

b2
2 )mj with βj ∈ Gm,k and

m =
∑
mj . Let ω = xν1−1

1 xν2−1
2 dx1∧dx2∧dz be a differential form such that (h, ω)

satisfies (1.3).

Lemma 5.9. (n, n1 + 1) ∈ CP (h,w)γ if and only if either
(1) there exists i ∈ {1, 2} such that bi = 1, Ni = 0 (this implies νi = 1) and u > 1,

or
(2) u = 1 and b1 = b2 = 1, N1 = N2 = 0 (this implies ν1 = ν2 = 1) and therefore

γ is special in both coordinates.

Proof. By definitions and Lemma 3.15, γ is defined by n1x1+b1z = n1N1+b1n
and n1x2+b2z = n2N2+b2n. The candidate poles from γ are

(
n1Ni+bin
gcd(n1,bi)

, n1νi+bi

gcd(n1,bi)

)
with i = 1, 2. In particular

(
n1Ni+bin
gcd(n1,bi)

, n1νi+bi

gcd(n1,bi)

)
= (n, n1 + 1) if and only if either

bi = 0 and then gcd(n1, bi) = n1, which implies (Ni, νi) = (n, n1 + 1) ∈ CP (h,w)γ

which is absurd. Or one of the two conditions of the lemma is satisfied. �

In case (1), since u > 1, (n, n1 + 1) is a strong candidate pole for hα
j , j 6= i). In

case (2) the i-transversal section hα
i of h has only α = 0 as a root because ( 1

n ,
1
n )

is the smallest characteristic exponent of f, it is the z-highest face of NP (h). In
particular h0

i has at least one Newton component associated with the projection γ̃
of γ on the plane xiz. Thus (n, n1 + 1) is a candidate pole for (h0

i , ωi). In fact, γ̃ is
the highest face with respect to z. Applying the case ev(h) = 1 then (n, n1 + 1) is
not a strong candidate pole for both h0

i .

Proposition 5.10. Under the above conditions one has

SCP (h, ω) ⊂
2⋃

i=1

vi⋃
m=1

SCP (hαm
i , ωi) ∪ {(n, n1 + 1)},

where hαm
i are the corresponding i-transversal section at the root αm, see inclusion

(3.19) in Proposition 3.40.

Proof. Let us prove by induction on depth(h), that if we are in good coordi-
nates, with the above definitions of n, n1 and γ then

SCP (h, ω) ⊂
⋃

i=1,2

vi⋃
m=1

SCP (hαm
i , ωi) ∪ {(n(h), n1(h) + 1)}.

We write (n(h), n1(h) + 1) to emphasize that at each step of the induction they
depend on h.

If depth(h) = 0 then h = xN1
1 xN2

2 z u(x, z), with u(0) 6= 0 The result follows
easily. Assume that we have proved the result for depth(h) < m. Let us decompose
h = xN1

1 xN2
2 f(x1, x2, z)u(x1, x2, z), with u(0) 6= 0 and depth(h) = m. Let (N, ν) ∈

SCP (h, ω) ⊂ CP (h, ω). If (N, ν) = (n, n1 + 1) we are done. If (N, ν) = (Ni, νi) 6=
(0, 1), i = 1, 2 then any of the factors hα

j of the j-transversal section with i 6= j has
xNi

i as a factor which implies (N, ν) = (Ni, νi) ∈ SCP (hα
j , ωj).

If (N, ν) ∈
⋃r

q=1 CP (h, ω)q where Γ(h) has r compact 1-dim faces. Assume
(N, ν) appears in the compact face γq, say in the i-th coordinate. Take the transver-
sal section h0

j , j 6= i. Let γ̃ be the compact face of Γ(h0
j ) on which γq is projected.
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If γq is contained in the (xi, z)-plane, then γ̃ contains γq. If we can apply
proposition 5.4 to h0

j and γ̃ then (h0
j )|γ̃ = zn−mnq (znq − βxi)m, β ∈ Gm,kj . Then

γq must corresponds to the smallest characteristic exponent of h. Thus γq is special
in this coordinate. This contradicts (N, ν) ∈ SCP (h, ω).

Otherwise, Remark 5.8 contradicts (N, ν) ∈ CP (h, ω)q if γq is not special
in the i-th coordinate. If γq is special in the i-th coordinate but not in the j-
coordinate then (N, ν) 6∈ CP (h, ω)q which is absurd. Therefore if γq is special
in both coordinates then γq is the highest compact face and by Lemma 5.9(2),
(N, ν) = (n, n1 + 1). Finally we apply induction.

To finish the proof of the proposition is enough to remark that the conditions
in Lemma 5.9(2) cannot be obtained after any Newton map. The reason for that
is that after any Newton map the pull-back of h has at least a factor of type yNi

i

with Ni > 0. Therefore the proof is finished. �

Strong candidate poles for ev(h) = d > 2. Let h ∈ k[[x1, . . . , xd]][z] be a
quasi-ordinary power series in good coordinates with ev(h) = d > 2. Assume that
h =

∏d
l=1 x

Nl

l f(x, z)u(x, z), with u(0) 6= 0 and f is a Weierstrass polynomial of
degree n. Let ω be a differential form such that (h, ω) satisfies the support condition
1.3.

Proposition 5.11. Under the above conditions one has

SCP (h, ω) ⊂
⋃

i=1,...,d,

vi⋃
m=1

SCP (hαm
i , ωi),

where hαm
i are the corresponding i-transversal section at the root αm, see lemma 3.19.

Proof. The proof is by induction on the depth(h) and follows the same ideas
as proof of proposition 5.10 but in this case we do not need to take care of the
special compact 1-dimensional faces. �

Complex analytic set up. If k = C and we work with convergent com-
plex quasi-ordinary power series h ∈ C{x}[z] all results presented in the last three
sections are valid too. We leave the details to the reader. The pull-back un-
der the Newton maps of convergent quasi-ordinary power series are again conver-
gent. The transversal sections can be seen now as follows. We write h(x, z) =∏d

l=1 x
Nl

l f(x, z)u(x, z), where no xi divides f(x, z), u(0, 0) 6= 0, Nl ≥ 0 for any
l = 1, . . . , d, and f is a Weierstrass polynomial in z. After Lemma 5.1 we may
assume that ev(h) = d. We may assume f is convergent in a polydisk ∆d

ε × ∆1
δ ,

where 0 � δ � ε� 1 and if x0 ∈ ∆d
ε all roots of f(x0, z) lie in ∆1

δ .

Let us consider the germ (Sing(V ), 0) of singular points of V = h−1(0) in
a neighborhood of the origin. The condition of the discriminant implies that
(Sing(V ), 0) is contained in the intersection of h−1(0) with the hyperplanes xl = 0,
1 ≤ l ≤ d. Fix i ∈ {1, . . . , d}. Consider the polynomial, over C{xi}, of degree n

f(0i(xi), z) = zn + lower degree terms.

where the d-tuple 0i has all coordinates 0 but the i-th coordinate which is xi. We
have two possibilities:
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(1) If f(0i(xi), z) = zn then the points (0i(x0), 0) belong to h−1(0), for all
x0 ∈ ∆1

ε. The power series h0,x0

i (x, z) := h(x + 0i(x0), z) are quasi-
ordinaries. They are the analytic equivalent to the formal i-transversal
section at the root α = 0.

(2) Otherwise, i.e. if f(0i(xi), z) 6= zn, given x0 ∈ ∆1
ε there exist z0

1 , . . . , z
0
l ∈

∆1
δ , pairwise distinct, and r1, . . . , rl ∈ P,

∑
rj = n, such that

f(0i(x0), z) =
l∏

j=1

(z − z0
j )rj .

We can suppose that ε is small enough in order to have that r1, . . . , rl
independent of x0. Again hα,x0

i (x, z) := h(x + 0i(x0), z + z0
j ) are quasi-

ordinary power series. In this case they are the equivalent in the analytic
case to the i-transversal at some root α 6= 0.

In particular we have the analytic analogue of proposition 3.40.



CHAPTER 6

Monodromy conjecture for quasi-ordinary power
series

Let h : (Cd+1, 0) → (C, 0) be a germ of complex analytic function such that
h(0) = 0. Fix U a sufficiently small neighborhood of 0 where h is defined. Let F be
the Milnor fiber of the Milnor fibration at the origin associated with h. Let mF :
F → F be the monodromy transformation. The zeta-function of the monodromy
of h is

ζ(h)(t) :=
∏
q≥0

det(I − t mF q)
(−1)q

where mF q : Hq(F,C) → Hq(F,C), q ≥ 0, are the homological monodromy trans-
formations.

In this section we solve in the quasi-ordinary case the monodromy conjectures
stated in the Introduction. We will focus firstly on the the topological monodromy
conjecture of [14] and on the motivic monodromy conjecture of [15, section 2.4] as
stated in the introduction but for convergent quasi-ordinary series.

The monodromy conjectures deal with eigenvalues of the complex algebraic
monodromy at some points of the zero locus of h. First we will prove the mon-
odromy conjecture for ev(h) = 1. As we mention in the introduction the result is
known (several proofs by Loeser, Veys) but we present here an independent proof
following our ideas which by the way will be useful for the proof in the general case.
In the general case, i.e ev(h) > 1, we need to consider the monodromy at some
different points of the singular locus of h. These points will be at some transversal
sections of h. Thus we proceed by induction on ev(h).

1. Monodromy conjecture for curves

Recall that any germ h ∈ C{x, z} of a curve is quasi-ordinary. We will prove
that each Newton process produces eigenvalues of the zeta function of the mon-
odromy of the curve defined by h. This is true in all cases except for the special
candidate pole but the special pole candidate (if it appears) is not a pole for the
motivic zeta function (hence for the topological zeta function) because of Proposi-
tion 5.4.

Theorem 6.1. Let h(x, z) ∈ C{x}[z] be a germ of a curve and ω a regular
differential form such that (h, ω) satisfies the support condition (1.3). If (N, ν) ∈
SCP (h, ω) let q := − ν

N , then exp(2iπq) is an eigenvalue of the zeta function of the
monodromy at some point of h−1(0).

Proof. The case depth(h) = 0 is trivial, since h = xNz. In this case SCP (h) =
{(N, ν), (1, 1)}, where ν comes from the differential form; at some points of h−1(0),
the zeta function of the monodromy is either 1− tN or 1− t and the result follows.

77
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We prove by induction on the depth ≥ 1 that if (N, ν) ∈ SCP (h, ω) and
q := − ν

N , then exp(2iπq) is an eigenvalue of the zeta function of the monodromy.
We will not consider the case q ∈ Z since this case always gives the eigenvalue 1 of
the monodromy.

Let h be a curve singularity with depth m + 1 in good coordinates, m ≥ 0.
Assume h = xNzεg(x, z), ε = 0, 1 and ω = xν−1dx ∧ dz, where neither x nor
z divide g and (h, ω) satisfies the support condition 1.3. Let γ1, . . . , γr be the
compact edges of the Newton diagram of h; for each q = 1, . . . , r, we have denoted
by v(q) the number of non-zero distinct roots of hγq . Each one of these roots defines
a Newton map and let hq,j j = 1, . . . , v(q), be the pull-backs of h by these Newtons
maps. Recall that the vertex τr of γr is the z-highest vertex. We will define also
α, β such that α = 0 (resp. β = 0) if the slope of γr (resp. the inverse of the slope
of γ1) is an integer and x (resp. z) does not divide h. Otherwise we set α = 1
(resp. β = 1). Besides the candidate poles (N, ν) and (1, 1), denote by (Nq, νq),
q = 1, . . . , r, the candidate poles corresponding to the edges. It is clear that with
the poles (N, ν) and (1, 1) we can complete our argument as above. Note that:

• depth(h) = 1 if and only if depth(hq,j) = 0; the corresponding monodromy
zeta functions for these pull-backs are equal to 1.

• h is in good coordinates if and only if v(1) + β > 1.
• (Nr, νr) is a strong candidate pole if and only if v(r) + α > 1; recall that

(Nq, νq), q = 1, . . . , r − 1, are strong candidate poles.

One can prove, see e.g. [7], that at the corresponding points of the strict transform
of h after Newton mappings and after the partial resolution induced by the Newton
polygon of h the total transforms of h are isomorphic curves. Using A’Campo’s
formula we deduce that the monodromy zeta function of h at the origin is

(6.1) ζ(h)(t) =
(1− tN

′
r )a

(1− tNr )α−1

(1− tN
′′
1 )b

(1− tN1)β−1

r∏
q=1

(1− tNq )−v(q)

v(q)∏
j=1

ζ(hq,j)(t)

 ,

where

• N ′′
1 divides N1, N ′

r divides Nr.
• If x (resp. z) divides h then a = 0 (resp. b = 0) and the corresponding

numerator does not appear, otherwise a = 1 (resp. b = 1).
• If x does not divide h, this implies (N, ν) = (0, 1) and we can express
hγr

= zur h̃r where h̃r is a product of mr =
∑v(r)

j=1 mr,j factors of the form
(znr

1 − vxbr

), counting multiplicities. Recall that in the case of curves we
always have gcd(nr

1, b
r) = 1. Thus

(6.2) Nr = (ur +mrn
r
1)b

r, νr = nr
1 + br, N ′

r = ur +mrn
r
1.

• If z does not divide h, that is ε = 0, we can express hγ1 = xu1 h̃1 where h̃1

is a product of m1 factors of the form (zn1
1 − ṽxb1), again gcd(n1

1, b
1) = 1.

In this case

(6.3) N1 = (u1 +m1b
1)n1

1, ν1 = νn1
1 + b1, N ′′

1 = u1 +m1b
1.

Recall that the inverse of the zeta function of the monodromy is, up to a factor of
t(1− t), a polynomial. In order to prove the theorem we must take special care of
numerators in the formula (6.1). They can arise in several situations:
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(1) r > 1, x does not divide h, v(r) = 1. The equations of (6.2) imply that
exp(−2iπ νr

Nr
) is a root of the polynomial which is the inverse of the quotient

1−tN′r
1−tNr

.
(2) r > 1, z does not divide h, v(1) = 1. We proceed using equations (6.3).
(3) r = 1, either x or z divide h, v(1) = 1. We proceed using equations (6.2) or

(6.3).
(4) r = 1, neither x nor z divide h, v(1) = 1. Using equations (6.2) it is easily seen

that (N1, ν1) provides a root of the inverse of the monodromy zeta function. In
such a case the zeta function is written as

(6.4)
(1− tN

′
1)(1− tN

′′
1 )

(1− tN1)
ζ(h1,1)(t).

With these arguments, if depth(h) = 1, the proof of the result is finished. Let
us assume now that depth(h) > 1. From the above computations we must prove
that SCP (hq,j) produce also roots of (ζ(h)(t))−1. By induction hypothesis this is
true whenever (ζ(hq,j)(t))−1 divides (ζ(h)(t))−1. The unique case where this fact
does not happen is in (6.4), since the first factor is not a polynomial. Let us rewrite
the above formula using (6.2), (6.3) and u1 = ur = 0:

(6.5)
(1− tm1n1

1)(1− tm1b1)
(1− tm1n1

1b1)
ζ(h1,1)(t).

Since the inverse of the zeta function of the monodromy is, up to a factor of t(1−t),
a polynomial, there must exist a factor (1−tm1) which divides (ζ(h1,1)(t))−1. Let us
note that h1,1 = xm1n1

1b1(zm1+. . . ) and the new differential form is xn1
1+b1−1dx∧dz.

The highest vertex of the new Newton polygon is (m1n
1
1b

1,m1); let us assume that
we have s edges and denote (Ñ , ν̃) the strong candidate pole associated to highest
edge. Let us denote (ñ, b̃) the coprime integers which provide the slope of the edge.

We have Ñ = m1(ñn1
1b

1 + b̃), ν̃ = ν1ñ + b̃ = (n1
1 + b1)ñ + b̃. The function

ζ(h1,1)(t) is

(6.6) ζ(h1,1)(t) = (1− tÑ )−v(s)ζ(h̄s,j)(t)
s−1∏
q=1

∆q,

where ∆q is the product of the factors associated to the s−1 first edges. The factor
(1 − tÑ ) is a multiple of (1 − tm1). This means that (Ñ , ν̃) is the only candidate
pole which may not give an eigenvalue of the monodromy of h. Since

(Ñ , ν̃) = (m1(ñn1
1b

1 + b̃), (n1
1 + b1)ñ+ b̃),

it follows that exp(−2iπ ν̃
Ñ

)m1 = exp(−2iπ (n1
1+b1)ñ+b̃

ñn1
1b1+b̃

). It is easy to check that the

rational number (n1
1+b1)ñ+b̃

ñn1
1b1+b̃

is not a positive integer. In particular exp(−2iπ ν̃
Ñ

)m1 6=
1 and it is an eigenvalue of the monodromy of h.. �

2. Monodromy conjecture: general case

We will need some facts about the zeta-function of the monodromy of quasi-
ordinary analytic power series. A formula to compute the zeta function of the
monodromy has been obtained by L.J. McEwan, A Némethi, and P.D. González
Pérez, see [38, 23].
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Assume h is a quasi-ordinary power series defined by f(x, z)u(x, z) with u(0, 0) 6=
0 and f = zn + a1(x)zn−1 + . . . is in good coordinates. If ΛCE = ∅ then f is ir-
reducible and smooth. Otherwise one reorders the variables x in such a way that
the first entry of min ΛCE ∈ Qd is non-zero. Since the set ΛND(f) ⊂ Λ is totally
ordered, min ΛCE exists.

Theorem 6.2. [38, 23] With the above hypothesis, after the reordering of the
coordinates described before one has ζ(h)(t) = ζ(f)(t) = ζ

(
f |{x2=...=xd=0}

)
(t).

In fact, if min ΛCE has at least two non-zero entries, then ζ(f)(t) = (1− tn).

Corollary 6.3. If h ∈ C{x}[z] is quasi-ordinary satisfying ev(h) = 1 and
ω a regular differential form such that (h, ω) satisfies the support condition (1.3),
then the monodromy conjecture holds for ZDL(h, ω, T ).

We can apply Theorem 6.2 and Corollary 5.1 to conclude the proof of Corollary
6.3 from Theorem 6.1.

Example 6.4. If f = zn + x1 · · ·xr. Then f has a non-degenerate Newton
polyhedron. One can compute the topological zeta function (using Denef and Loeser
formula or our algorithm) and the monodromy zeta function ζf (t) (using the above
result or Varchenko formula, [43]). In fact ζ(f) = (1− tn) and Ztop,0(f, s) has only
two poles s = −1 and s = −n+1

n . In particular the monodromy conjecture holds.

Theorem 6.5. Let h(x, z) ∈ C{x}[z] be a quasi-ordinary power series and ω a
regular differential form such that (h, ω) satisfies the support condition 1.3. Then
the monodromy conjecture holds for ZDL(h, ω, T ) and Ztop,0(h, ω, s).

Proof. Let h ∈ C{x1, . . . , xd}[z] be a quasi-ordinary analytic power series in
good coordinates. We proceed by induction on ev(h) = d > 1.

Assume h ∈ C{x1, x2}[z] has ev(h) = 2. By Proposition 5.10, every strong
candidate pole is either (n, n1 + 1) or it is a strong candidate pole of one of the
transversal sections. In the former case, the highest compact 1-dimensional face
of Γ(h) is special in both coordinates. Thus min ΛCE(h) has at least two non-
zero entries, which implies ζ(h)(t) = (1 − tn), after Theorem 6.2. In particular
exp(−2iπ(n1 + 1)/n) is an eigenvalue of the monodromy of h at the origin.

Otherwise, since we have proved the result for ev(h) = 1, exp(−2iπ(n1 +1)/n)
is an eigenvalue of the monodromy of one of the transversal sections at some point
which is, in fact, contained in h−1(0).

Moreover for any quasi-ordinary analytic power series h such that ev(h) = 2
the monodromy conjectures for motivic and topological zeta functions hold, after
Corollary 5.1.

By Proposition 5.11 and the induction we can conclude that the monodromy
conjecture for motivic and topological zeta functions hold for quasi-ordinary power
series h such that ev(h) = d. �

3. Monodromy conjecture for the Igusa zeta-function

Let p be a prime number and let K be a p-adic field, i.e [K : Qp] <∞. Let R
be the valuation ring of K, P the maximal ideal of R, and K̄ = R/P the residue
field of K. Let q denote the cardinality of K̄, so K̄ ' Fq. For z in K, let ord z
denote the valuation of z, and set |z| = q−ord z. Let h be a non constant element
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in K[x1, . . . , xd]. The p-adic Igusa local zeta function I0(h,K, s) associated with h
(relative to the trivial multiplicative character) is defined as the p-adic integral

(6.7) I0(h,K, s) :=
∫

PRd

|h(x)|s|dx|,

for s ∈ C, <(s) > 0, where |dx| denotes the Haar measure on Kd normalized in such
of way that Rd is of volume 1. Igusa proved that I0(h,K, s) is a rational function
of q−s, see [10].

Remark 6.6. The method described here can be used to compute I0(h,K, s)
in the case of that h ∈ K[x1, . . . , xd, z] is a quasi-ordinary polynomial.

Assume now that h is a non-constant polynomial in F [x1, . . . , xd], for some
number field F ⊂ C. Igusa’s monodromy conjecture states that for almost all p-
adic completion K of F, if s0 is a pole of I0(h,K, s), then exp(2iπ<(s0)) is an
eigenvalue of the local monodromy of h at some point of h−1(0).

It is known and deduced from [15], see also [17], that for almost all finite places
of the number field F, the real parts Ns+ν of poles of I0(h,K, s) come from factors
(1−L−νTN ) in the denominator of Znaive(h, T ) (which is essentially ZDL(h, T )). In
particular our proof can be applied to polynomials h ∈ F [x, z] with coefficients in a
number field F which are quasi-ordinary polynomials. Then the Igusa monodromy
conjecture is also true in this case.
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géométrie torique, Thèse de Doctorat, Paris 7, 2002.
[21] , The semigroup of a quasi-ordinary hypersurface, Journal Inst. Math. Jussieu 2

(2003), 383–399.

[22] , Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst.

Fourier 53 (2003), 1819–1881.
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