
This article was downloaded by: [University of Hong Kong Libraries]
On: 06 August 2013, At: 21:40
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in Algebra
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lagb20

On the topology of a generic fibre of a polynomial
function
E. Artal a , I. Luengo b & A. Melle c d
a Departamento De Mathemáticas, Universidad De Zaragoza, Campus Plaza San Francisco
S/N, Zaragoza, E-50009, Spain E-mail:
b Departamento De Álgebra, Universidad Complutense Ciudad Univer-Sitaria S/N, Madrid,
E-28040, Spain
c Department of Pure Mathematics, University of Liverpool, PO Box 147, Liverpool, L69
3BX, UK E-mail: Current address
d Departamento De Geometría Topología, Universidad Complutense Ciudad Universitaria
S/N, Madrid, E-28040, Spain E-mail:
Published online: 27 Jun 2007.

To cite this article: E. Artal , I. Luengo & A. Melle (2000) On the topology of a generic fibre of a polynomial function,
Communications in Algebra, 28:4, 1767-1787

To link to this article:  http://dx.doi.org/10.1080/00927870008826926

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall not be
liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities
whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out
of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/lagb20
http://dx.doi.org/10.1080/00927870008826926
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


COMMUNICATIONS IN ALGEBRA, 28(4), 1767-1787 (2000) 

ON THE TOPOLOGY OF A GENERIC 
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ABSTRACT. In this work we study the topologies of the fibres of some families of 
complex polynomial functions with isolated critical points. We consider polyno- 
mials with some transversality conditions at infinity and compute explicitly its global 
Milnor number p(f), the invariant X ( f )  and therefore the Euler characteristic of its 
generic fibre. We show that under some mild transversality condition (transversal at  
infinity) the behavior of f at infinity is good and the topology of the generic fibre 
is determined by the two homogeneous parts of higher degree of f. Finally we study 
families of polynomials, called two-term polynomials. This polynomials may have 
atypical vduea ai injiniiy. Given such a two-term poiynomial j we characterize its 
atypical values by some invariants of f. These polynomials are a source of interesting 
examples. 

This paper deals with the fibres of some families of complex polynomial functions 
which only have isolated critical points. Let f : e" -i @ be a polynomial function 
and B j  C C its bifurcation set, i.e. the smallest subset such that the restriction 
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1768 ARTAL, LUENGO, AND MELLE 

of f induces a Cm trivial fibration cC" \ f -'(Bf) -+ C \ Bf,  [Ph], [HL], [V]. The 
bifurcation set Bf contains the critical values off  and the so-called atypical values 
at infinity. In general there is not a precise definition of what is an atypical value 
at  infinity. We have considered in [ALM] an invariant A( f )  that helps to detect the 
atypical fibres a t  infinity. 

Let f : C" + C be a polynomial function with isolated critical points. Let us 
denote by Vt the compactification of the fibre Ft := f - ' ( t )  in P and D = Vt n H,, 
where Hm is the hyperplane at  infinity which may be identified with P-'; D is 
the hypersurface in P-' defined by the homogeneous form of highest degree of f. 
By means of the generalized Milnor number of Parusihki we define a generically 
constant function py( t )  := p(&, D) on C and we set 

The main property of those invariants is that with the help of the global Milnor 
number p( f )  determine the Euler characteristics of the fibres of f :  

Theorem. [ALM] Let f E @[XI,. . . , x,] be a polynomial with isolated critical 
points. Let t E @ \ Bf . 

(i) The Euler characteristic of the fibre Ft is equal to 

(ii) For any value b E C the Euler characteristic of the fibre Fb is equal to 

where pq(b) is the sum of the Milnor numbers of the afine variety 4 at its singular 
points. 

r"L 1ue main res-dt of tL& work is to compute the Euier characteristic of the h e s  
for some families of polynomials. We obtain explicit analytic formulae for the global 
Milnor number of f and for the invariant A( f ) .  

Let f = fo + . . . + fd-k + fd be the homogeneous decomposition of f ,  where k 
is the least positive integer such that fd-k is not identically zero. We will denote 
by D (resp. T) the divisor in P - I  defined by fd = 0 (resp. fd-k = 0). For any 
hypersurface C C P-' we will denote by Cred the reduced hypersurface associated 
to C. Let us consider the decomposition D = CG1 qj Dj, where q, 2 1 and Dj  is 
an irreducible hypersurface of degree dj, j = 1,. . . , m. Then Dred = '& Dj; we 
will denote by p = CG1 d j  the degree of Dred. 

Theorem 2.1. If Sing(D) nT = Q, then D has isolated singularities, the set C(f) 
of critical points off is finite and 
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 1769 

polynomials considered in Theorem 2.1 are called Yomdine-at-infinity polyno- 
mials. They have isolated singularities a t  infinity. By results of Dimca, [Dl, Theo- 
rem 21, any fibre of f has the homotopy type of a wedge of spheres of real dimension 
r - 1. In [P3] Parusiriski proved that the number of spheres is equal to p(f )  and 
that these polynomials are good, i.e., the topology at  infinity of the fibres does not 
change. In particular the invariant A( f )  is zero for these polynomials. 

The other results correspond to n = 3; we will usually take x, y, t as coordinates. 
We will say that f is transversal at infinity if Sing(Dred) f l  T = @ and for any 
j E (1,. . . , rn) such that pj > 1, D j  meets T a t  d j ( d  + k )  points. We remark that 
this condition implies that if D is not reduced then T is reduced . 
Theorem 3.1. Let f be transversal at  idni ty .  Then C(f) i s  finite and 

p ( j )  = (d - 1)" k(x(D) + d(2d - p - 3)) + k2(d  - p) .  

In this case we remark that D may be not reduced and f has non-isolated 
singularities a t  infinity. Nevertheless, we prove that f has W-isolated singularities 
at  infinity, in the sense of Siersma-Tibgr, [ST]. Therefore the generic fibre o f f  has 
the homotopy type of a wedge of p(f)  2-spheres, f is good and then X(j) = 0. 

Notice that in Theorems 2.1 and 3.1, the terms of f of degree less than d - k 
affect neither the Miinor number nor the topology of the generic fibre; this is not 
the situation in Theorem 4.4. We need some more notation in order to state it. 

Let us consider now two germs g, h E @{x, y) which are in the m d m a l  ideal; 
and let us suppose that for any t f @*, the germ g + i h  is squarefree. Then there 
exists a finite set S(g, h )  C C" such that the Milnor number pjg + t h )  of the germ 
g + t h  at  the origin is constant if t E @" \ S ( f ,  g ) ;  let us cell p(g, h) this constant. 
Then we will denote 

Theorem 4.4 and Proposition 4.12. Let w suppose that f = fd + fd-k. The 
critical locus C(f) as finite if and only i j  the following wnditions hold: 

(i) Sing(D) n Sing(T) = @ and T and D have no common wmponents. 
(ii) The set of the points in  P2 \ ( S i n g ( D )  u S i n g ( T ) )  such that the gradients ~f fd 

and fd-k are linearly dependent is finite. 
Moreover in this case 
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1770 ARTAL, LUENGO, AND MELLE 

- dl  = $, kl = 9 where 6 := gcd(d, k) and 
- p p  i s  the Milnor number at P of the generic element of a projective pencil 

associated to  f .  

polynomials verifying conditions (i) and ( i i)  of Theorem 4.4 are called two-term 
polynomials. We prove again that they have also W-isolated singularities at  infinity. 
The sum Cp a> gives essentially the contribution to X(f) by the fibres different 
from Fo. 

The way for proving the theorems is related with the results that Melle have 
obtained in the local case, [MI. Namely, in the local case when one considers germs 
of hypersurfaces defined by f = fd + fd+k + . . . with similar hypothesis as in our 
theorems one obtains similar formulae replacing -k by +k. As in the proof of [q, 
we will use Parusiriski's generalized Milnor number in the proof of theorems 2.1 
and 3.1. Notice that polynomials under the hypothesis of these two theorems are 
tame, [B, Prop. 3.11, and they have not atypical values a t  infinity. By a theorem 
in [ALM], in these cases p(f) is up to 1 the Euler characteristic of a generic fibre 
of f ;  it will not be the case in general for polynomials of Theorem 4.4, and we will 
need some comparison results to obtain a proof. 

Finally we note that (*)-polynomials in [GN] are a particular case of Yomdine- 
at-infinity polynomials (when k = 1); in their paper, Garcia and NBmethi compute 
the monodromy at  infinity and not only the Milnor number. The computation of 
the monodromy in the local case was performed in [A] for superisolated singularities 
(which is the local analog to (*)-polynomials in [GN]). 

$1.- POLYNOMIALS WITH ISOLATED CRITlCAL POINTS 

We denote by x(A) the Euler characteristic of the topological space A. 

Definition 1.1. [P2] Let E be a holomorphic vector bundle of m n k  r over a smooth 
compact complex manifold M of dimension n. Let s E P(HO(M; E)) and let X be 
the zero set of a representative of s. Then we define the Milnor number of X i n  
M ,  denoted by p(M; X )  o r  p(X), as 

p(M; X )  := (-I)"-'+'(~(X) - x(M; E)), 

where x(M; E) i s  the Euler chamcteristic of the zero set of a section o f E  tmnsversal 
to  the zero section. 

In [PI], Parusiriski defined the generalized Milnor number in the hypersurface 
case; when r = 1, both definitions agree, Let us recall some properties of this 
invariant from [PI] and [PP]: 

Property 1.2. [PI] Let M be a compact complez manifold of dimension n and let 
X and Z two hypersurfaces which are linearly equivalent as divisors. Then: 

Property 1.3. [PP] Let M be a wmpact  wmplez  manifold of dimension n and 
let X be a hypersurface. Given z E X and f, = Q a local equation of X at x, we 
defirbe the iopolo~itiiiI MiInor number of X at x as 
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 1771 

where F, is the Milnor fibre of f,; i t  is just the classical Milnor number if x  is 
an isolated singular point of X .  Then there exists a Whitney s tmt i jh t ion  S of X  
such that p t , (X ,x )  is constant along each stratum; let us denote p s  this constant 
number for each S E S .  Let w take a smooth hypersurface Z which is linearly 
equivalent to X and which is transversal to S .  Then: 

Remark. In [PI], it is defined more generally p(X,  Y), where Y is a compact sub- 
variety of X  which admits a neighbourhood U in X such that U \Y is nonsingular. 
If Z and S are as in (1.3) and S induces a stratification Sy on Y, then we get: 

Let f E @ [ X I , .  . . , x,] be a polynomial and let f  = fo + f l  + . . . + fd be its 
decomposition in homogeneous forms. We take the natural inclusion C? c, P"; we 
will denote by P-' the hyperplane a t  infinity and by xo the new variable. Let D  
be the divisor of P - I  defined by fd. We will denote by K the compactification 
of Ft := f  -'(t) in P" ; the equation of & is f (xo ,  x l ,  . . . , x,) - txd = 0 ,  where 
f :' f d  f ~ o f d - 1  f ' ' ' + x t - l f l  + ~g f0. 

We will denote C ( f )  the set of critical points off  and when C ( f )  is a finite set we 
set p ( f )  the sum of the local Milnor numbers of the germs of the level hypersurfaces 
of f  a t  the points of C(f ). 

Definition 1.4. [ALM] Let f  E @ [ x l , . .  . , x,] be a polynomial with isolated critical 
points. W e  define the Milnor function of f at  infinity as a function p T :  @ + Z 
such that p T ( t )  := p ( K ,  D ) .  If it is constant we will denote its constant value by 
17. 

We recall a construction of [AML]. Let us take a polynomial f of degree d with 
isolated singularities. This fact allows us to separate the &ne singularities of each 
Vt from the singularities at  infinity. For each t @, 

Let us denote p ( K ,  Sing(Ft)) by pq(t ) ;  recall that p ( K ,  D )  = p T ( t ) .  

Since C (  f) is finite we take any stratification S, of @ such that pT ( t )  is constant 
along each stratum S  of S,. Let p? be this constant value over the stratum 
S  E S,. Let Sge,  := @ \ i t l , .  . . , t , )  be the big stratum of S, and let p; , ( f )  be 
the constant value of pT on Sgen. 

Definition 1.5. [ALM] With the previous notations, we define for any t E @ 
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1772 ARTAL, LUENGO, AND MELLE 

and 

I t  is easily seen that X f  ( t )  and A( f )  do not depend on the choice of the stratifica- 
tion S, of C that verifies p T ( t )  is constant along each stratum S of S,. Moreover 

and it is clear that if the function p? is constant then X(f) is equal to zero. 
Let So the set of regular values of f and let S := So n Sgen; it is a non-empty 

open set in @ and S = @ \ (31,.  . . , s k ) .  Let S be the stratification S, {~i}f=~. I t  
is easily seen that for all t E S the integer p ( K )  is the same. 

Corollary 1.6. [ALM] Let f E @[xl,. . . , xn] be a polynomial with isolated critical 
points of degree d. Let S ,  be as above. Then the number 

depends only on d and n. 

We state two easy and useful consequences of the theorem in the introduction: 

Corollary 1.7. [ALM] Let f E C[xl,. . . , x,] be a polynomial with isolated critical 
points such that p? is constant. Then 

aft is a generic value o f f .  

Theorem 1.8. [ALM] Let f = fd + fdql + . - - E @[xl , .. . , x,] be a polynomial 
of degree d with isolated critical points. Let & gs & ~ e .  +(D) & the 
genemlized Milnor number of D in  P-l. Then 

Therefore i f  p? is  constant then 

Let j be a polynomial in Cjxl,. . . , x,] of degree d > 13. Let us denote j,, 
j = 0,1,. . . , d the homogeneous form of degree j of f .  Let k be the least positive 
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 1773 

integer such that fd-k is not identically zero. We have denoted D (resp. T) the 
divisor in P" defined by fd = 0 (resp. fd-k = 0). 

Definition. A polynomial f E q x l , .  . . , x,] is a Yomdine-at-infinity polynomial 
if Sing(D) n T = 0. 

Theorem 2.1. Let f E q x l ,  . . . , x,] be a Yomdine-at-infinity polynomial. Then 
D has isolated singularities, C(f) is finite and 

I t  is easily seen that Yomdine-at-infinity polynomials have isolated singularities 
a t  infinity. By results of Dimca, [Dl], or Parusiriski,[P3, Theorem 1.41, the generic 
fibre of f has the homotopy type of a wedge of p(f) spheres of real dimension 
n - 1. These polynomials are good, i.e., the topology a t  infinity of the fibres does 
not change. In fact, these polynomials are tame by [B, Prop. 3.11. 

Proof. The hypersurface D is irreducible with isolated singularities if n > 2 and it 
is reduced if n = 2. 

Firstly we will show that f has isolated critical points; in fact, Vt has isolated 
singular points, Vt E @. It is enough to verify that there exists a regular neigh- 
borhood T(D) of D in P" such that Vt E @ there is no singular point of & in 
T(D) \ D. 

Let P be a point of D; if D is smooth at P, then & is smooth a t  P (and also in 
a neighborhood of P). 

If P E Sing(D) we can choose a local system of coordinates (ul,. . .,u,-1, W) 
such that the local equation of & at P is f (ul, . . . , u,-~) - wk = 0, where w = 0 
is the local equation of P-l and f (ul, . . . , un-1) = 0 is the local equation of D. 
Then & has an isolated singularity at P and we get that C(f) is finite. 

S~conc!!y we will prove that p? is constant and its value is 

We have seen that the pencil (&, P )  is analytically trivial, and the Milnor num- 
bers are constant. In this case the generalized and classical Milnor numbers are the 
same. Then, 

is a constant function. As we have separated variables, it is easily seen that 
p(&, P )  = (k - l)p(D, P), VP E Sing(D). 

Then after (1.8) the proof of the theorem is finished 0 D
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1774 ARTAL, LUENGO, AND MELLE 

From now on n = 3. Let f = fd + fd-k + . . . E q x ,  y, Z ]  be a polynomial of 
degree d > 0 and let D = CT=t qjDj and T be as in the introduction. We recall 
that p denotes the degree of Dred. 

Deflnition. A polynomial f E C[x, y, Z] is a transversal-at-infinity polynomial if 
Sing(Dred) f l  T = 0 and for any j E (1,. . . , m) such that qj > 1, Dj  meets T at 
dj (d + k) points. 

We note that either D or T is reduced. 

Theorem 3.1. Let f be a tmnsversal-at-infinity polynomial. Then, C(f) is finite 
and 

p(f)  = (d - 1)3 - k(x(D) + d(2d - p - 3)) + k2(d - p). 

Notice that D may be not reduced and f may have non-isolated singularities at 
infinity. Nevertheless, we will prove in this section that f has W-isolated singu- 
larities at infinity, in the sense of Siersma and Tibh, [ST]. So by their results the 
generic fibre of f has the homotopy type of a wedge of p(f) 2-spheres and we will 
prove that f is good. We divide the proof of this theorem in a sequence of lemmas. 

Lemma 3.2. I f f  E @[x, y, x ]  is tmnsversal at infinity, then f has isolated critical 
points. 

Proof. We are going to show that there exists a regular neighborhood T(D) of D 
in such that Vi is smooth in T(Dj \ D l  W E C It is enough to study Vi around 
any P  E D: 
- P  is a smooth point of D. In this case, & is smooth at P  and therefore in a 

neighborhood of P.  We have pt,(&, P )  = 0. 
- P is a smooth point of Dred which is singular at D and is not in T. In this case, 

P lies in an irreducible component Dj  of D such that its multiplicity q, > 1; we 
can choose local coordinates (u, v, w) at P such that the local equation of & is 
uQj - wk = 0, where w = 0 is the local equation of P and u = w = 0 is the 
local equation of Dj; the singular part is contained in D. We have ptop(&, P )  = 
-(k- l)(q, - 1). 

- P  is a singular point of Dred (and then, it is not in T). We can choose local 
coordinates (u, v, w) at P  such that the local equation of & is h(u, V )  - wk = 0, 
where w = 0 is the local equation of ~2 and w = h(u, v) = 0 is the local 
equation of D; the singular part is again contained in D. We have pt,(&, P )  = 
(k - l)~t,(D, PI. 

- P is a smooth point of Dred which is singular at D and is in T. As before 
P  lies an irreducible component Dj  of D such that its multiplicity qj > 1; we 
can choose local coordinates (u, v ,  w) at P such that the local equation of & 
is uqj - wku = 0, where w = 0 is the local equation of Pa, u = 0 is the local 
equation of Dj  and v = w = 0 is tangent to T at P; the singular part is again 
contained in D. We have ptop(&, P )  = qj - 1. 

We have proved that f has isolated critical points. 0 
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 1775 

Lemma 3.3. If f E @[x, y, I] is a transversal-at-infinity polynomial, then p? is a 
constant function, that implies X(f) = 0. 

Proof. We are going to compute the function p?. We will apply the property (1.3) 
(and the subsequent remark) of the generalized Milnor number. 

Let t E @. We are going to consider a stratification S of V; where the strata are: 

(a) The smooth part of the afEne part Ft (2-dimensional stratum). 

(b) The connected components of Sing(Ft) (0-dimensional strata, if any). 

(c) The connected components of the smooth part of D (1-dimensional strata). 

(d) The connected components of the set of points which lie in the smooth part of 
Drcd \ T and which are not smooth in D (1-dimensional strata). 

(e) The connected components of Sing(D,,d) (0-dimensional strata). 

(f) The connected components of Sing(D) n T (0-dimensional strata). 

We prove in the same way as in [MI, that S is a Whitney stratification of V; and 
by the computations in the proof of (3.2), the topological Milnor numbers of Vi are 
constant along each stratum. By Bertini's theorem, there exists a smooth surface 
Wd of degree d in such that: 

- Wd intersects Sing(&) only at  D; 
- the curve Wd n P2 intersects D,& at  exactly dp points; 

- the curve Wd n P2 does not intersect D n T. 
It  means that Wd is transversal to S; let us denote SD the set of strata which 

are contained in D. We can use it to compute pT(t) = p ( x ,  D): 

We have seen khat for m y  strat-mm S E SE the number ps does not depend on 
t E @, and we have proved that the function p? is constant. 

Lemma 3.4. The constant value of p T  is 

Proof. We are going to compute the terms of the formula above. The strata in SD 
are those from (c) to (f). We fix some not&-ion; we denote D = Dl + . . - f Ds f 
q,+iD,+1+...+qTD,, where0 < s 5 r a n d q j  > 1 if j = s + l ,  ..., r .  Let us 
denote 

D,:= D,\ (s~~~(D,)uD~u...u&u...uD,uw~). 

(c) This term vanishes. 

(d) We get in this term 
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ARTAL, LUENGO, AND MELLE 

The transversality condition implies that x(Dj n T) = dj(d - k). We note that 
we can consider j = 1,. . . , r ,  because we are adding vanishing terms. Then, we 
get: 

r 

(k - l)(d - k)(d - PI - (k - 1) x ( g j  - l)x(Bj). 
j=1 

(e) We get in this term 

(f) By the transversality condition we get 

As before, we can take again j = 1,. . . , r,  and we obtain 

Putting all these computations together, we have: 

We can use the stratification SD of D for computing p(D) in pa. Notice that the 
curve T does not play any roie now. lvioreover we ceii i& the crirv~ Urd P2 and 
apply (1.3) to the (non-reduced) divisor D. So we obtain: 

By (1.2) we get the result. 0 

Proof of Theorem (3.1). The proof is a consequence of the above three lemmas and 
(1.8). 0 

Proposition 3.5. Let f be a transversal polynomial at infinity. Then, f has W -  
isolated singulan'ties at infinity. 

Proof. We will apply the criterium of Remark 2.5(c) in [ST], with a slight modifi- 
cation. We take the Whitney stratification SD of D which appears in the proof of 
(3.3). We construct a stratification W' of the space 

X := {([x : y : z : w],t) E P X @ 1 J(x, !,,z, w) = twd), 
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 

where f is the homogenization of degree d of f ;  we identify U? with 

The strata of W' are: U? and SD x C for all SD E So. In general, this stratification 
is not a Whitney one; let W the least fine Whitney stratification of X obtained by 
refining W'. Then, in order to check i f f  has W-isolated singularities at  infinity it 
is enough to show that the restriction to X of the second projection has isolated 
singularities when restricted to any stratum of W. 

We notice that we may have only problems on strata S E W which are contained 
in SD x C! where SD E SD is a 1-dimensional stratum. We fix a stratum SD of 
this type; there exists an irreducible component Di of D such that the stratum 
SD = D, \ (T U Sing(D,,d)). 

In order to check if W is Whitney in a neighborhood N of SD in X we must 
study if Whitney conditions are satisfied for (@3, SD x C). I t  is the case if Di is a 
reduced component of D as in this case X is smooth around SD x @. 

Let us suppose that Di is not reduced and its multiplicity is m. Let us fix a 
point P E SD. In a neighborhood of P, we may choose local coordinates (u, v, w) 
in at  P, such that w = 0 is the local equation of the hyperplane at  infinity, 
fd(x, 1/, Z) = urn and fd-k(x, 9, z )  does not vanish at  the origin. Then we have that 
N n ( S D X C ! ) = { ( ~ , ~ , W , t ) ( W = ~ = O ) a n d  

N nu? = {(u,v, w,t) 1 urn + w ~ ~ ( u , v ,  W) = twd, w # 0), 

where h(O,O, 0) # 0. This last stratum is dense in N and we may identify N with 
a family of germs of plane curves based on N n (SD x C!); Whitney conditions 
are equivalent to the equisingularity of this family of plane curves, by standard 
arguments. In our case this family is equisingular. It means that SD x C! is also a 
stratum in W ;  the projection on t has no singularity at  all. 0 

$4.- TWO-TERM POLYNOMIALS 

Definition 4.1. A two-term polynomial of type (d,d - k) is a polynomial of 
@[x, g, Z]  which is a linear combination of monomiaIs of degree d and d - k. 
Notation. Given dl k we denote 6 := gcd(d, k) and dl = 4 ,  kl = 9. 
Definition 4.2. Let f = fdf  fd-k be a two-term polynomial. The projective pencil 
associated to f is the pencil o f  curves in P2 genemted by fddl-" and f : l k .  We will 
denote Ct the element of the pencil determined by j : ~ ,  - t f i ~ - ~ '  = 0. 

Lemma 4.3. Let f = fd+  fd-k be a two-term polynomial. Then, the critical locus 
C(f) i s  finite if only l f  the following conditions hold: 

(i) Sing(D) n Sing(T) = B and there is no common wmponent of D and T. 

(ii) The set of the points in P2 \ (Sing(D) u Sing(T)) such that the gradients of fd 

and Jd-k are iinearly dependent is jinite. 
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1778 ARTAL, LUENGO, AND MELLE 

Proof. For the "only if" part we take into account the following fact: If (x, y, Z) # 0 
is a critical point of f ,  then grad fd and grad fd-k are linearly dependent at 
[x : y : z]. The condition Sing(D) nSing(T) = 0 implies that grad fd and grad fd-k 
do not vanish simultaneously. If [x : y : z] is a a point such that grad fd and 
grad fd-k are linearly dependent and non-zero, one can adjust the proportionality 
factor in order to  get a finite number of critical points of f in the line [x : y : z]. It 
is exactly the case when [x : y : t] E P2 \ (D U T) and it is a singular point of the 
projective pencil associated to f. 

For the "if" part we argue as follows. If there exists a point P in the intersection 
Sing(D) n Sing(T) then the complex line in C? defined by P is contained in C(f). 
On the other hand suppose that the set U Sing(Ct) is not finite. For each of these 

t E C  
points P = (xo : yo : zo) there exists X E C such that 

Let /3 be a non zero complex number such that /3-k = X and let Q be the point 
in C? whose coordinates are (/3-kxo, ,Pk yo, /3-k~o). It is easy to see that Q is a 
critical value o f f ,  so C(f) is not finite. 

In order to compute the Milnor number of two-term polynomials with finite 
critical set we introduce some notation. 

Let us consider two germs g, h E C{x, y) which are in the maximal ideal; let us 
suppose that for any t E @ , the germ g + th is square-free. Let (Ct, 0) be the germ 
of plane curve defined by g + th. Then there exists a finite set S(g, h) C @ such 
that p(Ct, 0) is constant if t E C* \ S(f, g); let us call p(g, h) this constant. Then 
we will denote 

a*(& h) := C M C t ,  0) - p(g, h)) .  
tES(i7,h) 

Theorem 4.4. Let f = fd + fd-k be a two-term polynomial with finite critical set. 
Then 

where 
- := a*((f j lk)p ,  (f$-kl)p) ((-)p i9 the germ at P); 
- Ip is the intersection number at P .  

Proof. Let f = fd + fd-k be a two-term polynomial with isolated critical points. 

First  step. We compare the p(f) with p(g), where g is a suitable transversal 
polynomial a t  infinity 

Let us rewrite the formula of (4.4) in terms of the generalized Milnor number D
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TOPOLOGY O F  GENERIC FIBER O F  POLYNOMIAL FUNCTION 1779 

Let g := fd + gd-h be a polynomial which is transversal at  infinity. Let K be 
the projective curve defined by gd-k = 0. We choose g in order to verify: 

(a') Sing(D,,d) n Sing(K) = 0. 
(b') For j = 1,. . . , r ,  Dj and K intersect at (d - k)dj distinct points. 

This is a particular class of transversal-at-infinity polynomials. We deduce from 
(3.1) and some computations that 

We consider the invariant ~ ( d ,  3) defined in (1.6). This invariant does not depend 
on the polynomial f or g and in our case the curve D is the same for both cases. 

We construct stratifications ST and SF of C which match in the formula for 
~ ( d ,  3) and such that 0 is a stratum in both cases. It is clear that we can choose 
S r  = {{0), C }. We may suppose that 

ST = {{O), -. {tm}, u ) ,  

where U := C* \ {tl, . . . , tm). We denote pgen the constant value of @' in U. We 
recall that x(U) = -m and x ( C )  = 0; then, we deduce: 

m 

( 4-51 Af + / ~ 7 ( 0 )  + r ~ 7 ( t j )  - figen) = d g )  + ~r(0). 
j=1 

We are going to compare the fibres off  and g at 0. 

Proposition 4.6. 

Proof. We distinguish two cases: 

Case 1. D is reduced. 

In this case, Vo has only finitely many singular points at  infinity which are 
concentrated in Sing(D). Let us denote Singl(D) := Sing(D) \ T and Sing,(D) := 
Sing(D) n T. Then, 

As in the proof of (2.11, if P E Sing,(D), we have: p(Vo, P )  = (k - l)p(D,P).  
I t  has been computed in [M, Lema 3.3.71 that if P E Sing2(D) then 

Warning. In the cited result of [MI, it is important to remark that his D is our T,  
his T is our D and his d is our d - k. 
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1780 ARTAL, LUENGO, AND MELLE 

Then: 

In this case, g is a Yomdine polynomial at  infinity, and 

By the same reason, 

( g )  = (d - 1 - k p(D, P )  = (d - 1)3 - kp(D) 
PESing(D) 

It is easily seen that p(D) = x(D) + d(d - 3) and this gives the formula. 

Case 2. D is not reduced. 

In this case T and K are reduced. We first compute the difference p? (0)-pr(0). 
Let us denote Go := g-l(0). By (1.2), we have: 

last equality follows from the fact that D is the common intersection of the com- 
pactified fibres with P2. 

Let us compute the singular points of Fo. The best way is to consider Vo and 
to take the singular points of Vo which are not at  infinity. We get the points 
[x: y :  z :  1] such that: 

- grad(fd)(~,Y, z) + grad(fd-k)(~, Y, x )  = 0- 
- f d - k b ,  Y, 4 = fd@, I, 4 = 0. 

We recall that the equation of Vo is: fd(x, y, z) + wkfd-k(x, y, Z) = 0. Then, we 
have two kinds of singular points: 
- e:= [O:0:0:  11. We find in [MI that 

- Any point P E D n T  which is smooth in both curves and such that Ip(D,T) > 
1 (i.e., gradients are linearly dependent) induces k different singular points 
PI,. . . , P k .  We find again in [MI that p(Fo, Pj) = Ip(D, T) - 1, j = 1,. . . , k. 
Putting together all these Milnor numbers we find k(lp(D, T) - 1) for any point 

in D n T which is smooth in D, and we can write down 

By Bezout theorem: D
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 

where # denotes cardinality. 

We get the same results for Go if we change T by K. Then 

Let us compute now x(Fo) - x(Go). Let us denote - 
D ~ T : = { ( X , ~ ~ Z ) E @  ( [ x :  y : z ] ~  DnT)u{ (O,O,O))  

It is clear that D n T c Fo; let us denote Po := Fo \ D n T .  I t  is easily seen that 

x(Fo) = x ( ~ ~ )  + x(D n T )  = 1 + X ( ~ o ) .  As the origin is not in PO, we can consider 
the projection PO -+ P2. It is an unramified k-fold cyclic covering whose base is 
P2 \ (D U T ) .  Then: 

As before, we obtain x(Go) if we replace T by K. Then: 

We obtain: 

We have seen that 

These two formulae give the result. 0 

Second step. Now, we compare the fibres of f at  t l ,  . . . , t ,  with generic fibres. 

Proposition 4.7. 

Proof. We begin with a result which allows to compute pT( t j )  - pg,, in terms of 
Euler characteristics. 
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1782 ARTAL, LUENGO, AND MELLE 

Lemma 4.8. Fiz j = 1,. . . , m. Let T(D) be a small enough regular neighborhood 
of D C p. Let s, E @ close enough to tj. Then, 

Proof. We remark that p,,, = pT(sj) = p(V,,) and 

where C(f,tj) := C(f) n f-'(tj). By (1.3),we get: 

P(&, - P(K,) = x(K,) - xmjl. 
We choose Bp Milnor fibres for &, at P E C(f,t,). Let us consider: 

We define Vay, va, in the same way. If s, is close enough to tj, we have that 
V,, ,p is a Milnor fibre of &, at P for every P E C( f, tj) and the spaces Ri and R, 
are homeomorphic. We have the formulae: 

We recall that the intersections of these spaces have Euler characteristics equal to 
zero. We know also that: 

We get the result putting together this equalities. D 

Fix now P E Sing(D)nT and suppose that its coordinates are ( x ,  y, w) = (0,0,0). 
For a given tj, fix a Milnor polydisk B: for the germ (&,, P).  We denote: 

Lemma 4.9. With the same notations as above: 

Proof. It is easily seen that we can break T(D) in polydisks; outside Sing(D) n T 
the families look in the same way and they differ only in the neighborhood of 
Sing(D) n T. We deduce that 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ri
es

] 
at

 2
1:

40
 0

6 
A

ug
us

t 2
01

3 



TOPOLOGY O F  GENERIC FIBER OF POLYNOMIAL FUNCTION 1783 

x(V, n W ) )  - x K ,  n T P ) )  = 1 (X(W?) - x ( w 2  1). 
PESing(D)nT 

The result follows from the contractibility of W? and (4.8). 0 

Next lemma is very easy and important: 

Lemma 4.10. The discriminant of the polynomial Xd - ax" b is equal to 

where co, ci are non-zero constants which do not depend on a, b.  

Let us fix P E Sing(D) n T with coordinates (x, y, w )  = (0, 0,O). Let Ap be the 
common base for the Milnor polydisks B? , j = I,. . . , rn; A p  is a Milnor polydisk 
a t  the hyperplane a t  infinity for the germs of fd and fd-k  at P. Consider the 
projections 

t . 
: W A  u 2 : W 2 - + A p .  

By (4.10), the map a$ (resp. u:) is a d-fold cyclic covering over A p  ramified along 
(DU Ccl,;l ) n Ap (resp. ( D u C ~ ~ ~ ~ , )  RAP), where Ct is the curve of the projective 
pencil associated to  f correspondi)ng to t E C*. 

It is easily seen that Ap n D n CcItkl = {(0,0)), t E {tj, sj), and ramification 
behaves as follows: 
- Over each point of (Ap n D) \ (0) we have exactly d - k + 1 points for u$ (resp. 

02) .  
- Over each point of (Ccl,;l n Ap) \ (0) (resp. (Cc1811 n Ap) \ {0)) we have exactly 

I 

d - 6 points for a$ (resp. 02).  

- Over 0 we have exactly 1 point for a? (resp. a;). 

Then, we have for i E {ij, sj): 

The contractibility of W? and an easy computation give: 

By hypothesis if t # 0, the Milnor number of (Ct, P) is always finite; let us 
denote pp  the Milnor number of the generic element of the pencil at P. We can 
apply a local version of (4.8) which is a classical result for pencils of plane curves 
and we get D
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1784 ARTAL, LUENGO, AND MELLE 

Next result is also easy: 
S 

Lemma 4.11. Let s E C be such that p(C$) > p p .  Then the kl-roots of - belong 
c1 

to i t l , .  . . ,t",}. 

In the introduction, we have defined 

Then: 

Putting all these computations together, we get (4.7). 

Finally, (4.7) implies Theorem (4.4) by (4.5).  

Remark. I t  is easily seen that two-term polynomials with isolated critical points 
have only W-isolated singularities a t  infinity in the sense of [ST]; the proof is 
similar to the case of transversal-at-infinity polynomials. Nevertheless, they are 
not tame in general. The topology of the generic fibre can be deduce from this 
remark, (4.4) and the result of the next proposition. 

Proposition 4.12. Let f be a two-term polynomial with isolated critical points. 
Then: 

where p p  is the Milnor number at P of the generic element of the projective pencil 
associated to f .  

Proof. In (4.7) we proved that: 

Let us take the stratification SD which appears in the proof of (3.3). We compare 
p T ( t ) ,  for generic value of t ,  and @ ( O )  in the same way we made in (3.3) and we 
find: 

0 - f 1 = C ( p t , m ,  P )  - b P ( k  P I ) .  
PESing(D)nT 

F'rom now on, we 6x P E Sing(D) n T. By a linear change of coordinates, we 
suppose that P := [O : 0 : 1 : 0]  in the coordinates [x : y : r : w ]  where w = 0 is 
the equation of the plane at  infinity P2. As P is a smooth point of T we choose an 
analytic system of coordinates (u, v )  centered at  P such that D
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TOPOLOGY OF GENERIC FIBER OF POLYNOMIAL FUNCTION 

The equation of the germ ( h ,  P )  is: 

Following [M], 
~ t o p ( h 1  P )  = (k - l)ptop(Dr P )  + k(s - 1). 

Let us denote the Milnor fibre of (K, P). It is the intersection of a small 
polydisk centered at P with the surface whose equation is: 

Let us consider the projection (u, v, w )  I+ (u, v). By (4.10) the ramification locus 
of this map restricted to is the union of the Milnor fibre of (Dl P )  (where we 
have generically d - k + 1 preimages) and the intersection 8 p  of a small polydisk 
with the curve: 

udl + cl (t) (v' + uh(u, v) - q)dl-kl = 0, 

where q ( t )  is a non-constant polynomial function of t. A generic point of 8 p  
has d - 6 preimages. The non-generic points are the s points of the intersection 
of € 3 ~  with the Milnor fibre of (Dl P) (which has only one preimage). An easy 
computation of Euler characteristic gives: 

and 
A,(Vo1 P )  - ~top(Vt1 P )  = Wl - l)(s - 1) - 1 + x ( ~ P ) ) -  

Now, we compute ~ ( € 3 ~ ) .  Let us apply the map (u, v) tt (u~ ' -~ ' ,  v); the preimage 
of ep by this map is the union of dl - kl curves, each one of them homeomorphic 
to ep. Let us denote 8; one of them, which is the intersection of a polydisk with 
a curve whose equation is: 

where bl(t) is a non-constant polynomial function oft. We have: 

Let PI be the preimage of P by this covering and let (Dl, PI) be the germ of the 
function udl + bl(t)(va + v)); then €3; is its Milnor fibre and we 
have: 

1ltop(V01 P )  - Aop(Vt1 PI = Wl - l)(s - 1) - ~ltop(Dl1 Pl)). 
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1786 ARTAL, LUENGO, AND MELLE 

The final step of the proof is to compare the topological Milnor numbers of 
the germ at  PI of Dl and the generic member (Ct, P )  of the projective pencil 
associated to f ,  which is generated in local coordinates by f j ~ ~  = udl and fdd1-'l = 
(us + uh(u, ~ ) ) ~ l - ~ l .  

Let us consider the germ (Ct, P )  and its preimage by the (dl - kl)-fold cyclic cov- 
ering ramified along T. The local coordinates of this map are (u, v) I+ ( ~ ~ l - ~ l ,  vl). 
Its preimage (D,, PI) is a germ given by the equation: 

it is the union of dl - kl germs pairwise isomorphic and such that the intersection 
number between two of them is equal to dl. Each germ is topologically equivalent 
to (D1,P1). By applying formula from [MI, one computes the Milnor number of 
(D,, PI) in two ways: 

- As a covering of (C,, P ) .  
- As a decomposition into germs isomorphic to (Dl, PI) (with no common 

branches). 
This relationship allows to compare the Milnor numbers: 

Finally: 

We have proved the proposition. 0 

Next examples show some pathologies for two-term polynomials fd + fd-k. 

1. The following two polynomials show that the conditions (i) and (ii) in (4.3) are 
not related. 

f (x, y, z) = x2z + y3 + xy, g(x, y, z) = (y2z + x3)z + x2 + 2yz- 

For f the condition (ii) holds and (i) does not. For g the condition (i) holds and 
(ii) does not. 

2. The principal difference between the local and the global case are the invariants 
a$. Let f be the polynomial 

There exist two points PI = (0 : 1 : 0) and Pz = (0 : 0 : 1) in Sing(D) nT. For them 
ah = 1 and a;, = 2. In general a$ can be calculated using SINGULAR, [SIN]. 

3. Last example shows that (4.4) only works for polynomials with two homogeneous 
parts. Let f be the polynomial z22 + y3 + zz  + y2 that verses the conditions (i) 
and jii) of (4.3). Moreover if g is the poiynomiai + i z  then C(gj is not finite. 
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