On a conjecture of W. Veys

E. Artal Bartolo · I. Luengo · A. Melle-Hernández

Received: 22 October 1999

Abstract. In this work we show a singular *K*3 surface *S* of \mathbb{P}^3 such that $\chi(\mathbb{P}^3 \setminus S) = 0$ producing a counter-example to a conjecture of Veys.

Mathematics Subject Classification (1991): 14J26, 14E07

In this journal W. Veys [V, p. 547] stated the following

Conjecture. Let C_i , $1 \le i \le r$, be irreducible hypersurfaces in $\mathbb{P}^n(\mathbb{C})$. If

$$(-1)^n \chi(\mathbb{P}^n \setminus \bigcup_{i=1}^r C_i) \leq 0$$

then all C_i have Kodaira dimension $-\infty$.

This conjecture was proven for n = 2 by A.J. de Jong and J. Steenbrink in [JS]. Also, R. Gurjar and A. Parameswaran [GP] gave an independent proof. In this note we give a counterexample to this conjecture for n = 3.

As W. Veys has pointed out to us, this problem is related with the monodromy conjecture of the topological and Igusa zeta–functions of singularities of hypersurface, see [V].

Counterexample to the conjecture of Veys. Let $D \subset \mathbb{P}^2$ be a reduced projective plane curve of degree *d*, with singularities $\operatorname{Sing}(D) = \{P_1, \ldots, P_s\}$. The Euler characteristic of *D* is given by the well-known formula

$$\chi(D) = 3d - d^2 + \sum_{i=1}^{s} \mu(D, P_i),$$

I. LUENGO, A. MELLE-HERNÁNDEZ

First author was partially supported by DGES PB97-0284-C02-02; last two authors were partially supported by DGES PB97-0284-C02-01

E. Artal Bartolo

Departamento de Matemáticas, Universidad de Zaragoza, Campus Plaza San Francisco s/n, E-50009 Zaragoza, Spain (e-mail: artal@posta.unizar.es)

Departamento de Álgebra, Universidad Complutense, Ciudad Universitaria s/n, E-28040 Madrid, Spain (e-mail: {iluengo,amelle}@eucmos.sim.ucm.es)

where $\mu(D, P_i)$ is the Milnor number of the curve *D* at P_i . Recall that a *simple* singularity of type \mathbb{A}_n means a singularity locally defined by $v^2 + u^{n+1} = 0$, and so it has Milnor number equal to *n*.

Let C_1 and C_2 be the projective plane curves of degree 3 in \mathbb{P}^2 given as the zero locus of the homogeneous polynomials $f_1(x, y, z) := x^3 + y^2 z - 3x^2 z$ and $f_2(x, y, z) := x^3 + y^2 z - 3x^2 z + 4z^3$. Both cubics have only one singular point, which is of type \mathbb{A}_1 ; choosing as above homogeneous coordinates (x : y : z) in \mathbb{P}^2 the curve C_1 is singular at $P_1 = (0 : 0 : 1)$ and C_2 is singular at $P_2 = (2 : 0 : 1)$. Then $\chi(C_1) = \chi(C_2) = 1$.

Let $C = C_1 \cup C_2$ be the corresponding sextic which has three singular points, namely P_1 , P_2 and $P_3 = C_1 \cap C_2 = (0 : 1 : 0)$; also C has at P_3 a simple singularity of type \mathbb{A}_{17} . It means again that the Euler characteristic $\chi(C) = 1$.

Let X be the normal compact complex surface obtained as a double covering of \mathbb{P}^2 branched along C. The surface X has only a finite (three) number of rational singularities. Let $\sigma : \widetilde{X} \to X$ be the canonical resolution of these singularities. Then \widetilde{X} is the minimal resolution of the double covering of the projective plane ramified on a sextic curve having only simple singularities: \widetilde{X} is a K3 surface, see [BPV, pp. 182–183]. Then the Kodaira dimension $\kappa(\widetilde{X})$ of \widetilde{X} is 0. Since the Kodaira dimension is a birational invariant, $\kappa(X) = 0$ (e.g. see [H, p. 421]).

The idea is to find a surface $S \subset \mathbb{P}^3$ birationally equivalent to X such that $\chi(\mathbb{P}^3 \setminus S) = 0$, or, equivalently, $\chi(S) = 4$. This last equivalence is a consequence of:

Additivity Principle. Let Y be an analytic variety. Let $\{S_i\}_{i \in I}$ be a finite prestratification of Y, i.e., I is a finite set, $Y = \prod_{i \in I} S_i$ and S_i are locally closed analytic subvarieties of Y for $i \in I$. Then

$$\chi(Y) = \sum_{i \in I} \chi(S_i).$$

Let $S \subset \mathbb{P}^3$ be the irreducible surface given by the zero locus of the homogeneous polynomial of degree 6

$$f_6(x, y, z) = f_1(x, y, z) f_2(x, y, z) + w^2 z^4$$

= $(x^3 + y^2 z - 3x^2 z)(x^3 + y^2 z - 3x^2 z + 4z^3) + z^4 w^2$

It can be easily seen that *S* and *X* are birationally equivalent: Take the affine chart (x, y) of \mathbb{P}^2 ; the affine part *A* of *C* is the disjoint union of two nodal cubics with only one (common) place at infinity each one; the equation of *A* is $f_1(x, y, 1)f_2(x, y, 1) = 0$; therefore, $\chi(A) = 0$. Take the double covering \check{S} of \mathbb{C}^2 ramified on *A*. If we denote by f(x, y) = 0 the equation of *A*, then \check{S} is defined in \mathbb{C}^3 with coordinates (x, y, w) as $f_1(x, y, 1)f_2(x, y, 1) + w^2 = 0$. We obtain that *X* is birationally equivalent to \check{S} , because of the birational equivalence of \mathbb{C}^2 and \mathbb{P}^2 ; *S* is the hypersurface of \mathbb{P}^3 defined by the homogeneisation of $f_1(x, y, 1) f_2(x, y, 1) + w^2$ in z, and as \check{S} is birationally equivalent to S then $\kappa(S) = 0$.

Let us compute $\chi(S)$ with the help of the following partition of *S* into two disjoint parts: $S_1 := S \cap \{z = 0\}$ and $S_2 := S \cap \{z \neq 0\}$.

Since $S_1 = \{x = z = 0\} \cong \mathbb{P}^1$, we have $\chi(S_1) = 2$.

We can identify S_2 with \check{S} . Let us consider the double covering $\pi : \check{S} \to \mathbb{C}^2$, defined by $(x, y, w) \mapsto (x, y)$. Recall that $\pi_{|\pi^{-1}(A)} \pi^{-1}(A) \to A$ is an isomorphism and $\pi_{|\check{S}\setminus\pi^{-1}(A)} \check{S} \setminus \pi^{-1}(A) \to \mathbb{C}^2 \setminus A$ is an unramified double covering. Then by the standard properties of coverings, the Additivity Principle and the fact that $\chi(A) = 0$:

$$\chi(S_2) = \chi(\check{S}) = \chi(\check{S} \setminus \pi^{-1}(A)) + \chi(\pi^{-1}(A)) = 2\chi(\mathbb{C}^2 \setminus A) + \chi(A)$$
$$= 2 \cdot 1 + 0 = 2.$$

In particular, $\chi(S) = 4$.

We have found in this way several other examples of surfaces disproving the conjecture of Veys, this one being the simplest. In all cases, the Kodaira dimension $\kappa(C_i)$ of each irreducible component is zero. It will be interesting to know which is the upper bound for this Kodaira dimension $\kappa(C_i)$ under the topological hypothesis of the Euler characteristic of the complement verifying

$$(-1)^n \chi(\mathbb{P}^n \setminus \bigcup_{i=1}^r C_i) \leq 0.$$

References

- [BPV] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Erg. der Math. und ihrer Grenz., A Series of Modern Surveys in Math., 3, 4, Springer-Verlag, Berlin, 1984
- [GP] R. Gurjar and A. Parameswaran, Open surfaces with non-positive Euler characteristic, Compositio Math. 99 (1995), 213–229
- [H] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, New York, 1977
- [JS] A.J. de Jong and J. Steenbrink, Proof of a conjecture of W. Veys, Indag. Math. 6 (1) (1995), 99–104
- [V] W. Veys, Structure of rational open surfaces with non-positive Euler characteristic, Math. Ann. 312 (1998), 527–548