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Zeta Functions for Germs of Meromorphic Functions,
and Newton Diagrams*

S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernandez UDC 517.9

§1. Germs of Meromorphic Functions

A polynomial f of degree d in n + 1 complex variables determines a meromorphic function f on the
projective space CP™*+!. If one wants to understand the behavior of f at infinity, it is natural to consider
germs of the meromorphic function f at the points from the hyperplane at infinity CP2 C CP™*!. Inlocal
analytic coordinates 2g, 21, ..., 2, centered at a point p € CPZ such that the hyperplane at infinity CPZ,
is given by the equation {2y = 0}, the germ of the function f at p has the form f = P(2, ..., z,)/28.
Let us consider germs of meromorphic functions of general form.

Definition 1. A germ of a meromorphic function on (C"*1,0) is a fraction f = P/Q, where P and Q
are germs of holomorphic functions (C"*!,0) — (C, 0). Two germs of meromorphic functions f = P/Q
and f' = P'/Q' are said to be equal if there exists a germ of a holomorphic function U: (C**1,0) —» C
such that U(0) #0, P"=U-P,and Q' =U-Q.

Remarks. 1. For convenience, we do not consider here functions of the type 1/Q(z) or P(z)/1.
2. According to the definition, we have z/y # z%/zy, but z/y = zexp(z)/yexp(z).

Recently, Arnold [2] classified simple germs of meromorphic functions for certain equivalence relations.
In what follows, we will methodically use resolutions of germs of meromorphic functions.

Definition 2. A resolution of the germ f is a modification of the space (C™*!,0) (i.e., a proper
analytic mapping 7: £ — % of a smooth analytic manifold 2" onto a neighborhood % of the origin in
C™*! that is an isomorphism outside a proper analytic subspace in %) such that the total transform
n~Y(H) of the hypersurface H = {P=0} U {Q =0} is a normal crossing divisor at each point of the
manifold %

The fact that 7#—!(H) is a normal crossing divisor means that, in a neighborhood of any point of it,
there exists a local system of coordinates g, ¥1, - .., ¥ such that the liftings P=Por and @ = Qom of
the functions P and @ to the space Z of the resolution are equal to uyg"y’fl -o..-ykn and vyé" yll1 oyl
respectively, where u(0) # 0, v(0) # 0, and k; and [; are nonnegative.

Let B, be the closed ball of radius € with center at the origin in C"*!, where ¢ is sufficiently small,
so that representatives of the functions P and @ are defined in B, and, for any positive ¢’ < ¢, the
sphere S.. = OB, intersects the analytic spaces {P =0}, {Q =0}, and {P=Q =0} transversally (from
the standpoint of stratification). We choose a sufficiently small § > 0 and consider the ball Bs C C? of

radius & centered at the origin.
Definition 3. By the 0-Milnor fiber of the germ f we mean the set
M} ={z € B : (P(2),Q(2)) € Bs C C?, f(2) = P(2)/Q(2) = ¢}

for nonzero ¢ € C with sufficiently small modulus ||c||. In the same way, by the co-Milnor fiber of the
germ f we mean the set

* The first author was partially supported by RFBR grant No. 98-01-00612 and INTAS grant No. 96-0713. The last two
authors were partially supported by CAICYT grant No. PB94-291.

Moscow State University, Department of Mathematics and Mechanics; e-mail: sabir@ium.ips.ras.ru; Facultad de Cien-
cias Matematicas, Universidad Complutense de Madrid; e-mails: iluengo@eucmos.sim.ucm.es, amelle@eucmos.sim.ucm.es.
Translated from Funktsional’ nyi Analiz i Ego Prilozheniya, Vol. 32, No. 2, pp. 26-35, April-June, 1998. Original article
submitted July 3, 1997.

0016-2663,/98/3202-0093 $20.00 (c)1998 Plenum Publishing Corporation 93



M = {z € Be: (P(2),Q(2)) € Bs C C*, f(2) = P(2)/Q(2) = c}
for ¢ € C with sufficiently large modulus ||¢||.

Lemma 1. The notion of 0- (co-)Milnor fiber is well defined, i.e., for a sufficiently small ||c||, 0 <
le|l < 6 < € (for sufficiently large ||c||, |lc||~* < § < €), the differentiable type of the manifold .#p
(#3°) does not depend on €, &, and c.

Proof. Let m: 2 — % be a resolution of the germ f that is an isomorphism outside the hypersurface
H={P=0}U{Q=0}. Let r: C"*! — R be the function r(z) = ||2||> and let 7 = rom: 2 — R be
the lifting of the function r to the space % of the resolution. For a sufficiently small £ > 0, the
hypersurface S. = {7 =¢?} (i.e., the preimage of the sphere S, C C"*!) is transversal to all strata of
the total transform w~1(H) of the hypersurface H. At each point of #~!(H), in a local coordinate
system, one has Pom = uy® - ... - y*» and Qom = vyl - ... ylp with uw(0) # 0 and v(0) # 0. Thus,
fom=wyg?® ...y with w(0) # 0. The real hypersurface S, is transversal to all coordinate subspaces
(of different dimensions). We can readily see that this implies the transversality of the hypersurface .§5 to
the (complex) hypersurfaces {wyg™® - ...y~ = c} for a sufficiently small ||c|| # 0 and for a sufficiently
large ||c||. Now the proof follows from the standard reasoning.

Remarks. 1. The definition means that . ]9 or M 7° 1s equal to
{z € B.: (P(2),Q(2)) € Bs C C2, P(2) = cQ(2), P(z) # 0}
and thus the Milnor fibers of the functions P/Q and RP/(RQ) with R(0) = 0 differ in general.
2. For f = P/Q,let f~! = Q/P. We can readily see that J//fo_l =M and M2, = M. Just the

same properties hold for the monodromy transformations and for their zeta functions considered below.
3. It is possible (and sometimes more convenient) to define the Milnor fibers as follows:

///]9 ={z2€ B: : ||Q(2)|| £ 4, P(z) = cQ(z) # 0}, 0< |l «d<Ke,
M ={z€ Be: |P(2)|| £ 6, P(z) = cQ(z) # 0}, lel P < d<e.

The meromorphic function f determines a mapping from B. \ {P =Q =0} to the projective line CP*
(z+ (P(2) : Q(2))). We denote this mapping by f again. By Lemma 1, this mapping is a locally trivial
fibration over punctured neighborhoods of the points 0 = (0 : 1) and oo = (1 : 0) of the projective
line CP!.

Definition 4. By the 0-monodromy transformation h‘} (co-monodromy transformation h‘}°) of the

germ f we mean the monodromy transformation of the fibration f over the loop c-exp(2nit), t € [0, 1],
with a sufficiently small (large) ||c|| # 0.

By the 0- or co-monodromy operator we mean the action of the corresponding monodromy transfor-
mation in a homology group of the Milnor fiber. We want to apply the results for meromorphic functions
to calculate the zeta function of a polynomial at infinity. Therefore, we consider the zeta functions C})(t)
and (2 (t) of the corresponding monodromy transformations:

e 1 . (_1)q
Cf - H{det[ld thf*'Hq(./ﬂf' ;(c)]}
q20
(¢ =0 or co). This definition coincides with that used in [3, 5] and differs on the sign in the exponent

from that used in [1].

§2. Resolution of Singularities and the A’Campo
Formula for Germs of Meromorphic Functions

Let f = P/Q be a germ of a meromorphic function on (C™*!,0) and let m: 2 — % be a resolution of
the germ f. The preimage 2 = n~1(0) of the origin of C™*! is a normal crossing divisor. Let Sy ; be the
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set of points of the divisor 2 in whose neighborhoods, in some local coordinates, the liftings P om and
Q o7 of the functions P and @ have the form uyf and vy}, respectively (u(0) # 0, v(0) # 0). A slight
modification of the arguments of A’Campo [1] permits one to obtain the following version of his formula
for the zeta function of the monodromy of a meromorphic function.

Theorem 1. Let a resolution m: & — % be an isomorphism outside the hypersurface H = {P=0} U
{Q=0}. In this case,

¢ty = [ —te=tyxSen o) = [ (1 - #-F xSk,

k>l k<l

Remark. A resolution 7 of the germ f' = RP/(RQ) is also a resolution of the germ f = P/Q.
Moreover, the multiplicities of any component C of the exceptional divisor in the zero divisors of the
liftings (RP)om and (RQ) o of the germs RP and R(Q are obtained from those for the germs P and @
by adding the same integer, namely, the multiplicity m = m(C) of the component C in the zero divisor
of the lifting of the germ R. Nevertheless, the meromorphic functions f and f’ can have different zeta
functions. The formulas from the previous theorem can give different results for f and f’ because if an
open part of the component C belongs to Sk ;(f), then, generally speaking, the part of this component
that belongs to Sk4m,i+m(f’) can be strictly smaller.

§3. Zeta Functions of Meromorphic Functions in Terms of Partial Resolutions

Let f = P/Q be a germ of a meromorphic function on (C"*1,0) and let w: (%, 9) — (C"*1,0)
be an arbitrary modification of the space (C™*!,0) that is an isomorphism outside the hypersurface
H = {P=0}U{Q=0} (i.e., ™ need not be a resolution). Let ¢ = fox be the lifting of the germ f to
the space 2 of the modification, i.e., the meromorphic function Pon/(Q o). For a point z € n~(H),
let ¢2 ,(t) and ¢, (t) be the zeta functions of the 0- and oo-monodromies of the germ of the function ¢
at the point z. Let = {E} be a prestratification of the space 2 = m~1(0) (that is, a partitioning into
semi-analytic subspaces without any regularity conditions) such that, for each stratum Z of ., the zeta
functions ¢) ,(t) and ¢°,(t) do not depend on z for z € E. We denote these zeta functions by (Z(t)
and (2°(t), respectively. The arguments used in [5] yield the following assertion.

Theorem 2. For « =0 or oo,

G = [JloOr®.
ZeS
8§4. Zeta Functions in Terms of Newton Diagrams

By the Newton diagram I' = I'(R) of a germ R(z) = Y axz® of a holomorphic function (C"*!,0) —
(C,0) (k = (ko,k1,...,kn), zF = xlg"x’fl - ...+ xk") we mean the union of the compact faces of the
polytope I'y =Ty (R) = convez hull of the set Uy, . o, 4o(k +RE™) C R

Let f = P/Q be a germ of a meromorphic function on (C"*1,0) and let I'; = I'(P) and T = I'(Q)
be the Newton diagrams of the germs P and Q. The pair A = (I';, ') of Newton diagrams I'; and
I'; is called the Newton pair of the germ f. The germ of the meromorphic function f is said to be
nondegenerate with respect to its Newton pair A = (I'y, ') if the pair of germs (P, Q) is nondegenerate
with respect to the pair A = (I'1, I'z) in the sense of the definition in [8] (which is an adaptation of the
definition by Khovanskii [6] for germs of complete intersections).

Let us define the zeta functions (3 (¢) and ({°(¢) for a Newton pair A = ([';,T'2). Let 1 <I<n+1
and let .# be a subset of the set {0,1,...,n} with the number of elements #.# equal to [. Let L
be the coordinate subspace, Ly = {k € R*"*! : k;, = 0 for i ¢ £}, and let T; s = ;N Lys C L.
Let L%, be the space dual to Ly and let L% be the positive octant of L*, (the set of covectors that
take positive values on Lys>9 = {k € Ly : k; > 0 for ¢ € £}). For a primitive integral covector
a € (R**1)* (i.e., for an indivisible element of the dual integral lattice), set m(a, ') = minger(a, ) and
A(a,T') ={z €T : (a,z) = m(a,T")}. We denote by ms and A the corresponding objects for the

95



diagram I' s and a primitive integer covector a € L”;_ . Let E s be the set of primitive integral covectors
a € L%, such that dim(A(a,I'1) + A(a,T'2)) =1 —1 (the Minkowski sum A; + A, of two polytopes A;
and A, is the polytope {z = z1+z2 : £1 € Ay, z2 € Az}). There exist only finitely many such covectors.
For a € Eg, we set Ay = A(a,I'1), Az = A(a,T'2), and

-1

Vo= Viei(Ar,.. ., AL A, 0, D).

s=0 N
S

l—1-s

The definition of the (Minkowski) mixed volume V(A;,...,A,) can be found, e.g., in [4] or [8]; the
(I — 1)-dimensional volume in a rational (! — 1)-dimensional affine subspace of L s has to be normalized
so that the volume of the unit cube spanned by any integral basis of the corresponding linear subspace is

equal to one. Recall that V,,(A,..., A) is the ordinary m-dimensional volume of the polytope A. We
m
must assume that Vp(nothing) = 1 (this is necessary to define V, for [ = 1). We write
Cg’(t) — H (1 _ tm(a,Fl)——m(a,l"z))(l—l)!Va,
a€E g : m(a,I'1)>m(a,I'2)
Co]o (t) — H (1 _ tm(a,l"g)—m(a,I‘l))(l—l)!Va’
a€E g : m(a,T'1)<m(a,I'2)
n+1 1
aoy= JI oo, G =Il@o=,
I #(F)=l I=1

where « =0 or co.

Theorem 3. Let f = P/Q be a germ of a meromorphic function on (C™*+1,0) that is nondegenerate
with respect to its Newton pair A = (I'y,'3). In this case,

G =Qw), O =¢n.

Proof. Let ¥ be a unimodular simplicial subdivision of the octant RZ5! that corresponds to the pair
(I'1,T2) of Newton diagrams in the sense of [8, Sec. 4]. This subdivision is consistent with each of the
Newton diagrams I'; and I's in the sense of [9].

Let 7: (2, 2) — (C™*1,0) be the toroidal modification corresponding to ¥ (see, e.g., [3]). Since the
pair (P, Q) is nondegenerate with respect to the pair (I'y,T'z), it follows that 7 is a resolution of the
germ f = P/Q [8]. We have Sk,; = Sk(P) N Si(Q). The description of the sets Sx(P) and S;(Q) can be
found in [9, Sec. 7]. Each of these sets consists of open parts of certain complex tori of various dimensions.

The tori of dimension n correspond to one-dimensional cones of ¥ that are positive (i.e., belong to
(R"*1)%). The multiplicity of the function P o7 (respectively, Qo) along such a torus is equal to
m(a,T1) (respectively, m(a, 7)) for the primitive integer covector a that spans the corresponding cone.

The tori of dimension | — 1 correspond to positive simplicial (n + 2 — !)-dimensional cones of ¥ that
have a face which is a cone of the form

G={ac(R"™M)%,:a;>0 for j¢ .7, a;=0 for j € 7}

with #(#) = [ (these faces are elements of the subdivision ¥ themselves). In turn, these cones correspond
to one-dimensional cones of a partition of the octant L s>o that is consistent with the Newton diagram
I's »=T;NLy C Ly. The multiplicities of the functions P o7 and Q o along such a torus are equal
to my(a,T1,») and my(a,ls ), respectively, where a is the primitive integer covector spanning the
corresponding one-dimensional cone.

In order to apply Theorem 1, we have to calculate the Euler characteristic of the corresponding part of
an (I — 1)-dimensional torus 7', namely, of the complement to the intersection with the strict transform
of the hypersurface H = {P=0} U {Q=0}. Let A (B, respectively) be the intersection of the torus T
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with the strict transform of the hypersurface {P =0} ({Q =0}, respectively). Let A; := A(a,[; »). It
follows from the results of Khovanskii [7] that the Euler characteristic of A (of B) is equal to

DI - 1)WVisi(Aq, ..., A1) (to (=)' = D!ViZ1(Ag, ..., AR)),
(1) (Ay 1) (to (=1)°(l = 1)1Vi_1(As 2))
-1 -1
and the Euler characteristic of the hypersurface AN B is equal to
(DM =) Ve (A, o AL D) + Vit (A, o AL Ag, A) + -+ Vit (Ar, Ag, .o, AY)]
1-2 1-3 1-2

Thus, the Euler characteristic of the complement of AU B in the torus T is equal to

x(T) = x(A) — x(B) + x(An B)
= (=) = ) Viea (A1, ooy AL 4 Vi (Ary oo, Ary Ag) + -+ Vit (Aay ., Ag)],
A N — N—————

-1 -2 -1

which proves the assertion. [

§5. A Varchenko-Type Formula for f = P/z§

As we have mentioned at the beginning of the paper, in the study of the behavior of polynomials at
infinity, the germs of meromorphic functions of the form P(zg, 21, ..., 2,)/2¢ are of interest. In this case,
the formulas for the zeta functions ({(¢) and ({°(t) are considerably reduced. Let us reformulate the
definition of these zeta functions for the case in which the Newton diagram I'y consists of a single point
(d,0,...,0) (in terms of the Newton diagram I' :=T"; of the germ P). The description is as follows.

Let 1 <l <n+1 and let £ be a subset of the set {1,...,n} with the number of elements #.# equal
tol—1. Let v,..., 'y;‘(’j) be all (I —1)-dimensional faces of the diagram I' g0y, let ag1, ..., a5 ()
be the corresponding primitive covectors (normal to fylf Yy fy;? j)), let aoj‘ s be the zeroth coordinate of

the covector as s, and let ms(F) = (as s, k) for k € 4. In this case,

Sy t) = 11 (1 — ¢ (D) =dals N I=DWina (3)
1<s<j(H#) - ms(f)>d-a0y's

CFuqy(t) = II (1= o) =DV (),
1<s<5(F) : ms(F)<d-a% | .
: it

4 . . . _1\i-1

G (t) = H Crugoy(t), Ca(t) = H(Cz ()Y

FC{1,...,n} : #I=1—1 =1

(+ = 0 or oo), where Vi_i(v;) is the (ordinary) (I — 1)-dimensional volume of the face v (in the
hyperplane spanned by this face in L syq0})-

§6. Examples

Example 1. Let f = (22 — zy)/y. The Milnor fiber M (respectively, M) is equal to {(z,y) :
I(z,y)|| <e,(z® —zy,y) € Bs, > —zy = cy} \ {(0,0)}, where |c|| # 0 is sufficiently small (large). The
equation z3 — zy = cy yields y = z3/(z + ¢), and thus the Milnor fiber .# fO is diffeomorphic to the disk
2 in the z-plane with two deleted points, namely, —c and the origin. In the same way, the Milnor fiber
//l}"’ is diffeomorphic to the punctured disk Z*. We can readily see that the action of the monodromy
transformation in the homology groups is trivial in both cases. Thus,

Gy=01-17"  CPE) =1.
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(0,1) \

! (3,00 ke
Fig. 1

Now let us calculate these zeta functions via the Newton diagrams (Fig. 1).

We have (] (t) = 1 because each coordinate axis intersects only one Newton diagram. There is only
one linear function (namely, a = kgy + 2k,) such that dimA(a,T';) = 1. The one-dimensional volume
Vi(A(a,T1)) of the face A(a,T'1) is equal to 1, and Vi(A(a,T'3)) = 0. We have m(a,I’;) = 3 and
m(a,Ty) = 2. Thus, ¢3(t) = 1 —t¢, (°(t) = 1, C?F1,F2)(t) = (1-1t)7% and (:E’l?l,m)(t) = 1, which
coincides with the above formulas.

Example 2. Let P = zyz + 2P + y9 4+ 2" be a T, 4, singularity, 1/p + 1/¢ + 1/r < 1, and let
Q = 2%+ y% + 2% be a homogeneous polynomial of degree d. Suppose that p > ¢ > r > d > 3 and that
P, g, and r are pairwise coprime. Let us compute the zeta functions of the germ f = P/Q by using
Theorems 2 and 3.

(a) It is clear that the germ f is nondegenerate with respect to its Newton pair A = (I'1, I';). Thus,

GO=GH=G ()¢ (+=0or o).

One has (f° = (3° =1, and a unique covector which is necessary to compute (§° is a = (1,1, 1). In this
case, m(a,I'1) =3, m(a,I'2) =d, A(a,T'1) = {(1,1,1)}, and A(a,T'2) is the simplex {k; +ky+k, =d,
ky >0, ky, >0, k, > 0} whose two-dimensional volume is equal to d?/2. Thus, (5° = (1- 15"’“3)‘12 .

We have

G =Q0-trHa -t -9,
Cg =(1- tr(q—d))(l _ tr(p—d))(l _ tq(p—d))(l _ tr—d)Zd(l _ tq—d)d.

To compute (3, one has to take into account both the three covectors (rg—q—r,r,q), (r,pr—p—r,p),
and (q, p, gp—p—q) that correspond to the two-dimensional faces of the diagram I'; and the three covectors
(1,»-2,1), (r—2,1,1), and (¢ — 2,1,1) that correspond to the pairs of the form (one-dimensional
face of the diagram I';, one-dimensional face of the diagram I';). For instance, for a = (1,7 — 2, 1), the
face A(a,T'1) (the face A(a,T'2)) is the segment between the points (0,0,7) and (1,1,1) (between the
points (d,0,0) and (0,0, d), respectively). Note the “absence of symmetry”: the last three covectors are
not obtained from each other by permuting the coordinates and the numbers p, ¢, and r. Thus,

Cg — (1 _ tr(q—d))(l _ tr(p—d))(l _ tq(p—d))(l _ tr—d)2d(1 _ tq—d)d,
=1-tr 1 -tH1-t79).

(b) To compute the zeta functions of the germ f with the help of Theorem 2, for a modification
m: (2, 9) — (C3,0) we take blowing-up of the origin in C3. Let ¢ be the lifting f o7 of the germ f to
the space 2. The exceptional divisor 2 of the modification is the complex projective plane CP2. Let H,
and H; be the strict transforms of the hypersurfaces {P =0} and {Q =0} and let D, = 2NH;. The curve
D; consists of three transversal lines [y, l2, and I3 and has three singular points S; = l;Ni3 = (0,0, 1),
Sy =1;1Nl3=(0,1,0),and S3 =1I3Nl; = (1,0,0). The curve D, is smooth and of degree d. It intersects
D, transversally at 3d different nonsingular points {Pi, ..., Pss}.

One has the following natural stratification of the exceptional divisor 2 :

(i) the zero-dimensional strata A (i = 1,2, 3) each of which consists of a single point S;;

(ii) the zero-dimensional strata Z? each of which consists of a single point P; (i =1,...,3d);

]
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(iii) the one-dimensional strata Zf =1; \ {D2Ul; Ulx} (: =1,2,3) and E} = Dy \ Dy;

(iv) the two-dimensional strata 22 = 2\ (D, U D3).

We can readily see that (g (1) = 1 and (2(¢) = 1 —¢?~% and that, for each stratum = from ZJ
(1<i<3d)orfrom =} (1<i<4),onehas (S(t)=1 (+ =0 or 00).

In what follows, we assume that the exceptional divisor 2 is locally given by the equation u = 0.
At the point S;, the germ of the lifting ¢ of the function f is of the form (udziy; + u™ + zfuP +
yiu?)/(u?z$ + udy$ + u?). This germ has the same Newton pair as the germ (u3z;y; + u")/u®. Using
Theorem 3, one has (X?; =1 and CK‘;, = 1—¢""%. At the point S, the germ of the function ¢ has the form
(W3z1 21+ 27 u" +luP+u?) /(ulzd+ul+2%u?) . It has the same Newton pair as (u3z12; +2Ju” +u?)/u®. By
Theorem 3, (33(t) = 1 and ng (t) = 1—t9-¢. We can similarly see that ¢R8 (t) =1 and (Rg (t) =1-tP79,
Combining these computations, we obtain the above result (without using a partial resolution).
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