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Abstract. In this article we show that for a given, reduced or non reduced,
germ of a complex plane curve, there exists a local system of coordinates such
that its log-canonical threshold at the singularity can be explicitly computed
from the intersection of the boundary of its Newton polygon in such coordi-
nates (degenerated or not) with the diagonal line.

1. Introduction

Let f be the germ of an analytic function at a point p on a complex d-dimensional
manifold X such that f(p) = 0. Let π : Y → X be an embedded resolution of the
hypersurface f−1{0} defined by the zero locus of f . Let Ei, i ∈ I, be the irreducible
components of the divisor π−1(f−1{0}) and let Ip := {i ∈ I | p ∈ π(Ei)}. For each
j ∈ I, we denote by Nj the multiplicity of Ej in the divisor of the function f ◦ π
and we denote by νj − 1 the multiplicity of Ej in the divisor of π∗(ω) where ω is a
non-vanishing holomorphic d-form in a neighbourhood of p ∈ X. The pair (νi, Ni)
is called the numerical data of the irreducible component Ei.

The log-canonical threshold of f at p is defined by

cp(f) := min
i∈Ip

{
νi

Ni

}
.

see [8, Proposition 8.5]. It does not depend on the resolution π since −cp(f) is the
closest root to the origin of the Bernstein-Sato polynomial bf,p(s) of f at p, see [8,
Theorem 10.6] or [9, 17]. Since f(p) = 0 then bf,p(s) = (s + 1)b̃f,p(s) where b̃f,p(s)
is the reduced Bernstein-Sato polynomial of f at p introduced by M. Saito in [13].
Let Rf,p be the set of roots of b̃f,p(−s) and αf,p := min Rf,p.

The following result by M. Saito, Corollary 3.3 in [13] gives a bound for cp(f) in
the non-degenerate case. We introduce a preliminary notation.

Let x := (x1, . . . , xd) be a local system of coordinates at p ∈ X such that the
formal completion of O := OX,x is C[[x]]. Let f =

∑
n∈Nd anxn ∈ C[[x]] be the

formal power series defining the germ of f at p. Then:
• The support of f is the set Supp(f) = {n ∈ Nd : an 6= 0}.
• The Newton polyhedron Γ(f) of f is the convex hull in Rd

+ of the set⋃
n∈Supp(f)(n + (R+)d).

• The Newton polytope or Newton diagram ND(f) of f is the union of all
compact faces of Γ(f).

• The set of all compact faces is denoted by CF (f).
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• The principal part of f is the polynomial f |ND(f) :=
∑

n∈ND(f) anxn.
• For any τ ∈ CF (f) we denote by fτ the polynomial

∑
n∈τ anxn.

The principal part of f at p is called non-degenerate if for each closed proper
face τ ∈ CF (f), the subscheme of the torus (C∗)d defined by

∂fτ

∂x1
= . . . =

∂fτ

∂xd
= 0

is empty.

Theorem 1.1. [13] If the principal part of f at p is non-degenerate then αf,p ≥ 1/t
for (t, . . . , t) ∈ ∂Γ(f). In the isolated singularity case the equality holds.

If f defines an isolated singularity the equality follows from results by [6, 12]
(and [14] in the case αf,0 ≤ 1) combined with [10].

Remark 1.2. Note that the boundary ∂Γ(f) of the Newton polyhedron Γ(f) consists
of compact and non compact faces of Γ(f).

The main result of this paper deals with germs of plane curves, i.e. d = 2.

Theorem 1.3. Given a two-variable germ f ∈ O of an analytic function at p, there
exists a system of coordinates (x, z) at p such that cp(f) = 1

t for (t, t) ∈ ∂Γ(f),
where Γ(f) is the Newton polyhedron of f in such coordinates (degenerated or not).

Remark 1.4. This result has been independently obtained by M. Aprodu and
D. Naie in [1]. Their result is about isolated singularities and their proof is based on
the fact that the log-canonical threshold coincides with the first jumping number.

Our approach uses the relationship between the log-canonical threshold of f at p
and the local topological zeta function Ztop,p(f, s) of f at p introduced by Denef and
Loeser [5]. We use the result that, in the two dimensional case, the log-canonical
threshold −cp(f) is the pole of Ztop,p(f, s) closest to the origin.

Let π : Y → X be a given embedded resolution of the germ of hypersurface
(f−1{0}, p); we use the notations introduced in the beginning of the section. For
each subset J ⊂ I, we set

EJ :=
⋂
j∈J

Ej and ĚJ := EJ \
⋃
j /∈J

EJ∪{j}.

To f one associates the local topological zeta function of f at p

(1.1) Ztop,p(f, s) :=
∑
J⊂I

χ(ĚJ ∩ π−1{p})
∏
j∈J

1
νj + Njs

∈ Q(s),

where χ denotes Euler-Poincaré characteristic.

In general many candidate poles − νj

Nj
are not poles of Ztop,p(f, s). In the case of

dimension 2, W. Veys [15] determined all poles of Ztop,p(f, s) by using the minimal
embedded resolution of the germ f at p. This result was based on the structure of
ordered tree of the resolution graph of f at p, weighting each exceptional curve Ei,
i ∈ I, by νi

Ni
. Veys proved that the minimum cp(f) defines a connected part of the

resolution graph and, moreover, one can deduce from his results that the minimum
cp(f) is always a pole of Ztop,p(f, s).

Theorem 1.5. [15] Given a germ f of plane curve at p then −cp(f) is the closest
pole to the origin of Ztop,p(f, s).
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In [16], Veys gave a formula for Ztop,p(f, s) in terms of the log-canonical model of
the pair (C2, f−1{0}). In [2], the authors gave a formula for computing Ztop,p(f, s)
by means of Newton maps and Eisenbud-Neumman splice diagrams. This is the
description we are going to use here and from which we will prove our main result.

In §2 we give the properties of Eisenbud-Neumann diagrams we use in the proof.
In §3 we give the proof of the main theorem.

Note that this result is generalized in [4] for the multivariable log-canonical
threshold.

2. EN-diagrams

2.1. Construction of Eisenbud and Neumann diagrams using Newton al-
gorithm.

This construction is explained in [3]. Let f be a germ of a plane curve, reduced
or not, at 0 ∈ C2. Let us choose some local coordinates (x, z) and write f(x, z) =∑

α,β≥0 Aα,βxαzβ . Let Γ(f) be the Newton polyhedron of f and ND(f) the Newton
diagram of f in these coordinates. The boundary of ∂Γ(f) consists of two half lines
parallel to the axes and a polygonal line between them which coincides with the
Newton polygon ND(f) of f .

An Eisenbud-Neumann diagram (EN-diagram for short) for a germ of curve
is a decorated tree with two types of vertices: standard ones and arrows. The
decorations are integer numbers associated to pairs (e, v) where e is an edge of
the tree, and v is a vertex which is an end of e; sometimes 1-decorations are not
written. Near a vertex, there are at most 2 numbers different from 1 and they are
coprime. The arrows represent the branches (the irreducible components) of the
germ f (an arrow is the end of exactly one edge). The decoration at an arrow is
the multiplicity of the corresponding branch in the germ. The data we encode in
the EN-diagrams are related to the successive Newton polygons we get running the
Newton algorithm.

2.1.1. Newton polygon part. We start with the first Newton polygon. This first
Newton polygon will be represented on the EN-diagram by a sequence of edges and
vertices (and arrows eventually at top and bottom) drawn along a vertical line.
Each compact face of ND(f) is represented by a vertex. There is an edge between
two consecutive vertices which corresponds to two consecutive compact faces. We
go along the Newton diagram from the left to the right and along the EN-diagram
from the top to the bottom. There is a vertex at the top (resp. bottom) if ND(f)
hits the z-axis (resp. x-axis) and an arrow otherwise. This arrow represents the
branch x = 0 (resp. z = 0). These vertices or arrows at the top or the bottom
correspond to the non compact faces of the boundary of ∂Γ(f).

Consider a face γ of ND(f) with slope − q
p with q and p coprime, the equation

of γ is qα + pβ = N ; denote by v the associated vertex. For v, we write p at the
extremity of the edge above the corresponding vertex and q at the extremity of the
edge under the corresponding vertex.

2.1.2. Newton maps. Fix γ as above and let fγ(x, z) =
∑

(α,β)∈γ Aα,βxαzβ . Let
us denote by (α1, β1) the right extremity of γ. It is easily seen that there exists
Pγ(t) ∈ C[t], Pγ(0) 6= 0, such that fγ(1, t) = tβ1Pγ(tq). From the corresponding
vertex on the EN-diagram we will draw as many horizontal (non-vertical) edges as
the number v(γ) of distinct roots of Pγ(t).

Now we go to the next step in the Newton algorithm. We choose a root a of
Pγ(t), i.e. a non vertical edge starting from the vertex corresponding to γ. If this
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root is a simple one, the corresponding branch is separated and we draw an arrow
at the end of the corresponding edge. If a is a root of multiplicity k, we perform
the algorithm. Let us choose a qth-root ã of a (the algorithm does not depend on
the specific choice of ã). The rational map πγ,a given by x = xq

1, z = (z1 + ã)xp
1 is

called the Newton map associated with the face γ and the root a. From the Newton
algorithm we get

f1(x1, z1) := x−N
1 f(xq

1, (z1 + ã)xp
1) ∈ C{x1, z1},

since γ has as equation qα + pβ = N and a is a root of Pγ(t).
If f1 is a k-th power of a polynomial with multiplicity 1, the corresponding

branch has multiplicity k, then we draw an arrow at the end of the edge and write
the multiplicity. If not, we consider fγ,a := f(xq

1, (z1 + ã)xp
1) = xN

1 f1(x1, z1).
We consider the diagram associated to the Newton polygon of xN

1 f1(x1, z1). It
has an arrow at the top decorated by N . We draw new vertices corresponding to the
faces of ND(fγ,a), starting from the left on the Newton diagram and from the top
on the EN-diagram. It ends by a vertex or an arrow. We glue this diagram to the
corresponding edge, deleting the top arrow. We will change below the decorations
after this process.

2.1.3. New decorations. To obtain the new decorations we consider every vertex
ṽ corresponding to a face γ̃ of ND(fγ,a) with slope −q̃/r̃, with r̃ and q̃, positive
integers prime to each other. Then, we write q̃ on the extremity of the edge under
ṽ, near the vertex, and replace r̃ by p̃ = r̃ + pqq̃ on the extremity of the edge above
ṽ, near the vertex. The vertex v corresponding to γ will be called the preceeding
vertex of ṽ for all vertices constructed from ND(fγ,a).

We go on until all irreducible components of f are separated. We get as many
arrows as the number of irreducible components of f . If the germ is not reduced,
we have written the multiplicity of a branch, in front of the arrow, which represents
this branch. Finally one gets the EN-diagram D(f) of the germ f at the origin.

Example 2.1. Consider the germ given by

f(x, z) = (x2 − z3)2(x3 − z2)2 + x6z3 + x5z5 + x4z7

The graph of the first Newton polygon is given in Figure 1.

Figure 1

2
3

3
2

We apply the two Newton maps and we obtain:

f1(x1, z1) = x20
1 (x4

1 + 9z2
1 + ...) f2(x1, z1) = x20

1 (x1 + 4z2
1 + ...).

The graphs of f1 et f2 are in Figure 2 and the EN-diagram of f is in Figure 3.
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Figure 2
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Figure 3
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We call vertical the edges between two vertices corresponding to a Newton poly-
gon and horizontal the edges corresponding to Newton maps. The diagrams depend
on the system of coordinates.

Remark 2.2. For each edge e := [v1, v2] we denote by ∆e the edge determinant,
which is the product of the numbers appearing on the edge, minus the product of
the numbers adjacent to the edge. By construction all the edge determinants are
positive integers.

2.2. Minimal diagrams.
For a vertex v of D(f), its valency δv is the number of edges and arrows meeting v.

From the EN-diagram D(f) one gets the minimal EN-diagram Dm(f) using the
following process:

(1) We delete all the edges bearing only 1, with an extremity attached to a
vertex of valency 1, and the vertex of valency 1 as well.

(2) We delete all vertices of valency two, replacing the two edges which end at
this vertex by one.

Theorem 2.3. [7] The minimal EN-diagram of a germ determines and is deter-
mined by the topological type of the germ.

Remark 2.4. The minimal EN-diagram does not depend on the choice of coordinates
if we forget about vertical and horizontal edges. Otherwise it does depend on the
system of coordinates.
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Example 2.5. The two diagrams of Figure 4 give a presentation of the same
minimal diagram in two different systems of coordinates. On the left f is non
degenerate.

Figure 4
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1

7

2
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2.3. Computation of the local topological Zeta function.
Let f : (C2, 0) → (C, 0) be an analytic function germ which is singular at the

origin. Let f =
∏

i fmi
i be its decomposition into irreducible germs. Let D(f) be

the EN-diagram of f and let v be a vertex of D(f). Each vertex v has associated a
composition of Newton maps, which allows to associate then to v the pair (νv, Nv) ∈
N2 as defined in the Introduction; this pair can be computed from the decorations
using the following propositions.

Proposition 2.6. The Nv can be computed by the following rules.
• If v corresponds to a face γ of the Newton polygon ND(f) of f contained

in a line qα + pβ = N , p, q coprime, one has Nv = N .
• In general, the number Nv can be computed on the diagram as the sum over

all arrows of the product of the numbers adjacent to the path from the vertex
v to each arrow.

Proposition 2.7 ([3]). The νv can be computed by the following rules.
• If v corresponds to a segment γ of the Newton polygon ND(f) of f contained

in a line qα + pβ = N , p, q coprime, one has νv = p + q.
• If v corresponds to a segment γ (contained in a line qα + pβ = N , p, q

coprime) of ND(fγ0,a) and v0 is its preceeding vertex then νv = qνv0 + p.

Proof. Let xν−1dx ∧ dz be an holomorphic form. We perform the change

x = xq
1, z = (z1 + ã)xp

1

and we get x
(ν−1)q+q+p−1
1 dx1 ∧ dz1 which proves the claim. �

Remark 2.8. Each vertex of an EN-diagram is associated to an exceptional divisor
in a resolution and (ν, N) for the vertex of the diagram coincides with (ν, N) for
the corresponding divisor.
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Corollary 2.9. Let v0 be the preceeding vertex of the vertex v and e := [v0, v]. Let
p be the integer associated to (e, v) and let q be the other integer which is eventually
not equal to 1 adjacent to e and near v. Then

(2.1) νv = qν0 + ∆e.

Proof. It is enough to consider the formula for the new decorations. �

Notation 2.10. Let v be a vertex of D(f) and define Pv(s) := νv + Nvs.

Theorem 2.11. [2] Let f be a germ of complex analytic function in two variables
with f(0) = 0. Let D(f) be an EN-diagram of f , then

Ztop,0(f, s) =
∑

[v,v′]∈E

∆v,v′

Pv(s)Pv′(s)
+

∑
v

2− δv

Pv(s)
+

∑
v

∑
i∈Fv

1
(1 + mis)Pv(s)

,

where

• δv is the valence of the vertex v,
• E is the set of edges of D(f),
• Fv is the set of arrows which are connected to the vertex v by an edge and
• mi is the multiplicity of the corresponding branch.

A proof of Theorem 2.11 is obtained from [2, Corollary 5.2, Theorem 5.3 and
Theorem 6.1]. We give an idea of the proof which uses induction.

Let h be a germ of curve singularity and assume h = xN0zMg(x, z), and ω =
xν0−1dx∧ dz, where neither x nor z divide g and (h, ω) satisfies the support condi-
tion: “if N0 = 0 then ν0 = 1”. We can define Ztop,0(h, ω, s) following (1.1) in order
to apply induction.

Let γ1, . . . , γr be the compact edges of the Newton diagram of h. For each
1 ≤ d ≤ r, the equation of γd will be qdα + pdβ = Nd with gcd(qd, pd) = 1. Let
v(γd) be the number of non-zero distinct roots of Pγd

. Each one of these roots
defines a Newton map and let hd,j be the pull-back of h under these Newton maps,
for 1 ≤ d ≤ r. Recall that γ1 is the compact face with z-highest vertex, (this is a
different convention than the one used in [2]). Applying [2, Theorem 5.3] for curves
one can compute Ztop,0(h, ω, s) inductively as follows:

Ztop,0(h, w, s) =
qr

(Nrs + ν0qr + pr)(Ms + 1)ε
+

p1

(N1s + ν0q1 + p1)(N0s + ν0)

+
r−1∑
d=1

|pdqd+1 − pd+1qd|
(Nds + ν0qd + pd)(Nd+1s + ν0qd+1 + pd+1)

−
r∑

d=1

v(γd)
Nds + ν0qd + pd

+
r∑

d=1

v(γd)∑
j=1

Ztop,0(h ◦ πd,j , w ◦ πd,j , s).

where ε is zero if and only if z does not divides h.

Remark 2.12. Essentially this gives a first better set of candidate poles of the
rational function Ztop,0(h, w, s) defined by N0s + ν0, Ms + 1, and Nds + νd where
νd := ν0qd + pd, with 1 ≤ d ≤ r.

Carine Reydy in her Ph.D. [11] showed a similar formula for the multivariable
topological zeta function, one variable si for each irreducible component fi of f . In
fact, doing every si = s we get Theorem 2.11.
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3. The log-canonical threshold for germs of plane curves

Let f : (C2, 0) → (C, 0) be an analytic function germ which is singular at the
origin. Let f =

∏
i fmi

i be its decomposition into irreducible germs.

We use the result of W. Veys that the log-canonical threshold −c0(f) of the
germ f at 0 is the pole closest to the origin of Ztop,0(f, s), see Theorem 1.5. To
compute the (candidate) poles of Ztop,0(f, s) we will use Theorem 2.11. We start
with a fixed system of coordinates and in order to apply induction, we will consider
Ztop,0(h, ω, s).

The strategy is to study the behaviour of ν
N as follows.

• First we study what happens along the vertical edges corresponding to the
Newton polygon. We see that along these edges, the minimum of ν

N is
obtained at the vertices corresponding to the segments cut by a fixed line
passing through the origin (one or two segments if the line cut at a 0-face
of the Newton polygon).

• Starting from the corresponding vertex, the function ν
N increases along the

vertical line.
• If we start from a vertex on the first Newton polygon which does not realize

the minimum then it increases along horizontal edges.
• It remains to study what happens starting from one vertex where the min-

imum is realized.
First we study what happens along vertical edges. Assume that we are in an

intermediate step of the above procedure where h is a germ of curve singularity
given by h = xN0zMg(x, z), and ω = xν0−1dx ∧ dz. We keep the notations as in
Remark 2.12.

Proposition 3.1. Consider the Newton polyhedron Γ(h) of h. The minimum of
the set of quotients { ν0

N0
, 1

M , νd

Nd
} is attained on the (compact or not) faces of the

boundary ∂Γ(h) cut by the line {α = ν0t, β = t}. From this minimum the quotients
will strictly increase along ∂Γ(h).

Proof. It is enough to show that the intersection point of the line {α = ν0t, β = t}
and a line N = qα + pβ has coordinates α = ν0N

ν0q+p and β = N
ν0q+p . �

As before let γ1, . . . , γr be the compact edges of the Newton diagram of h. For
each 1 ≤ d ≤ r, the equation of γd will be qdα+pdβ = Nd with gcd(qd, pd) = 1. Let
v(γd) be the number of non-zero distinct roots of hγd

. There are positive integers
md,j , for 1 ≤ j ≤ v(γd), such that

hγd
= zkxa

v(γd)∏
j=1

(zqd − ãd
jx

pd)md,j , md :=
∑

j

md,j .

We perform the Newton map πγd,ad
j

given by x = xqd

1 , z = (z1 + ãd
j )x

pd

1 and we will
follow the induction process with

hd,j(x1, z1) := h ◦πγd,ad
j
(x, z) = xNd

1 h̃(x1, z1) and π∗γd,ad
j
(w) = xν0qd+pd−1

1 dx1 ∧ dz1.

We begin the study along horizontal edges.

Lemma 3.2. The line {α = (ν0qd + pd)t, β = t} hits the vertical line {α = Nd} of
the polygon Γ(hd,j) if and only if νdmd,j < Nd.

Proof. Recall that νd := (ν0qd + pd). The line {α = (ν0qd + pd)t, β = t} hits the
vertical line of the polygon Γ(hd,j) if and only if for all compact faces of Γ(hd,j)
the corresponding ν

N is bigger than ν0qd+pd

Nd
. In fact this is the case if and only if

the inequality (ν0qd + pd)md,j < Nd holds because in the new Newton diagram the
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highest z1-height is md,j and its corresponding compact 0-dim face has coordinates
(α, β) = (Nd,md,j). �

The following result is a consequence of the above Lemma.

Proposition 3.3. If νdmd,j < Nd, then for all vertices of D(f) having vd as
preceeding vertex we have ν

N > νd

Nd
.

Lemma 3.4. Assume we are on the first Newton polygon of f and that ν0 = 1.
Assume we have two vertices v1 and v2 and fix notation as in the Figure 5. Then

Figure 5

n1

p1

q1 m1

p2

q2

n2

m2

ν1
N1

> ν2
N2

if and only if m2q2 + n2 > m1p1 + n1.

Proof. By Propositions 2.6 and 2.7 one has ν1 = p1 + q1, ν2 = p2 + q2 and

N1 = p1q1m1 + p1(q2m2 + n2) + q1n1,

N2 = p2q2m2 + q2(p1m1 + n1) + p2n2.

This can be used as definition of n1 and n2. Then

ν1N2 − ν2N1 = (q1p2 − q2p1)(m2q2 + n2 −m1p1 + n1),

and we are done since the edge determinant q1p2 − q2p1 is always positive (see
Remark 2.2). �

Proposition 3.5. If γd is a face of the first Newton polygon, and if the minimum
of ν

N on the first Newton polygon is not attained on γd then mdνd −Nd < 0.

Proof. Let v0 be a vertex where the minimum of ν
N is attained. Let v be a nearby

vertex where the minimum is not attained. We use the previous lemma with v0 as
v2 and v as v1. We have q0m0 + n0 > pvmv + nv. We prove that mvνv −Nv < 0
which will imply that, for all j, mv,jνv −Nv < 0. Thus

mv(pv + qv)−Nv = mv(pv + qv)− pvqvmv − pv(q0m0 + n0)− qvnv

< mv(pv + qv)− pvqvmv − pv(pvmv + nv)− qvnv.

Since pv ≥ 1 then mv(pv + qv)−Nv < (pv + qv)(mv(1− pv)− nv) ≤ 0 �

Proposition 3.6. If mv,jνv − Nv < 0 then after the corresponding Newton map,
mv′νv′ −Nv′ < 0 for all vertices v′ which admit v as preceeding vertex.

Proof. We can write N = N0 + pqN1, where N1 = q1m1 +
∑

qimi + N2 where the
sum is taken on the vertices between v and v1.
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Figure 6

p

q

p1

q1

m1

Thus N1 can be also written as N1 = p1q1m1 + q1(
∑

pimi) + p1N
2 + q1N

0. We
will use pi > pqqi. Since

N1 > p1q1m1 + q1pq(
∑

qimi) + p1N
2 + q1N

0

= p1q1m1 + q1pq(
∑

qimi) + p1N
2 + q1(N − pqN1)

then
N1 > q1m1(p1 − qpq1) + (p1 − pqq1)N2 + q1N.

Finally,

m1ν1−N1 = m1(νq1 +(p1−pqq1)−N1 < (mν−N)q1 +m1(p1−pqq1)+Nq1−N1.

By hypothesis mν −N < 0 then

m1ν1 −N1 < (mν −N)q1 + m1(p1 − pqq1)(1− q1) < 0. �

Suppose now that we are in the first Newton polygon, that is the Newton polygon
of f . Suppose there exists a face γd is qdα+ pdβ = Nd, with gcd(qd, pd) = 1 and let
vd be the corresponding vertex. Assume that on γd there are v(γd) different roots
and and for each root ad

j its multiplicity is md,j .

Lemma 3.7. If md,jνd > Nd then either pd = 1 or qd = 1.

Proof. Since we are in the first Newton polygon then νd = pd + qd and Nd =
pdqdmd,j + N ′

d, with N ′
d ≥ 0. We can also deduce this fact from the following

argument: If γd has as boundary points (ad+1, bd+1) and (ad, bd), from the left to
the right on the Newton polygon, then Nd = ad+1qd + bdpd + qdpd

∑
md,j .

Then md,jνd > Nd if and only if md,j(pd + qd−pdqd) > N ′
d(≥ 0). Thus pd + qd−

pdqd ≥ 1 which implies that either pd = 1 or qd = 1 and pd + qd − pdqd = 1. �

Lemma 3.8. Assume that md,jνd > Nd and consider a vertex ṽ which has vd as a
preceeding vertex with decorations q̃ and p̃. Then p̃ ≥ 2 and ν̃ = p̃ + q̃.
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Proof. Let Ñ = q̃α+ r̃β be equation of the corresponding compact face of ND(hd,j)
with numerical data (Ñ , ν̃). We know that the decorations of the vertex ṽ in the
EN-diagram are q̃ and p̃ = r̃ + pdqdq̃ ≥ 2 since r̃, pd, qd, q̃ ≥ 1.

Finally since pd + qd − pdqd = 1 then

ν̃ = νdq̃ + r̃ = (pd + qd)q̃ + p̃− pdqdq̃ = (pd + qd − pdqd)q̃ + p̃. �

Proposition 3.9. If md,jνd > Nd, then for a vertex ṽ which has vd as a preceeding
vertex with decorations q̃ and p̃ one has ν̃ = p̃ + q̃ and q̃ = 1.

Proof. If µ̃ν̃ > Ñ then either p̃ = 1 or q̃ = 1. But in Lemma 3.8 it is shown that
p̃ ≥ 2 then q̃ = 1. �

Corollary 3.10. If the minimum ν
N is not attained on the first Newton polygon of

f , then in the EN-diagram, there is a vertex vd with either pd = 1 or qd = 1 and
after that q1 = 1, . . . qk−1 = 1 until the minimum is reached at the k-th vertex. At
that point νk = pk + qk.

Proof. It is an immediate consequence of Proposition 3.9. �

Proof of Theorem 1.3. Since we have in the EN-diagram either pd = 1 or qd = 1
and after a sequence of 1′s, i.e. q1 = 1, . . . qk−1 = 1, then we can change coordinates
until being in the case where the minimum is attained on the first Newton polygon.

We have to prove that when the minimum ν
N is attained on the first Newton

polygon, − ν
N is actually a pole of the topological zeta function. If the minimum is

attained on two consecutive vertices, then we have a double pole, which is actually
a pole. Now we have to consider the case where the minimum is attained once on
the vertex v. We have, for all vertex v′ and all arrow i ∈ Fv:

1
(νv + Nvs)(νv′ + Nv′s)

=
Av,v′

(νv + Nvs)
+

B

(νv′ + Nv′s)
1

(νv + Nvs)(1 + mis)
=

Av,i

(νv + Nvs)
+

B

(1 + mis)

where Av,v′ = Nv

Nvνv′−Nv′νv
and Av,i = Nv

Nv−miνv
. Since νv

Nv
< νv′

Nv′
then Av,v′ > 0

and we have also Av,i > 0. Similar computations as before show that Av,v′ ≥ 1
∆v,v′

and Av,i > 1. Then the residue at − νv

Nv
does not vanish. �
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ton, Thèse de Doctorat, Bourdeaux, 2002.

[12] M. Saito, Exponents and Newton polyhedra of isolated hypersurface singularities, Math.
Ann. 281 (1988), 411–417.

[13] M. Saito, On Microlocal b-function, Bull. Soc. math. France 122 (1994),163–184.
[14] A.N. Varchenko, Asymptotic Hodge structure in the vanishing cohomology, Math. USSR

Izvestija 18 (1982), 469–512.
[15] W. Veys, Determination of the poles of the topological zeta function for curves, Manuscripta

Math. 87 (1995), 435–448.
[16] W. Veys, Zeta functions for curves and log-canonical models, Proc. London Math. Soc. 74

(1997), 360–378.
[17] T. Yano, b-functions and exponents of hypersurface isolated singularities. Singularities, Part

2 (Arcata, Calif., 1981), 641–652, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Provi-
dence, RI, 1983.
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