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Hilbert Schemes of Points
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Introduction

The Grothendieck semiring S0(VC) of complex quasi-projective varieties is the
semigroup generated by isomorphism classes [X] of such varieties modulo the
relation [X] = [X − Y ] + [Y ] for a Zariski closed subvariety Y ⊂ X; the mul-
tiplication is defined by the Cartesian product: [X1] · [X2 ] = [X1 × X2 ]. The
Grothendieck ring K0(VC) is the group generated by these classes with the same
relation and the same multiplication. Let L ∈K0(VC) be the class of the complex
affine line, and let K0(VC)[L−1] be the localization of Grothendieck ring K0(VC)

with respect to L. A power structure over a (semi)ring R (as in [10]) is a map
(1 + T · R[[T ]]) × R → 1 + T · R[[T ]] : (A(T ),m) 
→ (A(T ))m (A(T ) =
1 + a1T + a2T

2 + · · ·, ai ∈R, m ∈R) such that all usual properties of the expo-
nential function hold. Over a ring R, a finitely determined (in a natural sense that
we shall describe) power structure is defined by a pre-λ-ring structure on R (see
[12]). Described in [10] is a power structure over each of the (semi)rings just de-
fined. They are connected with the pre-λ-ring structure on the Grothendieck ring
K0(VC) defined by the Kapranov zeta function [6; 11].

The main result of this paper is using the formalism of the power structure to ex-
press the generating series of classes (in the Grothendieck (semi)ring of varieties)
of Hilbert schemes of zero-dimensional subschemes on a smooth quasi-projective
variety of dimension d as an exponent of that for the complex affine space Ad.

The conjecture that the generating series of Hilbert schemes of points on a smooth
surface can be considered as an exponent was communicated to the authors by
D. van Straten. Specializations of this relation give formulas for generating series
of certain invariants of the Hilbert schemes (Euler characteristic, Hodge–Deligne
polynomial, . . .).

We also describe a power structure over the ring Z[u1, . . . , ur ] of polynomials
in several variables with integer coefficients in such a way that, for r = 2, it is
the specialization of the power structure over the Grothendieck ringK0(VC) under
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the Hodge–Deligne polynomial homomorphism. This gives the main result of [9]
and [4] (in somewhat different terms).

In order to use the described relation to compute the generating series of classes
of Hilbert schemes of zero-dimensional subschemes of a smooth variety, one needs
to know the corresponding series for the affine space Ad. This series is known only
for the plane (i.e., for dimension 2) by a result of Ellingsrud and Strøme [5]. Its
computation in the general case is an important and interesting question whose an-
swer is not yet known. For example, in [4] the generating series of Hodge–Deligne
polynomials of the discussed Hilbert schemes for a smooth variety is expressed in
terms of the corresponding (unknown) series for the affine space Ad.

1. Power Structures

Definition. A power structure over a (semi)ring R is a map

(1 + T · R[[T ]])× R → 1 + T · R[[T ]] : (A(T ),m) 
→ (A(T ))m

that possesses the following properties:

1. (A(T ))0 = 1,
2. (A(T ))1 = A(T ),
3. (A(T ) · B(T ))m = (A(T ))m · (B(T ))m,
4. (A(T ))m+n = (A(T ))m · (A(T ))n,
5. (A(T ))mn = ((A(T ))n)m,
6. (1 + T )m = 1 +mT + terms of higher degree,
7. (A(T k))m = (A(T ))m|T 
→T k .

Remark. In [10] the properties 6 and 7 were not demanded, though the con-
structed power structures possessed them.

Definition. A power structure is finitely determined if for each i > 0 there
exists a j > 0 such that the i-jet of the series (A(T ))m (i.e., (A(T ))m mod T i+1)

is determined by the j -jet of the series A(T ).

One can see that it is possible to take j = i.

Definition. A pre-λ-ring structure on a commutative ringR is an additive to mul-
tiplicative group homomorphism λT : R → 1+ T ·R[[T ]]; that is, λT (m+ n) =
λT (m)λT (n) such that λT (m) = 1+mT (mod T 2). A pre-λ-ring homomorphism
is a ring homomorphism between pre-λ-rings that commutes with the pre-λ-ring
structures.

We shall use the following general statement.

Proposition 1. A finitely determined power structure over a ring R is deter-
mined by a pre-λ-ring structure on the ring R. (In terms of the power structure,
the series λT (m) has the meaning of (1 − T )−m and we shall use that notation
from now on.)
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Proof. By properties 6 and 7, each seriesA(T )∈1+T ·R[[T ]] can be in a unique
way written as a product of the form

∏∞
i=1(1−T i)−ai with ai ∈R. Then, by prop-

erties 3 and 7 (and the finite determinacy of the power structure),

(A(T ))m =
∞∏
i=1

(1 − T i)−aim. (1)

In the other direction, one can easily see that the power structure defined by equa-
tion (1) possesses properties 1–7.

A ring homomorphismϕ : R1 →R2 induces the natural homomorphismR1[[T ]] →
R2[[T ]] (also denoted by ϕ) by ϕ

(∑
aiT

i
) = ∑

ϕ(ai)T
i. Proposition 1 yields

the following statement.

Proposition 2. A pre-λ-ring homomorphism ϕ : R1 → R2 respects the corre-
sponding power structure; that is, ϕ((A(T ))m) = (ϕ(A(T )))ϕ(m).

On the Grothendieck ring K0(VC) of complex quasi-projective varieties there is
a (natural) pre-λ-ring structure defined by (1 − T )−[M ] = ζ[M ](T ) for a quasi-
projective varietyM. Here ζ[M ](T ) is the Kapranov zeta-function ofM: ζ[M ](T ) :=
1 + [M ] · T + [S 2M ] · T 2 + [S3M ] · T 3 + · · · , where S kM = Mk/Sk is the kth
symmetric power of the variety M (see [6; 11]).

First, however, the description of the power structure through the pre-λ-ring
structure does not permit a definition of the power structure over the Grothendieck
semiring S0(VC). (And one can say that elements of S0(VC) have more geometric
meaning: they are represented by “genuine” quasi-projective varieties, not by vir-
tual ones.) Second, the geometric description of the power structure has its own
value (e.g., for Theorem 1). Moreover, one can say that the geometric construction
of the power structure in [10] defines the coefficients of the series (A(T ))[M ] more
finely and so preserves more structures on them. For instance, if the coefficients
of the series A(T ) and the exponent [M ] are represented by compact spaces, then
coefficients of the series (A(T ))[M ] also can be considered as such. It seems that
the geometric construction of the power structure can be adapted for and used in
some settings that differ from the Grothendieck ring of varieties. We shall there-
fore describe the series (A(T ))[M ], where A(T ) = 1 + ∑∞

i=1[Ai] · T i and where
Ai and M are quasi-projective varieties (in words somewhat different from those
used in [10]).

It is convenient to describe the power structure on the Grothendieck semiring
S0(VC) in terms of graded spaces (sets). A graded space (with grading from Z>0)

is a space A with a function IA on it with values in Z>0. The number IA(a) is
called the weight of the point a ∈ A. To a series A(T ) = 1 + ∑∞

i=1[Ai]T i one
associates the graded space A = ∐∞

i=1Ai with the weight function IA that sends
all points of Ai to i. In the other direction, to a graded space (A, IA) there corre-
sponds the series A(T ) = 1+ ∑∞

i=1[Ai] · T i with Ai = I−1
A (i). In order to define

the series (A(T ))[M ], we shall describe the corresponding graded space AM first.
The space AM consists of pairs (K,ϕ), where K is a finite subset of (the variety)
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M and ϕ is a map from K to the graded space A. The weight function IAM on AM

is defined by IAM(K,ϕ) = ∑
k∈K IA(ϕ(k)); this gives a set-theoretic description

of the series (A(T ))[M ]. To describe the coefficients of this series as elements of
the Grothendieck semiring S0(VC), one can write it as

(A(T ))[M ] = 1 +
∞∑
k=1

{ ∑
k :

∑
iki=k

[((∏
i

Mki

)∖
�

)
×

∏
i

A
ki
i

/ ∏
i

Ski

]}
· T k.

Here k = {ki : i ∈ Z>0, ki ∈ Z≥0} and � is the “large diagonal” in M
∑

ki that
consists of

(∑
ki

)
-tuples of points of M with at least two coinciding ones; the

permutation group Ski acts by permuting corresponding ki factors in
∏

i M
ki ⊃(∏

i M
ki

) \� and the spaces Ai simultaneously (the connection between this for-
mula and the preceding description is clear).

Remark. This same structure can be constructed over the Grothendieck (semi)-
ring of varieties with an action of a finite group.

2. Generating Series of Hilbert Schemes

Let HilbnX, n ≥ 1, be the Hilbert scheme of zero-dimensional subschemes of length
n of a complex quasi-projective variety X; for x ∈ X, let HilbnX,x be the Hilbert
scheme of subschemes of X concentrated at the point x. Let

HX(T ) := 1 +
∞∑
n=1

[HilbnX]T n, HX,x(T ) := 1 +
∞∑
n=1

[HilbnX,x]T n

be the generating series of classes of Hilbert schemes HilbnX and HilbnX,x in the
Grothendieck semiring S0(VC). Let Ad be the complex affine space of dimen-
sion d.

Computation of invariants of the Hilbert schemes HilbnX for a smooth variety
X of dimension d can be made in two steps. The first is computation of the
corresponding invariants in the local case (i.e., invariants of the Hilbert schemes
HilbnAd,0) and the second is combining the local results to global ones. The follow-
ing statement formalizes the second step for invariants of classes in the Grothen-
dieck (semi)ring; it generalizes the one for surfaces obtained in [10] using com-
putations by Göttsche [8] of the class of the Hilbert scheme of points on a surface
in the Grothendieck ring of motives.

Theorem 1. For a smooth quasi-projective varietyX of dimension d, the follow-
ing identity holds in S0(VC)[[T ]]:

HX(T ) = (HAd,0(T ))
[X]. (2)

Proof. For a locally closed subvariety Y ⊂ X, let HilbnX,Y be the Hilbert scheme
of subschemes of length n of X concentrated at points of Y and let HX,Y (T ) :=
1 + ∑∞

n=1[HilbnX,Y ]T n be the corresponding generating series. If Y is a Zariski
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closed subset of X, then HX(T ) = HX,Y (T ) · HX,X\Y (T ). It is therefore sufficient
to prove that

HX,Y (T ) = (HAd,0(T ))
[Y ] (3)

for a subvariety Y ofX that lies in an affine space AN and such that the first d affine
coordinates x1, . . . , xd of AN define local coordinates on X at each point of Y. For
a point p = (x

(0)
1 , . . . , x(0)d , . . . , x(0)N ) ∈ Y, a zero-dimensional subscheme of length

k concentrated at the point p can be defined by equations in x1−x
(0)
1 , . . . , xd −x

(0)
d ,

and this way the Hilbert scheme HilbkX,{p} of zero-dimensional subschemes of
length k ofX concentrated at the point p can be identified with the Hilbert scheme
Hilbk

Ad,0. Hence a zero-dimensional subscheme of X concentrated at points of Y
is defined by a finite subsetK ⊂ Y, where to each point x ofK there corresponds a
zero-dimensional subscheme of the (standard) affine space Ad concentrated at the
origin. The length of this subscheme is equal to the sum of lengths of the corre-
sponding subschemes of Ad. Now (3) follows immediately from the geometric de-
scription of the power structure over the Grothendieck semiring of quasi-projective
varieties.

Since [Ad ] = Ld and therefore HAd (T ) = (HAd,0(T ))
Ld, one has the following

statement.

Corollary. For a smooth quasi-projective variety X of dimension d, the fol-
lowing identity holds in K0(VC)[L−1][[T ]]:

HX(T ) = (HAd (T ))L
−d [X].

Applying homomorphisms of power structures, one can derive specializations
of the formula (2). The most-known homomorphisms from the Grothendieck
(semi)ring of quasi-projective varieties are the Euler characteristic χ (to the ring
of integers Z) and the Hodge–Deligne polynomial (to the ring Z[u, v] of poly-
nomials in two variables). Over Z there is the standard power structure: the usual
exponentiation. One has χ((1− T )−[X]) = (1− T )−χ(X) (see e.g. [2]; this follows
immediately from [13])—that is, the Euler characteristic is a homomorphism of
power structures. This implies the following statement.

Proposition 3. For a smooth quasi-projective variety X of dimension d,

χ(HX(T )) = (χ(HAd,0(T )))
χ(X).

For d = dimX = 2 we obtain, using [5],

χ(HX(T )) =
( ∏

k≥0

1

1 − T k

)χ(X)
.

This is one of the results obtained in [7] using the Weil conjectures.
Applying just the same constructions to the Grothendieck ring of analytic vari-

eties with finite Euler characteristic yields the same formulas in the analytic set-
ting: for the Douady spaces of “n-points” on a complex analytic manifold, proved
(in the case of surfaces) by de Cataldo [3].



358 S. M. Gusein-Zade, I . Luengo, & A. Melle-Hernández

3. Power Structures on the Ring of Polynomials and
Hodge–Deligne Polynomials of Hilbert Schemes

One can define a power structure over the ring Z[u1, . . . , ur ] of polynomials in
n variables with integer coefficients in the following way. Let P(u1, . . . , ur) =∑

k∈Zr≥0
pku

k ∈ Z[u1, . . . , ur ], where k = (k1, . . . , kr), u = (u1, . . . , ur), and uk =
u
k1
1 · · · ukrr with pk ∈ Z. Define

(1 − T )−P(u1,...,ur ) :=
∏

k∈Zr≥0

(1 − ukT )
−pk ,

where the power (with an integer exponent −pk) means the usual one.
It is easily seen that (1 − T )−(P1(u)+P2(u)) = (1 − T )−P1(u)(1 − T )−P2(u) and

hence by Proposition 1 this defines a power structure over the ring Z[u1, . . . , ur ].
That is, for polynomials Ai(u) (i ≥ 0) and M(u) there is defined a series
(1 + A1(u)T + A2(u)T

2 + · · · )M(u) with coefficients from Z[u1, . . . , ur ].
Let r = 2 and let u1 = u and u2 = v. Let e : K0(VC) → Z[u, v] be the

ring homomorphism that sends the class [X] of a quasi-projective variety X to its
Hodge–Deligne polynomial eX(u, v) = ∑

h
ij

X(−u)i(−v)j. Given our definition,
a well-known fact (see e.g. [1; 4, Prop. 1.2]) about Hodge–Deligne polynomials of
the symmetric powers of a variety may be rewritten as follows.

Proposition 4.
e((1 − T )−[X]) = (1 − T )−eX(u,v),

where the powers are according to the power structures in the corresponding rings:
K0(VC) and Z[u, v], respectively.

Theorem 1 and Proposition 4 yield the following statement.

Theorem 2. For a smooth quasi-projective variety X of dimension d,

e(HX(T )) = (e(HAd,0(T )))
e(X). (4)

This is the main result of [9] and [4] but written (in some sense) in a more invari-
ant way. To write it in a form similar to that used in [4], one would apply to both
sides of (4) an isomorphism L : 1 + T · Z[u, v][[T ]] → Z[u, v][[T ]] of abelian
groups with multiplication and addition as group operations, respectively. In [4]
Cheah used the usual logarithmic map log (and consequently the usual exponential
map exp in the other direction). The same is done in a number of papers contain-
ing similar computations. These maps are defined only over the field Q of rational
numbers, which forces formulas to be written in Q[u, v]. Just in the same way one
can use the isomorphism Log and its inverse Exp, defined by

Exp(P1(u)T + P2(u)T
2 + · · · ) :=

∏
k≥1

(1 − T k)−Pk(u)

(cf. [10]) or other ones; there are infinitely many such pairs. This enables us to
write the formula staying in Z[u, v].
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