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Abstract: The notion of the orbifold Euler characteristic came from physics at the end of the 1980s.
Coincidence (up to sign) of the orbifold Euler characteristics is a necessary condition for crepant
resolutions of orbifolds to be mirror symmetric. There were defined higher order versions of the
orbifold Euler characteristic and generalized (“motivic”) versions of them. In a previous paper,
the authors defined a notion of the Grothendieck ring KfGr

0 (VarC) of varieties with actions of finite
groups on which the orbifold Euler characteristic and its higher order versions are homomorphisms
to the ring of integers. Here, we define the generalized orbifold Euler characteristic and higher
order versions of it as ring homomorphisms from KfGr

0 (VarC) to the Grothendieck ring K0(VarC) of
complex quasi-projective varieties and give some analogues of the classical Macdonald equations for
the generating series of the Euler characteristics of the symmetric products of a space.

Keywords: actions of finite groups; complex quasi-projective varieties; Grothendieck rings;
λ-structure; power structure; Macdonald-type equations

MSC: 18F30; 55M35

1. Introduction

The notion of the orbifold Euler characteristic χorb came from physics at the end of the 1980s [1]
(see also [2,3]). Coincidence (up to sign) of the orbifold Euler characteristics is a necessary condition
for orbifolds (or rather, for their crepant resolutions) to be mirror symmetric. Higher order Euler
characteristics χ(k) of spaces with finite group actions were defined in [2,4]. The class of a variety in
the Grothendieck ring K0(VarC) of complex quasi-projective varieties (being an additive invariant) can
be considered as a generalized (“motivic”) Euler characteristic. Generalized versions of the orbifold
Euler characteristic and of higher order Euler characteristics were defined in [5] (as a refinement of
the so-called orbifold Hodge–Deligne polynomial; see, e.g., [6]) and in [7]. (They take values in the
extension of the Grothendieck K0(VarC) ring of complex quasi-projective varieties by rational powers
of the class of the affine line.) One has the classical Macdonald equation for the generating series of the
Euler characteristics of the symmetric products of a topological space. Its versions for the orbifold Euler
characteristic and for the higher order Euler characteristics were obtained in [8]. Some versions for
the generalized orbifold Euler characteristic and for the generalized higher order Euler characteristics
were given in [5,7].
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The orbifold Euler characteristic and the higher order Euler characteristics are usually considered
as functions on the Grothendieck ring KG

0 (VarC) of G-varieties. These functions define group
homomorphisms from KG

0 (VarC) to Z, but not ring homomorphism. A Grothendieck ring KfGr
0 (VarC)

on which these Euler characteristics are ring homomorphisms was defined in [9]. It was called the
Grothendieck ring of complex quasi-projective varieties with actions of finite groups. In [10], there was
defined a notion of the universal Euler characteristic on KfGr

0 (VarC). It takes values in a ring generated,
as a free Abelian group, by elements corresponding to isomorphism classes of finite groups.

Here, we define generalized orbifold Euler characteristic χorb
g and generalized higher order Euler

characteristics χ
(k)
g as homomorphisms from KfGr

0 (VarC) to K0(VarC). We formulate Macdonald-type
equations for them in terms of λ-ring homomorphisms. There is a map α : KfGr

0 (VarC)→ KfGr
0 (VarC)

such that p ◦ αk = χ
(k)
g , where p is the natural map KfGr

0 (VarC)→ K0(VarC) sending the class [(X, G)]

of a G-variety to the class [X/G] of its quotient. We prove a substitute of a Macdonald-type equation
for the homomorphism α.

2. Power Structures and the Grothendieck Ring of Varieties with Actions of Finite Groups

A power structure over a ring R (commutative, with unit) is a method to give sense to an
expression of the form (A(t))m, where A(t) = 1 + a1t + a2t2 + . . . ∈ 1 + t · R[[t]] and m ∈ R ([11]). It is
defined by a map

(1 + t · R[[t]])× R→ 1 + t · R[[t]] ((A(t), m) 7→ (A(t))m),

which satisfies the following properties:

(1) (A(t))0 = 1;
(2) (A(t))1 = A(t);
(3) (A(t) · B(t))m = (A(t))m · (B(t))m;
(4) (A(t))m+n = (A(t))m · (A(t))n;
(5) (A(t))mn =

(
(A(t))n)m;

(6) (1 + a1t + . . .)m = 1 + ma1t + . . .;

(7)
(

A(tk)
)m

= (A(t))m
|t 7→tk for k ∈ Z>0.

Power structures over a ring are related with λ-structures on it. A λ-structure on a
ring R (sometimes called a pre-lambda structure; see, e.g., [12]) is an additive-to-multiplicative
homomorphism R → 1 + t · R[[t]] (that is a 7→ λa(t), λa+b(t) = λa(t) · λb(t)) such that λa(t) =

1 + at + . . . A λ-structure on R defines a power structure over it in the following way. A series

A(t) ∈ 1 + t · R[[t]] can be, in a unique way, represented as the product
∞
∏

k=1
λbk

(tk). Then one defines

(A(t))m as
∞
∏

k=1
λmbk

(tk). A power structure over R permits one to define a number of λ-structures on it:

for any series λ1(t) = 1 + t + b2t2 + . . ., one can put λa(t) = (λ1(t))
a.

The standard power structure over the ring Z of integers is defined by the standard exponent of a
series. A natural power structure over the Grothendieck ring K0(VarC) of complex quasi-projective
varieties was introduced in [11]. It is defined by the formula

(1 + [A1]t + [A2]t2 + . . .)[M] = (1)

= 1 +
∞

∑
k=1

 ∑
{ki}:∑ iki=k

[((
M∑i ki \ ∆

)
×∏

i
Aki

i

)/
∏

i
Ski

] · tk,
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where Ai, i = 1, 2, . . ., and M are complex quasi-projective varieties, ∆ is the big diagonal in M∑i ki ,
the group Ski

acts by the simultaneous permutations on the components of Mki and on the components

of Aki
i .
For a topological space X (say, a complex quasi-projective variety) with an action of a finite

group G, one has the notions of the orbifold Euler characteristic χorb(X, G) and of the (orbifold) Euler
characteristics χ(k)(X, G) of higher orders (see, e.g., [2–4]). They can be defined, in particular, in the
following way. Let χ(0)(X, G) := χ(X/G), where χ is the (additive) Euler characteristic defined
through cohomologies with compact support. For k ≥ 1, let

χ(k)(X, G) := ∑
[g]∈Conj G

χ(k−1)(X〈g〉, CG(g)) ,

where Conj G is the set of conjugacy classes of elements of G, g is a representative of the class [g], X〈g〉 is
the fixed point set of g, CG(g) is the centralizer of the element g in G. The orbifold Euler characteristic
χorb(X, G) is the Euler characteristic of order 1: χ(1)(X, G).

The orbifold Euler characteristic and the Euler characteristics of higher orders can be considered
as functions on the Grothendieck ring KG

0 (VarC) of quasi-projective G-varieties. These functions are
group homomorphisms, but not ring ones. A ring on which they are defined as ring homomorphisms
to Z was introduced in [9].

Let us consider G-varieties, i.e., pairs (X, G) consisting of a complex quasi-projective variety X
and a finite group G acting on X. We shall call two pairs (X, G) and (X′, G′) isomorphic if there exists
an isomorphism ψ : X → X′ of quasi-projective varieties and a group isomorphism ϕ : G → G′ such
that ψ(gx) = ϕ(g)ψ(x) for x ∈ X, g ∈ G. If G is a subgroup of a finite group H, one has the induction
operation IndH

G , which converts G-varieties to H-varieties. For a G-variety X, IndH
G X is the quotient

of H × X by the right action of the group G defined by (h, x) ∗ g = (hg, g−1x). (The action of H on
IndH

G X is defined in the natural way: h0(h, x) = (h0h, x).)

Definition 1. (see [9]) The Grothendieck ring of complex quasi-projective varieties with actions of finite groups
is the abelian group KfGr

0 (VarC) generated by the classes [(X, G)] of G-varieties (for different finite groups G)
modulo the relations:

(1) if (X, G) and (X′, G′) are isomorphic, then [(X, G)] = [(X′, G′)];
(2) if Y is a Zariski closed G-subvariety of a G-variety X, then [(X, G)] = [(Y, G)] + [(X \Y, G)];
(3) if (X, G) is a G-variety and G is a subgroup of a finite group H, then [(IndH

G X, H)] = [(X, G)].

The multiplication in KfGr
0 (VarC) is defined by the Cartesian product:

[(X1, G1)]× [(X2, G2)] = [(X1 × X2, G1 × G2)] .

The unit element in KfGr
0 (VarC) is 1 = [(Spec(C ), (e))], the class of the one-point variety with the

action of the group with one element.

Remark 1. This ring (under the name “the Grothendieck ring of equivariant varieties”) was used in [13].

One has a natural ring homomorphism p : KfGr
0 (VarC)→ K0(VarC) sending [(X, G)] to [X/G].

There are two (“geometric”) λ-structures on the ring KfGr
0 (VarC). Let X be a G-variety.

The Cartesian power Xn carries natural actions of the group Gn (acting component-wise) and of
the group Sn (acting by permuting the factors in Xn), and therefore an action of their semi-direct
product (the wreath-product) Gn o Sn = Gn.
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Definition 2. The Kapranov zeta function of (X, G) is

ζ(X,G)(t) = 1 +
∞

∑
n=1

[(Xn, Gn)]tn ∈ 1 + t · KfGr
0 (VarC)[[t]].

In [9], it is shown that the Kapranov zeta function is well-defined for elements of the ring
KfGr

0 (VarC) and defines a λ-ring structure on it.
Another λ-structure on the ring KfGr

0 (VarC) is defined by the generating series of classes of
equivariant configuration spaces of points in X. Let ∆G be the big G-diagonal in the Cartesian power
Xn of a G-variety X, i.e., the set of n-tuples (x1, . . . , xn) ∈ Xn with at least two of xi from the same
G-orbit. The wreath product Gn acts on Xn \ ∆G. Let

λ(X,G)(t) = 1 +
∞

∑
n=1

[(Xn \ ∆G, Gn)]tn ∈ 1 + t · KfGr
0 (VarC)[[t]]

be the generating series of classes of equivariant configuration spaces of points in X. In [9], it is shown
that the series λ(X,G)(t) defines a λ-structure on the ring KfGr

0 (VarC), and there was given a geometric
description of the power structure over KfGr

0 (VarC) corresponding to this λ-structure. (A geometric
description of the power structure over the ring KfGr

0 (VarC) corresponding to the λ-structure defined
by the Kapranov zeta function is not known.) We shall call these λ-structures (and the corresponding
power structures) the symmetric product and the configuration space ones.

In [9], it was shown that the orbifold Euler characteristic and the higher order Euler characteristics
of an element of KfGr

0 (VarC) are well-defined (that is, χ(k)(IndH
G X, H) = χ(k)(X, G)), and they are ring

homomorphisms from KfGr
0 (VarC) to Z.

One has a ring homomorphism α : KfGr
0 (VarC) → KfGr

0 (VarC) defined by α([(X, G)]) =

∑[g]∈Conj G[(X〈g〉, CG(g))] (see the notations above). One can see that χ(k) = χ ◦ p ◦ αk, where χ :
K0(VarC) → Z is the usual Euler characteristic. Therefore, αk can be considered as a sort of
a generalized version of the Euler characteristic of order k with values in KfGr

0 (VarC). (In [13],
the homomorphism α is called the inertia homomorphism.)

3. The Universal Euler Characteristic

In [10], there was defined the so-called universal Euler characteristic on the ring KfGr
0 (VarC).

LetR be the subring of KfGr
0 (VarC) generated by the zero-dimensional (i.e., finite) G-varieties. It can be

described in the following way. Let G be the set of isomorphism classes of finite groups. ThenR is the
Abelian group freely generated by the elements TG corresponding to the isomorphism classes G ∈ G
of finite groups. The generator TG is represented by the one-point set with the (unique) action of a
representative G of the class G. The Krull–Schmidt theorem implies thatR is the ring of polynomials in
the variables TG corresponding to the isomorphism classes of finite indecomposable groups. If (X, G)

is a G-variety, its universal Euler characteristic is defined by

χun(X, G) := ∑
H∈G

χ
(

X(H)/G
)
· TH,

where X(H) is the set of points x ∈ X with the isotropy subgroup Gx = {g ∈ G : gx = x} belonging to
the class H.

Remark 2. This characteristic can be regarded as a universal one in the topological category.

The orbifold Euler characteristic and the higher order Euler characteristics define ring
homomorphisms fromR to Z.
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One has a natural λ-ring structure onR defined by an analogue of the Kapranov zeta function
(see [10]), and the maps χ(k) are λ-ring homomorphisms with respect to this λ-structure.

One has the commutative diagram of ring homomorphisms

K f Gr
0 (VarC)

χun
//

αk

��

χ(k)

##

R

αk

��

χ(k)

��
K f Gr

0 (VarC)
χ(0)

// Z R.
χ(0)
oo

4. Macdonald-Type Equations and λ-Structure Homomorphisms

The classical Macdonald equation describes the generating series of the Euler characteristics of
the symmetric products of a space:

1 +
∞

∑
n=1

χ(SnX) · tn = (1− t)−χ(X), (2)

where X is a topological space and SnX = Xn/Sn is its nth symmetric product. One also has a
Macdonald-type equation for the generating series of the Euler characteristics of the configuration
spaces of subsets of points in X. Let MnX = (Xn \ ∆)/Sn be the configuration space of unordered
n-tuples of points in X, where ∆ is the big diagonal in Xn. Then one has

1 +
∞

∑
n=1

χ(MnX) · tn = (1 + t)χ(X). (3)

There exist equations for the generating series of the Hodge–Deligne polynomials of the symmetric
products of a complex quasi-projective variety and of the configuration spaces of subsets of points in it
(see, e.g., [5]).

These equations are related with λ-ring homomorphisms (and therefore with power structure
homomorphisms) from the Grothendieck ring K0(VarC) of complex quasi-projective varieties to Z
and to Z[u, v], respectively. For a ring homomorphism ϕ : R1 → R2, one has a natural map (a group
homomorphism) ϕ∗ : 1+ t · R1[[t]]→ 1+ t · R2[[t]] obtained by applying ϕ to the coefficients of a series.
If R1 and R2 are λ-rings, a ring homomorphism ϕ : R1 → R2 is said to be a λ-ring homomorphism if
λϕ(a)(t) = ϕ∗λa(t) for a ∈ R1. If R1 and R2 are rings with power structures, ϕ : R1 → R2 is a power

structure homomorphism if ϕ∗ (A(t)m) = (ϕ∗(A(t)))ϕ(m). A λ-ring homomorphism induces a power
structure homomorphism for the corresponding power structures and vise-versa.

Equations (2) and (3) are related with the following λ-ring structures on the Grothendieck ring
K0(VarC) and on Z. The Kapranov zeta function of a variety X (or of its class [X] ∈ K0(VarC)) is

ζX(t) = 1 +
∞

∑
n=1

[SnX] · tn = (1− t)−[X].

One can see that ζX(t) defines a λ-ring structure on K0(VarC). Another λ-ring structure on
K0(VarC) is defined by the series

λX(t) = 1 +
∞

∑
n=1

[MnX] · tn = (1 + t)[X].

The corresponding λ-structures on Z are ζ̌n(t) = (1− t)−n and λ̌n(t) = (1 + t)n, respectively.
Equations (2) and (3) mean that the Euler characteristic is a λ-ring homomorphism for the
corresponding λ-structures. Both λ-structures on K0(VarC) (as well as both λ-structures on Z) induce
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the same power structure over K0(VarC) (over Z, respectively). The corresponding power structure
over K0(VarC) is given by Equation (1).

The Macdonald-type equations for the orbifold Euler characteristic and for the higher order Euler
characteristics look like the following.

Theorem 1. ([8]) The map χ(k) : KfGr
0 (VarC) → Z is a λ-ring homomorphism for the λ-structures on the

source KfGr
0 (VarC) and on the target Z defined by the Kapranov zeta function ζ(X,G)(t) and by the series

λ
(k)
n (t) =

(
∏

r1,...,rk≥1
(1− tr1·...·rk )r2·r2

3 ·...·r
k−1
k

)n

,

respectively, i.e.,
χ(k)

(
ζ(X,G)(t)

)
= λ

(k)
χ(k)(X,G)

(t) .

Remark 3. The map χ(k) : KfGr
0 (VarC)→ Z is not a λ-ring homomorphism with respect to the configuration

space λ-structure on KfGr
0 (VarC).

5. Generalized Euler Characteristics of Higher Orders as Homomorphisms from KfGr
0 (VarC)

In [9], it was shown that the orbifold Euler characteristic and the Euler characteristics of higher
orders are ring homomorphism (moreover, λ-ring homomorphisms) from the Grothendieck ring
KfGr

0 (VarC) to Z. The notions of the generalized (“motivic”) orbifold Euler characteristic and of
generalized (“motivic”) Euler characteristics of higher orders were introduced by the authors in [5] (as
a refinement of the orbifold Hodge–Deligne polynomial from [6]) and in [7]. They were defined as
invariants of a complex quasi-projective manifold with the action of a finite group and took values in
the extension of the Grothendieck ring K0(VarC) of complex quasi-projective varieties by the rational
powers of the class of the affine line and not defined on a ring. The generalized orbifold Euler
characteristics took into account the so-called ages (or fermion shifts), which are defined by the actions
of the elements of the group on the tangent spaces to their fixed points. These ages are not defined
for varieties with finite group actions (or rather, for elements of the corresponding Grothendieck
ring(s)). To avoid this problem, in [9], The generalized orbifold Euler characteristics were considered
as functions on the Grothendieck ring of varieties with equivariant vector bundles. Here, we define
versions of them (with the corresponding weight ϕ = 0 in terms of [7,9], that is, without taking into
account the ages) as ring homomorphisms from KfGr

0 (VarC) to K0(VarC).
The homomorphism p : KfGr

0 (VarC) → K0(VarC) sending the class [(X, G)] to the class [X/G]
is an additive function on KfGr

0 (VarC) and, therefore, can be considered as a generalized version of
the Euler characteristic. Let us call it a generalized Euler characteristic of order 0 and denote it by
χ
(0)
g (X, G). Let X be a G-variety.

Definition 3. The generalized Euler characteristic χ
(k)
g (X, G) of order k is defined by

χ
(k)
g (X, G) = ∑

[g]∈Conj G
χ
(k−1)
g (X〈g〉, CG(g)) ∈ K0(VarC),

where the sum is over the conjugacy classes [g] of elements of G, g is a representative of the class [g], X〈g〉 is the
fixed point set of g, and CG(g) is the centralizer of g in G.

Proposition 1. The generalized Euler characteristic χ
(k)
g of order k is a well-defined ring homomorphism from

KfGr
0 (VarC) to K0(VarC).
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Proof. One has to show that χ
(k)
g respects relations (1)–(3) of Definition 1. This obviously holds for (1)

and (2). The fact that χ
(k)
g respects condition (3) (the induction relation) can be proved by induction on

k: it is obvious for k = 0, and the statement for an arbitrary k follows from the statement for k− 1 due
to ([9], Lemma 1).

The following statement gives a Macdonald-type equation for the generalized Euler characteristics
of higher orders and is a specification of ([9], Theorem 4) or of ([7], Theorem 1).

Theorem 2. The map χ
(k)
g : KfGr

0 (VarC) → K0(VarC) is a λ-ring homomorphism for the λ-structures on
the source KfGr

0 (VarC) and on the target K0(VarC) defined by the Kapranov zeta function ζ(X,G)(t) and by
the series

λ
(k)
X (t) =

(
∏

r1,...,rk≥1
(1− tr1·...·rk )r2·r2

3 ·...·r
k−1
k

)[X]

,

i.e.,
χ
(k)
g

(
ζ(X,G)(t)

)
= λ

(k)

χ
(k)
g (X,G)

(t) .

Remark 4. The map χ
(k)
g is not a λ-ring homomorphism with respect to the configuration space λ-structure on

KfGr
0 (VarC).

One has the commutative diagram of ring homomorphisms

K f Gr
0 (VarC)

χ
(k)
g

��

αk

xx

χ(k)

##
K f Gr

0 (VarC)
p // K0(VarC)

χ // Z

6. A Substitute of a Macdonald-Type Equation for the Homomorphism α

As it follows from Definition 3, the composition of the homomorphism αk with the natural
map p : KfGr

0 (VarC) → K0(VarC) coincides with the generalized (“motivic”) Euler characteristic
of order k (with the generalized orbifold Euler characteristic for k = 1) computed without the
fermion shift (i.e., with ϕ = 0 in terms of [7]). Its composition with the usual Euler characteristic
homomorphism χ : K0(VarC)→ Z gives the usual (orbifold) Euler characteristic of order k. One has
Macdonald-type equations for the (orbifold) Euler characteristic of order k ([8]) and for the generalized
Euler characteristic of order k ([7]). Here, we shall give a version of these equations for the
homomorphism α (which reduces to the Macdonald type equations for the generalized orbifold
Euler characteristic and for the orbifold Euler characteristic after applying the homomorphisms p and
χ ◦ p, respectively). Let αr : KfGr

0 (VarC) → KfGr
0 (VarC) be defined in the following way. Let (X, G)

be a G-variety. For a representative g of a conjugacy class [g] ∈ Conj G, the centralizer CG(g) acts on
the fixed point set X〈g〉 of the element g. Let CG(g)〈ar,g〉 be the group generated by CG(g) and by an
additional element ar,g commuting with all the elements of CG(g) and such that ar

r,g = g. For r = 1,
the group CG(g)〈ar,g〉 coincides with CG(g). One has an action of the group CG(g)〈ar,g〉 on X〈g〉

assuming ar,g to act trivially. Let αr : KfGr
0 (VarC)→ KfGr

0 (VarC) be defined by

αr ([(X, G)]) := ∑
[g]∈Conj G

[(X〈g〉, CG(g)〈ar,g〉)] .

In particular, α1 = α.
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Theorem 3.

α
(

ζ(X,G)(t)
)
=

∞

∏
r=1

ζαr([(X,G)])(t
r) . (4)

Proof. The proof essentially follows from the description of the conjugacy classes of elements of the
wreath products Gn and of their centralizers from, e.g., [8] and to a big extent repeats the computations
in [7]. An element of Gn can be written as a pair (g, s), where g = (g1, . . . , gn) ∈ Gn, s ∈ Sn. One has

α
(

ζ(X,G)(t)
)
= (5)

= ∑
n≥0

tn ·

 ∑
[(g,s)]∈Conj Gn

[
(Xn)〈(g,s)〉, CGn ((g, s))

] , (6)

where the sum is over the conjugacy classes [(g, s)] of elements of Gn. The conjugacy classes [(g, s)]
of elements (g, s) = (g1, . . . , gn; s) of Gn are characterized by their types. For a cycle z = (i1, . . . , ir)
(of length r) in the permutation s, its cicle product gir gir−1 . . . gi1 is well-defined up to conjugacy.
For [c] ∈ Conj G and for r ≥ 1, let mr(c) be the number of r-cycles in s with the cicle product from [c].
One has

∑
[c]∈Conj G, r≥1

rmr(c) = n .

The collection {mr(c)}r,[c] is called the type of the element (g, s) ∈ Gn. Two elements of Gn are
conjugate if and only if they are of the same type. Therefore, the summation over the conjugacy classes
of elements of Gn can be substituted by the summation over all possible types.

The fixed point set (Xn)〈(g,s)〉 can be identified with

∏
[c]∈Cong G,r≥1

(X〈c〉)mr(c) .

The centralizer of (g, s) ∈ Gn is isomorphic to

∏
[c]∈Cong G,r≥1

(CG(c)〈ar,c〉)mr(c) ,

where the definition of the group CG(c)〈ar,c〉 and the description of its action on the fixed point set
X〈c〉 are given above.

Therefore, one has

α
(

ζ(X,G)(t)
)
=

∞

∑
n=0

tn ·

 ∑
[(g,s)]∈Cong Gn

[
(X〈(g,s)〉, CGn ((g, s))

]
=

∞

∑
n=0

tn ·

 ∑
{mr(c)}

∏
[c],r

(X〈c〉)mr(c), ∏
[c],r

(CG(c)〈ar,c〉)mr(c)


= ∑

{mr(c)}
t∑ rmr(c) ·∏

[c],r

[(
X〈c〉

)mr(c)
, (CG(c)〈ar,c〉)mr(c)

]

=
∞

∏
r=1

∏
[c]

∞

∑
mr(c)=1

(
trmr(c)

[
(X〈c〉)mr(c), (CG(c)〈ar,c〉)mr(c)

])
=

∞

∏
r=1

∏
[c]

ζ(X〈c〉,CG(c)〈ar,c〉)(t
r) =

∞

∏
r=1

ζ∑[c] [(X〈c〉,CG(c)〈ar,c〉)](t
r)

=
∞

∏
r=1

ζαr([(X,G)])(t
r).
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The restrictions of the homomorphisms α and αr to the subring R ⊂ KfGr
0 (VarC) define the

homomorphisms α and αr from R to R. The homomorphism αr acts by the formula αr(T[G]) =

∑[g]∈Conj G T[CG(g)〈ar,g〉].

Corollary 1. For a ∈ R, one has

α (ζa(t)) =
∞

∏
r=1

ζαr(a)(t
r) . (7)

7. Conclusions

We study generalized versions of the orbifold Euler characteristic and of higher order
Euler characteristics as ring homomorphisms from the Grothendieck ring KfGr

0 (VarC) of complex
quasi-projective varieties with actions of finite groups introduced in [9]. We define the generalized
orbifold Euler characteristic χorb

g and generalized higher order Euler characteristics χ
(k)
g as

homomorphisms from KfGr
0 (VarC) to the Grothendieck ring K0(VarC) of complex quasiprojective

varieties. This permits the formulation of Macdonald-type equations for them in terms of λ-ring
homomorphisms. We consider a map α (the inertia homomorphism) from the Grothendieck ring
KfGr

0 (VarC) to itself such that the composition of its kth power with the natural map KfGr
0 (VarC) →

K0(VarC) sending the class [(X, G)] of a G-variety to the class [X/G] of its quotient coincides with
the generalized (orbifold) Euler characteristic of order k. We formulate and prove a substitute of a
Macdonald-type equation for the homomorphism α.
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