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Dedicated to the memory of V. A. Rokhlin

It was not until recently that the germs of meromorphic functions became an object

of study in the singularity theory. In [11] T. Suwa described the versal deformations of

meromorphic germs. In [1] V.I. Arnol'd classi�ed the meromorphic germs with respect to

some equivalence relations. In [4] the present authors started the study of the topological

properties of meromorphic germs. Some applications of the technique developed in [4]

were described in [5] and [6].

The aim pursued by the authors in [4] was to elaborate notions and techniques for

computing certain invariants of polynomials, such as the Euler characteristics of �bres,

and the zeta-functions of the monodromy transformations associated with a polynomial

(see [5]). For this reason, some important basic properties of the notions related to

the topology of meromorphic germs were not discussed there, with a consequent lack of

understanding of the general constructions. In the present paper we want to partially �ll

this gap. At the same time, we describe the relationship with some earlier results and

their generalizations.

A polynomial P in n + 1 complex variables gives rise to a map P from the a�ne

complex space C

n+1

to the complex line C . It is well known that the map P is a C

1

-

locally trivial �bration over the complement to a �nite set in C . The smallest of such

sets is called the bifurcation set or the set of atypical values of the polynomial P . It is

of interest to describe the topology of a �bre of that �bration, as well as the behavior

of this topology under the monodromy transformations corresponding to loops around

atypical values of the polynomial P . The monodromy transformation corresponding to

a circle of large radius enclosing all atypical values (the monodromy transformation of

the polynomial P at in�nity) is particularly interesting.

The initial idea was to reduce the calculation of the zeta-function of the monodromy

transformation at in�nity (and, thus, the Euler characteristic of a generic �bre) for

the polynomial P to local problems associated with various points at in�nity, i.e., with

points lying at the in�nite hyperplane CP

n

1

in the projective compacti�cation CP

n+1

of

the a�ne space C

n+1

: For holomorphic germs, such a localization was used in [3]. This

localization can be expressed in terms of an integral against the Euler characteristic,

a notion that emerged in the works of V.A. Rokhlin's school (see [12]). However, the

same technique does not apply to a polynomial function, because at a point of the in�-

nite hyperplane CP

n

1

the latter only determines a meromorphic (nonholomorphic) germ.

Thus, the idea of reduction to the calculation of the local zeta-functions corresponding

to various points of the hyperplane CP

n

1

is impeded by the absence of certain notions
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(such as the Milnor �bre, the monodromy transformation, etc.) for meromorphic germs.

This necessitates de�ning the corresponding invariants and elaborating a technique for

their calculation.

x1. Basic properties

A meromorphic germ at the origin in the complex space C

n+1

is the ratio f =

P

Q

of

two holomorphic germs P and Q on (C

n+1

; 0): For the goal describe above, the following

equivalence relation is appropriate. Two meromorphic germs f =

P

Q

and f

0

=

P

0

Q

0

are

equal if and only if P

0

= P � U and Q

0

= Q � U for some holomorphic germ U not equal

to zero at the origin: U (0) 6= 0.

Any meromorphic germ f =

P

Q

gives rise to a map of the complement to the indeter-

minacy locus fP = Q = 0g into the complex projective line CP

1

. For any c 2 CP

1

, there

exists "

0

> 0 such that for any " with 0 < " � "

0

the map

f : B

"

n fP = Q = 0g ! CP

1

is a C

1

-locally trivial �bration over a su�ciently small punctured neighborhood of c;

here B

"

is the closed ball of radius " centred at the origin in C

n+1

(see [4]).

De�nition. The �bre

M

c

f

=

n

z 2 B

"

: f(z) =

P (z)

Q(z)

= c

0

o

of that �bration (for c

0

su�ciently close to c) is called the c-Milnor �bre of the meromor-

phic germ f:

The Milnor �bre M

c

f

is a (noncompact) n-dimensional complex manifold with bound-

ary.

De�nition. The monodromy transformation of the above �bration corresponding to a

simple (small) loop around the value c is called the c-monodromy transformation of the

meromorphic germ f .

De�nition. A value c 2 CP

1

is said to be typical if the map f : B

"

nfP = Q = 0g ! CP

1

is a C

1

-locally trivial �bration over some neighbourhood of c (including the point c

itself).

Observe that if c is a typical value, then the corresponding monodromy transformation

is isotopic to the identity.

Theorem 1. There exists a �nite set � � CP

1

such that for all c 2 CP

1

n� the c-Milnor

�bres of f are di�eomorphic to one another , and the c-monodromy transformations are

trivial (i.e., isotopic to the identity). In particular , the set of atypical values is �nite.

Proof. A resolution of the germ f is a modi�cation of the space (C

n+1

; 0) (i.e., a proper

analytic map � : X ! U of a smooth analytic manifold X onto a neighborhood U of

the origin in C

n+1

that is an isomorphism outside of a proper analytic subspace in U)

such that the preimage �

�1

(H) of the hypersurface H = fP = 0g[ fQ = 0g is a normal

crossing divisor at every point of the manifold X . We assume that the map � is an

isomorphism outside of the hypersurface H.

The fact that the preimage �

�1

(H) is a divisor with normal crossings implies that in

a neighborhood of any point of it there exists a local system of coordinates y

0

; y

1

; : : : ; y

n
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such that the liftings

e

P = P � � and

e

Q = Q � � of the functions P and Q to the space

X of modi�cation are equal to u � y

k

0

0

y

k

1

1

� � �y

k

n

n

and v � y

l

0

0

y

l

1

1

� � �y

l

n

n

, respectively; here

u(0) 6= 0, v(0) 6= 0, and k

i

and l

i

are nonnegative.

Remark 1. The values 0 and1 in the projective line CP

1

are used as distinguished points

for convenience; then for the numerator and denominator we have the usual notion of

resolution of a holomorphic germ.

Additional blow-ups can be made along the intersections of pairs of irreducible com-

ponents of the divisor �

�1

(H); so, the lifting

e

f = f � � =

e

P

e

Q

of the function f can be

de�ned as a holomorphic mapping from the manifold X to the complex projective line

CP

1

. This condition means that

e

P = V � P

0

;

e

Q = V �Q

0

, where V is a section of a line

bundle (say, L;) over X ; and P

0

and Q

0

are sections of the line bundle L

�1

that have no

common zeros on X . We put

e

f

0

=

P

0

Q

0

.

On each component of the divisor �

�1

(H) and on all intersections of several of them,

e

f

0

determines a map to the projective line CP

1

. These maps have �nitely many critical

values, say a

1

, a

2

, ..., a

s

.

Remark 2. If the function

e

f

0

is constant on a component of the divisor �

�1

(H) or on the

intersection of some components, then this constant is a critical value. The value of the

function

e

f

0

on the intersection of n+1 components (this intersection is zero-dimensional)

should also be viewed as a critical value.

Let c 2 CP

1

be di�erent from a

1

, a

2

, ..., a

s

. We show that for all c

0

in some neighbor-

hood of c (including the point c itself) the c

0

-Milnor �bres of the meromorphic function f

are di�eomorphic to one another, and that the c

0

-monodromy transformations are trivial.

Let r

2

(z) denote the square of the distance from z to the origin in the space C

n+1

,

and let er

2

(x) = r

2

(�(x)) be the lifting of this function to the space X of modi�cation.

In order to de�ne the c

0

-Milnor �bre, we must choose "

0

> 0 (the Milnor radius) so

small that the level manifold fer

2

(x) = "

2

g is transversal to f

e

f

0

(x) = c

0

g for all " with

0 < " � "

0

. Let "

0

= "

0

(c) be the Milnor radius for the value c. Since at the same

time f

e

f

0

(x) = cg is transversal to the components of the divisor �

�1

(H) and to all their

intersections, "

0

is also the Milnor radius for all c

0

belonying to a neighborhood of the

point c 2 CP

1

(and the level manifold f

e

f

0

(x) = c

0

g is transversal to the components of

the divisor �

�1

(H) and to their intersections). This implies our claim. �

Remark 3. The c-Milnor �bre for a generic value c 2 CP

1

can be called a generic Milnor

�bre of the meromorphic germ f . It is easily seen that a generic Milnor �bre of a

meromorphic germ can be viewed as embedded in the c-Milnor �bre for any value c 2 CP

1

.

Moreover, the Euler characteristic of a generic Milnor �bre of a meromorphic germ is

equal to zero, and the zeta-function of the corresponding monodromy transformation

(see [4]) is equal to (1� t)

0

= 1:

x2. Isolated singularities and the Euler

characteristic of the 0-Milnor fibre

Let P be a polynomial in n + 1 complex variables. Suppose that the closure V

t

0

�

CP

n+1

of the level set V

t

0

= fP = t

0

g � C

n+1

in the complex projective space CP

n+1

�

C

n+1

has isolated singular points only. Let A

1

, : : : , A

r

be those of them that lie in

the a�ne space C

n+1

, and let B

1

, : : : , B

s

be those lying in the in�nite hyperplane

CP

n

1

. For t su�ciently close to t

0

(thus, generic), the closure V

t

� CP

n+1

of the level

set V

t

= fP = tg � C

n+1

is nonsingular inside the space C

n+1

and may have isolated
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singularities only at the points B

1

, : : : , B

s

. It is known that

(1) �(V

t

) � �(V

t

0

) = (�1)

n+1

�

r

X

i=1

�

A

i

(V

t

0

) +

s

X

j=1

(�

B

j

(V

t

0

)� �

B

j

(V

t

))

�

:

We shall present a somewhat more general statement about meromorphic germs. Com-

bined with a formula in [6], this statement yields (1). (That formula expresses the dif-

ference between the Euler characteristics of two level sets of a polynomial P in terms of

the meromorphic germs determined by P ; of these level sets, one is taken generic, the

other one is special.)

Theorem 2. Let f =

P

Q

be a meromorphic germ on the space (C

n+1

; 0) such that the

numerator P has an isolated critical point at the origin and , for n = 1, the germs of

the curves fP = 0g and fQ = 0g have no common irreducible components. Then for a

generic t 2 C we have

�(M

0

f

) = (�1)

n

(�(P; 0)� �(P + tQ; 0)):

Here �(g; 0) stands for the usual Milnor number of the holomorphic germ g at the origin.

Proof. The Milnor �breM

0

f

of the meromorphic germ f admits the following description.

Let " be su�ciently small ( thus, " is the Milnor radius for the holomorphic germ P ).

Then

M

0

f

= B

"

(0) \ (fP + tQ = 0g n fP = Q = 0g)

for t 6= 0 with jtj su�ciently small (thus, t is generic). We note that the zero-level set

fP + tQ = 0g is nonsingular o� the origin for jtj su�ciently small. Since the space

B

"

(0) \ fP = Q = 0g is homeomorphic to a cone, its Euler characteristic is equal to 1.

Therefore,

�(M

0

f

) = �(B

"

(0) \ (fP + tQ = 0g)� 1:

Now Theorem 2 is a consequence of the following well-known fact (see, e.g., [2]).

Proposition. Let P : (C

n+1

; 0) ! (C ; 0) be a germ of a holomorphic function with

an isolated critical point at the origin, and let P

t

be its deformation (P

0

= P ). If " is

su�ciently small, then, for jtj small,

(�1)

n

(�(B

"

(0) \ fP

t

= 0g)� 1)

is equal to the number of the critical points of P (counted with multiplicities) that split

out of the zero level set, i.e., to

�(P; 0)�

X

Q2fP

t

=0g\B

"

�(P

t

; Q): �

Example 1. The example of P = xy and Q = x shows that the absence of common

components of the curves fP = 0g and fQ = 0g is necessary for n = 2.

Example 2. In Theorem 2 the di�erence of Milnor numbers (up to a sign) can be

replaced by the (equal) di�erence of the Euler characteristics of the corresponding Milnor

�bres (of the germs P and P + tQ). However, the formula obtained this way fails if the

germ P has a nonisolated critical point at the origin. This is shown by the example of

f =

x

2

+z

2

y

z

2

.

Formula (1) is a direct consequence of Theorem 2 and of [6, Theorem 2, formula (2)].
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x3. Topological triviality of the family fP + tQg

and the typical values of meromorphic germs

As before, let f =

P

Q

be a meromorphic germ on (C

n+1

; 0) such that the holomorphic

germ P has an isolated critical point at the origin.

Theorem 3. The value 0 is typical for the meromorphic germ f if and only if �(M

0

f

) =

0.

Proof. The \only if" part follows from the de�nition and Theorem 2.

The \if" part is a consequence of the result proved by A. Parusi�nski in [8] (or, rather, a

concequence of its proof). A Parusi�nski proved that if �(P ) = �(P+tQ) for jtj su�ciently

small, then the family of maps P

t

= P + tQ is topologically trivial. In particular, the

family of germs of the hypersurfaces fP

t

= 0g is topologically trivial. For n 6= 2 this

was proved by D.T.Lê and C.P. Ramanujam [7]. However, in order to apply this result

to the situation in question, we need to have a topological trivialization of the family

fP

t

= 0g that keeps the subset fP = Q = 0g and is smooth o� the origin. For the

family P

t

= P + tQ, such a trivialization was explicitly constructed in [8] without any

restriction on the dimension. �

Example 3. If the germ of the function P has a nonisolated critical point at the origin,

then this characterization is no longer true. As an example we can take P (x; y) = x

2

y

2

and Q(x; y) = x

4

+ y

4

.

x4. A generalization of the Parusi

�

nski{Pragacz formula

for the Euler characteristic of a singular hypersurface

Let X be a compact complex manifold, and let L be a holomorphic line bundle on

X: For a section s of L not identically equal to zero, let Z := fs = 0g be its zero locus

(a hypersurface in the manifold X). Let s

0

be another section of the bundle L such

that its zero locus Z

0

is nonsingular and transversal to a Whitney strati�cation of the

hypersurface Z. In [9, Proposition 7] A. Parusi�nski and P. Pragacz proved a statement,

which, in terms of [6], can be written as follows:

(2) �(Z

0

) � �(Z) =

Z

ZnZ

0

(�

x

(Z)� 1) d�;

where �

x

(Z) is the Euler characteristic of the Milnor �bre of the germ of s at the point

x (the de�nition of the integral against the Euler characteristic can be found in [12] or

[6]).

We present a more general formula, which includes this one as a particular case.

Theorem 4. Let s be as above, and let s

0

be a section of the bundle L such that its zero

locus Z

0

is nonsingular. If f is the meromorphic function s=s

0

on the manifold X, then

(3) �(Z

0

)� �(Z) =

Z

ZnZ

0

(�

x

(Z) � 1) d� +

Z

Z\Z

0

�

0

f;x

d�;

where �

0

f;x

is the Euler characteristic of the 0-Milnor �bre of the meromorphic germ f

at the point x.

Proof. Let F

t

be the level set ff = tg of the (global) meromorphic function f on the

manifold X (with the indeterminacy set fs = s

0

= 0g), i.e., F

t

= fs � ts

0

= 0g n fs =
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s

0

= 0g: By [6], for a generic value t we can write

�(F

gen

) � �(F

0

) =

Z

F

0

(�

0

f;x

(Z) � 1) d� +

Z

fs=s

0

=0g

�

0

f;x

d�;

where �

0

f;x

is the Euler characteristic of the 0-Milnor �bre of the meromorphic germ f

at x: We have F

0

= Z n (Z \Z

0

) and F

1

= Z

0

n (Z \Z

0

), and in this case F

1

is a generic

level set of the meromorphic function f (since its closure is nonsingular). Therefore,

�(F

0

) = �(Z)� �(Z \Z

0

); �(F

gen

) = �(Z

0

)� �(Z \Z

0

): Finally, for x 2 F

0

the germ of

the function f at x is holomorphic, whence �

0

f;x

= �

x

(Z): �

If the hypersurface Z

0

is transversal to all strata of a Whitney strati�cation of the

hypersurface Z; then for x 2 Z \ Z

0

the Euler characteristic �

0

f;x

is equal to 0 (see [10,

Proposition 5.1]) and formula (2) turns into (3):
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