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Abstract. Let E be a (real or complex) locally convex space, E∗ its dual and
E∗∗ its second dual space.

In [G1, Def. 1] E is called to have the D. -P. property if every continuous linear
mapping of E into any locally convex Hausdorff space Y which maps bounded
sets onto weakly relatively compact sets necessarily maps absolutely convex weakly
compact sets onto relatively compact sets.

In [G1, Def. 2] E is called to have the strict D. -P. property if every continu-
ous linear mapping of E into any locally convex Hausdorff space Y which maps
bounded sets onto weakly relatively compact sets necessarily maps weakly Cauchy
sequences onto Cauchy sequences.

In [G2, Ch. 5, P. 4.2, Ex. 2] E is called to be a DP space if every continu-
ous linear mapping of E into any locally convex Hausdorff space Y which maps
bounded sets onto weakly relatively compact sets necessarily maps weakly compact
sets onto relatively compact sets.

We say that a locally convex space E has the sequential Dunford-Pettis property,
if for every weakly null sequence (xn) in E and for every σ(E∗, E∗∗)-null sequence
(x∗n) in E∗ we have that limn x∗n(xn) = 0. It is well-known that a Banach space
E is a DP space if and only if it possesses the sequential Dunford-Pettis property
(see, e.g., [B], [D]).

We will discuss the next statement which seems not to be so well-known.
Theorem. (a) ([BL, p. 397]), [T, Theorem 4. 13]) A metrizable locally convex

space E is a DP space if and only if it possesses the sequential Dunford-Pettis
property.

(b) In general, a locally convex space E may have the sequential Dunford-Pettis
property without being a DP space.

(c) In general, a locally convex space E may be a DP space without having the
sequential Dunford-Pettis property.

(d) In general, a normed space E may have the D.-P. property, without being
a DP space.

This talk (as well as [T]) is iniciated by [MT], where an analogue of the se-
quential Dunford-Pettis propery in the general framework of topological Abelian
groups is introduced and studied.
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