ℓ_p -SUBSPACES IN SEQUENTIAL LORENTZ-ORLICZ SPACES AND SIMILAR SPACES

YVES RAYNAUD INSTITUT DE MATHÈMATIQUES DE JUSSIEU CNRS-PARIS VI, FRANCE

ABSTRACT. (Joint work with Anna Kamińska, University of Memphis). A classical result by Altschuler, Casazza and Bohr-Luh Lin states that every infinite dimensional subspace of the Lorentz sequence space d(w, p) (associated with a decreasing weight on N) contains a further subspace almost isometric to ℓ_p . The aim of the talk is to present analogous results in the case of Orlicz-Lorentz spaces. Such spaces appear as examples of Calderón-Lozanovski intermediate spaces (between ℓ_{∞} and the usual Lorentz space d(w, 1)) If the Orlicz function φ satisfies a Δ_2 -condition at zero, we show that the Orlicz-Lorentz sequence space $d(w, \varphi)$ contains an $(1+\epsilon)$ -isomorphic copy of ℓ_p , $1 \leq p < \infty$, if and only if the Orlicz sequence space ℓ_{φ} does, that is if $p \in [\alpha_{\varphi}, \beta_{\varphi}]$, where α_{φ} and β_{φ} are the Matuszewska-Orlicz lower and upper indices of φ , respectively. If φ does not satisfy the Δ_2 -condition, then a similar result holds true for the order continuous subspaces $d_0(w, \varphi)$ and h_{φ} of $d(w, \varphi)$ and ℓ_{φ} , respectively. This result sounds at first glance somewhat surprising, insofar the set of exponents p for which $d(w, \varphi)$ contains ℓ_p does not depend on the weight w, contrary to other geometric characteristics.

The results can be extended to similar spaces, in particular $d(w, \varphi)$ where w is not necessarily decreasing.