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Abstract. In this note we give a subdifferential mean value inequality for every contin-
uous Gâteaux subdifferentiable function f in a Banach space which only requires a bound
for one but not necessarily all of the subgradients of f at every point of its domain. We
also give a subdifferential approximate Rolle’s theorem stating that if a subdifferentiable
function oscillates between −ε and ε on the boundary of the unit ball then there exists a
subgradient of the function at an interior point of the ball which has norm less or equal
than 2ε.

1. Introduction

Let X be a Banach space and U be an open convex subset of X. A function f : U −→ R
is said to be Fréchet subdifferentiable at a point x ∈ U provided there exists p ∈ X∗ such

that

lim inf
h→0

f(x + h)− f(x)− 〈p, h〉
‖h‖

≥ 0,

and the subdifferential set of f at the point x is defined by

D−f(x) = {p ∈ X∗| lim inf
h→0

f(x + h)− f(x)− 〈p, h〉
‖h‖

≥ 0}.

In the same way f is said to be Fréchet superdifferentiable at x whenever there exists

p ∈ X∗ such that

lim sup
h→0

f(x + h)− f(x)− 〈p, h〉
‖h‖

≤ 0,

and the superdifferential set of f at x is defined by

D+f(x) = {p ∈ X∗| lim sup
h→0

f(x + h)− f(x)− 〈p, h〉
‖h‖

≤ 0}.
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The function f is said to be Gâteaux subdifferentiable at x provided there exists p ∈ X∗

such that for every h ∈ X

lim inf
t→0

f(x + th)− f(x)− 〈p, th〉
‖th‖

≥ 0,

and the Gâteaux subdifferential set of f at the point x is defined by

D−
Gf(x) = {p ∈ X∗|∀h ∈ SX , lim inf

t→0

f(x + th)− f(x)− 〈p, th〉
‖th‖

≥ 0}.

Gâteaux superdifferentiability is defined in a similar way. A function f is said to be

(Fréchet or Gâteaux) subdifferentiable (resp. superdifferentiable) on a set U provided

that it is subdifferentiable (resp. superdifferentiable) at each point x in U . A function f

is (Fréchet or Gâteaux) differentiable at x if and only if it is both subdifferentiable and

superdifferentiable at x, and in this case we have {df(x)} = D−f(x) = D+f(x). On the

other hand it is clear that D−f(x) ⊂ D−
Gf(x), so that every Fréchet subdifferentiable

function is also Gâteaux subdifferentiable.

In this note we give a subdifferential mean value inequality for every continuous

Gâteaux subdifferentiable function f which only requires a bound for one but not neces-

sarily all of the subgradients of f at every point x ∈ U . That is, if for every x ∈ U there

exists p ∈ D−
Gf(x) such that ‖p‖ ≤ M , then

| f(x)− f(y) |≤ M‖x− y‖

for all x, y ∈ U . From this we can deduce that if a subdifferentiable function f : U −→ R
satisfies 0 ∈ D−f(x) for all x ∈ U then f is necessarily constant. This result cannot be

deduced from other subdifferential mean value inequalities like [4] or [1].

Moreover it is proved that if f : U −→ R is a Gâteaux subdifferentiable function,

x, y ∈ U and M ≥ 0 is such that for every t ∈ [0, 1] there exists p ∈ D−
Gf(tx + (1 − t)y)

with ‖p‖ ≤ M , then | f(x)− f(y) |≤ M‖x− y‖.
On the other hand we also give a subdifferential approximate Rolle’s theorem. Let

us recall that Rolle’s theorem in finite dimensional spaces states that for every open

connected and bounded subset U in Rn and every continuous function f : U −→ R
such that f is differentiable in U and f is constant on ∂U , there exists an x in U such

that df(x) = 0. In [8], S.A. Shkarin proved that Rolle’s theorem fails in a large class

of infinite dimensional Banach spaces, including all super-reflexive and all non-reflexive

Banach spaces having a Fréchet differentiable norm. In [2] it is conjectured that Rolle’s
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theorem in infinite dimensional Banach spaces holds if and only if our space does not

have a C1 bump function and this conjecture is proved to be true within the class of

those Banach spaces X for which there exist a Banach space Y with an equivalent norm

‖.‖ whose dual norm ‖.‖∗ is locally uniformly rotund (LUR) in Y ∗ and a continuous

linear injection T : X −→ Y . This condition is satisfied by every WCG Banach space,

every space which can be injected in some c0(Γ), and even by every C(K) being K a

scattered compact with K(ω1) = ∅. An interesting approximate version of Rolle’s theorem

remains nevertheless true in all Banach spaces, as it is shown in [2]. By an approximate

Rolle’s theorem it is meant that if a differentiable function oscillates between −ε and ε

on the boundary of the unit ball BX then there exists a point in the interior of the ball

in which the differential of the function has norm less than or equal to ε. In this note we

prove both Fréchet and Gâteaux subdifferential versions of this result within the class of

all Banach spaces having a Fréchet (respectively Gâteaux) differentiable Lipschitz bump

function (the second one is quite a large class, as it includes all WCG Banach spaces).

That is, if a subdifferentiable function oscillates between −ε and ε on the boundary

of the unit ball then there exists a point x in the interior of the ball and there exists

p ∈ D−f(x) (resp. p ∈ D−
Gf(x)) such that ‖p‖ ≤ 2ε. In fact, for a Banach space X

having a Fréchet differentiable Lipschitz bump function, it is proved that every bounded

continuous function f : BX −→ R such that f oscillates between −ε and ε on the unit

sphere satisfies inf{‖p‖ : p ∈ D−f(x) ∪D+f(x), ‖x‖ < 1} ≤ 2ε.

2. Subdifferential Mean Value Inequality Theorem

Theorem 2.1. Let X be a Banach space, U an open convex subset of X and f : U −→ R
a continuous Gâteaux subdifferentiable function. Suppose that there exists M ≥ 0 such

that for every x ∈ U there exists p ∈ D−
Gf(x) such that ‖p‖ ≤ M . Then

| f(x)− f(y) |≤ M‖x− y‖

for all x, y ∈ U .

Proof. Let x, y ∈ U , x 6= y, and let ε > 0. Define h = y − x and

A = {α ∈ [0, 1] /f(x + αh)− f(x) ≥ −(M + ε)α‖h‖} .
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We show that A 6= ∅. Taking p ∈ D−
Gf(x) such that ‖p‖ ≤ M , since

lim inf
t→0

f(x + th)− f(x)− 〈p, th〉
‖th‖

≥ 0

there exists δ > 0 such that f(x + th) − f(x) − 〈p, th〉 ≥ −ε | t | ‖h‖ whenever | t |≤ δ.

Then

f(x + th)− f(x) ≥ 〈p, th〉 − ε | t | ‖h‖ ≥

−M | t | ‖h‖ − ε | t | ‖h‖ =

− (M + ε) | t | ‖h‖;

and taking t = δ we get f(x + δh)− f(x) ≥ −(M + ε)δ‖h‖, so that δ ∈ A.

Let β = SupA ∈ (0, 1]. Since β = sup A, there exists (αn) ⊂ [0, β] ∩ A such that

αn ↗ β and f(x + αnh)− f(x) ≥ −(M + ε)αn‖h‖ for all n ∈ N . Letting n go to infinity

and using the continuity of f we get f(x + βh) − f(x) = limn [f(x + αnh)− f(x)] ≥
limn−(M + ε)αn‖h‖ = −(M + ε)β‖h‖, that is,

f(x + βh)− f(x) ≥ −(M + ε)β‖h‖, (1)

which means β ∈ A.

We now show that β = 1. If β < 1, putting z = x +βh and choosing p ∈ D−
Gf(z) such

that ‖p‖ ≤ M , since

lim inf
t→0

f(z + th)− f(z)− 〈p, th〉
‖th‖

≥ 0

there exists δ > 0 such that if | t |≤ δ then f(z + th)− f(z)− 〈p, th〉 ≥ −ε‖th‖, and so

f(z + th)− f(z) ≥ −(M + ε) | t | ‖h‖ if | t |≤ δ. (2)

From (1) and (2) it follows that

f(x + βh + th) ≥ f(x + βh)− (M + ε) | t | ‖h‖ ≥

f(x)− (M + ε)β‖h‖ − (M + ε) | t | ‖h‖

= f(x)− (M + ε)(β+ | t |)‖h‖

whenever | t |≤ δ. Taking t = δ, we obtain

f(x + (β + δ)h) ≥ f(x)− (M + ε)(β + δ)‖h‖,
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which implies β +δ ∈ A. This is a contradiction because β +δ > β = sup A. Thus, β = 1.

By substituting β = 1 in (1) we get f(x + h)− f(x) ≥ −(M + ε)‖h‖ and since h = y− x

this means f(y) − f(x) ≥ −(M + ε)‖y − x‖. This reasoning proves that for all x, y ∈ U
and for all ε > 0 we have

f(x)− f(y) ≤ (M + ε)‖y − x‖.

Changing x for y we also get f(y)− f(x) ≤ (M + ε)‖y − x‖. Therefore | f(y)− f(x) |≤
(M + ε)‖y − x‖ for all x, y ∈ U and for all ε > 0. Finally, by fixing x, y ∈ U and letting

ε ↘ 0 we have | f(x)− f(y) |≤ M‖x− y‖, so it is proved that | f(x)− f(y) |≤ M‖x− y‖
for all x, y ∈ U . �

It should be noted that the preceding reasoning in fact proves the following result,

which is a subdifferential mean value inequality somewhat flavoured like the classic one.

Theorem 2.2. Let X be a Banach space and f : U −→ R be a Gâteaux subdifferentiable

function. If x, y ∈ U and M ≥ 0 is such that for every t ∈ [0, 1] there exists p ∈
D−

Gf(tx + (1− t)y) with ‖p‖ ≤ M , then | f(x)− f(y) |≤ M‖x− y‖.

Corollary 2.3. Let U be an open convex subset in a Banach space X, and let f : U −→ R
be a continuous Gâteaux subdifferentiable function such that 0 ∈ D−

Gf(x) for all x ∈ U .

Then f is constant on U .

It is not true that if f : X −→ R is continuous and subdifferentiable in a dense subset

D ⊂ X and 0 ∈ D−f(x) for all x ∈ D then f is constant. Even though X is finitely

dimensional and the Lebesgue measure of X\D is zero this is not true, as the following

example proves.

Example 2.4. Let f : [0, 1] −→ R be the Cantor-Lebesgue function (see its definition in

[3], p. 55, for instance). f is non-decreasing and continuous in [0, 1], and f is locally

constant in D = [0, 1] \C, where C is Cantor’s set. So f is differentiable in D, with

{0} = {df(x)} = D−
Gf(x) for all x ∈ D, and yet f is not constant.

However, if dim X ≥ 2, by using some cardinality reasoning one can easily deduce the

following improvement of theorem 2.1. from itself.

Corollary 2.5. Let X be a Banach space with dim X ≥ 2, and let U ⊂ X be an open

convex subset. Let f : U −→ R be continuous such that f is Gâteaux subdifferentiable in
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U\C, where C is a countable subset of U . Suppose that there exists M ≥ 0 such that for

all x ∈ U\C there exists p ∈ D−
Gf(x) with ‖p‖ ≤ M . Then

| f(x)− f(y) |≤ M‖x− y‖

for all x, y ∈ U .

3. Subdifferential Approximate Rolle’s Theorem

In order to prove the subdifferential approximate Rolle’s theorems we will need three

auxiliary results.

We will use the following formula for the subdifferential of the sum (due to R. Deville

and E. M. El Haddad [6]) to prove the strongest version of the theorem in the Fréchet

case.

Theorem 3.1 (Formula for the subdifferential of the sum). Suppose X is a Banach

space having a C1(X) Lipschitz bump function. Let f, g : X −→ R be such that f is lower

semicontinuous and g is uniformly continuous. Then, for every x0 ∈ X, p ∈ D−(f +g)(x0)

and ε > 0, there exist x1, x2 ∈ X, p1 ∈ D−f(x1) and p2 ∈ D−g(x2) such that:

(i) ‖x1 − x0‖ < ε and ‖x2 − x0‖ < ε.

(ii) | f(x1)− f(x0) |< ε and | g(x2)− g(x0) |< ε.

(iii) ‖p1 + p2 − p‖ < ε.

We will also need the following Variational Principle, whose proof can be found in [5],

chapter I.

Theorem 3.2 (Variational Principle). Let X be a Banach space which has a Fréchet

differentiable Lipschitz bump function (respectively Gâteaux differentiable Lipschitz bump

function). Let F : X −→ R ∪ {∞} be a lower semicontinuous function that is bounded

below, F 6≡ +∞. Then, for all δ > 0 there exists a bounded Fréchet differentiable (resp.

Gâteaux differentiable) Lipschitz function ϕ : X −→ R such that:

(1) F − ϕ attains its strong minimum in X,

(2) ‖ϕ‖∞ = supx∈X | ϕ(x) |< δ, and ‖ϕ′‖∞ = supx∈X ‖ϕ′(x)‖ < δ.

Finally, in order to prove the weaker Gâteaux version of the theorem we shall also use

the following version of Ekeland’s Variational Principle, whose proof can be found in [7].
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Theorem 3.3 (Ekeland’s Variational Principle). Let X be a Banach space and f : X −→
[−∞,∞] be a proper upper semicontinuous function which is bounded above. Let ε > 0

and x0 ∈ X such that f(x0) > sup{f(x) : x ∈ X} − ε. Then for any λ with 0 < λ < 1

there exists a point z ∈ Dom(f) such that:

(i) λ‖z − x0‖ ≤ f(z)− f(x0)

(ii) ‖z − x0‖ < ε/λ

(iii) λ‖x− z‖+ f(z) > f(x) whenever x 6= z.

Now let us start with the Fréchet subdifferential approximate Rolle’s theorem. Its

statement is stronger and the proof is simpler than in the Gâteaux case thanks to the

formula for the subdifferential of the sum. Hereafter the set {x ∈ X : ‖x‖ ≤ R} is denoted

by B(0, R), while S(0, R) stands for {x ∈ X : ‖x‖ = R}.

Theorem 3.4. Let X be a Banach space which has a C1(X) Lipschitz bump function,

let B = B(0, R), S = S(0, R) and let f : B −→ R be a bounded continuous function such

that f(S) ⊂ [−ε, ε]. Then:

(i) If sup f(B) > sup f(S) then for each α > 0 there exist x ∈ int(B) and p ∈ D+f(x)

such that ‖p‖ < α.

(ii) If inf f(B) < inf f(S) then for each α > 0 there exist x ∈ int(B) and p ∈ D−f(x)

such that ‖p‖ < α.

(iii) If f(B) ⊆ f(S) then for each α > 0 there exist x1, x2 ∈ int(B) and p1 ∈
D+f(x1), p2 ∈ D−f(x2) such that ‖p1‖, ‖p2‖ < 2ε/R + α.

Proof. Case (i): let η = sup f(B) − sup f(S) > 0, and consider F (x) = f(x) if x ∈
B, F (x) = −∞ otherwise. Since F es upper semicontinuous and bounded above, the

Variational Principle provide us with a C1(X) function g such that ‖g‖ < η/3, ‖g′‖ < α

and F +g attains its maximum at a point x ∈ B. Moreover x ∈ int(B): otherwise, taking

a such that f(a) > sup f(B)− η/3 we would get

sup f(B)− 2η/3 < F (a) + g(a) ≤ F (x) + g(x) ≤ sup f(S) + η/3,

which is a contradiction. Therefore x ∈ int(B) and p = g′(x) ∈ D+f(x) satisfies ‖p‖ < α.

Case (ii):the same proof works.

Case (iii): let us consider the function φ(x) = f(x) − (2ε + α)‖x‖/R. This function

satisfies the conditions of case (i) and so there exist x ∈ int(B) and p ∈ D+φ(x) such that

‖p‖ < α. Now, by the formula for the subdifferential of the sum, there exist x1, y1 ∈ int(B)
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and p1, q1 with p1 ∈ D+f(x1) , q1 ∈ D+(−(2ε + α)/R‖y1‖) such that ‖p1 + q1 − p‖ < α,

which implies

‖p1‖ < α + ‖q1‖+ ‖p‖ < 2α + ‖q1‖.

Let us note that q ∈ D+(−‖.‖)(v) if and only if −q ∈ D−(‖.‖)(v). Moreover, since ‖.‖ is

convex we have ∂‖.‖(v) = D−‖.‖(v), so that if q ∈ D−‖.‖(v) then q(h) ≤ ‖v +h‖−‖v‖ ≤
‖h‖ for all h, and therefore ‖q‖ ≤ 1. Taking this into account we can deduce that

‖q1‖ = ‖ − q1‖ ≤ 2ε+α
R

and so ‖p1‖ < 2α + (2ε + α)/R.

In order to find x2 and p2 it is enough to consider φ(x) = f(x) + (2ε + α)‖x‖/R and

the same proof holds using case (ii) instead of (i). �

From this result it is deduced the following

Theorem 3.5. Let U be an open connected bounded set in a Banach space X which has

a C1(X) Lipschitz bump function, let f : U −→ R be a bounded continuous function and

let R > 0 and x0 ∈ U be such that B(x0, R) ⊆ U . Suppose that f(∂U) ⊆ [−ε, ε]. Then:

(i) If sup f(U) > sup f(∂U) then for each α > 0 there exist x ∈ U and p ∈ D+f(x)

such that ‖p‖ < α.

(ii) If inf f(U) < inf f(∂U) then for each α > 0 there exist x ∈ U and p ∈ D−f(x)

such that ‖p‖ < α.

(iii) If f(U) ⊆ f(∂U) then for each α > 0 there exist x1, x2 ∈ U and p1 ∈ D+f(x1), p2 ∈
D−f(x2) such that ‖p1‖, ‖p2‖ < 2ε/R + α.

In any case, inf{‖p‖ : p ∈ D−f(x) ∪D+f(x), x ∈ U} ≤ 2ε/R.

From this we can immediately deduce

Corollary 3.6. Let U be an open connected bounded subset of a Banach space X that has

a Fréchet differentiable Lipschitz bump function, and let f : U :−→ R be continuous and

bounded on U . Suppose that f is constant on ∂U . Then,

inf{‖p‖ : p ∈ D−f(x) ∪D+f(x), x ∈ U} = 0.

and also

Corollary 3.7. Let X be a Banach space having a Fréchet differentiable Lipschitz bump

function and let f : X −→ R be continuous and bounded on X. Then,

inf{‖p‖ : p ∈ D−f(x) ∪D+f(x), x ∈ X} = 0.
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Finally we will study the subdifferential approximate Rolle’s theorem in the Gâteaux

case. Here the proof is longer and the statement weaker than in the Fréchet case. If the

formula for the subdifferential of the sum were true in the Gâteaux case within the class

of those Banach spaces having a Gâteaux differentiable and Lipschitz bump function,

the proof of theorem 3.4 would also work in this case yielding an improvement in the

statement of theorem 3.8 and its corollaries. We do not know whether such a formula is

true or not within that class of Banach spaces.

Theorem 3.8. Let X be a Banach space which has a Gâteaux differentiable Lipschitz

bump function and R, ε > 0. Let f : B(0, R) −→ R be a continuous bounded function on

B(0, R) and suppose that f is Gâteaux subdifferentiable in intB(0, R) and f(S(0, R)) ⊆
[−ε, +ε].

Then there exist xε ∈ intB(0, R) and p ∈ D−
Gf(xε) such that ‖p‖ ≤ 2ε/R.

Proof. Let us suppose first that ε < 2R. We will consider three cases.

Case I: f(B(0, R)) ⊆ f(S(0, R)) ⊆ [−ε, ε]. Suppose first that f(0) > −ε. Let λ =

2ε/R. Since f(0) > sup{f(x) : x ∈ B(0, R)} − 2ε, Ekeland’s Variational Principle gives

us an x1 ∈ B(0, R) such that

(i) λ‖x1‖ ≤ f(x1)− f(0)

(ii) ‖x1‖ < 2ε/λ

(iii) λ‖x− x1‖+ f(x1) > f(x) whenever x 6= x1,

so that x1 ∈ intB(0, R) and, taking a p ∈ D−
Gf(x1), (iii) implies that ‖p‖ ≤ 2ε/R. Indeed,

for every h with ‖h‖ = 1 we have

f(x1 + th)− f(x1)

|t|
<

2ε

R

for every t, and also, since p ∈ D−
Gf(x1),

lim inf
t→0

f(x1 + th)− f(x1)− tp(h)

|t|
≥ 0

or equivalently

lim sup
t→0

−f(x1 + th) + f(x1) + tp(h)

|t|
≤ 0,
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and therefore

|p(h)| = lim sup
t→0

p(th)

|t|
= lim sup

t→0

f(x1 + th)− f(x1)− f(x1 + th) + f(x1) + p(th)

|t|

≤ lim sup
t→0

f(x1 + th)− f(x1)

|t|
+ lim sup

t→0

−f(x1 + th) + f(x1) + p(th)

|t|

≤ lim sup
t→0

f(x1 + th)− f(x1)

|t|
≤ 2ε

R
.

This proves that ‖p‖ ≤ 2ε
R

.

Now suppose that f(0) = −ε and pick a p ∈ D−
Gf(0). We may suppose that ‖p‖ > 2ε/R

since we would have finished otherwise. Then there exists h with ‖h‖ = 1 such that

p(h) > 2ε/R. As

lim inf
t→0

f(th)− f(0)− tp(h)

|t|
≥ 0

and f(0) = −ε there exists δ > 0 such that

f(δh) + ε− δp(h)

δ
>

2ε

R
− p(h),

which implies f(δh) + ε > 2εδ
R

. Hence f(δh) > sup f(B(0, R))− 2ε. On taking λ = 2ε/R

we can use again Ekeland’s Variational Principle to get an x1 ∈ B(0, R) such that:

(i) λ‖x1 − δh‖ ≤ f(x1)− f(δh)

(ii) ‖x1 − δh‖ < ε/λ

(iii) λ‖x− x1‖+ f(x1) > f(x) whenever x 6= x1.

From (i) and since f(δh) + ε > 2εδ
R

we get

‖x1 − δh‖ ≤ f(x1)− f(δh)

2ε/R
≤ ε− f(δh)

2ε/R
<

2ε− 2εδ
R

2ε/R
= R− δ,

which implies ‖x1‖ ≤ ‖x1 − δh‖ + δ < R − δ + δ = R and so ‖x1‖ < R. Now, since f

is Gâteaux subdifferentiable at x1, the same calculations as above prove that (iii) implies

‖p‖ ≤ 2ε/R for any p ∈ D−
Gf(x1).

Case II: sup f(B(0, R)) > sup f(S(0, R)). Let us choose x0 such that sup f(S(0, R)) <

f(x0), and let α, λ be such that 0 < α < f(x0) − sup f(S(0, R)), α ≤ 2ε/R and 0 <

λ < α/(R + 1). From Ekeland’s Variational Principle it follows that there exists x1 ∈
intB(0, R) such that

f(x) < f(x1) + λ‖x− x1‖
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for every x 6= x1, and we already know that this implies that ‖p‖ ≤ λ < α for any

p ∈ D−
Gf(x1).

Case III: inf f(B(0, R)) < inf f(S(0, R). This is the only case in which we will use the

smooth variational principle. Let η = inf f(S(0, R))− inf f(B(0, R)) > 0, α > 0 such that

α ≤ 2ε/R and consider F : X −→ R ∪ {∞} defined by F (x) = f(x) if x ∈ B(0, R) and

F (x) = +∞ otherwise. From the smooth variational principle it follows that there exists

a bounded Gâteaux differentiable Lipschitz function ϕ : X −→ R such that ‖ϕ‖∞ < η/3,

‖ϕ′‖∞ < α and F − ϕ attains its minimum at a point x0 ∈ B(0, R). Moreover it must

be x0 ∈ intB(0, R): otherwise, taking a such that f(a) < inf f(B(0, R)) + η/3 we would

have

inf f(B(0, R)) + 2η/3 > F (a)− ϕ(a) ≥ F (x0)− ϕ(x0) ≥ inf f(S(0, R))− η/3,

which is a contradiction. It is easy to check that the sum g + h of two subdifferentiable

functions g and h is subdifferentiable, and

D−
Gg(x) + D−

Gh(x) ⊆ D−
G(g + h)(x)

and it is obvious that if a function g attains a minimum at x then g is subdifferentiable

at x and 0 ∈ D−
Gg(x). Taking this into account we can deduce

0 + ϕ′(x0) ∈ D−
G(F − ϕ)(x0) + D−

Gϕ(x0) ⊆ D−
GF (x0) = D−

Gf(x0)

so that p = ϕ′(x0) satisfies p ∈ D−
Gf(x0) and ‖p‖ < α ≤ 2ε/R.

Finally, consider the case in which ε ≥ 2R. Taking into account that p ∈ D−
Gf(x) if

and only if rp ∈ D−
G(rf)(x) for every r > 0 and considering g = ε′f/ε, where ε′ < 2R,

we can conclude (by applying the preceding reasoning to g) that there exist an x in the

interior of the ball and a subgradient p ∈ D−
Gf(x) such that ‖p‖ ≤ 2ε/R. �

Remark 3.9. Note that we have only used the smooth variational principle in the proof

corresponding to the case inf f(B(0, R)) < inf f(S(0, R)). Note also that in the first case

we only used that f(B(0, R)) ⊆ [−ε, ε]. Thus it is clear that for any Banach space X and

any Gâteaux subdifferentiable continuous bounded function f : BX(0, R) −→ R which is

Gâteaux subdifferentiable in the interior of the ball and satisfies f ≥ −ε and f|S(0,R) ≤ ε,

there exists a point x in the interior of the ball and a subgradient p ∈ D−
Gf(x) such that

‖p‖ ≤ 2ε/R.

From the preceding theorem it is deduced the more general
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Theorem 3.10. Let U be an open connected bounded set in a Banach space X that

has a Gâteaux differentiable Lipschitz bump function. Let f : U −→ R be continuous and

bounded, Gâteaux subdifferentiable in U . Let R > 0 and x0 ∈ U be such that dist(x0, ∂U) =

R. Suppose that f(∂U) ⊂ [−ε, ε]. Then there exist xε ∈ U and p ∈ D−
Gf(xε) such that

‖p‖ ≤ 2ε/R.

and also the following two corollaries

Corollary 3.11. Let U be an open connected bounded subset of a Banach space X that

has a Gâteaux differentiable Lipschitz bump function, and let f : U :−→ R be continuous,

bounded, and Gâteaux subdifferentiable in U . Suppose that f is constant on ∂U . Then,

inf{‖p‖ : p ∈ D−
Gf(x), x ∈ U} = 0.

Corollary 3.12. Let X be a Banach space having a Gâteaux differentiable Lipschitz bump

function and let f : X −→ R be continuous, Gâteaux subdifferentiable and bounded on X.

Then,

inf{‖p‖ : p ∈ D−
Gf(x), x ∈ X} = 0.
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Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, FRANCE

E-mail addresses: daniel@sunam1.mat.ucm.es, deville@math.u-bordeaux.fr


