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Abstract

We establish approximate Rolle’s theorems for the proximal subgradient and for the generalized
gradient. We also show that an exact Rolle’s theorem for the generalized gradient is completely false
in all infinite-dimensional Banach spaces (even when they do not possess smooth bump functions).
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Rolle’s theorem in finite-dimensional spaces states that, for every bounded open sub-
setU of R" and for every continuous functiofi: U — R such thatf is differentiable
in U and constant on the bounda¥ , there exists a point € U at which the differential
of f vanishes. Rolle’s theorem does not remain true in infinite-dimensional Banach spaces.
It was Shkarin [12] that first showed that this theorem fails for infinite-dimensional super-
reflexive spaces and for nonreflexive spaces with equivalent Fréchet differentiable norms.
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Other explicit counterexamples were constructedcfpand £, by Bés and Ferrera [5],

and independently by Ferrer [10]. The class of spaces for which Rolle’s theorem fails was
enlarged in [1], where it is shown that Rolle’s theorem fails in all infinite-dimensional
Banach spaces which have smooth norms. On the other hand, Rolle’s theorem is trivially
true in all Banach spaces which do not admit smooth bump functions. Therefore, in many
cases, Rolle’s theorem is either trivially true or (nontrivially) false. In this setting it has
been recently proved [4] that in fact this is what happens in all infinite-dimensional Ba-
nach spaces, that is, a Banach sp&ckas aC” smooth (and Lipschitz) bump function

if and only if there exists a bounded open (contractible) subset X and aC? smooth

(and Lipschitz) functionf : X — R such thatf =0 on X \ U and yetf'(x) # O for all

x € U (thatis, Rolle’s theorem fails iX); herep € NU {oo}. Despite the failure of Rolle’s
theorem in infinite dimensions, the following approximate version of the result remains
true in all Banach spaces, as it was proved in [3].

Theorem 1.1.Let U be a bounded connected open subset of a Banach spadest
f:U — R be a continuous bounded function which is Gateaux differentiablg obet
R > 0 andxg € U be such thatlist(xg, 9U) = R, and suppose that(aU) C [—¢, ¢] for
somes > 0. Then there exists somg € U so that| f/(x.)|| < ¢/R.

Natural extensions of this result are worth exploring within the various theories of sub-
differentiability. In [1,2], a version of this result for Fréchet and Gateaux subdifferentials
was proved (together with a subdifferential mean value inequality theorem which was later
improved by Godefroy [11], see also [7]), for the class of Banach spaces which possess
(Fréchet or Gateaux) smooth Lipschitz bump functions. In particular it was shown that
for every Banach spack with a Fréchet smooth and Lipschitz bump, every continuous
bounded functiory : B(0, 1) — R which oscillates betweenas ande on the unit sphere
S(0, 1) must satisfy thatirf|p|l: p € D™ f(x)UD™ f(x), |x|| <1} < 2¢. HereD™ f(x)
and D™ f(x) stand for the sets of Fréchet subdifferentials and superdifferentials, respec-
tively, at a pointc, andB(0, 1) is the unit ball of the spack. In this paper we will establish
similar results for other important kinds of subdifferentials. In Section 2 we obtain an ap-
proximate Rolle’s theorem for the proximal subgradient in real Hilbert spaces. In Section 3
we first prove that an exact Rolle’s theorem for the generalized gradient is false in all
infinite-dimensional real Banach spaces, even for spaces which do not possess any smooth
bump functions. More specifically, we show thatxifis an infinite-dimensional real Ba-
nach space, there are Lipschitz functions defined on the closure of a bounded connected
open sety/ which vanish on the boundadt and yet, for allx € U and all functionals
p in the generalized gradiedy (x) of the functionyf at x, we have thap # 0. That is,

Rolle’s theorem also fails when the differentiability assumptions on both the space and the
function are weakened and replaced by mere Lipschitzness of the function, and all the gen-
eralized gradients are considered. Notice that, since the generalized gradient contains all
the known subdifferentials and superdifferentials, this is close to be the most radical form
of failure that an exact Rolle’s theorem for subdifferentials may suffer. It is thus necessary
to consider alternative approximate results: in the last part of the paper we deal with an
approximate version of Rolle’s theorem for the generalized gradient, which we show to be
true in all real Banach spaces. To finish this introduction let us quote one of the versions of
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Ekeland’s variational principle, which is an important ingredient in many of the proofs of
this paper. A proof can be found in [9], for instance.

Theorem 1.2(Ekeland’s variational principle).et X be a Banach space, and I¢t X —
[—o0, +00) be a proper, upper semicontinuous function which is bounded above L 6t
andxg € X be such thatf (xg) > sup f(x): x € X} —¢e. Then, for eachh withO < 1 < 1,
there exists a point; € Dom(f) such that

(i) Allx = xoll < f(x1) — f(x0);
(i) llxa—xoll < e&/a;
@iy Allx1 — x|l + f(x1) > f(x) whenever £ x1.

Throughout the papei(x, r) and S(x, r) stand for the open ball and the sphere of
centerx and radius-, with respect to the norm under consideration, wiiiier, r) is the
closed ball of center and radius-.

2. An approximate Rolle’s theorem for the proximal subgradient

Definition 2.1. Let X be a real Hilbert space. A vectore X is called aproximal subgra-
dientof a lower semicontinuous functiofi at x € Dom(f) provided there exist positive
numberss andn such that

fO)=F@) + (¢ y—x)—olly—x|? forallye B(x,n).

The set of all suclg is denoted)p f (x), and is referred to as th@oximal subgradientor
P-subdifferential. In a similar way, we may introduce fireximal supergradient~or an
upper semicontinuous functiof, we say that € X is aproximal supergradienof f at
x € Dom(f) provided there exist positive numbersandn such that

fO)SFO)+ (& y—x)+oly—x|? forallye B(x,n).
We will denote the set of all suchby 9P f(x).

In the proof of one of the main results of this section we will use the second-order
smooth variational principle of Deville et al. The following theorem is a weak restatement
of this variational principle in the case whéhis the Hilbert space. For the general state-
ment and a proof, see [8]. The following notation is us@ggl. = suf|e(x)|: x € X},
[¢'lloc = sUpll’ (X)II: x € X}.

Theorem 2.2.Let X be a real Hilbert spaceF : X — (—o0, oo] be a proper, lower semi-
continuous function which is bounded below. Then, for esen there exist a2 smooth
functiong with bounded derivatives, and a poirg € X such that

(1) F — ¢ attains its minimum oiX at the pointxo;
() llplloe <dand|¢floc < 8.
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Finally, we will also need the following fact.

Lemma 2.3.Let f: X — (—o00, co] be a proper, lower semicontinuous functionfIf- ¢
attains a minimum at a poin andg is twice differentiable ato, theny’(xo) is a proximal
subgradient off atxo, thatise’(xo) € 3p f (xo). Similarly, ifg : X — [—o00, 00) is a proper
upper semicontinuous functios, is a function which is twice differentiable at, and
g + ¥ attains a maximum atp, thenvy’ (xo) € dPg(xo).

Proof. We know that
F(3) = f(x0) = ¢(y) — ¢(x0) 1)
for all y. Sincey is twice differentiable atg, for a givens > 0 we can finds > 0 such that
|0 () — p(x0) — ¢ (x0) (y — x0) — ¢ (x0) (y — x0)°| < elly — xoll®
whenevel|y — xo|| < 8. In particular,
9(y) — p(x0) > ¢ (x0)(y — x0) + ¢" (x0) (y — x0)% — £ly — xol1?
for ||y — xo|| < 8, and therefore
(y) — 9(x0) > ¢/ (x0)(y — x0) — ([|¢” (x0) | + &) lly — xoll® (2)
whenevel|y — xp|| < 8. By combining (1) and (2) we get that
f) = fxo) = {p,y —x0) —olly — xoll?
for all y € B(xo, §), whereo = (Jl¢” (x0)|| + &) and p = ¢’ (xp), and this means that €
Opf(x0). O

Taking into account this lemma and the very definitiordf (x) anddP f (x), we can
immediately deduce the following

Corollary 2.4. Let f: X — (—o0, oo] be a proper, lower semicontinuous function. Then
Ppf)={¢'(x): ¢ € C3(X,R), f — ¢ attains a local minimum at}.

Similarly, if g: X — [—o0, 00) iS a proper upper semicontinuous function, then
IPg(x) = {¢'(x): ¢ € C3(X,R), g + ¢ attains a local maximum at}.

This corollary suggests a natural extension of the definition of proximal subgradients for
Banach spaces which are not Hilbertian but do h@gesmooth norms. For such spaces,
definingdp f andaP f as in the corollary (or equivalently through the subdifferential proxi-
mal inequality), all the results that we present in this section remain true. Let us now prove

some approximate versions of Rolle’s theorem for proximal subgradients and supergradi-
ents.

Theorem 2.5.Let X be a real Hilbert spaceB = B(0, R), S =S(0,R),andf:B - R
be a bounded continuous function such tliaf) C [—e, ¢] for somes > 0.
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(1) It inf £(B) < inf £(S) then, for everyr > 0 there existxg € int(B) and ¢ € dp f (x0)
such that|¢| < «.

(2) If supf(B) > supf(S) then, for everyr > 0 there existcg € int(B) and¢ € P f (xp)
such that|¢ || < «.

Otherwise,

(3) If f(B) S [—¢,¢]then, for everyr > 0 there existx1, x2 € int(B) and ¢y € dp f (x1),
2 € 9P f(x2) such that¢a|l, 2]l < 2¢/R +«a.

Proof. (1) Letn = inf f(S) — inf f(B) > 0. Consider the functioir defined asF(x) =
f(x)if x € B, F(x) = +o0 otherwise; this function is obviously lower semicontinuous and
bounded below. Then, the Deville—Godefroy—Zizler variational principle (Theorem 2.2)
provides us with a2 smooth functiorg such that|gllco < 7/3, lg’llc < @, aNdF — g
attains its minimum at a poing € B. We claim thatxg € int(B). Indeed, ifxg € S then we
could takes € B such thatf (a) < inf f(B) + /3, and then we would get

inf f(B) +2n/3> f(a) — g(a) > F(xo0) — g(xo) = inf £(S) —n/3,
that is, inff(B) + n > inf £(S), a contradiction. Sincg — g attains its minimum aty,

Lemma 2.3 ensures thagt:= g’(xo) € dpf(x0). On the other hand|¢| < « because

g lloo < a.

(2) It suffices to apply(1) to the function— f.

(3) TakeB > 0 small enough so tha#t/2+ 8/R < « andp < R, and then choos¥ > 1
large enough so that

26+ 8B
— < B.
R N
Leta:R — R be aC®* smooth convex function such that

() a(r)y=rtift>B/N;
(i) a(r)=a(0)>0ift < B/4N,
(i) a’(t) >0ift > B/4N,
(iv) a”(t) >0ifandonlyifs € (8/4N, B/N).

Such a functiom can easily be constructed by integrating twiagé@ smooth nonnegative
real functionb whose supportis the intervigd /4N, 8/N] and is such thajfooo b(t)dt =1,
and then adding a suitable positive constant to obtain the propertiea@at 0 and
a(t) =t for t > B/N. Define then the function: X — (0, 00) by A(x) = a(||x]|). Itis
clear thatz is C* smooth,z(0) = a(0) € (0, 8/N), and its derivative satisfigs (x) =0
for ||x|| < B/4N, andh’(x) = a’(|x|)x/|lx|| for | x|l = B/4N. In particular we see that

[h' ()| <a'(lIxl) <1 forallxeX and h(x)=|x| if x|l > B/N.
Let us consider the functio@ : B — R defined by

2e+p

Gx)=f(x)+ ?

h(x).
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The functionG is continuous and; satisfies that in€; (B) < inf G(S), as is easily checked.
Then, by applying case (1) t6 we obtain the required point;. The pointxz can be
obtained by replacing with — f. O

From this result we can immediately deduce the following

Theorem 2.6.Let U be a bounded connected open subset of a real Hilbert sja@nd
let f:U — R be a bounded continuous function. LRt> 0 and xg € U be such that
dist(xp, dU) = R. Suppose thaf (dU) C [—¢, ¢] for somes > 0.

(1) Ifinf f(U) <inf f(3U) then, for every > 0 there exist; € U and¢ € dp f (x1) such
that||z] < a.

(2) If supf(U) > supf(aU) then, for everyr > 0 there existxp € U and¢ € P f (x2)
such that|¢| < «.

(3) If f(U) S [—¢,¢] then, for everyr > O there existv1, xo € U and{y € dp f(x1), {2 €
3P f (x2) such that|za|l, [1¢2]l < 28/R +a.

Inany caseinf{[|{||: ¢ € dpf(x) UdPf(x), x e U} < 2¢/R.

Remark 2.7.The infimum considered in Theorem 2.6 can well be strictly positive, as the
following example showsf (x) = sx, defined or/ = [—1, 1] C R. In this case{f'(x)} =
{e}y=0pf(x)=0Pf(x)forallx eU.

If, in the conditions of the preceding theorem, we additionally assumeifak) +# ¢
at everyx € U, then we can guarantee that{inf ||: ¢ € 9pf(x), x € U} < 2¢/R. Indeed,
it is immediately seen that, if for some pointwe havedy f (x) # ¥ # P f (x), then the
function f is differentiable at, and

dpf(x)=0Pfx)={f' )}

Remark 2.8. These results cannot be improved to get a point such that the nogmenf
proximal subgradient at this point is smaller thasy R + «, as the following example
shows:f:[—1,1] — R, f(x) = |x|.

If we wish to guarantee that there exists a point such that all the proximal subgradients
at this point have norm smaller than or equal ¢ R, we have to be under conditions (2)
or (3) of Theorem 2.6 (under condition (1) this additional demand is impossible to meet,
as the above example shows). Next we give some results in this direction.

Lemma 2.9.Let X be areal Hilbert spacex; € X, and f : X — R alower semicontinuous
function. Suppose that for sorhe- 0 we have that | x; — x|| + f(x1) > f(x) whenever
x #x1. Then||¢| < A forall ¢ € 9pf (x1).

Proof. Indeed, for allz with ||#| = 1, settingx = x1 + th we have that

fx1+1th) — f(x1)
|¢]

< A.




186 D. Azagra et al. / J. Math. Anal. Appl. 283 (2003) 180-191

On the other hand, for artye dp f (x1), there exisy > 0 ando > 0 so that if|| < 5 then

FGa+th) > f(xa) + (g, th) — o||th||?,
and therefore

(¢, th) < f(x1+th) — f(x1) + 012,
that is

|§_|<§’h><f(X1+tTt)|_f(Xl)+a

Il

and in this manner we get
|(¢.h)| <A+olt| forall |t <n,

which implies that|¢|| < A. O

Pro_position 2.10.Let f: B(0, R) — R be a continuous bounded function. Assume that
f(B(O,R)) C f(S(O,R)) C [—¢, +¢]. Then there exists € B(0, R) such that||¢]| <
2¢/Rforall ¢ € 9p f(x).

Proof. Assume first that2< R.

Casel. Supposef (0) > —¢, and leth = 2¢/R. Since supf(x) | x € B(0, R)} — 2¢ <
f(0), we can apply Ekeland’s variational principle to the functibnX — [—o0, +00)
defined byF (x) = f(x) if x € B(0, R) andF (x) = —oo elsewhere (which is clearly upper
semicontinuous), to get some € B(0, R) such that

() Mlxall < f(x2) — f(0);
(i) llx1ll <2e/2;
@iy Allx —x1]l + f(x1) > f(x) whenever # x1.

Then (i) tells us thatc; € B(0, R) and, for every; € dp f (x1), property (iii) combined
with the preceding lemma implies thigg|| < 2¢/R.

Casell. Suppose now thay (0) = —¢, and choose any € 9y f(0). We can assume
that ||¢|| > 2¢/R (otherwise we are done). Then there existaith ||z]| = 1 such that
(¢, h) > 2¢/R. On the other hand there exist- 0 ando > 0 such that

fth) = f(O) + (¢, th) — o ||th]|?
for all  with |¢| < n, hencef (th) + & — t(¢, h) > —ot?, that is

f(th)+|i|—t<§,h> —

Bearing in mind the facts thats2R — (¢, k) < 0 and that there exist$ > 0 such that
2¢/R — (¢, h) < —0oé, we get that
f@h)+e—38(¢,h) 2

8 >§_(§7h>7
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which implies f(8h) + ¢ > 28¢/R, and thereforef (8h) > supf(B(0, R)) — 2s. Now,
by settingx = 2¢/R and applying Ekeland’s variational principle we obtain some=
B(0, R) such that

(1) Allxs = 8hll < f(x2) — f(Sh);
(i) llxy —ohll <e/A;
@iy Allx —x1]l + f(x1) > f(x) forall x # x1.

According to (i) and taking into account thétsh) + ¢ > 2¢6/R we obtain that

fOo) = fOh) _ &= f(6h) 2¢ — 2¢8/R
2¢/R = 2¢/R = 2¢/R

fromwhich it follows||x1| < |lx1—8k||+8 < (R—38)+8 = R, and therefore; € B(0, R).

From (i) and the preceding lemma we get thiat| < 2¢/R for all ¢ € dp f (x).

Finally, in the case > R, bearing in mind that € dpf(x) if and only if r¢ €
dp(rf)(x) for all r > 0, and considering the functign= ¢’ f/¢, where 2’ < R, we may
easily deduce from the above argument that there exist8(0, R) such thaf|¢ | < 2¢/R
forall; edpf(x). O

lx1 —8hll < =R-36,

Note that, as a consequence of the preceding proposition, for any continuous bounded
function f: X — R defined on the Hilbert space and satisfytiyy (x) # @ for all x € X,
we have that

inf{sup{ll¢]l: ¢ €pf(x)}, x e X} =0.

Proposition 2.11.Let U be a connected bounded open subset of a real Hilbert sjace
Let f: U — R be a bounded continuous function such thap f (U) > supf(aU). Then,
for everya > O there exists somee U such that|¢|| <o forall ¢ € 9pf (x).

Proof. For a givenx > 0, consider the functior : X — [—o0, +00) defined byF (x) =

f(x) if x eU and F(x) = —oo if x ¢ U (which is clearly upper semicontinuous and
bounded above), a poiry € U such thatf (xo) > supf(dU), and a numbek with 0 <

A < min{e, 1}. Then, applying Ekeland’s variational principle (Theorem 1.2), we get a
point x; € U such that, from (i),f (x1) > f(x0), and hencer; € U, and from (i) and
according to Lemma 2.9 || < A forall ¢ € 9pf (x1), and thereforgi¢ | <o. O

As a consequence of the preceding results we can slightly improve the estimate on the
norm of the subgradients.

Theorem 2.12.Let U be a bounded connected open subset of a Hilbert spacket
f:U — R be a bounded continuous function such thgf (x) # ¢ for all x € X. Let
R > 0 andxg € U be such thatist(xg, 9U) = R. Suppose thay (0U) C [—¢, €]. Then
there existe, € U and¢ € dp f (x¢) such that|¢ | < 2¢/R.

When f is constant odU, we get inf||¢||: ¢ € dpf(x), x €U} =0.
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3. An approximate Rolle’s theorem for the generalized gradient

Definition 3.1. Let X be real Banach space arfd X — R be a function such thaf is
Lipschitz on a neighborhood of a given poing X. Thegeneralized directional derivative
of f atx in the directionv, denotedf%(x; v), is defined as follows:

fOx;v)= limsup SO+~ f(y)’
y.H)—(x,0) t

where of course is a vector inX and: is a positive real number. We define tyeneralized
gradientdf (x) of f atx as the set of alf € X* such thatf%(x; v) > (¢, v) for all v.

In the proofs of the results in this section we will need the rule for the generalized
gradient of the sum, which we next state (a proof can be found in [6, p. 75]).

Proposition 3.2.Let f; (i =1,2,...,n) be Lipschitz neax, andx; (i =1,2,...,n) be
real numbers. Therf =Y}, 4; f; is Lipschitz near, and we have

a(zxiﬁ><x)c2xiaﬁ(x>.
i=1 i=1

Before proceeding to prove an approximate Rolle’s theorem for the generalized gradi-
ent, we are going to see that an exact Rolle’s theorem for the generalized gradient fails
completely in all infinite-dimensional Banach spaces, even if they do not have smooth
bump functions. The main result from [4] tells us that Rolle’s theorem (for smooth Lip-
schitz functions) fails in all Banach spaces which have smooth Lipschitz bumps, and is
trivially true in those spaces which do not possess any such bumps. In particular, since
for C1 smooth and locally Lipschitz functions the generalized gradient is reduced to the
usual differential, an exact Rolle’s theorem is also false for the generalized gradient, in all
spaces withC1 smooth Lipschitz bumps. In this setting one could think that, if one takes
a Banach spac® with no C! smooth Lipschitz bump, one considers all locally Lipschitz
functions f, and one looks at all of the generalized gradientér), then Rolle’s theorem
might be true, in the sense that ff= 0 on the boundary of a bounded connected open
setU then there should exist one point U such that Gz 91 (x). We next show that this
is not the case.

Theorem 3.3.For every infinite-dimensional Banach spaXdhere exists a bounded Lip-
schitz functionf, defined on a bounded convex bddysuch thatf vanishes odU and
yet0 ¢ af (x) for all x € int(U).

Proof. All reflexive spaces have equivalefit smooth norms (see [8], for instance), and
in every infinite-dimensional space withCt smooth norm there is a bounded convex body
U and aC' smooth functionf : U — R such thatf’(x) # 0 for all x € int(U) (see [1]).
Hence the result is true whex is reflexive, and we may assume thats nonreflexive.
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Then we can take a continuous linear functiogak X* such thatc* does not attain its
norm|x*| = 1. Consider the function

x*(x) if x € B(0,1),
JO) =19 22|« , =
T X (x) ifx¢B(,1),
defined onB(0, 2) and taking values ifR. The functionf clearly vanishes o1$(0, 2).
We have to prove that @ df (xo) for everyxg € B(0, 2), which is equivalent to seeing
that for everyxg € B(0, 2) there existe € X such thatf%(xo, v) < 0. In the case when
x0 € B = B(0, 1) we have thabf (xg) = {x*} and the result is obvious. In the case when
xo0 € § = 8(0, 1), we may consider the following situations.
Casel. If x*(xg) > 0, we may choose; € S such thate*(x1) > x*(x0) and[xo, x1]
¢ S, in order to define a vectar= xo — x1 which satisfies* (v) < 0. Let observe first that
there existg > 0 such that

ly +tv| > |yl foreveryye B(xg, &)\ B ands > 0.

Indeed, the conditiofixg, x1] ¢ S tells us that there is > 0 such thatvg — rov € B and
consequently — tov € B C B(0, ||y|]) for y nearxg, which impliesy + tv & B(O, ||y|),
equivalently|ly + rv|| > ||ly|| for everyr > 0. To prove thatf%(xo, v) < O we consider
(f(y +tv) — f(y))/t and three different situations.

(i) y € B andy + tv € B. In this casef (y + tv) — f(y)/t =x*(y + tv) — x*(y)/t =
x*(v).

(i) y e Bandy +tv ¢ B. Then we have

[+ = fO) _ ;[2— Iy + rol

x*(y +tv) —x*(y)}

t tLlly+ivl
112-2 t 2— t
__[ ly + vllx*( )} ly + vllx*(v)
L lly+uvl ly + tvll
_ *
< 2 ||y+tv||x*(v)<x (v)
ly +tv| 2

if yis close_enough t®g arldt > 0 small, sincec*(v) < 0.
(iii) y ¢ Bandy + v ¢ B. In this case we have

[+ = fO) _ ;[2— Iy + rol

2 —
4y — 2 ”x*(y)}

t tL Iy +tvll Iyl
2— t 12— t 2—
— (V) ly +tvll _[ Iy + vl IIyII}x*( )
lly +tv| tL Iy +tvll Iyl
2— t 2|yl =2 t
— (V) ly +tvll Iyl =20y + vllx*(y)
lly +tv| tiyllly +tvll

2—lly +rv] _ x*)

<x* <
O 2

The casey ¢ B andy + tv € B is not allowed ify is close enough tag. Taking limsup
we get thatf%(xo, v) <x*(v)/2 < 0.
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Casell. If x*(xg) < 0, it is enough to apply Case | to the functiery’, and remember
thatd(— f)(x) = —af (x).

Caselll. If x*(x0) = 0, we can take a point; € S such thatt*(x1) > 0. Definev =
xo — x1, SO thate*(v) < 0. By considering the same situations as in Case |, and proceeding
in a similar manner, it is easy to see th&(xo, v) < 0.

Finally, whenxg ¢ B, we may consider two cases.

() If x*(x0) = 0 we takex; such thatc*(x1) > 0 and defin@ = xg — x1. Then we have

+tv) — 12— ||y +1tv 2—
fQ& )= f) :_[ Iy IIX*(H“))_ IIyllx*(y)}
t tL Ay -+l Iyl
2 — t 2— t
:_Ilyll ly + vllx*(y)Jr ly + vllx*(v)
t lyllly +tvl ly +tv|
2—|lxoll
——x (v)
2||xoll

bearing in mind the facts that

211yl = lly + vl
¢ Iylly + ol

is bounded and ligL, ,, x*(y) = 0. It follows that f°(xo, v) < 0.
(i) x*(xo0) # O is similar to Cases | and Il above, but considering only the situation
y¢ Bandy+tv¢ B. O

Let us now prove an approximate version of Rolle’s theorem for the generalized gradi-
ent.

Theorem 3.4(Rolle’s theorem for the generalized gradieht U be a bounded connected
open subset of a real Banach spacef : U — R be a bounded, locally Lipschitz function
such thatf (dU) C [—e¢, €], and R > 0 and xg € U be such thatlist(xg, 9U) = R. Then,
inf{||¢]l: ¢ €edf(x), x € X} < 2¢/R.

Note that, since the generalized gradient contains the proximal subgradient, for Hilbert
spaces the statement is a straightforward consequence of Theorem 2.6. However, for Ba-
nach spaces which are not Hilbertian or do not possesgdrsmooth bump functions,

a different proof is required. We will split the proof into two easy propositions.

Proposition 3.5.Let U be a bounded open subset of a real Banach specand f:
U — R be a bounded locally Lipschitz function satisfying tisapf(U) > supf(dU)
orinf f(U) <inf f(@U). Then, for every > 0 there existt € U and¢ € df (x) such that
1SN <er.

Proof. Assume first that sup(U) > supf(dU). Consider the functiorF defined as
F(x)= f(x)forx e U andF(x) = —co if x ¢ U. Let n =supf(U) —supf(dU) and
choosexg € U so that f(xp) > supf(U) — n. By Ekeland’s variational principle, for
eacha with 0 < @ < 1 we can findcy € Dom(F) such thatr|x1 — xg|| < f(x1) — f(x0),
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lx1 — xoll < n/a, and a||x — x1]| + f(x1) > f(x) wheneverx; # x. These inequal-
ities yield that f(x1) > f(xp), hencex1 € U, and that the functior®(x) = f(x) —

f(x1) — aflx — x1] attains a maximum at = x1, which gives Oc & (x1) and, by ap-
plying the rule for the generalized gradient of the sum (Proposition 3.2), we obtain that
0€ df(x1) + d(—allx — x1|)); that is, there exist € df (x1) and® € —ad| - |(x — x1)

with 0=¢ 4+ ¢, and, sincd|?| < «, we conclude thatz || < «. O

Proposition 3.6.Let X be a real Banach space, &t = B(0, R) and f:B—>Rbea
locally Lipschitz function so that' (B) C [—e, ¢]. Then, for everyr > 0 there existx €
int(B) and¢ € 3f (x) such thatj|¢|| < 2¢/R + «.

Proof. Consider the functio® (x) = f(x) — ((2¢ +a’)/R)| x|, with &’ > 0. For allx €

9B we have thatd (x) = f(x) — (2¢ + &') < f(0). Then we may apply the preceding
proposition to the functio® and obtain a point € B and some subgradietij € & (x)

such that|#1]| < «’. Then, according to the rule for the generalized gradient of the sum
(Proposition 3.2)1 € 3f (x) — ((2s +a')/R)d|| - ||(x), and therefore}; = ¢ — ((2¢ +
a’)/R)2, where||¥2| < 1, from which we deduce thatz || < ||91]] + 2 + «')/R <

o + (2 +a')/R=2¢/R+ [’ +a’/R]. By takingo’ such that’ +a’/R < « the result
follows. O
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