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REGULARIZATION BY SUP-INF CONVOLUTIONS ON

RIEMANNIAN MANIFOLDS: AN EXTENSION OF

LASRY-LIONS THEOREM TO MANIFOLDS OF BOUNDED

CURVATURE

D. AZAGRA AND J. FERRERA

Abstract. We show how Lasry-Lions’s result on regularization of func-
tions defined on R

n or on Hilbert spaces by sup-inf convolutions with
squares of distances can be extended to (finite or infinite dimensional)
Riemannian manifolds M of bounded sectional curvature. More specif-
ically, among other things we show that if the sectional curvature K of
M satisfies −K0 ≤ K ≤ K0 on M for some K0 > 0, and if the injectivity
and convexity radii of M are strictly positive, then every bounded, uni-
formly continuous function f : M → R can be uniformly approximated
by globally C1,1 functions defined by

(fλ)
µ = sup

z∈M

inf
y∈M

{f(y) +
1

2λ
d(z, y)2 −

1

2µ
d(x, z)2}

as λ, µ → 0+, with 0 < µ < λ/2. Our definition of (global) C1,1

smoothness is intrinsic and natural, and it reduces to the usual one
in flat spaces, but we warn the reader that, in the noncompact case, this
definition differs from other notions of (rather local) C1,1 smoothness
that have been recently used, for instance, by A. Fathi and P. Bernard
(based on charts).

The importance of this regularization method lies (rather than on
the degree of smoothness obtained) on the fact that the correspondence
f 7→ (fλ)

µ is explicit and preserves many significant geometrical prop-
erties that the given functions f may have, such as invariance by a set
of isometries, infima, sets of minimizers, ordering, local or global Lips-
chitzness, and (only when one additionally assumes that K ≤ 0) local
or global convexity.

We also give two examples showing that this result completely fails,
even for (nonflat) Cartan-Hadamard manifolds, whenever f or K are
not bounded.

1. Introduction and main results

Throughout the paper, for a function f :M → R ∪ {+∞}, we define

fλ(x) = inf
y∈M

{f(y) + 1

2λ
d(x, y)2}.
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Similarly, for a function g :M → R ∪ {−∞} we define

gµ(x) = sup
y∈M

{f(y)− 1

2µ
d(x, y)2}.

Observe that gµ = −(−g)µ, and therefore all properties of functions of the
form fλ have an obvious analogue for functions of the form fµ. In [15],
J.-M. Lasry and P.-L. Lions proved that, if M = E = R

n or a Hilbert space,
and if f : E → R is bounded and uniformly continuous, then the functions
(fλ)

µ are of class C1,1(E) and converge to f uniformly on E as λ, µ → 0+.
The importance of this regularization method lies on the fact that the corre-
spondence f 7→ (fλ)

µ is explicit and preserves many significant geometrical
properties that the given functions f may have, such as invariance by a set
of isometries, infima, sets of minimizers, ordering, local or global Lipschitz-
ness, and local or global convexity. These facts make this regularization
method an invaluable tool in optimization, nonsmooth analysis, and many
other areas of pure and applied mathematics. Lasry-Lions’ regularization
technique has also very strong connections with PDE theory, through the
Lax-Oleinik semigroup of a Hamilton-Jacobi equation. In fact the functions
u(λ, x) = fλ(x) (respectively v(µ, x) = hµ(x)) are the viscosity solutions of
the equations ∂u

∂λ + 1
2‖∇u‖2 = 0 on R

+ × E with initial data u(0, x) = f(x)

(resp. ∂v
∂µ − 1

2‖∇v‖2 = 0 on R
+ × E, with initial data v(0, x) = h(x)).

It is natural to ask whether Lasry-Lions’ theorem remains true in the Rie-
mannian setting, as its potential applications would also be significant in this
field. It is by now known that the Lasry-Lions Theorem is true for compact
Riemannian manifolds in a more general form (for Lax-Oleinik semigroups
associated to Hamilton-Jacobi equations), see [10, 7, 11], although the opti-
mal Lipschitz constants of the gradients ∇(fλ)

µ do not seem to have been
found. The proofs of [10, 7, 11] rely on compactness arguments that can-
not be extended to noncompact manifolds. What is more surprising, in the
literature there does not seem to be a definition of global C1,1 smoothness
which makes sense for noncompact manifolds and has the usual properties
that one should expect of such a notion. Fathi’s definition in [11] is only
for locally C1,1 functions (a function f : M → R is locally C1,1 provided
f is C1,1 when looked at in charts). In [10] a pointwise Lipschitz constant
is introduced by means of a metric in the tangent bundle, but this notion
has the disadvantage that, for instance when one endows TM with Sasaki’s
metric, there are no Lipschitz gradients with Lipschitz constant less than
1, which is unpleasant, as for a function f ∈ C2(M) we should expect that
the Hessian of f controls the Lipschitz constant of the gradient ∇f , namely
that Lip(∇f) = supx∈M ‖D2f(x)‖. On the other hand, if one tries to ex-
tend Bernard’s definition of C1,1 smoothness from compact manifolds [7] to
noncompact manifolds, then one obtains different classes of global C1,1 func-
tions, depending on the atlases one uses. And, even in the compact case,
the Lipschitz constant of a gradient ∇f cannot be defined through charts
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(unless one exclusively uses very special charts, like the exponential ones,
see Theorem 1.5 below).

In this paper we present an intrinsic definition of global C1,1 smoothness
which makes sense for every Riemannian manifold, reduces to the usual one
in flat spaces, gives rise to the same class of C1,1 functions in the compact
case as Fathi’s and Bernard’s definitions, allows one to deal with sharp Lip-
schitz constants of gradients, and meets most, if not all, of the expectations
one may have about a reasonable definition of global C1,1 smoothness. See
Definitions 1.2 and 1.3, and Theorem 1.5 below.

Returning to the extension of Lasry-Lions regularization technique to Rie-
mannian manifolds, our main result is the following.

Theorem 1.1. Let M be a Riemannian manifold (possibly infinite dimen-
sional) with sectional curvature K such that −K0 ≤ K ≤ K0 for some
K0 ≥ 0, and such that the injectivity and convexity radii of M are strictly
positive. Let f : M → R be uniformly continuous and bounded, and q > 1.
Then there exists λ0 = λ(K0, q, f) > 0 such that for every λ ∈ (0, λ0]
and every µ ∈ (0, λ/2q] the regularizations (fλ)

µ are uniformly locally q
2µ -

semiconvex and uniformly locally q
2µ -semiconcave, and they converge to f ,

uniformly on M , as λ, µ → 0.
In particular we have that (fλ)

µ ∈ C1,1(M) for every such λ, µ. Moreover,
we have the following estimations of the Lipschitz constants of ∇ ((fλ)

µ):

Lip (∇ ((fλ)
µ)) ≤ q

µ
if M is finite dimensional, and

Lip (∇ ((fλ)
µ)) ≤ 6

q

µ
if M is infinite dimensional.

Finally, if f is Lipchitz then so is (fλ)
µ, and we have

lim
λ,µ→0+

Lip ((fλ)
µ) = Lip(f).

In section 8 we give two examples showing that this result fails (even on
a Cartan Hadamard manifold) if f or K are not bounded. In particular it
is clear that the results claimed without proof in [1] for Cartan-Hadamard
manifolds are totally wrong.

Nevertheless, even if f or K are not bounded, if one assumes that K
is bounded on bounded subsets B of M (which is always the case if M is
complete and finite dimensional), and that f is quadratically minorized on
M and uniformly continuous on bounded subsets ofM , then the convergence
of the functions (fλ)

µ to f is uniform on bounded sets B of M , and these
functions are of class C1,1(B) for sufficiently small λ, µ depending on B. Of

course, in this case one has in general that Lip
(

∇(fλ)
µ
|B

)

→ ∞ as B grows

large.
It is about time we explained what we mean by a C1,1 function. If U is an

open subset of Rn or a Hilbert space and f : U → R, saying that f ∈ C1,1(U)
just means that f ∈ C1(U) and the gradient ∇f is a Lipschitz mapping from
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U into Rn, that is, there exists C ≥ 0 such that ‖∇f(x)−∇f(y)‖ ≤ C‖x−y‖
for every x, y ∈ U . One says that C is a Lipschitz constant for ∇f , and the
infimum of all such C is denoted by Lip(f). The extension of this definition
to the Riemannian setting is not an obvious matter, since for a C1 function
f : M → R the vectors ∇f(x) and ∇f(y) belong to different fibres of
TM and in general there is no global way to compare them that serves all
purposes one may have in mind. If one looks for an intrinsic definition of
C1,1 smoothness, a natural attempt is to use a metric on TM . One can even
define pointwise Lipschitz constants of gradients using metrics in TM , as
Fathi did in [10]:

Lipx(∇f) = lim sup
y,z→x

dTM (∇f(y),∇f(z))
dM (y, z)

.

One may then set Lip(∇f) = supx∈M Lipx(∇f). This leads to declaring
a function f ∈ C1(M) to be of class C1,1(M) provided that the mapping
∇f : M → TM is Lipschitz (with respect to the given metrics in M and
TM). Such a notion of C1,1 smoothness can be practical in several ways,
but, as we mentioned before, it has the disadvantage that Lipx(f) is not
finely controlled by the Hessian D2f(x) when f ∈ C2(M). Indeed, for any
Riemannian manifold M , if one endows TM with the Sasaki metric (see
[17, 16] for the precise definition), since the parallel translation of the zero
vector along a geodesic of M is always a geodesic in TM , one obtains, for
every constant function c on M , that ∇c(x) = 0 for every x ∈ M , hence
also D2c(x) = 0 for every x ∈ M , and yet Lip(∇c) = 1. Therefore, if one
should use this definition of Lipschitzness for gradients, then one would not
be able to relate the Lipschitz constants of ∇f with the semiconvexity and
semiconcavity constants of f . This is the main reason why we will discard
this definition in this paper.

Let us now present our definition of C1,1 smoothness. Let M be a Rie-
mannian manifold (possibly infinite dimensional). We will denote the injec-
tivity radius of M at a point x by i(x), and the convexity radius of M at x
by c(x). We will also denote i(M) = infx∈M i(x), and c(M) = infx∈M c(x).
It is well known that i(x) > 0 and c(x) > 0 for every x ∈ M (but i(M)
and c(M) may be zero). Thus, for every x0 ∈ M there exists R > 0 such
that the ball B(x0, 2R) is convex and expx : BTxM (0, R) → B(0, R) is a C∞

diffeomorphism for every x ∈ B(x0, R). If x, y ∈ B(x0, R), let us denote by
Lxy : TxM → TyM the linear isometry between these tangent spaces pro-
vided by parallel translation of vectors along the unique minimizing geodesic
connecting the points x and y. More precisely, if γ : [0, ℓ] →M is the unique
geodesic with γ(0) = x, γ(ℓ) = y, ℓ = d(x, y), h ∈ TxM , and P : [0, ℓ] → TM
is the unique parallel vector field along γ with P (0) = h, then we define
Lxy(h) = P (ℓ). When i(M), c(M) > 0, the isometry Lxy : TxM → TyM al-
lows us to compare vectors (or covectors) which are in different fibers of TM
(or T ∗M), in a natural, semiglobal way. Even when the global injectivity or
convexity radii of M vanish, the following definition still makes sense.
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Definition 1.2. Let M be a Riemannian manifold. We say that a function
f :M → R is of class C1,1(M) provided f ∈ C1(M) and there exists C ≥ 0
such that for every x0 ∈M there exists r ∈ (0,min{i(x0), c(x0)}) such that

‖∇f(x)− Lyx∇f(y)‖ ≤ Cd(x, y)

for every x, y ∈ B(x0, r). We call C a Lipschitz constant of ∇f . We also say
that ∇f is C-Lipschitz, and define Lip(∇f) as the infimum of all such C.

It should be noted that, when i(M), c(M) > 0, this definition is equivalent
to the (apparently stronger) following one: ‖∇f(x)−Lyx∇f(y)‖ ≤ Cd(x, y)
for every x, y with d(x, y) < min{i(M), c(M)}.

As is well known in the Euclidean case, C1,1 smoothness has much to do
with semiconcavity and semiconvexity of functions, and in the general Rie-
mannian setting we should also expect to find a strong connection between
these notions. Our definition is also satisfactory in this respect, as we will
see soon, but let us first explain what we mean by semiconvex and semi-
concave functions. Recall that a function f : M → R is said to be convex
provided f ◦ γ is convex on the interval I ⊆ R for every geodesic segment
γ : I →M . A function h is called concave if −h is convex.

Definition 1.3. Let M be a Riemannian manifold. We will say that a
function f : M → (−∞,+∞] is (globally) semiconvex if there exists C > 0
such that for every x0 ∈ M the function M ∋ x 7→ f(x) + Cd(x, x0)

2 is
convex. Similarly, we say that h :M → [−∞,+∞) is (globally) semiconcave
if there exists C > 0 such that h − Cd(·, x0)2 is concave on M , for every
x0 ∈M . Equivalently, h is semiconcave if and only if −h is semiconvex.

We will say that f is locally semiconvex (resp. locally semiconcave) if for
every x ∈ M there exists r > 0 such that f|B(x,r)

: B(x, r) → [−∞,+∞]

is semiconvex (resp. semiconcave). If there exists C ≥ 0 such that for
every x0 ∈ M there exists r > 0 such that the function B(x0, r) ∋ x 7→
f(x) + Cd(x, y0)

2 is convex for every y0 ∈ B(x0, r), then we will say that f
is locally C-semiconvex. We define local C-semiconcavity of a function in a
similar way.

Finally, we will say that f :M → [−∞,+∞] is uniformly locally semicon-
vex (resp. uniformly locally semiconcave) provided that there exist numbers
C,R > 0 such that for every x0 ∈M the function

B(x0, R) ∋ x 7→ f(x) + Cd(x, x0)
2

is convex (resp. concave). We will call C a constant of uniformly local
semiconvexity (resp. semiconcavity). We will also say that f is uniformly
locally C-semiconvex (resp, C-semiconcave).

It is clear that ”globally semiconvex” =⇒ ”uniformly locally semiconvex”
=⇒ ”locally semiconvex”.

Remark 1.4. In the case of a space of constant sectional curvature equal to
0, in the definition we have just given we could have replaced the condition
”there exists C > 0 such that for every x0 ...” with ”there exist C > 0 and x0
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such that ...”, and the two definitions would have been equivalent. However,
for spaces with nonzero curvature, such two definitions are not equivalent
in general. For instance, if M = H

n is the hyperbolic space, the function
x 7→ d(x, x0)

2 is C∞ everywhere and the norm of its Hessian goes to ∞
as d(x, x0) → ∞. Hence this convex function (which would obviously have
been semiconcave had we opted for the second definition) does not belong
to C1,1(Hn) (see Definition 1.2, Theorem 1.5 and Example 8.1 below). The
reason for our choice is that we want a semiconcave and semiconvex function
to be of class C1,1, as it happens when the function is defined on R

n or the
Hilbert space.

That Definition 1.2 is quite satisfactory is clear from the following.

Theorem 1.5. Let M be a finite dimensional Riemannian manifold, f ∈
C1(M,R), and C ≥ 0. The following statements are equivalent:

(1) ∇f is C-Lipschitz according to Definition 1.2.
(2) For every x ∈M,v ∈ TxM with ‖v‖ = 1,

lim sup
t→0+

1

t
‖∇f(x)− Lexpx(tv)x

∇f(expx(tv))‖ ≤ C.

(3) For every x0 ∈M and ε > 0 there exists r > 0 such that

|f (expx(v)) − f(x)− 〈∇f(x), v〉| ≤ C + ε

2
‖v‖2

for every x ∈ B(x0, r) and v ∈ BTxM (0, r).

(4) For every C ′ > C the function f is locally C′

2 -semiconvex and locally
C′

2 -semiconcave.
(5) For every x ∈ M and every ε > 0 there exists r > 0 such that, if

F := f ◦ expx : B(0, r) → R, then

‖∇F (u)−∇F (v)‖ ≤ (C + ε)‖u − v‖
for every u, v ∈ BTxM (0, r).

(6) For every x ∈ M and every ε > 0 there exists r > 0 such that, if
F := f ◦ expx : B(0, r) → R, then

‖∇F (u)−∇F (0)‖ ≤ (C + ε)‖u‖
for every u ∈ BTxM (0, r).

Moreover, if f ∈ C2(M,R) then any of the above statements is also equiva-
lent to the following estimate for the Hessian of f :

(7) ‖D2f‖ ≤ C.

Finally, if M is of bounded sectional curvature with i(M), c(M) > 0, any of
the conditions (1) − (6) is equivalent to

(4’) For every C ′ > C the function f is uniformly locally C′

2 -semiconvex

and uniformly locally C′

2 -semiconcave,

and also to
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(1’) There exists R > 0 such that for every x0 ∈M we have

‖Lyx(∇f(y))−∇f(x)‖ ≤ Cd(x, y)

for every x, y ∈ B(x0, R).

Theorems 1.1 and 1.5 are the main results of this paper, but let us also
mention a couple of auxiliary results that may be useful in general.

Besides parallel translation, another natural, semiglobal way to compare
vectors in different fibers TxM , TyM of TM with d(x, y) < i(x) is by means
of the differential of the exponential map

d expx (v) : T (TxM)v ≡ TxM → TyM,

where v = exp−1
x (y). It is a straightforward consequence of the definition of

P as a solution to a linear ordinary differential equation with initial condition
P (0) = h, and of the fact that d expx(0)(h) = h, that

lim
y→x

sup
h∈TxM,‖h‖=1

|d expx
(

exp−1
x (y)

)

(h)− Lxy(h)| = 0.

That is, limy→x ‖d expx
(

exp−1
x (y)

)

− Lxy‖L(TxM,TyM) = 0. However, in sec-
tions 5 and 6 we will need much sharper estimations on the rate of this
convergence. In particular, we will need to use the fact that, locally, one has

‖d expx
(

exp−1
x (y)

)

− Lxy‖L(TxM,TyM) = O
(

d(x, y)2
)

.

This fact might be known, at least in the finite dimensional case, but we have
not been able to find a reference. Of course there are well known estimates
of the form

d expx

(

t
v

‖v‖

)

(th)− P (th) = O(t3),

see [14, Chapter IX, Proposition 5.3] for instance, but we want this kind of
estimate to hold locally uniformly with respect to x, v, h. So we provide a
proof in Section 4. As a consequence we will also show that

‖d(exp−1
x )(y) ◦ Lxy − I‖L(TxM,TxM) = O

(

d(x, y)2
)

locally uniformly.
In section 3 we establish a convexity lemma which is one of the funda-

mental ingredients of the proof that the regularizations (fλ)
µ are uniformly

locally semiconvex and semiconcave. IfM is a Riemannian manifold of non-
positive sectional curvature K with i(M) > 0, c(M) > 0, it is well known
that the functions B(x0, R) × B(x0, R) ∋ (x, y) 7→ d(x, y)2 and B(x0, R) ∋
x 7→ d(x, x0)

2 are C∞ and convex, provided that 2R < min{i(M), c(M)}.
In Lemma 3.2 below we will see that when −K0 ≤ K ≤ 0 and i(M) > 0,
c(M) > 0, these functions are so evenly convex that their sum, multiplied
by a suitable positive number dependent only on R,K0, can compensate the
concavity of the function y 7→ −d(y, y0)2, in a uniform manner with respect
to points x0, y0 ∈M such that d(x0, y0) < R.

On the other hand, in the general case (for instance if K > 0) it is not true
that the mapping (x, y) 7→ d(x, y) is locally convex, not even when (x, y)
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move in an arbitrarily small neighborhood of a point (x0, x0) ∈ M × M .
In this situation it is remarkable that, if one assumes that the sectional
curvature K is bounded on M (though not necessarily nonpositive), then
one can show that this compensation property still holds for sufficiently
small R, depending on the bound for the curvature, but independent of
x0, y0. This is proved in Lemma 3.1.

The rest of the paper is organized as follows. In Section 2 we gather several
basic properties of the regularizations fλ which will be used in the rest of
the paper. In Section 5 we prove that if f :M → R is locally C-semiconvex
and locally C-semiconcave then f ∈ C1,1(M), with Lip(∇f) ≤ 12C. In
section 6 we trim this estimate down to an optimal 2C in the case when M
is finite dimensional, and we prove Theorem 1.5. In Section 7 we combine
all the results of the previous sections to produce a proof of Theorem 1.1.
Finally in Section 8 we show that in Theorem 1.1 one cannot dispense with
the boundedness assumptions on f and K.

Our notation is mostly standard, and we generally refer to Sakai’s book
[16] for any unexplained terms. In Section 3 we will use the second varia-
tion formulae for the energy and length functionals, as well as the Rauch
comparison theorems for Jacobi fields. We refer the reader to [16, 8] for the
finite-dimensional case, or to [13, 14] for the infinite-dimensional case. In
both cases, we will nevertheless use the notation of do Carmo’s book [9] for
Jacobi fields along geodesics and their derivatives.

2. General properties of inf and sup convolutions

The following Proposition shows how, under certain conditions, the inf
defining fλ(x) can be localized on a neighborhood of the point x. We say
that a function f :M → R∪{+∞} is quadratically minorized provided that
there exist c > 0, x0 ∈M such that

f(x) ≥ − c
2
(1 + d(x, x0)

2)

for all x ∈M .

Proposition 2.1. Let M be a Riemannian manifold, f : M → R ∪ {+∞}
be quadratically minorized. Let x ∈ M be such that f(x) < +∞. Then, for
all λ ∈ (0, 1

2c) and for all ρ > ρ̄, where

ρ̄ = ρ̄(x, λ, c) :=

(

2f(x) + c(2d(x, x0)
2 + 1)

1− 2λc

)1/2

,

we have that

fλ(x) = inf
y∈B(x,ρ)

{f(y) + 1

2λ
d(x, y)2}.

Moreover, if f is bounded on M , say |f | ≤ N , then the infimum defining

fλ(x) can be restricted to the ball B(x, 2
√
Nλ). On the other hand, if f is

Lipschitz on M , then the infimum defining fλ(x) can be restricted to the ball
B (x, 2λLip(f)).
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Proof. The first part is [4, Proposition 2.1]. Let us prove the last two state-

ments. If |f | ≤ N and d(y, x) > 2
√
Nλ then

f(y) +
1

2λ
d(x, y)2 > −N + 2N = N ≥ f(x) ≥ fλ(x),

hence

fλ(x) = inf
y∈B(x,

√
Nλ)

{f(y) + 1

2λ
d(x, y)2}.

On the other hand, if f is Lipschitz and d(x, y) > 2λLip(f) then we have

f(y) +
1

2λ
d(x, y)2 ≥ f(x)− Lip(f)d(x, y) +

1

2λ
d(x, y)2 ≥ f(x) ≥ fλ(x),

hence

fλ(x) = inf
y∈B(x,2λLip(f))

{f(y) + 1

2λ
d(x, y)2}.

�

The following two propositions were proved in [4].

Proposition 2.2. LetM be a Riemannian manifold, f, h :M → R∪{+∞}.
We have that:

(1) fλ ≤ f for all λ > 0.
(2) If 0 < λ1 < λ2 then fλ2 ≤ fλ1 .
(3) inf fλ = inf f and, moreover, if f is lower semicontinuous then every

minimizer of fλ is a minimizer of f , and conversely.
(4) If T is an isometry of M onto M , and f is invariant under T (that

is, f(Tz) = f(z) for all z ∈ M), then fλ is also invariant under T ,
for all λ > 0.

(5) If f ≤ h then fλ ≤ hλ for every λ > 0.

Proposition 2.3. Let M be a Riemannian manifold, f : M → R ∪ {+∞}
a c-quadratically minorized function for some c > 0.

(1) If f is uniformly continuous and bounded on all ofM then limλ→0 fλ =
f uniformly on M .

(2) If f is uniformly continuous on bounded subsets ofM then limλ→0 fλ =
f uniformly on each bounded subset of M .

(3) In general (that is, under no continuity assumptions on f) we have
that limλ→0 fλ(x) = f(x) for every x ∈M with f(x) < +∞.

When M = R
n or a Hilbert space, it is a well known fact (and easy to

prove) that the operation f 7→ fλ preserves global or local Lipschitz and
convexity properties of f . In the Riemannian setting one has to impose
curvature restrictions on M in order to obtain similar results, see [4], and
the proofs are somewhat subtler.

In order to see that Lipschitz constants of f are almost preserved by
passing to the regularizations fλ or fµ, we will use the following.
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Lemma 2.4. LetM be a Riemannian manifold such that i(M) > 0, c(M) >
0. Assume that the sectional curvature K of M is bounded below by −K0

for some K0 > 0. Then, for every ε > 0 there exists r > 0 such that

d (expx (Lzx(w)) , expz(w)) ≤ (1 + ε)d(x, z)

for every x, z ∈M with d(x, z) ≤ r and every w ∈ TzM with ‖w‖ ≤ r.

Proof. By [8, Corollary 1.31], it suffices to prove the Lemma in the case
when M is a hyperbolic plane of constant curvature −K0 < 0 (note that
Corollary 1.31 of [8] is true for infinite-dimensional manifolds as well, since
its proof only relies on the Rauch comparison theorem, which remains true
in the infinite dimensional setting, see [14]). But in the two-dimensional
case of constant negative curvature, the Lemma is an exercise which can be
solved first locally, by considering an exponential chart expz and applying
Gronwall’s inequality to the corresponding local expression of the geodesic
flow, and then globally, by using the fact that, for any two given balls of the
same radius in a simply connected space of constant curvature, there always
exists an isometry mapping one ball onto the other one. �

Proposition 2.5. Let M be a Riemannian manifold such that i(M) > 0,
c(M) > 0. Assume that the sectional curvature K of M is bounded below by
−K0 for some K0 > 0. Let f : M → R be a Lipschitz function. Then the
functions fλ are also Lipschitz, and

lim
λ→0+

Lip(fλ) = Lip(f).

Proof. We may assume Lip(f) > 0 (as fλ is constant whenever f is constant).
Given ε > 0, let r = r(ε,K0) > 0 be as in the statement of the preceding
Lemma. Using Proposition 2.1, we have that, for λ ∈ (0, r/2Lip(f)), the
infimum defining fλ(x) can be restricted to the ball B(x, r). Then we can
write

fλ(x) = inf
v∈BTxM (0,r)

{f(expx(v)) +
1

2λ
‖v‖2}

for every x ∈ M and λ ∈ (0, r/2Lip(f)). Given x, z ∈ M with d(x, z) < r,
for every δ > 0 we can find wδ,z ∈ BTzM (0, r) such that

f(expz(wδ,z)) +
1

2λ
‖wδ,z‖2 ≤ fλ(z) + δ,

and therefore

fλ(x)− fλ(z) ≤

f (expx(Lzx(wδ,z))) +
1

2λ
‖Lzx(wδ,z)‖2 − f (expz(wδ,z))−

1

2λ
‖wδ,z‖2 + δ =

f (expx(Lzx(wδ,z)))− f (expz(wδ,z)) + δ ≤
Lip(f)d (expx (Lzx(wδ,z)) , expz(wδ,z)) ≤ Lip(f)(1 + ε)d(x, z) + δ.

By letting δ → 0+ we obtain

fλ(x)− fλ(z) ≤ Lip(f)(1 + ε)d(x, z),
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and by interchanging the roles of z and x we deduce that

|fλ(x)− fλ(z)| ≤ Lip(f)(1 + ε)d(x, z)

for every x, z ∈ M with d(x, z) < r. This shows that fλ is locally (1 +
ε)Lip(f)-Lipschitz for every λ ∈ (0, r/2Lip(f)), and because M is a Rie-
mannian manifold it follows that fλ is globally (1 + ε)Lip(f)-Lipschitz for
λ ∈ (0, r/2Lip(f)). Hence we have lim supλ→0+ Lip(fλ) ≤ Lip(f). On the
other hand, since limλ→0+ fλ(x) = f(x) for every x, it is immediately checked
that Lip(f) ≤ lim infλ→0+ Lip(fλ). �

An analogous result for locally Lipschitz functions f easily follows from
the preceding Proposition and Proposition 2.1. We let the reader write the
corresponding statement.

Now let us state some results from [4] concerning convexity properties of
fλ. The following Lemma will be useful in the proof of Theorem 1.1.

Lemma 2.6. Let M be a Riemannian manifold, and F : M ×M → R ∪
{+∞} a convex function (where M ×M is endowed with its natural product
Riemannian metric). Assume either that M has the property that every two
points can be connected by a geodesic in M , or else that F is continuous and
M is complete. Then, the function ψ :M → R defined by

ψ(x) = inf
y∈M

F (x, y)

is also convex. Similarly, if G :M ×M → R ∪ {−∞} is a concave function
(and under the same assumptions on M or on continuity of G) then the
function

M ∋ x 7→ φ(x) = sup
y∈M

G(x, y)

is concave.

Definition 2.7. LetM be a Riemannian manifold. We say that the distance
function d : M ×M → R is uniformly locally convex on bounded sets near
the diagonal if, for every bounded subset B of M there exists r > 0 such
that d is convex on B(x, r) × B(x, r), and the set B(x, r) is convex in M ,
for all x ∈ B).

Every complete finite-dimensional Riemannian manifold of nonpositive
sectional curvature satisfies this condition, as we indicated in [4]. We con-
clude this section with the following Proposition from [4].

Proposition 2.8. Let M be a Riemannian manifold with the property that
any two points of M can be joined by a minimizing geodesic, and let f :
M → R ∪ {+∞} be a lower-semicontinuous convex function.

(1) Assume that f is bounded on bounded sets and that the distance
function d : M × M → R is uniformly locally convex on bounded
sets near the diagonal. Then, for every bounded subset B of M there
exists λ0 > 0 such that fλ is convex on B for all λ ∈ (0, λ0).



12 D. AZAGRA AND J. FERRERA

(2) Assume that the distance function d : M ×M → R is convex on all
of M ×M . Then fλ is convex on M for every λ > 0.

Finally, if one assumes that f is continuous and M is complete, it is not
necessary to require that every two points of M can be connected by a mini-
mizing geodesic in M in order that the above statements hold true.

In particular we see that if M is a Cartan-Hadamard manifold and f :
M → R is convex then the functions fλ are convex. Under the assumptions
of Theorem 1.1 it is not difficult to see that then fλ = (fλ)

µ are locally C1,1.
This provides a useful regularization method for (not necessarily strongly)
convex functions on such manifolds. See [12, 3] for more background on such
topics.

3. A key convexity lemma

Lemma 3.1. Let M be a Riemannian manifold with sectional curvature K
such that −K0 ≤ K ≤ K0 for some K0 > 0. Assume also that i(M) > 0
and c(M) > 0. Let q > 1. Then:

(1) There exists R = R(K0, q) > 0 such that for every C ≥ 0, for every
A ≥ 2C and B ≥ qA, and for every x0 ∈ M and y0 ∈ B(x0, R), the
function

ϕ(x, y) := Ad(x, y)2 +Bd(x, x0)
2 − Cd(y, y0)

2

is convex on B(x0, R)×B(x0, R).
(2) There also exists R′ = R′(K0, q) > 0 such that for every C > 0 and

B ≥ qC, and for every x0, y0, z0 ∈ M with z0, y0 ∈ B(x0, R
′), the

function
φ(x) := Bd(x, z0)

2 − Cd(x, y0)
2

is convex on B(x0, R
′).

Proof. I. Let us first consider the function B(x0, R) × B(x0, R) ∋ (x, y) 7→
ψ(x, y) = d(x, y)2, where, for the time being,

(3.1) 0 < 2R < min{i(M), c(M), π/4
√

K0}
(we will impose more restrictions on R later on). We have to estimate the
Hessian D2ψ(x, y)(v,w)2 . Let γ be the unique minimizing geodesic of speed
1 connecting the points x and y, denote the length of γ by ℓ = d(x, y), and let
X be the unique Jacobi field along γ such that X(0) = v andX(ℓ) = w (note
that the points x and y are not conjugate because d(x, y) < 2R < i(M)).
We have

D2ψ(x, y)(v,w)2 = 2ℓ
(

〈X(ℓ),X ′(ℓ)〉 − 〈X(0),X ′(0)〉
)

=

= 2ℓ

∫ ℓ

0

(

〈X ′,X ′〉 − 〈R(γ′,X)γ′,X〉
)

dt,

whereR is the curvature tensor (defined byR(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−
∇[X,Y ]Z as in [16]). In particular, from the second equality, it is obvious that
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when M has sectional curvature K ≤ 0 one has D2ψ(x, y)(v,w)2 ≥ 0, hence
ψ is convex on the set B(x0, R)×B(x0, R).

Because of the linearity of the Jacobi equation, the field X can be written
as X = W + V , where W is the unique Jacobi field along γ such that
W (0) = 0, W (ℓ) = w, and V is the unique Jacobi field along γ with V (0) =
v, V (ℓ) = 0.

II. Let us suppose first that the fields W,V are both orthogonal to γ. Us-
ing the Rauch comparison theorem (as stated, for instance in [16, Theorem
2.3(b) of Chapter IV, p. 149], which also holds in the infinite dimensional
case, see [14, Chapter XI, Theorem 5.1 and its proof]), we obtain, by com-
paring the Jacobi field W with a corresponding Jacobi field Y in a space E
of constant curvature K0 (for instance a suitable sphere in the Euclidean or
the Hilbert space), that

‖w‖ = ‖W (ℓ)‖ ≥ ‖Y (ℓ)‖ =
sin

(√
K0ℓ

)

√
K0

‖W ′(0)‖

because in this case Y (t) =
sin(

√
K0ℓ)√
K0

P (t), where P (t) denotes the paral-

lel translation of W ′(0) along the corresponding geodesic. Similarly, now

comparing W with a corresponding Jacobi field Ỹ in a space of constant
curvature equal to −K0 (for instance a suitable hyperbolic space modelled
on an open half-space of the Euclidean or the Hilbert space), we get

‖w‖ = ‖W (ℓ)‖ ≤ ‖Ỹ (ℓ)‖ =
sinh

(√
K0ℓ

)

√
K0

‖W ′(0)‖,

because in this case Ỹ (t) =
sinh(

√
K0t)√

K0
P (t). Therefore we have

(3.2)
sin

(√
K0ℓ

)

√
K0

‖W ′(0)‖x ≤ ‖w‖y ≤ sinh
(√
K0ℓ

)

√
K0

‖W ′(0)‖x.

In a similar manner one can also see that

(3.3)
sin

(√
K0ℓ

)

√
K0

‖V ′(ℓ)‖y ≤ ‖v‖x ≤ sinh
(√
K0ℓ

)

√
K0

‖V ′(ℓ)‖y .

Now, using once again the Rauch comparison Theorem (by comparing W
with a corresponding Jacobi field Y in a space E of constant curvature K0)
we also have that

〈W ′(t),W (t)〉
‖W (t)‖2 ≥ 〈Y ′(t), Y (t)〉

‖Y (t)‖2 , and ‖W (t)‖ ≥ ‖Y (t)‖,

where Y (t) =
sin(

√
K0t)√
K0

P (t), with P as above. Therefore

〈W ′(t),W (t)〉 ≥ 〈Y ′(t), Y (t)〉 = sin
(√
K0t

)

cos
(√
K0t

)

√
K0

‖W ′(0)‖2,
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which combined with (3.2) yields

2ℓ〈W ′(ℓ),W (ℓ)〉y ≥ 2ℓ
√
K0 sin

(√
K0ℓ

)

cos
(√
K0ℓ

)

sinh2
(√
K0ℓ

) ‖w‖2y .

In a similar way one checks that

−2ℓ〈V ′(0), V (0)〉x ≥ 2ℓ
√
K0 sin

(√
K0ℓ

)

cos
(√
K0ℓ

)

sinh2
(√
K0ℓ

) ‖v‖2x

(just note that V (t) = J(ℓ− t), where J is the unique Jacobi field along the
geodesic t 7→ γ(ℓ− t) joining y to x with J(0) = 0, J(ℓ) = v, and therefore
V ′(t) = −J ′(ℓ−t), which accounts for the sign change in the scalar product).

Now, let r, s, ε be three1 positive numbers such that

(3.4) 2 >
1 + s

1− ε
> 1.

Since the three functions t 7→ t sin t cos t
sinh2(t)

, t 7→ t
sin t and t 7→ t cosh t

sinh t tend to 1 as

t→ 0+ and are continuous and stricly positive on (0, π4 ], we can find R > 0
sufficiently small so that, for all ℓ ∈ (0, 2R],

ℓ
√
K0 sin

(√
K0ℓ

)

cos
(√
K0ℓ

)

sinh2
(√
K0ℓ

) ≥ (1− ε)(3.5)

ℓ
√
K0

sin
(√
K0ℓ

) ≤ 1 + r(3.6)

t cosh t

sinh t
≤ 1 + s(3.7)

hold together with (3.1).
Then we have

(3.8) 2ℓ〈W ′(ℓ),W (ℓ)〉y − 2ℓ〈V ′(0), V (0)〉x ≥ 2(1− ε)
(

‖w‖2y + ‖v‖2x
)

.

Thus, by combining (3.2), (3.3), (3.5), and (3.8), we obtain

D2ψ(x, y)(v,w)2 = 2ℓ
(

〈X(ℓ),X ′(ℓ)〉 − 〈X(0),X ′(0)〉
)

=

2ℓ
(

〈W (ℓ) + V (ℓ),W ′(ℓ) + V ′(ℓ)〉 − 〈W (0) + V (0),W ′(0) + V ′(0)〉
)

=

2ℓ〈W (ℓ),W ′(ℓ)〉 − 2ℓ〈V (0), V ′(0)〉 + 2ℓ〈w, V ′(ℓ)〉 − 2ℓ〈v,W ′(0)〉 ≥
2(1 − ε)

(

‖w‖2y + ‖v‖2x
)

− 2ℓ‖W ′(0)‖x‖v‖y − 2ℓ‖w‖y‖V ′(ℓ)‖y ≥

2(1 − ε)
(

‖w‖2y + ‖v‖2x
)

− 4
ℓ
√
K0

sin
(√
K0ℓ

)‖w‖y‖v‖x ≥

2(1 − ε)
(

‖w‖2y + ‖v‖2x
)

− 4(1 + r)‖w‖y‖v‖x,
that is

(3.9) D2ψ(x, y)(v,w)2 ≥ 2(1 − ε)
(

‖w‖2y + ‖v‖2x
)

− 4(1 + r)‖w‖y‖v‖x.

1In the proof of the following Lemma the reader will see why here we choose to work
with these three numbers instead of just one.
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III. Let us now suppose that the Jacobi fields W , V are tangent to γ. Then
X =W+V is of the formX(t) = (at+b)γ′(t) for some a, b ∈ R; in particular
v = X(0) = bγ′(0), w = X(ℓ) = (aℓ+b)γ′(ℓ), and X ′(t) = aγ′(t). Hence also
‖v‖2x = b2, ‖w‖2y = a2ℓ2 + b2 + 2aℓb, 〈Lxy(v), w〉y = b2 + abℓ, and therefore

D2ψ(x, y)(v,w)2 = 2ℓ
(

〈X(ℓ),X ′(ℓ)〉 − 〈X(0),X ′(0)〉
)

=

2ℓ
(

〈aℓγ′(ℓ) + bγ′(ℓ), aγ′(ℓ)〉 − 〈bγ′(0)), aγ′(0)〉
)

= 2ℓ2a2 =

2
(

‖v‖2x + ‖w‖2y − 2〈Lxy(v), w〉y
)

≥
2(1 − ε)

(

‖w‖2y + ‖v‖2x
)

− 4〈Lxy(v), w〉y ,
that is

(3.10) D2ψ(x, y)(v,w)2 ≥ 2(1− ε)
(

‖w‖2y + ‖v‖2x
)

− 4〈Lxy(v), w〉y .
IV. In the general case we have that every Jacobi field X along γ can be
written in the formX = X⊤+X⊥, whereX⊤ andX⊥ are Jacobi fields along
γ, X⊤ and (X⊤)′ are tangent to γ, and X⊥ and (X⊥)′ are orthogonal to γ
(see for instance [14, Propositions 2.3 and 2.4 of Chapter IX]). In particular
〈X⊤, (X⊥)′〉 = 0 and 〈X⊥, (X⊤)′〉 = 0. This implies that

〈X ′(t),X(t)〉 = 〈(X⊤)′(t),X⊤(t)〉+ 〈(X⊥)′(t),X⊥(t)〉,
and therefore, by combining estimates (3.9) and (3.10), we obtain

D2ψ(x, y)(v,w)2 = 2ℓ
(

〈X(ℓ),X ′(ℓ)〉 − 〈X(0),X ′(0)〉
)

=

2ℓ
(

〈X⊤(ℓ), (X⊤)′(ℓ)〉 − 〈X⊤(0), (X⊤)′(0)〉
)

+

+2ℓ
(

〈X⊥(ℓ), (X⊥)′(ℓ)〉 − 〈X⊥(0), (X⊥)′(0)〉
)

≥

2(1 − ε)
(

‖w⊤‖2y + ‖v⊤‖2x
)

− 4〈Lxy(v
⊤), w⊤〉y +

+2(1− ε)
(

‖w⊥‖2y + ‖v⊥‖2x
)

− 4(1 + r)‖w⊥‖y‖v⊥‖x ≥

2(1 − ε)
(

‖w‖2y + ‖v‖2x
)

− 4(1 + r)‖w‖y‖v‖x,
where we have also used the following inequalities

〈Lxy(v
⊤), w⊤〉y + ‖w⊥‖y‖v⊥‖x ≤ ‖v⊤‖x‖w⊤‖y + ‖w⊥‖y‖v⊥‖x ≤

‖v⊤ + v⊥‖x ‖w⊤ + w⊥‖y,
of which the second one is immediately checked by squaring both sides and
observing that

2‖v⊤‖x‖w⊥‖y‖v⊥‖x‖w⊤‖y ≤ ‖v⊤‖2x‖w⊥‖2y + ‖v⊥‖2x‖w⊤‖2y.
Therefore we also get in the general case that

(3.11) D2ψ(x, y)(v,w)2 ≥ 2(1− ε)
(

‖w‖2y + ‖v‖2x
)

− 4(1 + r)‖w‖y‖v‖x.

V. Now let us consider the function B(x0, R) ∋ x 7→ η(x) := d(x, x0)
2. If we

take y = x0, w = 0 in the above estimation for D2ψ(x, y), we immediately
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get

(3.12) D2η(x)(v)2 = D2ψ(x, x0)(v, 0)
2 ≥ 2(1− ε)‖v‖2x.

On the other hand, a further application of the Rauch comparison theo-
rem (very similar to what we have already done, by comparing with a cor-
responding Jacobi field in a space of constant curvature K0; see for instance
[16, Exercise 4 following Lemma 2.9 in Chapter 4]) shows that
(3.13)

D2η(x)(v)2 = D2ψ(x, x0)(v, 0)
2 ≤ 2

√
K0d(x, x0) cosh

(√
K0d(x, x0)

)

sinh
(√
K0d(x, x0)

) ‖v‖2x,

and using (3.6) and (3.12) we get

(3.14) 2(1− ε)‖v‖2x ≤ D2η(x)(v)2 ≤ 2(1 + s)‖v‖2x.

VI.Now we can proceed with the proof of the Lemma. Consider the function

B(x0, R)×B(x0, R) ∋ (x, y) 7→ ϕ(x, y) = Aψ(x, y) +Bη(x;x0)− Cη(y; y0),

where we denote η(x;x0) = d(x, x0)
2 and η(y; y0) = d(y, y0)

2.
According to our previous estimates, we have

D2ϕ(x, y)(v,w)2 =

AD2ψ(x, y)(v,w)2 +BD2η(x;x0)(v)
2 − CD2η(y; y0)(w)

2 ≥
2A

(

(1− ε)
(

‖v‖2 + ‖w‖2
)

− 2(1 + r)‖v‖ ‖w‖
)

+ 2B(1− ε)‖v‖2 − 2C(1 + s)‖w‖2,
and we want to find A,B such that the bottom term is positive. Without
loss of generality we may and do assume that C = 1, and then we need to
find A,B > 1 such that

A(1−ε)
(

‖v‖2 + ‖w‖2
)

−2A(1+ r)‖v‖ ‖w‖+B(1−ε)‖v‖2 − (1+s)‖w‖2 ≥ 0

for all (v,w) ∈ TM(x,y), (x, y) ∈ B(x0, R)×B(x0, R). Assume that

A ≥ 2 >
1 + s

1− ε
.

We can then write

A(1− ε)
(

‖v‖2 + ‖w‖2
)

− 2A(1 + r)‖v‖ ‖w‖ +B(1− ε)‖v‖2 − (1 + s)‖w‖2 =

(1− ε)(A+B)‖v‖2 + (A(1− ε)− (1 + s)) ‖w‖2 − 2A(1 + r)‖v‖ ‖w‖ =

(α‖v‖ − β‖w‖)2 + (1− ε) (B − B(A, r, s, ε)) ‖v‖2,
where

B(A, r, s, ε) := A2
(

(1 + r)2 − (1− ε)2
)

+A(1 + s)(1− ε)

(1− ε) (A(1− ε)− (1 + s))
,

α :=
√

(A+ B(A, r, s, ε))(1 − ε), β :=
√

(1− ε)A− (1 + s), and

αβ = A(1 + r).
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Now, the functions

[2,∞) ∋ A 7→ hε(A) :=
B(A, ε, ε, ε)

A
=

4εA+ 1− ε2

(1− ε)2A− 1 + ε2

are easily checked to be decreasing and nonnegative for all ε ∈ (0, 14), hence

max
A≥2

hε(A) = hε(2) =
8ε+ 1− ε2

2(1 − ε)2A− 1 + ε2
,

and this quantity converges to 1 as ε goes to 0. Then we can take ε = s = r
and assume that ε (and consequently R too) is small enough so that hε(2) ≤
q, and in particular

0 ≤ B(A, ε, ε, ε)
A

≤ hε(A) ≤ q for all A ≥ 2.

Therefore, for all A ≥ 2 and B ≥ qA we also have B ≥ B(A, ε, ε, ε) ≥ 0,
and consequently D2ϕ(x, y)(v,w)2 ≥ 0 for every x0 ∈M,y0 ∈ B(x0, R) and
x, y ∈ B(x0, R). Thus (1) is proved.

Finally, let us show (2). This is much easier. We have

D2φ(x)(v)2 = BD2η(x; z0)(v)
2 − CD2η(x; y0)(v)

2 ≥
2B(1− ε)‖v‖2 − 2C(1 + s)‖v‖2,

so it is clear that we can choose ε, s,R > 0 small enough so that for all
B ≥ qC we have

B

C
≥ q ≥ 1 + s

1− ε

and consequently D2φ(x)(v)2 ≥ 0 for every x0, y0, z0, x ∈M with x, y0, z0 ∈
B(x0, R). �

There are interesting variants of the preceding Lemma. For instance, if
we further assume that the sectional curvature of M is nonpositive, one can
show that the mentioned compensation property holds semiglobally.

Lemma 3.2. Let M be a Riemannian manifold with sectional curvature K
such that −K0 ≤ K ≤ 0 for some K0 > 0. Assume also that i(M) > 0
and c(M) > 0, and fix R with 0 < 2R < min{i(M), c(M)}. Then, for every
C0 ≥ 0 there exist A0, B0 > 0 (dependent only on K0, R, and C0) such that,
for every A ≥ A0 and B ≥ B0, and for every x0 ∈ M and y0 ∈ B(x0, R),
the function

ϕ(x, y) = Ad(x, y)2 +Bd(x, x0)
2 − C0d(y, y0)

2

is strongly convex on B(x0, R)×B(x0, R).

Proof. Let us first put A = A0 and B = B0. The proof goes along the
same lines (sometimes using Rauch’s theorem to compare a Jacobi field J
with a corresponding Jacobi field in a space of constant curvature equal to
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0, for instance the Euclidean or the Hilbert space), in order to arrive to the
following estimation

D2ϕ(x, y)(v,w)2 =

A0D
2ψ(x, y)(v,w)2 +B0D

2η(x;x0)(v)
2 −C0D

2η(y; y0)(w)
2 ≥

2A0

(

(1− ε)
(

‖v‖2 + ‖w‖2
)

− 2‖v‖ ‖w‖
)

+ 2B0(1− ε)‖v‖2 − 2C0N‖w‖2,

where now R is fixed and not necessarily small (with the only restriction
that 0 < 2R < min{i(M), c(M)}); where N (taking the place of (1 + s) in
the proof of Lemma 3.1) is a number depending only on R,K0, and where
ε ∈ (0, 1) is neither particularly small, but also a function of R,K0. (Now
we have r = 0).

We may assume that C0N = 1, and we have

2A0

(

(1− ε)
(

‖v‖2 + ‖w‖2
)

− 2‖v‖ ‖w‖
)

+ 2B0(1− ε)‖v‖2 − 2‖w‖2 =

(1− ε)A0

(

‖v‖2 + ‖w‖2
)

+ (1− ε)(A0 + 2B0)‖v‖2 +
+((1− ε)A0 − 2) ‖w‖2 − 4A0‖v‖ ‖w‖ =

(1− ε)A0

(

‖v‖2 + ‖w‖2
)

+ (α‖v‖ − β‖w‖)2 ,

where

α :=
√

(A0 + 2B0)(1− ε), β :=
√

(1− ε)A0 − 2, and αβ = 2A0,

which is easily satisfied if for instance we fix A0 > 2/(1 − ε) and define

B0 =
1

2

(

4A2
0

(1− ε) ((1− ε)A0 − 2)
−A0

)

.

For these A0, B0 we thus have

D2ϕ(x, y)(v,w)2 ≥ (1− ε)A0

(

‖v‖2 + ‖w‖2
)

,

and therefore the function ϕ is strongly convex on B(x0, R)×B(x0, R).
This shows the Lemma in the case when A = A0 and B = B0. For A ≥ A0

and B ≥ B0 the result follows at once taking into account that when K ≤ 0
the function B(x0, R) × B(x0, R) ∋ (x, y) 7→ d(x, y)2 is convex for every R
with 0 < 2R < min{i(M), c(M)}. �

4. An estimate of the difference between parallel translation
and the differential of the exponential map

Proposition 4.1. Let M be a Riemannian manifold (possibly infinite di-
mensional). For every x0 ∈M there exist r > 0 and C > 0 such that

‖d expx
(

exp−1
x (y)

)

− Lxy‖L(TxM,TyM) ≤ Cd(x, y)2

for every x, y ∈ B(x0, r).
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Proof. Let x, y be two points of M connected by a minimizing geodesic
γ : [0, ℓ] → M with ‖γ′(0)‖ = 1, ℓ = d(x, y), and assume that there are no
conjugate points in γ[0, ℓ]. For each h ∈ TxM ≡ T (TxM)tγ′(0), it is well
known that the differential of expx on the segment [0, ℓv] is given by

J(t) = d expx (tv) (th),

where v = γ′(0) and J : [0, ℓ] → TM is the unique vector field along the
geodesic γ satisfying the Jacobi equation

(4.1) J ′′(t) = −R
(

γ′(t), J(t)
)

γ′(t)

with initial conditions

J(0) = 0, J ′(0) = h.

We will denote this particular Jacobi field by Jx,v,h(t), which we will abbre-
viate to J(t) when the data x, v, h are understood. Because the exponential
map (x, v) 7→ expx(v) is of class C∞ on an open subset of TM , it is clear
that the map (x, v, h, t) 7→ Jx,v,h(t) is also of class C∞ wherever it is defined
(in particular for all x ∈ M , v, h ∈ TxM with ‖v‖ ≤ 1, ‖h‖ ≤ 1 and |t|
sufficiently small depending on x).

Let us also consider P : [0, ℓ] → TM , the parallel translation of h along
γ (that is, the unique parallel field along γ with P (0) = h = J ′(0)). We will
denote this particular parallel field by Px,v,h(t) (but again we will abbreviate
this expression to P (t) if the point x and the vectors v, h are understood).
With the notation we use, we have Px,v,h(t) = Lx expx(tv)

(h). Since P (t) is the
solution of a linear ordinary differential equation which depends C∞-wise
on the initial data x, v, h, it follows from the theorem of differentiability
of the flow of an ODE that the mapping (x, v, h, t) 7→ Px,v,h(t) is of class
C∞ wherever it is defined (in particular, by homogeneity of geodesics and
parallel translation, on the same set where Jx,v,h(t) is defined).

Consider Ω = {((x, v), (y, h), (z, w), t) ∈ TM × TM × TM × R : x =
y = z}, which is a submanifold of TM × TM × TM × R. We will denote
the points of Ω by (x, v, h,w, t) instead of the more cumbersome expression
((x, v), (x, h), (x,w), t). According to the considerations we have made, the
mapping

Φ(x, v, h,w, t) := 〈Jx,v,h(t)− tPx,v,h(t) , Px,v,w(t)〉

is well defined and of class C∞ on an open subset U of Ω, and (x0, 0, 0, 0, 0) ∈
U for every given point x0 ∈M .

Now fix x0 ∈M . By the definition of the topology of Ω as a submanifold
of (TM)3 × R, there exists R > 0 such that the mapping Φ is defined and
C∞ on a neighborhood of (x0, 0, 0, 0, 0) of the form

U0 = {(x, v, h,w, t) ∈ Ω : max{d(x, x0), ‖v‖, ‖h‖, ‖w‖, |t|} ≤ R}.
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Moreover, because the partial derivative ∂3Φ/∂t3 is continuous, we can as-
sume that this number R is small enough so that

(4.2)

∣

∣

∣

∣

∂3Φ

∂t3
(x, v, h,w, t)

∣

∣

∣

∣

≤ C0

for every (x, v, h,w, t) ∈ U0, where C0 = 1+
∣

∣

∣

∂3Φ
∂t3

(x0, 0, 0, 0, 0)
∣

∣

∣
. Now observe

that

(4.3)
∂Φ

∂t
(x, v, h,w, t) = 〈J ′

x,v,h(t)− Px,v,h(t) , Px,v,w(t)〉,

and

(4.4)
∂2Φ

∂t2
(x, v, h,w, t) = 〈J ′′

x,v,h(t) , Px,v,w(t)〉.

Since h = J ′(0) = P (0), and J ′′(0) = −R(γ′(0), J(0))γ′(0) = 0 (because
J(0) = 0), we immediately check that for t = 0 we have

(4.5) 0 = Φ(x, v, h,w, 0) =
∂Φ

∂t
(x, v, h,w, 0) =

∂2Φ

∂t2
(x, v, h,w, 0).

Therefore, using the fundamental theorem of calculus thrice, and plugging
(4.2), we obtain

(4.6) Φ(x, v, h,w, t) =

∫ t

0

∫ s

0

∫ ν

0

∂3Φ

∂τ3
(x, v, h,w, τ)dτdνds ≤ C0t

3

3
.

Since for every wt ∈ TMexpx(tv)
with ‖wt‖ = R there exists w ∈ TxM with

‖w‖ = R and Px,v,w(t) = wt, this implies that

sup
wt∈TMexpx(tv),‖wt‖=R

〈Jx,v,h(t)− tPx,v,h(t) , wt〉 ≤
C0t

3

3
,

and therefore that

(4.7) ‖Jx,v,h(t)− tPx,v,h(t)‖ ≤ C0t
3

3R
.

Now, for any given x, y ∈ B(x0, R
2/2) with x 6= y, we set

v := R
exp−1

x (y)

‖ exp−1
x (y)‖

, t :=
d(x, y)

R
,

and we note that ‖v‖ = R, 0 < t ≤ R. For every h ∈ TxM with ‖h‖ = R
we then have

‖d expx
(

exp−1
x (y)

)

(h)− Lxy(h)‖ =
1

t
‖d expx (tv) (th)− tLx expx(tv)

(h)‖ =

1

t
‖Jx,v,h(t)− tPx,v,h(t)‖ ≤ 1

t

C0t
3

R
=
C0d(x, y)

2

R3
,

and taking the sup over those h ∈ TxM with ‖h‖ = R we deduce that

(4.8) ‖d expx
(

exp−1
x (y)

)

− Lxy‖ ≤ C0d(x, y)
2

R4
,
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which yields the inequality in the statement for C = C0/R
4, r = R2/2. �

Corollary 4.2. Let M be a Riemannian manifold (possibly infinite dimen-
sional). For every x0 ∈M there exist r > 0 and C > 0 such that

‖d(exp−1
x )(y) ◦ Lxy − I‖L(TxM,TxM) ≤ Cd(x, y)2

for every x, y ∈ B(x0, r).

Proof. Let us denote Bxy = d expx
(

exp−1
x (y)

)

. We know that Bxy
−1 =

d(exp−1
x )(y) is continuous with respect to x, y, and Bx0x0 = I = Bx0x0

−1,
hence there exists r > 0 such that ‖Bxy

−1‖ ≤ 2 whenever x, y ∈ B(x0, r).
We may also assume r is smaller than the r in the statement of the preceding
Proposition, so that we also have ‖Lxy − Bxy‖ ≤ Cd(x, y)2 for every x, y ∈
B(x0, r). Since Lxy is an isometry with inverse Lyx we then have

‖d(exp−1
x )(y) ◦ Lxy − I‖ = ‖Bxy

−1 ◦ Lxy − I‖ =

‖Bxy
−1 ◦ (Lxy −Bxy) ‖ ≤ 2‖Lxy −Bxy‖ ≤ 2Cd(x, y)2

for all x, y ∈ B(x0, r). �

5. Semiconcavity, semiconvexity, and Lipschitzness of gradients

The next Proposition is well known and tells us that functions which are
locally semiconvex and locally semiconcave are continuously differentiable.

Proposition 5.1. Let M be a Riemannian manifold, B ⊂ M an open
convex set, and f : B → R a continuous function. Then f is C1 if and only
if there exist two C1 functions g, h : B → R such that f + g is convex and
f − h is concave.

Proof. We only need to prove the ”if” part. We will use some basic facts
about Fréchet subdifferentials on Riemannian manifolds (we refer the reader
to [5] for an introduction to this topic). The function f+g is subdifferentiable
since it is convex and continuous, hence f = (f + g)− g is subdifferentiable
too. On the other hand, f − h is superdifferentiable since it is concave and
continuous, and consequently f = (f −h)+h is also superdifferentiable. We
deduce that f is differentiable on B. Finally, because f + g is differentiable
and convex, we deduce (see [4, Proposition 3.8]) that f + g is C1, and
therefore so is f . �

As we are about to see, much more is true.

Proposition 5.2. Let M be a Riemannian manifold. If a function f :
M → R is both locally C-semiconvex and locally C-semiconcave, then f ∈
C1,1(M), with Lip(∇f) ≤ 12C.2

2In Theorem 1.5 below we will show that if dim(M) < ∞ then one has the following
sharp estimation: Lip(∇f) ≤ 2C.
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Proof. Fix x0 ∈M . By continuity of the curvature tensor, it is clear that the
sectional curvature of M is locally bounded, so there exists R > 0 such that
the sectional curvature of M is bounded by some K0 on the ball B(x0, 3R).
Then, if ϕ denotes the function ϕ(x) = Cd(x, x0)

2, defined on this ball, we
know that

|D2ϕ(z)| ≤ 2Cν
(

√

K0d(z, x0)
)

,

where ν(t) = t e
t+e−t

et−e−t . As ν is increasing, a bound for the Hessian of ϕ on

the ball B(x0, 3R) is 2Cν
(√
K03R

)

. Moreover, since this quantity tends to
2C as R goes to 0, we can assume that R is small enough so that

|D2ϕ(z)| ≤ A :=
24

11
C for every z ∈ B(x0, 3R).

Note that A does not depend on x0, and that ∇ϕ is A-Lipschitz (according
to definition 1.2) on the ball B(x0, 3R) (this is an easy exercise; if in doubt,
see the proof that (7) =⇒ (1) in Theorem 1.5 below).

We may also assume R is small enough so that 2R < min{i(x0), c(x0)}
and the functions ϕ+ f, ϕ− f : B(x0, 3R) → R are convex.

We will start by showing that that

(5.1) (f + ϕ)(expx(h))− 2(f + ϕ)(x) + (f + ϕ)(expx(−h)) ≤ A‖h‖2

provided that x ∈ B(x0, R) and ‖h‖ ≤ 2R, h ∈ TxM . In order to prove this
inequality, observe that

0 ≤ (ϕ+ f)(expx(h))− 2(ϕ + f)(x) + (ϕ+ f)(expx(−h))
and

0 ≤ (ϕ− f)(expx(h))− 2(ϕ − f)(x) + (ϕ− f)(expx(−h))
since both ϕ+ f and ϕ− f are convex. The second inequality implies

f(expx(h)) − 2f(x) + f(expx(−h)) ≤ ϕ(expx(h)) − 2ϕ(x) + ϕ(expx(−h)).
Hence, plugging this into the first inequality, we have

0 ≤ (ϕ+ f)(expx(h))− 2(ϕ + f)(x) + (ϕ+ f)(expx(−h)) ≤
≤ 2(ϕ(expx(h)) − 2ϕ(x) + ϕ(expx(−h))) ≤ A‖h‖2,

since ϕ is convex and

ϕ(expx(h)) − ϕ(x) − 〈∇ϕ(x), h〉 ≤ 1

2
A‖h‖2.

Now observe that from (5.1) it follows that

(5.2) (f + ϕ)(expx(h))− (f + ϕ)(x) − 〈∇(f + ϕ)(x), h〉 ≤ A‖h‖2.
We proceed to show that f + ϕ is C1,1 with Lip (∇(f + ϕ)) ≤ 9

2A. We

already know that f + ϕ is C1 by Proposition 5.1.
Let x, y ∈ B(x0, r0), and h ∈ TxM with ‖h‖ ≤ 2r0, where r0 will be fixed

later on. Let us set v = exp−1
x (y). The following inequality is a consequence

of f + ϕ’s convexity:

〈∇(f + ϕ)(y), Lxyh〉 − 〈∇(f + ϕ)(x), h〉 ≤
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≤ (f + ϕ)(expy(Lxyh))− (f + ϕ)(y)− 〈∇(f + ϕ)(x), h〉 =
=

(

(f + ϕ)(expy(Lxyh)− (f + ϕ)(x) − 〈∇(f + ϕ)(x), h + v〉
)

−
(

(f + ϕ)(y) − (f + ϕ)(x) − 〈∇(f + ϕ)(x), v〉
)

.

Since f +ϕ is convex, the expression in the bottom line is less than or equal
to 0. We deduce that, for w ∈ TxM with expx(w) = expy(Lxyh),

〈∇(f + ϕ)(y), Lxyh〉 − 〈∇(f + ϕ)(x), h〉 ≤
≤ (f + ϕ)(expy(Lxyh))− (f + ϕ)(x)− 〈∇(f + ϕ)(x), h + v〉 =

= (f+ϕ)(expx(w))−(f+ϕ)(x)−〈∇(f+ϕ)(x), w〉+〈∇(f+ϕ)(x), w−h−v〉.
Now, (5.2) and again the convexity of f + ϕ allow us to deduce

〈∇(f + ϕ)(y), Lxyh〉 − 〈∇(f + ϕ)(x), h〉 ≤
≤ A‖w‖2 + 〈∇(f + ϕ)(x), w − h− v〉 ≤

≤ A‖w‖2 + (f + ϕ)(expx(w − h− v))− (f + ϕ)(expx(0)) ≤

(5.3) ≤ A‖w‖2 +K1‖w − h− v‖
where K1 is the Lipschitz constant of (f + ϕ) ◦ expx on B(0, 8r0).

Our next step is to estimate ‖w‖ and ‖w − h− v‖. On the one hand, we
have

(5.4) ‖w‖ = d(x, expy(Lxyh)) ≤ d(x, y) + d(y, expy(Lxyh)) = ‖v‖+ ‖h‖
On the other hand, we claim:

Claim 5.3. There exist r0,K2 > 0 such that

‖w − h− v‖ ≤ K2(‖v‖ + ‖h‖)3

for every x, y ∈ B(x0, r0) and every h with ‖h‖ ≤ 2r0.

We put off the proof of the claim. By (5.3), (5.4) and the Claim, we
deduce

〈∇(f+ϕ)(y), Lxyh〉−〈∇(f+ϕ)(x), h〉 ≤ A(‖h‖+‖v‖)2+K1K2(‖h‖+‖v‖)3 .
We may assume that r0 is small enough such that

8K1K2r0 ≤
1

2
A.

Suppose now that ‖h‖ = ‖v‖ = d(x, y) ≤ 2r0. Then, dividing by ‖h‖ and
taking sup in the left term, we obtain

||Lyx∇(f + ϕ)(y) −∇(f + ϕ)(x)|| ≤ 4A‖v‖ + 8K1K2‖v‖2 ≤

≤ 4A‖v‖ + 1

2
A‖v‖ =

9

2
Ad(x, y).

We conclude that ∇(f + ϕ) is 9
2A-Lipschitz on B(x0, r0). Since ∇ϕ is A-

Lipschitz on this ball, x0 is arbitrary and A does not depend on x0, it follows
that f ∈ C1,1(M) with Lip(∇f) ≤ 11

2 A = 12C.
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It only remains to prove the claim. Let us define a function ψxy : TxM →
TxM by ψxy = exp−1

x ◦ expy ◦ Lxy. We have

(5.5) ‖w − v − h‖ = ‖ψxy(h) − ψxy(0)− h‖.

Let us now define φx(h, v) = ψxy(h)− ψxy(0)− h, and Φ(s, t) = φx(sh, tv).

The function Φ satisfies Φ(s, 0) = Φ(0, t) = 0 and consequently ∂Φ
∂s (s, 0) =

∂Φ
∂t (0, t) = 0 for every s, t small enough. This implies ∂2Φ

∂s2
(0, 0) = ∂2Φ

∂t2
(0, 0) =

0. Moreover, by direct calculation, we have

∂Φ

∂s
(s, t) = Dψx,yt(sh)(h) − h

where yt = expx(tv). Hence

∂Φ

∂s
(0, t) = Dψx,yt(0)(h) − h = D(exp−1

x ◦ expyt ◦ Lx,yt)(0)(h) − h =

= Dexp−1
x (yt) ◦Dexpyt(0)[Lxyth]− h = Dexp−1

x (yt)[Lxyth]− h =

= [Dexpx(tv)]
−1(Lxyth)− h,

and using Corollary 4.2 we deduce that

∂2Φ

∂s∂t
(0, 0) = lim

t→0

∂Φ
∂s (0, t) − ∂Φ

∂s (0, 0)

t
= lim

t→0

1

t

∂Φ

∂s
(0, t) = 0.

This implies φx(0, 0) = 0, Dφx(0, 0) = 0, and D2φx(0, 0) = 0. Hence by
Taylor’s Formula,

(5.6) φx(h, v) =
1

3!

∫ 1

0
(1− s)3D3φx(sh, sv)(h, v)

3ds

On the other hand, the theorem on the differentiability of the flow of an
ODE implies that the mapping (x, v, h) 7→ φx(h, v) is C

∞, hence D3φx(h, v)
is continuous in (x, v, h), and in particular is locally bounded. It follows that
there exist K2, r0 > 0 such that

(5.7)
1

3!
||D3φx(sh, sv)|| ≤ K2

for every x, y ∈ B(x0, r0), v = exp−1
x (y), ‖h‖ ≤ 2r0, and s ∈ [0, 1]. By

combining (5.5), (5.6) and (5.7) we conclude that

‖w − v − h‖ = ‖φx(h, v)‖ ≤ K2(‖h‖ + ‖v‖)3

for every x, y ∈ B(x0, r0), ‖h‖ ≤ 2r0. �

6. What is a C1,1 function?

In this section we will prove Theorem 1.5.
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Proof. (1) =⇒ (2) is obvious, and (2) =⇒ (1) is an easy exercise.
(1) =⇒ (3). Fix x ∈M . By Proposition 4.1 there exist C ′, r′ > 0 so that

‖d expx
(

exp−1
x (y)

)

− Lxy‖ ≤ C ′d(x, y)2

for every x, y ∈ B(x0, 3r
′). We have supy∈B(x0,3r′) ‖∇f(y)‖ < ∞ by conti-

nuity of ∇f . Let r > 0 be such that

‖∇f(x)− Lyx∇f(y)‖ ≤ Cd(x, y)

for every x, y ∈ B(x0, 2r). By taking a smaller r if necessary, we may assume
that

r ≤ min{r′, ε

2C ′
(

1 + supy∈B(x0,3r′) ‖∇f(y)‖
)}.

Then we have, for every x ∈ B(x0, r) and v ∈ TxM with ‖v‖ ≤ r,

|f(expx(v)) − f(x)− 〈∇f(x), v〉| =
∣

∣

∣

∣

∫ 1

0
〈∇f(expx(tv)), d expx(tv)(v)〉 − 〈∇f(x), v〉dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 1

0
〈Lexpx(tv)x

(∇f(expx(tv)))−∇f(x), v〉dt
∣

∣

∣

∣

+

+

∫ 1

0
‖∇f(expx(tv))‖ ‖Lexpx(tv)x

− d expx(tv)‖ ‖v‖dt ≤
∫ 1

0
Ct‖v‖2dt+ C ′‖v‖3 sup

y∈B(x0,3r′)
‖∇f(x)‖ ≤ C + ε

2
‖v‖2.

(3) =⇒ (4). Let ε > 0 and q > 1 be such that

q
C + ε

2
≤ C ′

2
.

Given x0 ∈M , if we apply Lemma 3.1(2) locally (replacingM with a suitable
ball of center x0 where the sectional curvature remains bounded), we get an
R′ > 0 so that the function

B(x0, R
′) ∋ y 7→ C ′

2
d(y, y0)

2 − C + ε

2
d(y, x)2

is convex, for every x, y0 ∈ B(x0, R
′). We may assume that R′ < r, where r

is as in (3). Let us denote ϕ(y) = C′

2 d(y, y0)
2, and ψ(y) = ϕ(y)−C+ε

2 d(y, x)2.
By (3) and convexity of ψ on B(x0, R

′) we have, for x, y ∈ B(x0, R
′),

f(y)− f(x) + ϕ(y)− ϕ(x) ≥

〈∇f(x), exp−1
x (y)〉 − C + ε

2
d(x, y)2 + ϕ(y)− ϕ(x) =

〈∇f(x), exp−1
x (y)〉+ ψ(y) − ψ(x) ≥

〈∇f(x), exp−1
x (y)〉+ 〈∇ψ(x), exp−1

x (y)〉.
This implies that for every x ∈ B(x0, R

′), v ∈ TzM , ‖v‖ = 1, the function
t 7→ (f + ϕ)(expx(tv)) is supported by an affine function of t on a small
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interval around 0, which in turn means that f + ϕ is locally convex along
geodesic segments contained in B(x0, R

′), hence convex on B(x0, R
′). This

shows that the function f is locally C′

2 -semiconvex for every C ′ > C. The

proof that f is locally C′

2 -semiconcave is completely analogous.

(4) =⇒ (1). This is, together with (4) =⇒ (5), the most delicate part
of the proof. All the previous implications, as well as (5) =⇒ (1), hold
for infinite dimensional manifolds as well, with the same proofs, but now
we will have to use Bangert’s generalization of Alexandroff’s theorem on
twice differentiability of semiconvex functions defined on finite dimensional
Riemannian manifolds. According to the results of [6], the locally semicon-
vexity of f implies that f admits a Hessian almost everywhere on M , in the
sense that for almost every x ∈M there exists a self-adjoint linear operator
Hx : TxM → TxM such that

(6.1) lim
v→0

‖Lexpx(v)x
∇f(expx(v))−∇f(x)−Hxv‖

‖v‖ = 0

(recall that in our situation f ∈ C1, so ∇f exists everywhere, and the
subgradients of f reduce to the usual gradient of f at every point). Of
course, if f ∈ C2(M) then this notion of Hessian coincides with the usual
one. It is easily seen that (6.1) implies

(6.2) f(expx(v))− f(x)− 〈∇f(x), v〉 − 1

2
〈Hx(v), v〉 = o

(

‖v‖2
)

for every x where (6.1) holds. We will denote Hx = Hx(f) if the function
f is not understood. Bangert also proved that a semiconvex function f is
convex if and only if Hx(f) ≥ 0 for every x where (6.1) holds.

Therefore, if (4) holds then for each x0 ∈ M there exists R > 0 such
that f + ϕ is convex and f − ϕ is concave on the ball B(x0, R), where

ϕ(x) = C′

2 d(x, x0)
2. We may assume that R is small enough so that the

sectional curvature of M is bounded by some positive number K0 on the
ball B(x0, R), and then we may take an r ∈ (0, R) sufficiently small so that

(6.3)
r
√
K0 cosh

(

r
√
K0

)

sinh
(

r
√
K0

) C ′ ≤ C ′ + ε.

According to Bangert’s results we then have that Hx(f+ϕ) ≥ 0 and Hx(f−
ϕ) ≤ 0 for every x ∈ B(x0, r), which implies that−Hx(ϕ) ≤ Hx(f) ≤ Hx(ϕ),
and since (6.3) provides a bound for Hx(ϕ) on B(x0, r), we deduce that

(6.4) ‖Hx(f)‖ ≤ C ′ + ε

for every x ∈ Diff2(f), where we denote Diff2(f) = {x : (6.1) holds}. Now,
if for a geodesic segment c(t) = expx(tv) we have that c(t) ∈ Diff2(f) for
almost every t, then it is easy to see that, for every h ∈ TxM with ‖h‖ = 1,
if we denote the parallel translation of h along c(t) by Ph(t), the function
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t 7→ 〈∇f(c(t)), Ph(t)〉 is absolutely continuous and

〈Hc(t)(f)(c
′(t)), Ph(t)〉 =

d

dt
〈∇f(c(t)), Ph(t)〉,

which by integration implies that

〈Lc(1)x (∇f(c(1))) −∇f(c(0)), h〉 =(6.5)

〈∇f(c(1)), Ph(1)〉 − 〈∇f(c(0)), Ph(0)〉 =(6.6)
∫ 1

0
〈Hc(t)(f)(c

′(t)), Ph(t)〉dt ≤
∫ 1

0
‖Hc(t)(f)‖ ‖v‖dt ≤

(

C ′ + ε
)

‖v‖,(6.7)

hence, by taking sup on those h,

(6.8) ‖Lexpx(v)x
(∇f(expx(v))) −∇f(x)‖ ≤

(

C ′ + ε
)

‖v‖.

On the other hand, since Diff2(f) has full measure, it is immediately seen, by
using Fubini’s theorem, that for almost every v one has expx(tv) ∈ Diff2(f)
for almost every t. Therefore, if our geodesic segment c(t) does not satisfy
c(t) ∈ Diff2(f) for almost every t, then we can at least take a sequence
(vk)k∈N ⊂ TxM such that v = limk→∞ vk and ck(t) = expx(tvk) does satisfy
ck(t) ∈ Diff2(f) for almost every t, hence

‖Lexpx(vk)x
(∇f(expx(vk)))−∇f(x)‖ ≤

(

C ′ + ε
)

‖vk‖,

which yields (1) by taking the limit as k → ∞, using the continuity of ∇f
and y 7→ Lxy, and recalling that ε > 0 and C ′ > C are arbitrary.
(4) =⇒ (5). In [6], Bangert proved that if f is convex for some met-
ric g in a manifold M then f is locally semiconvex for any other metric
g̃ in M . It follows that for every x ∈ M there exists R > 0 such that
the function F : BTxM (0, R) → R defined by F (u) = f(expx(u)) is semi-
convex. Therefore, from what we have seen in (4) =⇒ (1) (applied to
the manifold BTxM (0, R)), the gradient ∇F is Lipschitz on BTxM (0, R).
Then by Rademacher’s theorem ∇F is differentiable almost everywhere on
BTxM (0, R), and we only have to estimate Lip(∇F ). The gradient ∇f is
differentiable in Bangert’s sense wherever ∇F is differentiable in the usual
sense. So, if we denote σw,v(t) = expx(w + tv), we have, for every w where
∇F is differentiable,

D2F (w)(v)2 =
d2

dt2
F (w + tv)|t=0 =

〈Hx(f)(σ
′
w,v(0)), σ

′
w,v(0)〉 + 〈∇f(σw,v(0)),∇σ′

w,v(0)
σ′w,v(0)〉.

Since the function (w, v) 7→ ‖∇σ′
w,v(0)

σ′w,v(0)‖ is continuous and vanishes on

w = 0, by compactness of {v ∈ TxM : ‖v‖ ≤ 1} it immediately follows that,
given ε > 0, there exists r > 0 so that

‖∇σ′
w,v(0)

σ′w,v(0)‖ ≤ ε

1 + supy∈B(x0,R) ‖∇f(y)‖
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for all w ∈ BTxM (0, r) and every v ∈ TxM with ‖v‖ ≤ 1. By combining the
two last chains of inequalities and using (6.4), we get

|D2F (w)(v)2| ≤ |〈Hx(f)(σ
′
w,v(0)), σ

′
w,v(0)〉| + ε ≤ C ′ + 2ε

for almost every w ∈ BTxM (0, r), and for every v ∈ TxM with ‖v‖ ≤ 1.
Hence ‖D(∇F )‖ ≤ C ′+2ε almost everywhere on BTxM (0, r). Since ∇F be-
longs to the Sobolev spaceW 1,∞ (BTxM (0, r)), we conclude that Lip(∇F ) =
‖D(∇F )‖∞ ≤ C ′ + 2ε, which shows (5).
(5) =⇒ (6) is trivial.
(6) =⇒ (2). Using Corollary 4.2, we have

|〈Lyx∇f(y)−∇f(x), h〉| =
|〈∇F (exp−1

x (y)), d(exp−1
x )(y) ◦ Lxy(h)〉 − 〈∇F (0), h〉| ≤

〈∇F (exp−1
x (y)), d(exp−1

x )(y) ◦ Lxy(h) − h〉|+ |〈∇F (exp−1
x (y))−∇F (0), h〉| ≤

‖∇F (exp−1
x (y))‖‖d(exp−1

x )(y)− Lyx‖ ‖h‖ + ‖∇F (exp−1
x (y))−∇F (0)‖ ‖h‖ ≤

O(1)‖h‖O
(

d(x, y)2
)

+ (C + ε)‖h‖d(x, y).

By taking sup on {h ∈ TxM : ‖h‖ = 1} we get

‖Lyx∇f(y)−∇f(x)‖ ≤ O
(

d(x, y)2
)

+ (C + ε)d(x, y).

It follows that

lim sup
t→0+

1

t
‖Lexpx(tv)x

(∇f(expx(tv))) −∇f(x)‖ ≤ C + ε,

from which (2) is deduced by letting ε go to 0.
We have thus proved the equivalence between statements (1), (2), ..., (6).

That (7) follows from (1) is an easy exercise, see [16, Exercise 5 and Defi-
nition 1.5 in Section 1 of Chapter II]. Conversely one can deduce (1) from
(7) by the same argument as in (6.5)− (6.8), with the advantage that now
we do not have to rely on Bangert’s theorem, but on the assumption that
Hx(f) = D2f(x) exists for every x. Thus, it is worth noting that the equiva-
lence (1) ⇐⇒ (7) holds for infinite dimensional manifolds M as well, when
f ∈ C2(M).

Assume now that M is of bounded curvature with i(M) > 0, c(M) > 0,
and let us prove the equivalence of (1), ..., (6) to (4′) and to (1′). Obviously
we always have (4′) =⇒ (4) and (1′) =⇒ (1). One can show that
(4′) =⇒ (1′) by exactly the same argument we used above in (4) =⇒ (1),
just noticing that R and r are independent of x0 provided we have a global
bound K0 for the sectional curvature of M . So we only have to prove that
(4) =⇒ (4′). Given C ′′ > C ′ > C > 0, we can choose q > 1 with
C ′′ ≥ qC ′, and use Lemma 3.1(2) to find R > 0 so that, for every x0 ∈ M
and y0 ∈ B(x0, R),

B(x0, R) ∋ x 7→ C ′′

2
d(x, x0)

2 − C ′

2
d(x, y0)

2 is convex.
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Now, for every y0 ∈ B(x0, R), by (4) there exists r > 0 such that f +
C′

2 d(·, y0)2 is convex on B(y0, r). Therefore the function

f +
C ′′

2
d(·, x0)2 =

(

f +
C ′

2
d(·, y0)2

)

+

(

C ′′

2
d(·, x0)2 −

C ′

2
d(·, y0)2

)

,

being a sum of two convex functions, is convex on B(y0, r). Since y0 ∈
B(x0, R) is arbitrary, this shows that f + C′′

2 d(·, x0)2 is locally convex on
B(x0, R), hence convex on B(x0, R), for every x0 ∈ M , and since R is
independent of x0 this establishes (4′). �

Remark 6.1. From the above proof it is clear that when M is infinite
dimensional the implications (1) ⇐⇒ (2) =⇒ (3) =⇒ (4) and (5) =⇒
(6) =⇒ (1) remain true, and any of these conditions is equivalent to
(7) if f ∈ C2(M). We also have that (4) implies that f is C1,1(M) with
Lip(∇f) ≤ 6C ′, by Proposition 5.2.

7. Proof of Theorem 1.1

We start by establishing the local semiconvexity of the regularizations
(fλ)

µ. This is a rather straightforward consequence of Proposition 2.1 and
of the easy part of Lemma 3.1.

Proposition 7.1. LetM be a Riemannian manifold with sectional curvature
K such that −K0 ≤ K ≤ K0 for some K0 > 0, and such that i(M) >
0, c(M) > 0. Let f :M → R, h :M → R be functions such that

f(x) ≥ − c
2

(

1 + d(x, x0)
2
)

, and h(x) ≤ c

2

(

1 + d(x, x0)
2
)

for all x ∈ M and some c > 0. Let q be a number with q > 1. Then we
have:

(1) If f is bounded on M then there exists λ0 > 0 (depending on K0,
‖f‖∞ and q) such that for every λ ∈ (0, λ0] the function fλ is uni-
formly locally semiconcave with constant Bλ = q

2λ . Similarly, if h is
bounded on M , then there exists µ0 > 0 such that hµ is uniformly
q
2µ -locally semiconvex for every µ ∈ (0, µ0].

(2) If f is bounded on bounded subsets of M then for every bounded set
B ⊂ M there exists λ0 > 0 such that the restriction of the function
fλ to B is uniformly locally q

2λ -semiconcave for every λ ∈ (0, λ0]. A
similar statement holds for hµ.

Proof. It will suffice to prove the Proposition for the functions hµ. Given
q > 1, let us fix an R = R(q,K0) > 0 such that (1) and (2) of Lemma 3.1
hold for R (we may assume R′ = R in (2) of this Lemma by making the R
in (1) smaller, if necessary). Using Proposition 2.1 we can write

hµ(x) = sup
y∈B(x,

√
kµ)

{h(y) − 1

2µ
d(x, y)2}
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for all x ∈M , where k > 0 is a bound for |f | on M . Set

µ0 =
R2

4k
.

Then, for every µ ∈ (0, µ0], every x0 ∈ M , and every x ∈ B(x0, R/2), we
have that

hµ(x) = sup
y∈B(x,

√
kµ)

{h(y)− 1

2µ
d(x, y)2},

and, because B(x,
√
kµ) ⊆ B(x,R/2) ⊆ B(x0, R), we also have

hµ(x) = sup
y∈B(x0,R)

{h(y)− 1

2µ
d(x, y)2} for every x ∈ B(x0, R/2).

On the other hand, according to Lemma 3.1(2), we have that for every
Cµ := 1

2µ > 0 and every Bµ ≥ qCµ the function

B(x0, R) ∋ x 7→ Bµd(x, x0)
2 −Cµd(x, y)

2

is convex for every y ∈ B(x0, R). Since the supremum of a family of convex
functions is always convex, we then have that the function

x 7→ sup
y∈B(x0,R)

{h(y)− 1

2µ
d(x, y)2 +Bµd(x, x0)

2} = hµ(x) +Bµd(x, x0)
2

is convex on the ball B(x0, R/2). This shows (1). The proof of (2) is similar
(one just has to use the first part of Proposition 2.1 in order to see that the
argument can be repeated for x0 moving on a fixed bounded set B). �

Remark 7.2. It is clear that in general one has λ0 = λ0(q,K0, ‖f‖∞) → 0
as q → 1+ (also as ‖f‖∞ → ∞).

That the regularizations (fλ)
µ are also uniformly locally semiconcave is a

subtler fact. The proof relies on Lemma 3.1(1).

Proposition 7.3. LetM be a Riemannian manifold with sectional curvature
K such that −K0 ≤ K ≤ K0 for some K > 0, and such that i(M) >
0, c(M) > 0. Let f :M → R, h :M → R be functions such that

f(x) ≥ − c
2

(

1 + d(x, x0)
2
)

, and h(x) ≤ c

2

(

1 + d(x, x0)
2
)

for all x ∈M and some c > 0. Fix q > 1. Then we have:

(1) If f is bounded on M then there exists λ0 > 0 (depending on q, ‖f‖∞
and K0) such that for every λ ∈ (0, λ0] and for every µ ∈ (0, λ

2q ]

the function (fλ)
µ is uniformly locally semiconcave with constant

Bµ = q
2µ .

(2) If f is bounded on bounded subsets of M then for every bounded
set B ⊂ M there exists λ0 > 0 such that for every λ ∈ (0, λ0] and
for every µ ∈ (0, λ

2q ] the restriction of the function (fλ)
µ to to B is

uniformly locally semiconcave with constant Bµ = q
2µ .
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Similar statements (replacing semiconcavity with semiconvexity and inter-
changing the roles of λ, µ) hold for the functions (hµ)λ.

Proof. Let us assume that f is bounded. Since inf f = inf fλ and fλ ≤ f ,
it is clear that fλ is bounded as well, and in fact ‖fλ‖∞ ≤ ‖f‖∞ for every
λ. If we take λ0 = µ0 and R as in the proof of the preceding Proposition
(in particular is R as in the statement of Lemma 3.1(1)), this implies that
for every (λ, µ) ∈ (0, λ0] × (c, λ0], for every x0 ∈ M , and for every x ∈
B(x0, R/2), we have that

hµ(x) = sup
y∈B(x0,R)

{fλ(y)−
1

2µ
d(x, y)2}.

Now, for every λ ∈ (0, λ0], using the preceding Proposition, we have that
the function

B(x0, R) ∋ y 7→ fλ(y)− Cλd(y, x0)
2

is concave, where

Cλ :=
q

2λ
.

According to Lemma 3.1(1) (taking C = Cλ, A = 1/2µ, B ≥ qA), for every
µ > 0 such that

1

2µ
≥ q

λ

and for every Bµ ≥ q
2µ , the function

B(x0, R)×B(x0, R) ∋ (x, y) 7→ 1

2µ
d(x, y)2 +Bµd(x, x0)

2 − Cλd(y, x0)
2

is convex. Equivalently, the function

B(x0, R)×B(x0, R) ∋ (x, y) 7→ Cλd(y, x0)
2 − 1

2µ
d(x, y)2 −Bµd(x, x0)

2

is concave. Therefore the function

B(x0, R)×B(x0, R) ∋ (x, y) 7→ fλ(y)−
1

2µ
d(x, y)2 −Bµd(x, x0)

2 =

(

fλ(y)− Cλd(y, x0)
2
)

+

(

Cλd(y, x0)
2 − 1

2µ
d(x, y)2 −Bµd(x, x0)

2

)

,

being a sum of concave functions, is concave as well, for every µ with

0 < µ ≤ λ

2q
.

Hence, using Lemma 2.6 (note that the manifold B(x0, R) does have the
property that every two points can be connected by a minimizing geodesic
in B(x0, R), because of the definition of R in the proof of Lemma 3.1), we
deduce that the function

B(x0, R/2) ∋ x 7→ sup
y∈B(x0,R)

{fλ(y)−
1

2µ
d(x, y)2 −Bλd(x, x0)

2} =

(fλ)
µ(x)−Bλd(x, x0)

2
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is concave, and this concludes the proof of (1). The proof of (2) is similar
and we leave it to the reader’s care. �

Theorem 1.1 immediately follows by combining the preceding Propositions
and the results of sections 2, 5 and 6.

8. Two counterexamples

If f is a quadratically minorized function defined on R
n or on the Hilbert

space, then it is known that the functions (fλ)
µ are of class C1,1, no matter

whether f is bounded or not, see [2]. An examination of the above proofs
reveals that this result remains true for functions f defined on a flat Rie-
mannian manifold. However, if K 6= 0, in order to obtain C1,1 smoothness
of the functions (fλ)

µ, one has to require that both f and K be bounded (as
we did in the statement of Theorem 1.1). We next present some examples
showing why this is so.

Let us first see that, even on Cartan-Hadamard manifolds with constant
curvature (that is to say, hyperbolic spaces), one cannot dispense with the
boundedness assumption on f .

Example 8.1. Let us take M = H
n, the hyperbolic space of constant cur-

vature equal to −1, modelled on the upper half-space of Rn, with n ≥ 2.
Let f : H → R be defined by

f(x) = d(x, x0)
2,

where d denotes the Riemannian distance in H
n and x0 ∈ H

n is a given
point. The function f is bounded below by 0, and in particular quadratically
minorized. It is also clear that f is uniformly continuous on bounded subsets
of Hn. We will calculate the functions (fλ)

µ in this case and see that they
are not C1,1(Hn).

The function H
n ∋ y 7→ h(y) := d(y, x0)

2 + 1
2λd(x, y)

2 is C∞ (because H
n

is a Cartan-Hadamard manifold). One can easily see that ∇h(yx) = 0 if and
only if yx is in the geodesic connecting x to x0 and

d(x, yx) =
λ

1 + λ
d(x, x0).

Taking into account the behavior of h at infinity, we infer that

inf
y∈H

{d(y, x0)2 +
1

2λ
d(x, y)2} = d(yx, x0) +

1

2λ
d(x, yx)

2.

Therefore

fλ(x) = h(yx) =

(

1

(1 + λ)2
+

λ

2(1 + λ)2

)

d(x, x0)
2 =

2 + λ

2(1 + λ)2
d(x, x0)

2,

which can also be written

fλ(x) =
1

2λ′
d(x, x0)

2

for a suitable number λ′ > 0.
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Similarly, if one considers the function H
n ∋ z 7→ ψ(z) = 1

λ′ d(z, x0)
2 −

1
2µd(x, z)

2 one can see that ∇ψ(zx) = 0 exactly when zx is in the geodesic

passing through x and x0, and λ
′d(zx, x) = µd(zx, x0). Taking into account

the behaviour of ψ at infinity one can also deduce that

(fλ)
µ(x) = sup

z
ψ(z) = ψ(zx) =

1

2(λ′ − µ)
d(x, x0)

2.

We do not care about a more explicit expression for (fλ)
µ; the only inter-

esting point is that (fλ)
µ = Cλ,µf for some positive constant Cλ,µ.

Therefore it is clear that if (fλ)
µ were of class C1,1 then so would be the

square of the distance function, x 7→ d(x, x0)
2 = f(x). But, in the case

of the hyperbolic space H
n one has the following explicit formula for the

Hessian of the square of the distance to a point x0:

D2f(x)(v)2 = 2‖v‖2
(

d(x, x0) cosh (d(x, x0))

sinh (d(x, x0))

)

(see [16] for instance). Now, because limt→∞
t cosh t
sinh t = ∞, it follows that

limd(x,x0)→∞ ‖D2f(x)‖ = ∞, and since the Hessian of f is unbounded on
H

n, the gradient of f cannot be Lipschitz on H
n.

Now we will construct an example showing that, even if f : M → R is
bounded, one has to require that the sectional curvatureK ofM be bounded,
in order that (fλ)

µ be of class C1,1 globally.

Example 8.2. LetM be the half-space of R2 given by {(x1, x2) ∈ R
2 : x2 >

0}, with the metric

gij(x1, x2) =
δij
x24

.

It is not difficult to show that the curvature of M at a point p = (x1, x2) is
given byKp = −2x2

2, and using this fact one can also check that there exists
a sequence (pn) ⊂M such that d(pn, pm) ≥ 4 for n 6= m and Kp ≤ −4n2 for
every p ∈ B(pn, 1). Now let us define a function f :M → [0, 2] by

f(p) = min{2, inf
n∈N

d(p, pn)}.

The function f is obviously bounded and 1-Lipschitz. Now, the calculation
of ((d(·, x0)2)λ)µ that we carried out in the preceding example works in any
Cartan-Hadamard manifold, hence one can use this fact and Proposition 2.1
to see that there exists some λ0 > 0 such that for every λ ∈ (0, λ0] and
µ ∈ (0, λ) there exists a number Cλ,µ > 0 such that

(fλ)
µ(p) = Cλ,µd(p, pn)

2 for every p ∈ B(pn, 1).

Using [16, Exercise 4 following Lemma 2.9 in Chapter IV, p. 154], we get
that

‖D2(fλ)
µ(p)‖ = sup

‖v‖=1
‖D2(fλ)

µ(p)(v)2‖ ≥ Cλ,µ
2nd(p, pn) cosh (2nd(p, pn))

sinh (2nd(p, pn))
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for every p ∈ B(pn, 1). Taking qn ∈ B(pn, 1) with d(qn, pn) = 1/2 we have

lim
n→∞

‖D2(fλ)
µ(qn)‖ ≥ lim

n→∞
Cλ,µ

n cosh (n)

sinh (n)
= ∞,

hence ‖D2(fλ)
µ‖ is unbounded on M and consequently (fλ)

µ /∈ C1,1(M).
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