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Abstract

We prove a general form of a fixed point theorem for mappings from a Riemannian manifold into itself
which are obtained as perturbations of a given mapping by means of general operations which in particular
include the cases of sum (when a Lie group structure is given on the manifold) and composition. In order
to prove our main result we develop a theory of proximal calculus in the setting of Riemannian manifolds.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and tools

The proximal subdifferential of lower semicontinuous real-valued functions is a very powerful
tool that has been extensively studied and used in problems of optimization, control theory,
differential inclusions, Lyapunov Theory, stabilization, and Hamilton–Jacobi equations; see [5]
and the references therein.

In this paper we introduce a notion of proximal subdifferential for functions defined on a
Riemannian manifold M (either finite or infinite dimensional) and we develop the rudiments of
a calculus for nonsmooth functions defined on M . We then establish a Decrease Principle from
which we deduce Solvability and Implicit Function Theorems for nonsmooth functions on M .
Our main results are applications of this Solvability Theorem: we provide several fixed point
theorems for expansive and nonexpansive mappings and certain perturbations of such mappings
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defined on M . Observe that, in general, very small perturbations of mappings having fixed points
may lose them: consider for instance f : R → R, f (x) = x + ε. Note also that most of
the known fixed point theorems (such as Brouwer’s, Lefschetz’s, Schauder’s and the Banach
contraction mapping principle) rely either on compactness or on contractiveness, see [4,6] for
instance. However, our results hold for (possibly expansive) mappings on (possibly noncompact)
complete Riemannian manifolds.

Let us give a brief sample of the corollaries on fixed points that we will be deducing from our
main theorems in the last section of this paper.

Corollary 1. Let M be a complete Riemannian manifold with a positive injectivity radius
ρ = i(M). Let x0 be a fixed point of a C1 smooth mapping G : M → M such that G is
C-Lipschitz on a ball B(x0, R). Let H : M → M be a differentiable mapping. Assume that
0 < 2R max{1, C} < ρ, that

〈Lx H(G((x)))h, LG(x)H(G(x))dG(x)(h)〉F(x) ≤ K < 1

for all x ∈ B(x0, R) and h ∈ TMx with ‖h‖x = 1, and that ‖d H (y)− L y H(y)‖ < ε/C for every
y ∈ G(B(x0, R)), where ε < 1 − K , and d(x0, H (G(x0))) < R(1 − K − ε). Then F = H ◦ G
has a fixed point in B(x0, R).

This is a consequence of Theorem 36 below. Here Lxy stands for the parallel transport along
the (unique in this setting) minimizing geodesic joining the points x and y. The hypotheses on H
mean that H is relatively close to the identity, so the perturbation brought on G by its composition
with H is relatively small.

Corollary 2. Let (M,+) be a complete Riemannian manifold with an abelian Lie group
structure. Let x0 be a fixed point of a C1 function G : M → M satisfying the following condition:

〈h, dG(x0)(h)〉x0 ≤ K < 1 for every ‖h‖x0 = 1.

Then there exists a positive δ such that for every Lipschitz mapping H : M → M with Lipschitz
constant smaller than δ, the mapping G + H : M → M has a fixed point provided that
d(x0, x0 + H (x0)) < δ.

See Corollary 39 below.
The condition on the differential of G is satisfied, for instance, if G locally behaves like a

multiple of a rotation round the point x0, but notice that G may well be expansive. Consider for
instance G : R

2 → R
2, G(x, y) = 23(y,−x); in this case we can take K = 0, but G is clearly

expansive.
It should be stressed that these fixed point results are new even in the case when M = R

n or
any Hilbert space. In particular we have the following.

Corollary 3. Let X be a Hilbert space, and let x0 be a fixed point of a differentiable mapping
G : X → X satisfying the following condition:

〈h, DG(x)(h)〉 ≤ K < 1 for every x ∈ B(x0, R) and ‖h‖ = 1.

Then we have that:

(1) If H is a differentiable L-Lipschitz mapping, with L < 1 − K , then G + H has a fixed point
in B(x0, R), provided that ‖H (x0)‖ < R(1 − K − L).
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(2) If H : X → X is a differentiable mapping such that ‖DH (G(x)) − I‖ < ε for every
x ∈ B(x0, R), then F = H ◦ G has a fixed point in B(x0, R), provided that K + ε < 1 and
‖H (x0) − x0‖ < R(1 − K − ε).

All of these results and many other things will be proved in Section 2.
This paper should be compared with [3], where a theory of viscosity subdifferentials for

functions defined on Riemannian manifolds is established and applied to show existence and
uniqueness of viscosity solutions to Hamilton–Jacobi equations on such manifolds. See also [1]
for proximal calculus on Riemannian manifolds applications, in particular, a Moreau–Yosida
regularization for functions defined on Riemannian manifolds is presented.

On the other hand, proximal analysis is also a useful tool in the context of PDE’s, see for
instance [9,10,12], and we believe that the tools that we use here could also be employed in the
study of PDE’s on Riemannian manifolds.

Let us recall the definition of the proximal subdifferential for functions defined on a Hilbert
space X . A vector ζ ∈ X is called a proximal subgradient of a lower semicontinuous function f
at x ∈ dom f := {y ∈ X : f (y) < +∞} provided there exist positive numbers σ and η such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ‖y − x‖2 for all y ∈ B(x, η).

The set of all such ζ is denoted ∂P f (x), and is referred to as the proximal subdifferential, or
P-subdifferential. A comprehensive study of this subdifferential and its numerous applications
can be found in [5].

Before giving the definition of the proximal subdifferential for a function defined on a
Riemannian manifold, we must establish a few preliminary results.

The following result is proved in [2, Corollary 2.4].

Proposition 4. Let X be a real Hilbert space, and f : X −→ (−∞,∞] be a proper, lower
semicontinuous function. Then,

∂P f (x) = {ϕ′(x) : ϕ ∈ C2(X, R), f − ϕ attains a local minimum at x}.
In particular this implies that ∂P f (x) ⊆ D− f (x), where D− f (x) is the viscosity

subdifferential of f at x .

Lemma 5. Let X1 and X2 be two real Hilbert spaces, Φ : X2 → X1 a C2 diffeomorphism,
f : X1 → (−∞,+∞] a lower semicontinuous function. Then v ∈ ∂P f (x1) if and only if
DΦ(x2)

∗(v) ∈ ∂P( f ◦ Φ)(x2), where Φ(x2) = x1.

Proof. This is a trivial consequence of Proposition 4, bearing in mind that compositions with
diffeomorphisms preserve local minima. �

Corollary 6. Let M be a Riemannian manifold, p ∈ M, (ϕi , Ui ) i = 1, 2, two charts with
p ∈ U1 ∩ U2, and ϕi (p) = xi . Then ∂P ( f ◦ ϕ−1

1 )(x1) �= ∅ if and only if ∂P( f ◦ ϕ−1
2 )(x2) �= ∅.

Moreover, D(ϕ1 ◦ ϕ−1
2 )(x2)

∗(∂P( f ◦ ϕ−1
1 )(x1)) = ∂P( f ◦ ϕ−1

2 )(x2).

Now we can extend the notion of P-subdifferential to functions defined on a Riemannian
manifold.

Notation 7. In the sequel, M will stand for a Riemannian manifold defined on a real Hilbert
space X (either finite dimensional or infinite dimensional). As usual, for a point p ∈ M , TMp
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will denote the tangent space of M at p, and expp : TMp → M will stand for the exponential
function at p.

We will also make extensive use of the parallel transport of vectors along geodesics. Recall
that, for a given curve γ : I → M , numbers t0, t1 ∈ I , and a vector V0 ∈ TMγ (t0), there exists
a unique parallel vector field V (t) along γ (t) such that V (t0) = V0. Moreover, the mapping
defined by V0 �→ V (t1) is a linear isometry between the tangent spaces TMγ (t0) and TMγ (t1),
for each t1 ∈ I . In the case when γ is a minimizing geodesic and γ (t0) = x , γ (t1) = y, we
will denote this mapping by Lxy , and we call it the parallel transport from TMx to TMy along
the curve γ . Note that the parallel transport Lxy is well defined when x and y are contained in a
geodesic neighborhood, see Theorem 1.6.12 of [11].

The parallel transport allows us to measure the length of the “difference” between vectors (or
forms) which are in different tangent spaces (or in duals of tangent spaces, that is, fibers of the
cotangent bundle), and do so in a natural way. Indeed, let γ be a minimizing geodesic connecting
two points x, y ∈ M , say γ (t0) = x, γ (t1) = y. Take vectors v ∈ TMx , w ∈ TMy . Then we can
define the distance between v and w as the number

‖v − L yx(w)‖x = ‖w − Lxy(v)‖y

(this equality holds because Lxy is a linear isometry between the two tangent spaces, with inverse
L yx ). Since the spaces T ∗Mx and TMx are isometrically identified by the formula v = 〈v, ·〉,
we can obviously use the same method to measure distances between forms ζ ∈ T ∗Mx and
η ∈ T ∗My lying on different fibers of the cotangent bundle.

For the sake of simplicity in the formulas, we will omit the norm and scalar product indices
which indicate the tangent space where they are defined, whenever ambiguity does not appear.

Although most of the results that we will prove are valid for any Riemannian manifold, we
will assume in the sequel that M is connected.

Definition 8. Let M be a Riemannian manifold, p ∈ M , f : M → (−∞,+∞] a lower
semicontinuous function. We define the proximal subdifferential of f at p, denoted by ∂P f (p) ⊂
TMp , as ∂P( f ◦ expp)(0) (it being understood that ∂P f (p) = ∅ for all p �∈ dom f ).

The following result is an immediate consequence of Lemma 5.

Proposition 9. Let M be a Riemannian manifold, p ∈ M, (ϕ, U) a chart, with p ∈ U, and
f : M → (−∞,+∞] a lower semicontinuous function. Then

∂P f (p) = Dϕ(p)∗[∂P( f ◦ ϕ−1)(ϕ(p))].
As a consequence of the definition of ∂P ( f ◦ expp)(0) we get the following.

Corollary 10. Let M be a Riemannian manifold, p ∈ M, f : M → (−∞,+∞] a lower
semicontinuous function. Then ζ ∈ ∂P f (p) if and only if there is a σ > 0 such that

f (q) ≥ f (p) + 〈ζ, exp−1
p (q)〉 − σd(p, q)2

for every q in a neighborhood of p.

We can also define the proximal superdifferential of a function f from a Hilbert space X
into [−∞,∞) as follows. A vector ζ ∈ X is called a proximal supergradient of an upper
semicontinuous function f at x ∈ dom f if there are positive numbers σ and η such that

f (y) ≤ f (x) + 〈ζ, y − x〉 + σ‖y − x‖2 for all y ∈ B(x, η).

and we denote the set of all such ζ by ∂ P f (x), which we call the P-subdifferential of f at x .
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Now, if M is a Riemannian manifold, p ∈ M , f : M → [−∞,+∞) an upper semicontinuous
function. We define the proximal superdifferential of f at p, denoted by ∂ P f (p) ⊂ TMp , as
∂ P( f ◦ expp)(0). As before, we have that ζ ∈ ∂ P f (p) if and only if there is a σ > 0 such that

f (q) ≤ f (p) + 〈ζ, exp−1
p (q)〉 + σd(p, q)2

for every q in a neighborhood of p. It is also clear that ∂ P f (p) = −∂P(− f )(p).
Most of the following properties are easily translated from the corresponding ones for M = X

a Hilbert space (see [5]) through charts. Recall that a real-valued function f defined on a
Riemannian manifold is said to be convex provided its composition f ◦ α with any geodesic
arc α : I → M is convex as a function from I ⊂ R into R.

Proposition 11. Let M be a Riemannian manifold, p ∈ M, f, g : M → (−∞,+∞] lower
semicontinuous functions. We have

(i) If f is C2, then ∂P f (p) = {d f (p)}.
(ii) If f is convex, then ζ ∈ ∂P f (p) if and only if f (q) ≥ f (p) + 〈ζ, v〉 for every q ∈ M

and v ∈ exp−1
p (q).

(iii) If f has a local minimum at p, then 0 ∈ ∂P f (p).
(iv) ∂P f (p) + ∂P g(p) ⊆ ∂P( f + g)(p), with equality if f or g is C2.
(v) ∂P(c f )(p) = c∂P f (p), for c > 0.

(vi) If f is K -Lipschitz, then ∂P f (p) ⊂ B(0, K ).
(vii) ∂P f (p) is a convex subset of TMp.

(viii) If ζ ∈ ∂P f (p) and f is differentiable at p then ζ = d f (p). Moreover, if M is connected
and the exponential map expx : TMx → M is surjective for every x ∈ M, we also have

(ix) Every local minimum of a convex function f is global.
(x) If f is convex and 0 ∈ ∂P f (p), then p is a global minimum of f .

Proof. All the properties but perhaps (ii), (vi) and (viii) are easily shown to be true. Property (vi)
follows from the fact that exp−1

p (.) is almost 1-Lipschitz when restricted to balls of center 0p and
small radius.

Let us prove (ii). Let q ∈ M . Let γ (t) = expp(tv), t ∈ [0, 1], which is a minimal geodesic
joining p and q . The function f ◦ γ is convex and satisfies

f (γ (t)) ≥ f (γ (0)) + 〈ζ, tv〉 − σd(γ (t)), (γ (0))2

= f (γ (0)) + 〈(ζ, tγ ′(0))〉 − σ t2

for some σ > 0 and t > 0 small. Hence 〈(ζ, γ ′(0))〉 ∈ ∂P( f ◦ γ )(0), and consequently (bearing
in mind that f ◦ γ is convex on a Hilbert space) f (γ (t)) ≥ f (γ (0)) + 〈(ζ, tγ ′(0))〉, which
implies f (q) ≥ f (p) + 〈ζ, v〉.

To see (viii), note that Proposition 4 implies that ζ ∈ D− f (p), that is, ζ is a viscosity
subdifferential of f at p in the sense of [3]. Then, since f is differentiable, we have that
ζ ∈ D− f (p) = D+ f (p) = {d f (p)}, so we conclude that ζ = d f (p). �

The following important result is also local, it follows from [5, Theorem 1.3.1].

Theorem 12 (Density Theorem). Let M be a Riemannian manifold, p ∈ M, f : M →
(−∞,+∞] a lower semicontinuous function, ε > 0. Then there exists a point q such that
d(p, q) < ε, f (p) − ε ≤ f (q) ≤ f (p), and ∂P f (q) �= ∅.

The following result can be deduced from [5, Theorem 1.8.3].
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Theorem 13 (Fuzzy Rule for the Sum). Let f1, f2 : M → (−∞,∞] be two lower
semicontinuous functions such that at least one of them is Lipschitz near x0. If ζ ∈ ∂P( f1 +
f2)(x0) then, for every ε > 0, there exist x1, x2 and ζ1 ∈ ∂P f1(x1), ζ2 ∈ ∂P f2(x2) such that

(a) d(xi , x0) < ε and | fi (xi ) − fi (x0)| < ε for i = 1, 2.
(b) ‖ζ − (Lx1x0(ζ )1 + Lx2x0(ζ2))‖x0 < ε.

The following theorem is also local, and is a consequence of the fuzzy chain rule known for
functions defined on Hilbert spaces [5, Theorem 1.9.1, p. 59].

Theorem 14 (Fuzzy Chain Rule). Let g : N → R be lower semicontinuous, F : M → N be
locally Lipschitz, and assume that g is Lipschitz near F(x0). Then, for every ζ ∈ ∂P(g ◦ F)(x0)

and ε > 0, there are x̃, ỹ and η ∈ ∂P g(ỹ) such that d(x̃, x0) < ε, d(ỹ, F(x0)) < ε,
d(F(x̃), F(x0)) < ε, and

Lx x̃ζ ∈ ∂P [〈L ỹF(x0)(η), exp−1
F(x0)

◦F(.)〉](x̃) + εBTMx̃ .

The following result, which is local as well, relates the proximal subdifferential ∂P f (x) to the
viscosity subdifferential D− f (x) of a function f defined on a Riemannian manifold M; see [3]
for the definition of D− f (x) in the manifold setting.

Proposition 15. Let ξ0 ∈ D− f (x0), ε > 0. Then there exist x ∈ B(x0, ε) and ζ ∈ ∂P f (x)

such that | f (x) − f (x0)| < ε and ‖ξ0 − Lx x0(ζ )‖x0 .

Proof. This follows from [5, Proposition 3.4.5, p. 138]. �

The following result is the cornerstone in the proof of the Solvability Theorem stated below,
which in turn will be the basis of the proofs of the applications we will present later on about
fixed point theorems. This theorem is a version for manifolds of the classical Decrease Principle
(see [5, Theorem 3.2.8, p. 122]). The proof given by Clarke et al. is based on the Mean Value
Inequality, as far as we know this result is not known to be true for manifolds with the required
generality. We present an alternative proof based on Ekeland’s variational principle.

Theorem 16 (Decrease Principle). Let M be a complete Riemannian manifold. Let f : M →
(−∞,+∞] be a lower semicontinuous function, and x0 ∈ dom f . Assume that there exist δ > 0
and ρ > 0 such that ‖ζ‖x ≥ δ for any x with d(x, x0) < ρ and any ζ ∈ ∂P f (x). Then
inf{ f (x) : d(x, x0) ≤ ρ} ≤ f (x0) − ρδ.

Proof. We will use the following restatement of Ekeland’s variational principle (Theorem 1
in [8]).

Theorem 17 (Ekeland’s Variational Principle). Let V be a complete metric space and F : V →
R ∪ {+∞} a lower semicontinuous function such that F �= +∞ and F is bounded from below.
Let ε > 0 be given, and a point u ∈ V such that

F(u) ≤ inf
V

F + ε.

Then for any λ > 0 there exists some point v ∈ V such that

F(v) ≤ F(u), d(u, v) ≤ λ,

and the function
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w �→ F(w) + ε

λ
d(v,w)

has a strict minimum at v, that is,

F(w) + ε

λ
d(v,w) > F(v) ∀w ∈ V , w �= v.

In order to prove Theorem 16 we can obviously assume that f (x0) = 0. Define V to be the
closed ball {x : d(x, x0) ≤ ρ}, so (V , d) is a complete metric space. Define ε := − infV f ; since
f (x0) = 0, then ε ≥ 0. We immediately see that ε > 0, otherwise x0 would be a minimum of f ,
and then 0 ∈ ∂P f (x0), so that the hypothesis would be contradicted. To prove the theorem, we
want to see that infV f ≤ −ρδ, that is ε ≥ ρδ.

Suppose by contradiction that ε < ρδ: then ε/δ < ρ so it is possible to choose λ such that
ε

δ
< λ < ρ.

We know that 0 = f (x0) ≤ infV f + ε = 0. We can then apply Ekeland’s principle with the
above choice of ε, λ, to obtain a point v such that d(x0, v) ≤ λ, and the function

w �→ f (w) + ε

λ
d(v,w)

attains a strict minimum at v. Since λ < ρ, then v is in the interior of V , so

0 ∈ ∂P

(
f (·) + ε

λ
d(v, ·)

)
(v).

Now fix ε′ > 0 such that ε′ < ρ − λ, and B(v, ε′) is a geodesic ball (so that parallel transport
is well defined). By applying the fuzzy sum rule Theorem 13, we can find points x1, x2 such that
d(xi , x0) < ε′ for i = 1, 2 and we can find

ζ1 ∈ ∂P f (x1), ζ2 ∈ ∂P

( ε

λ
d(v, ·)

)
(x2)

such that ‖Lx1vζ1 − Lx2vζ2‖v < ε′.
Note that

d(x0, x1) ≤ d(x0, v) + d(v, x1) ≤ λ + ε′ < ρ.

Since d(v, ·) is 1-Lipschitz, ‖ζ2‖x2 ≤ ε/λ. By parallel transport and the triangular inequality we
get

‖ζ1‖x1 = ‖Lx1vζ1‖v ≤ ε′ + ‖Lx2vζ2‖v ≤ ε′ + ε

λ
< δ,

achieving contradiction. �
Under the same conditions we have the following corollary.

Corollary 18. Let ε > 0 and x0 satisfy f (x0) < inf f + ε. For every λ > 0, there exist
z ∈ B(x0, λ) and ζ ∈ ∂P f (z) such that f (z) < inf f + ε and ‖ζ‖ < ε/λ.

Proof. Otherwise, there is λ > 0 so that for every z ∈ B(x0, λ) and every ζ ∈ ∂P f (z) we have
‖ζ‖ ≥ ε

λ
(we may assume that f (z) < inf f +ε by lower semicontinuity). Then, by the Decrease

Principle, we have

inf
B(x0,λ)

f (x) ≤ f (x0) − λ
ε

λ
< inf f,

a contradiction. �
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Now, from the Decrease Principle, we are going to obtain important information about
solvability of equations on any complete Riemannian manifold M .

Let U ⊂ M , A be an arbitrary set of parameters α. Let F : M × A → [0,+∞] be a function
satisfying that for every α ∈ A the function Fα : M → [0,+∞] defined by Fα(x) = F(x, α) is
lower semicontinuous and proper (not everywhere ∞). We denote the set {x ∈ U : F(x, α) = 0}
by φ(α). Then we have the following version of the Solvability Theorem (see [5, Theorem 3.3.1,
p. 126]).

Theorem 19 (Solvability Theorem). Let V and U be open subsets of M, and δ > 0. Assume that

α ∈ A, x ∈ V , F(x, α) > 0, ζ ∈ ∂P Fα(x) ⇒ ‖ζ‖ ≥ δ.

Then for every x ∈ M and α ∈ A, we have

min{d(x, V c), d(x, Uc), d(x, φ(α))} ≤ F(x, α)

δ
.

Proof. Otherwise there exist x0, α0 and ρ > 0 such that

min{d(x0, V c), d(x0, Uc), d(x0, φ(α0))} > ρ >
F(x0, α0)

δ
,

and in particular B(x0, ρ) ⊂ U ∩ V and d(x0, φ(α0)) > ρ, which implies that F(x, α0) > 0
for every x ∈ B(x0, ρ). Hence we have ‖ζ‖ ≥ δ for every ζ ∈ ∂P Fα0(x) with x ∈ B(x0, ρ).
Therefore, by the Decrease Principle, 0 ≤ infx∈B(x0,ρ) Fα0 ≤ F(x0, α0) − ρδ < 0, which is a
contradiction. �

Of course, the most interesting fact about the above inequality is that, in many situations (such
of that of the following corollary) we can deduce d(x, φ(α)) ≤ F(x, α)/δ, which implies that
φ(α) is nonempty. The situation in which the above theorem is most often applied is when we
have identified a point (x0, α0) at which F = 0, with V and Ω being neighborhoods of x . This
is especially interesting in the cases when the functions involved are not known to be smooth or
the derivatives do not satisfy the conditions of the Implicit Function Theorem. For instance, we
can deduce the following result.

Corollary 20. Let x0 ∈ M, ε > 0, and δ > 0. Assume that

α ∈ A, d(x, x0) < 2ε, F(x, α) > 0, ζ ∈ ∂P Fα(x) ⇒ ‖ζ‖ ≥ δ.

Then we have that the equation F(z, α) = 0 has a solution for z in B(x0, 2ε) provided that there
is an x̃ ∈ B(x0, ε) satisfying F(x̃, α) < εδ.

Proof. It is enough to apply the Solvability Theorem with U = V = B(x0, 2ε). We have
that min{d(x̃, V c), d(x̃, Uc), d(x̃, φ(α))} < ε, and consequently d(x̃, φ(α)) < ε, because both
d(x̃, Uc) and d(x̃, V c) are greater than ε. Hence φ(α) �= ∅. �

2. Main results: Applications to fixed point theory

Now we are going to show how the Solvability Theorem allows us to deduce some interesting
fixed point theorems for possibly expansive mappings and certain perturbations of such mappings
defined on Riemannian manifolds M .

We first need to establish a couple of auxiliary results.
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Lemma 21. Let X, Y be Hilbert spaces, F : X → Y Lipschitz, and g : Y → R of class C2 near
F(x0). Define f = g ◦ F : X → R. Then

∂P f (x0) ⊆ ∂P (〈dg(F(x0)), F(·)〉) (x0).

Proof. Take ζ ∈ ∂P f (x0), that is,

f (x) − 〈ζ, x〉 + σ‖x − x0‖2 ≥ f (x0) − 〈ζ, x0〉
for x near x0, with σ > 0. Let S be the graph of the mapping F , a subset of X × Y . Another way
of writing the previous inequality is the following:

g(y) − 〈ζ, x〉 + σ‖x − x0‖2 + IS(x, y) ≥ g(F(x0)) − 〈ζ, x0〉
for x near x0, where IS is the indicator function of S, that is, IS(x, y) = 0 if (x, y) ∈ S, and
IS(x, y) = +∞ otherwise. This means that the function

H (x, y) := g(y) − 〈ζ, x〉 + σ‖x − x0‖2 + IS(x, y) := h(x, y) + IS(x, y)

attains a local minimum at (x0, F(x0)). Therefore

(0, 0) ∈ ∂P H (x0, F(x0)) = dh(x0, F(x0)) + ∂P IS(x0, F(x0))

= (−ζ, dg(F(x0))) + ∂P IS(x0, F(x0)) = (−ζ, dg(F(x0))) + N P
S (x0, F(x0)),

where N P
S (x0, F(x0)) denotes the proximal normal cone of S at (x0, F(x0)), see [5, p. 22–30].

This means that (ζ,−dg(F(x0))) ∈ N P
S (x0, F(x0)), that is (according to [5, Proposition 1.1.5]),

for some σ > 0 we have

〈(ζ,−dg(F(x0))), (x, F(x)) − (x0, F(x0))〉 ≤ σ‖(x, F(x)) − (x0, F(x0))‖2

= ‖(x − x0)‖2 + ‖F(x) − F(x0)‖2 ≤ σ(1 + K )‖x − x0‖2,

where K is the Lipschitz constant of F . Therefore,

〈ζ, x − x0〉 − σ(1 + K )‖x − x0‖2 ≤ 〈dg(F(x0)), F(x)〉 − 〈dg(F(x0)), F(x0)〉,
which means that ζ ∈ ∂P (〈dg(F(x0)), F(·)〉)(x0). �

Lemma 22. Let M be a Riemannian manifold, F : M → M Lipschitz, x0 ∈ M satisfying that
x0 �= F(x0) and that d(x, y) is C2 near (x0, F(x0)), f (x) = d(x, F(x)). Then

∂P f (x0) ⊂ v + ∂P 〈−Lx0 F(x0)v, (exp−1
F(x0)

◦F)(.)〉(x0)

where v = ∂d(x0,F(x0))
∂x .

Proof. By using the preceding lemma, we deduce that

∂P f (x0) ⊂ ∂P

(
〈v, exp−1

x0
(.)〉(x0) +

〈
∂d(x0, F(x0))

∂y
, (exp−1

F(x0)
◦F)(.)

〉)
(x0)

= ∂P(〈v, exp−1
x0

(.)〉(x0) + 〈−Lx0 F(x0)v, (exp−1
F(x0)

◦F)(.)〉)(x0)

= D(〈v, exp−1
x0

(.)〉)(x0) + ∂P〈−Lx0 F(x0)v, (exp−1
F(x0)

◦F)(.)〉(x0)

= v + ∂P 〈−Lx0 F(x0)v, (exp−1
F(x0)

◦F)(.)〉(x0). �
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Now we consider a family of Lipschitz mappings Fα , α ∈ A. Let Pα denote the set of
fixed points of Fα . We are going to apply the Solvability Theorem to the function f (x, α) =
d(x, Fα(x)), with U = M . Under the hypotheses of Lemma 22 we have the following.

Theorem 23. Let M be a complete Riemannian manifold, and Fα : M → M, α ∈ A, be a family
of Lipschitz mappings satisfying the hypotheses of Lemma 22 at every point x ∈ V ⊂ M with
Fα(x) �= x. Assume that there is a positive δ such that ‖vα + ζ‖ ≥ δ for every

ζ ∈ ∂P〈−vα, (L Fα(x)x ◦ exp−1
Fα(x) ◦Fα)(.)〉(x),

where x ∈ V , x �∈ Pα , and vα = ∂d(x,Fα(x))
∂x . Then we have that

min{d(x, V c), d(x, Pα)} ≤ d(x, Fα(x))

δ

for every x ∈ V and α ∈ A.

Proof. This follows immediately from Lemma 22 and Theorem 19. �

Remark 24. The condition that d(x, y) is C2 near (x, F(x)) whenever F(x) �= x is satisfied,
for instance, if M = X is a Hilbert space, or if M is finite dimensional and F(x) �∈ cut(x), where
cut(x) denotes the cut locus of the point x .

The statement of Theorem 23 might seem rather artificial at first glance but, as the rest of the
section will show, it has lots of interesting consequences.

Corollary 25. Let M be a complete finite dimensional manifold or M = X (a Hilbert space).
Assume that F : M → M is Lipschitz and F(x) �∈ cut(x) for every x ∈ M. Assume also that
there is a constant 0 < K < 1 such that the functions

y �→
〈
∂d(x, F(x))

∂x
, (L F(x)x ◦ exp−1

F(x))(F(y))

〉

are K -Lipschitz near x. Then F has a fixed point.

Proof. We have that ∂P〈− ∂d(x,F(x))
∂x , (L F(x)x ◦ exp−1

F(x) ◦F)(.)〉(x) ⊂ B(0, K ), hence δ = 1− K
does the work (with V = M). �

The following corollary is of course well known, but still it is very interesting that it can
be proved just by using the above results on proximal subgradients (and without requiring any
smoothness of the distance function in M).

Corollary 26. Let M be a complete Riemannian manifold, and suppose that F : M → M is
K -Lipschitz, with K < 1. Then F has a unique fixed point.

Proof. Uniqueness follows from the fact that d(F(x), F(y)) < d(x, y) whenever x �= y. In
order to get existence, let us observe that, in the situation of Lemma 22, if smoothness of the
distance function fails, we may use the following fact:

∂P f (x0) ⊂ ∂L f (x0) ⊂
⋃

‖v‖=1

[v + ∂L〈−v, (L F(x0)x0 ◦ exp−1
F(x0)

◦F)(.)〉(x0)],

where ∂L f (x0), the limiting subdifferential, is defined locally in the natural way, see [5, p. 61]
for the definition of ∂L f (x0) in the Hilbert space. Next we observe that the function

x �→ 〈−v, (L F(x0)x0 ◦ exp−1
F(x0)

◦F)(x)〉



164 D. Azagra, J. Ferrera / Nonlinear Analysis 67 (2007) 154–174

is (K + ε)-Lipschitz near x0, with (K + ε < 1), hence

∂L〈−v, (L F(x0)x0 ◦ exp−1
F(x0)

◦F)(.)〉(x0) ⊂ B(0, K + ε).

Therefore
⋃

‖v‖=1[v + ∂L〈−v, (L F(x0)x0 ◦ exp−1
F(x0)

◦F)(.)〉(x0)] does not meet the ball B(0, 1 −
K − ε), and consequently neither does ∂P f (x0), so we can apply the Solvability Theorem as
well. �

The following results, which are also consequences of Theorem 23, allow us to explore the
behavior of small Lipschitz perturbations of certain mappings with fixed points. Let us first
observe that very small Lipschitz perturbations of mappings having fixed points may lose them:
consider for instance f : R → R, f (x) = x +ε. The proofs of these results in their most general
(and powerful) form are rather technical. In order that the main ideas of the proofs become
apparent to the reader, we will first establish the main theorem and its corollaries in the case of
C1 smooth mappings of a Hilbert space, and then we will proceed to study more general versions
for nonsmooth perturbations on Riemannian manifolds.

Theorem 27. Let X be a Hilbert space, G : X → X a C1 smooth mapping, and J : X ×X → X
satisfying that

(i) G is C-Lipschitz on B(x0, R);
(ii) 〈h, DG(x)(h)〉 ≤ K < 1 for every x ∈ B(x0, R) and ‖h‖ = 1;

(iii) the mapping Jy : X → X, Jy(x) = J (x, y) is L-Lipschitz for all y ∈ X;

(iv) the mapping Jx : X → X, Jx (y) = J (x, y) is differentiable, and ‖ ∂ J
∂y (x, y) − I‖ ≤ ε/C

for every x ∈ B(x0, R) and y ∈ G(B(x0, R));
(v) L + K + ε < 1, and

(vi) ‖J (x0, G(x0)) − x0‖ < R(1 − (L + K + ε)).

Then the mapping F : M → M, defined by F(x) = J (x, G(x)), has a fixed point in the ball
B(x0, R).

Proof. This theorem, as it is stated (that is, without assuming J is differentiable), is a
consequence of Theorem 35 below. We will give an easy proof of this statement for the case when
J is differentiable and we are in a Hilbert space setting. Let us take a ζ ∈ ∂P(〈−v, F(·)〉)(x) =
〈−v, d F(x)(·)〉, that is,

ζ = 〈−v, d F(x)(·)〉 =
〈
−v,

∂ J

∂x
(x, G(x))(·) + ∂ J

∂y
(x, G(x))(DG(x)(·))

〉

=
〈
−v,

∂ J

∂x
(x, G(x))(·)

〉
+

〈
−v,

∂ J

∂y
(x, G(x))(DG(x)(·))

〉
.

Then, bearing in mind that x �→ Jy(x) is L-Lipschitz and ∂ J/∂y is ε/C-close to the identity, we
have

〈ζ,−v〉 =
〈
−v,

∂ J

∂x
(x, G(x))(−v)

〉
+

〈
−v,

∂ J

∂y
(x, G(x))(DG(x)(−v))

〉

≤ L + 〈−v, DG(x)(−v)〉 + ε

C
‖DG(x)‖ ≤ L + K + ε < 1.

Therefore, ‖v + ζ‖ ≥ 〈v, v + ζ 〉 = 〈v, v〉 + 〈v, ζ 〉 = 1 − 〈ζ,−v〉 ≥ 1 − (L + K + ε) := δ > 0
and, according to Theorem 23 (here we take A to be a singleton), we get that



D. Azagra, J. Ferrera / Nonlinear Analysis 67 (2007) 154–174 165

min{R, d(x0, P)} ≤ ‖F(x0) − x0‖
δ

= ‖J (x0, G(x0)) − x0‖
δ

< R,

and consequently P �= ∅ (that is, F has a fixed point in V = U := B(x0, R)). �

Remark 28. The above proof shows that Theorem 27 remains true if we only require G to be
differentiable (not necessarily C1) but in turn we demand that J is differentiable as well.

It is also worth noting that condition (ii) can be replaced with the (formally weaker) following
one:

(ii)′ 〈x − F(x), DG(x)(x − F(x))〉 ≤ K‖x − F(x)‖2 for every x ∈ B(x0, R).

When x0 is a fixed point of G condition (vi) means that J (x0, x0) is close to x0. The mapping
J can be viewed as a general means of perturbation of the mapping G. When we take a function
J of the form J (x, y) = y + H (x) we obtain the following corollary, which ensures the existence
of fixed points of the mapping G + H when H is L-Lipschitz and relatively small near x0 (a fixed
point of G).

Corollary 29. Let X be a Hilbert space, and let x0 be a fixed point of a differentiable mapping
G : X → X satisfying the following condition:

〈h, DG(x)(h)〉 ≤ K < 1 for every x ∈ B(x0, R) and ‖h‖ = 1.

Let H be a differentiable L-Lipschitz mapping, with L < 1 − K . Then G + H has a fixed point,
provided that ‖H (x0)‖ < R(1 − K − L).

Proof. Define J (x, y) = y + H (x). Note that the above proof of Theorem 27 works for any
differentiable mappings G and J (not necessarily C1). In order to deduce the corollary it is
enough to observe that ∂ H/∂y = I , so condition (iv) of Theorem 27 is satisfied for ε = 0. �

Let us observe that, when R = +∞, we do not need to require that x0 be a fixed point of
G, and no restriction on the size of H (x0) is necessary either. As a consequence we have the
following.

Corollary 30. Every mapping F : X → X of the form F = T + H , where T is linear and
satisfies 〈h, T (h)〉 ≤ K < 1 for every ‖h‖ = 1, and H is L-Lipschitz, with L < 1 − K , has a
fixed point.

Remark 31. If X is finite dimensional, the conditions on T are satisfied but requiring that
Reλ < 1 for every eigenvalue λ. On the other hand, let us observe that the function F may
be expansive, that is ‖F(x) − F(y)‖ > ‖x − y‖ for some, or even all, x �= y. Consider for
instance the mapping T : �2 → �2 defined by

T (x1, x2, x3, x4, . . .) = 5(x2,−x1, x4,−x3, . . .);
in this case T is clearly expansive but we can take K = 0. This result should be compared
with [7, Corollary 1.6, p. 24].

As a consequence of Corollary 29 we can also deduce the following local version of the result.

Corollary 32. Let x0 be a fixed point of a differentiable function G : X → X satisfying the
following condition:

〈h, DG(x0)(h)〉 ≤ K < 1 for every ‖h‖ = 1.
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Let H be a differentiable L-Lipschitz function. Then there exists a positive constant α0 such that
the function G + αH has a fixed point, for every α ∈ (0, α0).

Another way to perturb a mapping G with a fixed point x0 is to compose it with a function H
which is close to the identity. When we take J of the form J (x, y) = H (y) in Theorem 27 we
obtain the following.

Corollary 33. Let X be a Hilbert space, and x0 be a fixed point of a differentiable mapping
G : X → X such that

〈h, DG(x)(h)〉 ≤ K < 1

for every x ∈ B(x0, R) and h ∈ X with ‖h‖ = 1. Let H : X → X be a differentiable mapping
such that ‖DH (G(x)) − I‖ < ε for every x ∈ B(x0, R). Then F = H ◦ G has a fixed point in
B(x0, R), provided that K + ε < 1 and ‖H (x0) − x0‖ < R(1 − K − ε).

Proof. For J (x, y) = H (y) we have that x �→ Jy(x) is constant, hence 0-Lipschitz for every y,
and we can apply Theorem 27 with L = 0 (and bearing in mind Remark 28). �

Note that the third corollary stated in the introduction is the sum of Theorem 35, Corollary 39.
Finally we will consider an extension of Theorem 27 and the above corollaries to the setting

of nonsmooth mappings on Riemannian manifolds. We will make use of the following fact about
partial proximal subdifferentials.

Lemma 34. Let M be a Riemannian manifold, and f : M × M → R. For each x ∈ M let us
define the partial function fx : M → R by fx (y) = f (x, y), and define also fy : M → R

by fy(x) = f (x, y). Assume that ζ = (ζ1, ζ2) ∈ ∂P f (x0, y0). Then ζ1 ∈ ∂P fy0(x0), and
ζ2 ∈ ∂P fx0(y0).

Proof. Since ζ ∈ ∂P f (x0, y0) there exists a C2 function ϕ : M × M → R such that f − ϕ

attains a local minimum at (x0, y0), and(
∂ϕ

∂x
(x0, y0),

∂ϕ

∂y
(x0, y0)

)
= dϕ(x0, y0) = ζ = (ζ1, ζ2).

Then it is obvious that x �→ fy0(x) − ϕ(x, y0) attains a local minimum at x0 as well, so

ζ1 = ∂ϕ

∂x
(x0, y0) ∈ ∂P fy0(x0).

In the same way we see that ζ2 = ∂ϕ
∂y (x0, y0) ∈ ∂P fx0(y0). �

Now we can prove our main result about perturbation of mappings with fixed points. As said
before, the mapping J should be regarded as a general form of perturbation of G. We use the
following notation:

sing(x) := {y ∈ M : d(·, x)2 is not differentiable at y}.
When M is finite dimensional it is well known that sing(x) ⊆ cut(x), and both sing(x) and
cut(x) are sets of measure zero.

Theorem 35. Let M be a complete Riemannian manifold, G : M → M, J : M × M → M and
F : M → M defined by F(x) = J (x, G(x)) be mappings such that:
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(i) F(x) �∈ sing(x) ∪ sing(G(x)) for every x ∈ B(x0, R), and moreover there are (unique)
minimizing geodesics joining F(x) to x and F(x) to G(x);

(ii) G is C1 smooth and 〈Lx F(x)h, LG(x)F(x)dG(x)(h)〉F(x) ≤ K < 1 for all x ∈ B(x0, R)

and h ∈ TMx with ‖h‖x = 1;
(iii) G is C-Lipschitz on B(x0, R);
(iv) J is locally Lipschitz;
(v) the mapping x �→ Jy(x) := J (x, y) is L-Lipschitz for every y ∈ M;

(vi) the mapping y �→ Jx (y) := J (x, y) is differentiable for every x ∈ B(x0, R), there is a
unique minimizing geodesic joining J (x, y) to y, J (x, y) �∈ sing(y) and∥∥∥∥∂ J

∂y
(x, y) − L y J (x,y)

∥∥∥∥ ≤ ε

C

for every x ∈ B(x0, R) and y ∈ G(B(x0, R));
(vii) L + K + ε < 1; and

(viii) d(x0, J (x0, G(x0))) < R(1 − (L + K + ε)).

Then the mapping F : M → M has a fixed point in the ball B(x0, R).
Moreover, when M is finite dimensional, conditions (i) and (vi) on the singular sets can be

replaced by:

(i)′ F(x) �∈ cut(x) ∪ cut(G(x)) for every x ∈ B(x0, R), and
(vi)′ the mapping y �→ Jx (y) := J (x, y) is differentiable for every x ∈ B(x0, R), and

J (x, y) �∈ cut(y) and∥∥∥∥∂ J

∂y
(x, y) − L y J (x,y)

∥∥∥∥ ≤ ε

C

for every x ∈ B(x0, R) and y ∈ G(B(x0, R)).

At first glance this statement may seem to be overburdened with assumptions, but it turns
out that all of them are either useful or necessary, as we will see from its corollaries and in
the next remarks. Before giving the proof of the theorem, let us make some comments on these
assumptions.
1. The condition in (i)′ that F(x) �∈ cut(x) for all x ∈ B(x0, R) is necessary. Indeed, in the
simplest case when there is no perturbation at all, that is, J (x, y) = y, if we take G to be a
continuous mapping from the sphere S2 into itself and G(x) ∈ sing(x) = cut(x) = {−x} for all
x ∈ S2, then G is the antipodal map and has no fixed point. Therefore, in order that G : S2 → S2

has a fixed point, there must exist some x0 with G(x0) �∈ cut(x0) and, therefore, by continuity,
G(x) �∈ cut(x) for every x in a neighborhood of x0.

On the other hand, not only is this a necessary condition, but also very natural in these kinds
of problems. For instance, one can deduce from the Hairy Ball Theorem that if G : S2 → S2 is a
continuous mapping such that G(x) �∈ cut(x) for every x ∈ S2 then G has a fixed point. Indeed,
for every x ∈ S2, the condition G(x) �∈ cut(x) implies the existence of a unique vx ∈ T S2

x with
‖vx‖ < π such that expx(vx ) = G(x). The mapping S2 � x �→ vx ∈ T S2 defines a continuous
field of tangent vectors to S2. If G did not have any fixed point then we would have vx �= 0 for
all x , which contradicts the Hairy Ball Theorem.
2. The other condition in (i)′ that F(x) �∈ cutG(x) is also natural in this setting and very easily
satisfied if we mean F to be a relatively small perturbation of G. For instance, if M has a
positive injectivity radius ρ = i(M) > 0 and F is ρ-close to G, that is, d(F(x), G(x)) < ρ

for x ∈ B(x0, R), then F(x) �∈ cut(G(x)) for x ∈ B(x0, R).
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3. Since the main aim of the present theorem is to establish corollaries in which we have a
mapping G : M → M with a fixed point x0 and we perturb G by composing with or summing
a mapping H with certain properties, thus obtaining a mapping F which is relatively close to G,
and then we want to be able to guarantee that this perturbation of G still has a fixed point, it turns
out that condition (i)′ of the theorem is not really restrictive. Indeed, since G(x0) = x0, J (x0, x0)

is relatively close to x0 (see property (viii)), the mappings G and F = J ◦ G are continuous and
there always exists a convex neighborhood of x0 in M , it is clear that there must be some R > 0
such that F(x) �∈ cut(x) for every x ∈ B(x0, R).

4. The second part of condition (vi) means that, in its second variable, J is relatively close to
the identity, a natural condition to apply if we mean the function F(x) = J (x, G(x)) to be a
relatively small perturbation of G.

5. The requirement that G is Lipschitz on B(x0, R) is not a strong one. On the one hand, since G
is C1 it is locally Lipschitz, condition (iii) is met provided R is small enough. On the other hand,
when M is finite dimensional, by local compactness of M and continuity of dG, condition (iii)
is always true for any R.

6. Condition (ii) is met in many interesting situations: for example, when the behavior of G
in a neighborhood of x0 is similar to a multiple of a rotation. Consider for instance M , the
surface z = x2 + y2 in R

3, and G(x, y, z) = (5y,−5x, 25z). Then dG(0) is the linear mapping
T (x, y) = 5(y,−x), and it is clear that for every K ∈ (0, 1) there is some R > 0 such that (ii) is
satisfied. Of course the origin is a fixed point of G. Theorem 35 tells us that any relatively small
perturbation of G still has a fixed point (relatively close to the origin).

7. Notice also that Theorem 35 gives, in the case of M = X a Hilbert space, the statement of
Theorem 27, which is stronger than the version already proved, because here the mapping J is
not necessarily differentiable, only ∂ J

∂y needs to exist. This is one of the reasons why the proof
of Theorem 35 is much more complicated than the one already given for the Hilbert space. This
seemingly small difference is worth the effort of the proof, because, for instance, in Theorem 38,
we only have to ask that the perturbing function H is Lipschitz, not necessarily everywhere
differentiable with a bounded derivative.

Proof of Theorem 35. Let us define G̃(x) = (x, G(x)). Let us fix a point x ∈ B(x0, R) with a
subgradient

ζ ∈ ∂P

(
〈−v, L F(x)x ◦ exp−1

F(x) ◦F(·)〉
)

(x)

= ∂P

(
〈−v, L F(x)x ◦ exp−1

F(x) ◦J (·)〉 ◦ G̃(·)
)

(x),

where v = ∂d(x, F(x))/∂x . We want to see that ‖v + ζ‖ ≥ λ > 0 for some λ > 0 independent
of x, ζ , and such that d(J (x0, G(x0)), x0) < Rλ. Then, by using Theorem 23, we will get that

min{R, d(x0, P)} ≤ d(F(x0), x0)

λ
= d(J (x0, G(x0)), x0)

λ
< R,

hence P �= ∅, that is, F has a fixed point in V = U = B(x0, R). So let us prove that there exists
such a number λ.

Since J is locally Lipschitz we can find positive numbers C ′, δ0 such that J is C ′-Lipschitz
on the ball B(G̃(x), δ0).
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By continuity of G̃ and dG̃ and the properties of exp, for any given ε′ > 0 we can find δ1 > 0
such that

‖d(exp−1
G̃(x)

)(G̃(x̃)) − LG̃(x̃)G̃(x)
‖ <

ε′

1 + ‖dG̃(x)‖ , and ‖dG̃(x̃)‖ ≤ 1 + ‖dG̃(x)‖

whenever x̃ ∈ B(x, δ1), and therefore, by the chain rule,

‖d(exp−1
G̃(x)

◦G̃)(x̃) − LG̃(x̃)G̃(x)dG̃(x̃)‖ <
ε′

1 + ‖dG̃(x)‖‖dG̃(x̃)‖ ≤ ε′ (1)

for every x̃ ∈ B(x0, δ1). On the other hand, since exp−1
F(x) is an almost isometry near F(x) and

the mapping J is continuous, we can find δ2 > 0 such that if ỹ, z̃ ∈ B(G̃(x), δ2) then

‖ exp−1
F(x)(J (ỹ)) − exp−1

F(x)(J (z̃))‖ ≤ (1 + ε′)d(J (ỹ), J (z̃)).

In particular, bearing in mind the fact that the mapping Jy is L-Lipschitz for all y, we deduce
that

‖ exp−1
F(x)(J (z, y)) − exp−1

F(x)(J (z′, y))‖ ≤ (1 + ε′) L d(z, z′) (2)

for all (z, y), (z′, y) ∈ B(G̃(x), δ2).
In a similar manner, because d exp−1

F(x)(z̃) is arbitrarily close to Lz̃F(x) provided z̃ is close

enough to F(x), and J (ỹ) is close to F(x) = J (G̃(x)) when ỹ is close to G̃(x), we can find a
number δ3 > 0 such that

‖d exp−1
F(x)(J (ỹ)) − L J ( ỹ)F(x)‖ ≤ ε′ (3)

provided that ỹ ∈ B(G̃(x), δ3).
Because of the continuity properties of the parallel transport and the geodesics (a consequence

of their being solutions of differential equations which exhibit continuous dependence with
respect to the initial data), we may find numbers δ4, δ5, δ6 > 0 such that:

‖L J ( ỹ)F(x)L ỹ2 J ( ỹ) − L ỹ2 F(x)‖ ≤ ε′ provided that d(ỹ, G̃(x)) < δ4; (4)

‖dG(x̃)Lx x̃ − LG(x)G(x̃)dG(x)‖ ≤ ε′ provided that d(x, x̃) < δ5, and (5)

‖L ỹ2 F(x)LG(x) ỹ2 − LG(x)F(x)‖ ≤ ε′ provided that d(ỹ2, G(x)) < δ6. (6)

Let us take any δ < min{δ0, δ1, δ2, δ3, δ4, δ5, δ6}. By the fuzzy chain rule Theorem 14, we
have that there are points ỹ = (ỹ1, ỹ2) ∈ M × M , x̃ ∈ M , and a subgradient

η ∈ ∂P

(
〈−v, L F(x)x ◦ exp−1

F(x) ◦J (·)〉
)

(ỹ) (7)

such that d(ỹ, G̃(x)) < δ, d(x̃, x) < δ, d(G̃(x̃), G̃(x)) < δ, and

Lx x̃ζ ∈ ∂
(
〈L ỹG̃(x)

(η), exp−1
G̃(x)

◦G̃〉
)

(x̃) + δBTMx̃ .

Since the mapping G̃ is differentiable this means, according to property (x) of Proposition 11,
that

Lx x̃ζ ∈ 〈L ỹG̃(x)(η), d
(

exp−1
G̃(x)

◦G̃
)

(x̃)(·)〉 + δBTMx̃ .
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But, by Eq. (1) above, and taking into account that ‖η‖ ≤ C ′ (because J is C ′-Lipschitz on
B(G̃(x), δ) � ỹ), we have that

〈L ỹG̃(x)(η), d
(

exp−1
G̃(x)

◦G̃(·)
)

(x̃)(·)〉 + δBTMx̃

⊆ 〈L ỹG̃(x)(η), LG̃(x̃)G̃(x) ◦ dG̃(x̃)(·)〉 + (δ + ε′‖η‖)BTMx̃

⊆ 〈L ỹG̃(x)(η), LG̃(x̃)G̃(x) ◦ dG̃(x̃)(·)〉 + (δ + ε′C ′)BTMx̃ ,

so we get that, defining η = (η1, η2),

Lx x̃ζ ∈ 〈L ỹG̃(x)(η), LG̃(x̃)G̃(x) ◦ dG̃(x̃)(·)〉 + (δ + ε′C ′)BTMx̃

= 〈(η1, η2), LG̃(x) ỹ LG̃(x̃)G̃(x)
◦ dG̃(x̃)(·)〉 + (δ + ε′C ′)BTMx̃

= 〈η1, Lx ỹ1 Lx̃ x(·)〉 + 〈η2, LG(x) ỹ2 LG(x̃)G(x) ◦ dG(x̃)(·)〉 + (δ + ε′C ′)BTMx̃ . (8)

Now, from inequality (2) above and taking into account that L F(x)x is an isometry, we get that
the functions

z �→ 〈−v, L F(x)x ◦ exp−1
F(x) ◦J (z, y)〉

are L(1 + ε′)-Lipschitz on B(x, δ2) for every y ∈ B(G(x), δ2). Then, since

(η1, η2) = η ∈ ∂P

(
〈−v, L F(x)x ◦ exp−1

F(x) ◦J (·)〉
)

(ỹ), (9)

and by using Lemma 34, we deduce that

‖η1‖ ≤ (1 + ε′)L . (10)

On the other hand, since the mapping y �→ J (x, y) is differentiable, by looking at Eq. (9)
above, and again using Proposition 11(x) and Lemma 34, we have that

η2 =
∂

(
〈−v, L F(x)x ◦ exp−1

F(x) ◦J (y1, y2)〉
)

∂y2
(ỹ)

=
∂

(
〈−Lx F(x)v, ◦ exp−1

F(x) ◦J (y1, y2)〉
)

∂y2
(ỹ)

=
〈
−Lx F(x)(v), d exp−1

F(x)
(J (ỹ))

(
∂ J

∂y2
(ỹ)

)
(·)

〉
. (11)

Besides, bearing in mind Eqs. (3) and (4) and the assumption (vi) of the statement, we have∥∥∥∥d exp−1
F(x)(J (ỹ)) ◦ ∂ J

∂y2
(ỹ) − L ỹ2 F(x)

∥∥∥∥
≤

∥∥∥∥d exp−1
F(x)(J (ỹ)) ◦ ∂ J

∂y2
(ỹ) − L J ( ỹ)F(x) ◦ L ỹ2 J ( ỹ)

∥∥∥∥ + ε′

=
∥∥∥∥d exp−1

F(x)(J (ỹ)) ◦
(

∂ J

∂y2
(ỹ) − L ỹ2 J ( ỹ)

)

+
(

d exp−1
F(x)(J (ỹ)) − L J ( ỹ)F(x)

)
◦ L ỹ2 J ( ỹ)

∥∥∥∥ + ε′

≤ ‖d exp−1
F(x)(J (ỹ))‖

∥∥∥∥ ∂ J

∂y2
(ỹ) − L ỹ2 J ( ỹ)

∥∥∥∥
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+ ‖d exp−1
F(x)(J (ỹ)) − L J ( ỹ)F(x)‖ ‖L ỹ2 J ( ỹ)‖ + ε′

≤ (1 + ε′) · ε

C
+ ε′ · 1 + ε′ = (1 + ε′) ε

C
+ 2ε′,

which, combined with (11), yields

〈η2, h〉 =
〈
−Lx F(x)(v), d exp−1

F(x)(J (ỹ))

(
∂ J

∂y2
(ỹ)

)
(h)

〉

≤ 〈−Lx F(x)(v), L ỹ2 F(x)h〉 +
(
(1 + ε′) ε

C
+ 2ε′) ‖h‖

for all h ∈ TMỹ2 . By taking h = LG(x) ỹ2 LG(x̃)G(x)dG(x̃)(−Lx x̃v) in this expression we get

〈η2, LG(x) ỹ2 LG(x̃)G(x)dG(x̃)(−Lx x̃v)〉
≤ 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 LG(x̃)G(x)dG(x̃)(−Lx x̃v)〉

+
(
(1 + ε′)

ε

C
+ 2ε′) ‖dG(x̃)‖

≤ 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 LG(x̃)G(x)dG(x̃)(−Lx x̃v)〉 +
(
(1 + ε′) ε

C
+ 2ε′) C

= 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 LG(x̃)G(x)dG(x̃)(−Lx x̃v)〉 + (1 + ε′)ε + 2ε′C. (12)

Now, by combining Eqs. (8), (10), (12), (5), (6) and assumption (ii), we obtain

〈ζ,−v〉 = 〈Lx x̃ζ,−Lx x̃v〉
≤ (δ + ε′C ′) + 〈η1, Lx ỹ1 Lx̃x (−Lx x̃v)〉

+ 〈η2, LG(x) ỹ2 LG(x̃)G(x) ◦ dG(x̃)(−Lx x̃v)〉
≤ (δ + ε′C ′) + (1 + ε′)L

+ 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 LG(x̃)G(x) ◦ dG(x̃)(−Lx x̃v)〉
+ (1 + ε′)ε + 2ε′C

= 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 LG(x̃)G(x) ◦ dG(x̃)(−Lx x̃v)〉
+ δ + ε′C ′ + (1 + ε′)L + (1 + ε′)ε + 2ε′C

≤ δ + ε′C ′ + (1 + ε′)L + (1 + ε′)ε + 2ε′C
+ 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 LG(x̃)G(x)LG(x)G(x̃) ◦ dG(x)(−v)〉 + ε′

= δ + ε′C ′ + (1 + ε′)L + (1 + ε′)ε + 2ε′C + ε′

+ 〈−Lx F(x)v, L ỹ2 F(x)LG(x) ỹ2 ◦ dG(x)(−v)〉
≤ δ + ε′C ′ + (1 + ε′)L + (1 + ε′)ε + 2ε′C + ε′

+ 〈−Lx F(x)v, L F(x)G(x) ◦ dG(x)(−v)〉 + ε′C
≤ K + δ + ε′C ′ + (1 + ε′)L + (1 + ε′)ε + 2ε′C + ε′ + ε′C,

that is,

〈ζ,−v〉 ≤ μ(δ, ε′) := K + δ + ε′(1 + C ′) + (1 + ε′)L + (1 + ε′)ε + 3ε′C. (13)

Since δ and ε′ can be chosen to be arbitrarily small and

lim
(δ,ε′)→(0,0)

μ(δ, ε′) = K + L + ε,
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this argument shows that

〈ζ,−v〉 ≤ K + L + ε. (14)

Finally, this implies that

‖v + ζ‖ ≥ 〈v, v + ζ 〉 = 〈v, v〉 + 〈v, ζ 〉
= 1 − 〈ζ,−v〉 ≥ 1 − (K + L + ε) := λ > 0,

and λ is clearly independent of x, ζ . Moreover, according to assumption (vi), we have that
d(x0, J (x0, G(x0))) < R(1 − (L + K + ε)) = Rλ, so we got all we needed. �

Finally let us see what Theorem 35 means when we consider some special cases of the
perturbing mapping J . In the general case of a complete Riemannian manifold, if we have a
mapping G : M → M having an almost fixed point x0 and satisfying certain conditions, and we
compose G with a mapping H which is relatively close to the identity, we get that F = H ◦ G
has a fixed point. More precisely, we have the following.

Theorem 36. Let M be a complete Riemannian manifold, and G : M → M a C1 smooth
function such that G is C-Lipschitz on a ball B(x0, R). Let H : M → M be a differentiable
mapping. Assume that H (G(x)) �∈ sing(x) ∪ sing(G(x)) for every x ∈ B(x0, R), that

〈Lx H(G((x)))h, LG(x)H(G(x))dG(x)(h)〉F(x) ≤ K < 1

for all x ∈ B(x0, R) and h ∈ TMx with ‖h‖x = 1, and that ‖d H (y)− L y H(y)‖ < ε/C for every
y ∈ G(B(x0, R)), where ε < 1 − K , and d(x0, H (G(x0))) < R(1 − K − ε). Then F = H ◦ G
has a fixed point in B(x0, R).

If M is finite dimensional one can replace sing(z) with cut(z) everywhere.

Proof. It is enough to consider the mapping J (x, y) = H (y). Since x �→ Jy(x) is constant for
every y, we can apply Theorem 35 with L = 0. �

Notice that when we take 0 < R < ρ = i(M), the global injectivity radius of M , we obtain
the first corollary mentioned in the general introduction.

As another consequence we also have a local version of the result, whose statement becomes
simpler.

Theorem 37. Let M be a complete Riemannian manifold. Let x0 be a fixed point of a C1 function
G : M → M satisfying the following condition:

〈h, dG(x0)(h)〉 ≤ K < 1 for every ‖h‖ = 1.

Then there exists a positive δ such that for every differentiable mapping H : M → M such that
‖d H (y)− L y H(y)‖ < δ for every y near x0, the composition H ◦ G : M → M has a fixed point
provided that d(x0, H (x0)) < δ.

If M is endowed with a Lie group structure a natural extension of Corollary 29 holds: we can
perturb the function G by summing a small function H with a small Lipschitz constant, and we
get that G + H has a fixed point.

Theorem 38. Let (M,+) be a complete Riemannian manifold with an abelian Lie group
structure. Let G : M → M be a C1 smooth function which is C-Lipschitz on a ball B(x0, R).
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Let H : M → M be an L-Lipschitz function. Assume that G(x)+ H (x) �∈ sing(x) ∪ sing(G(x))

for every x ∈ B(x0, R), and that

〈Lx(H(x)+G(x))h, LG(x)((H(x)+G(x)))dG(x)(h)〉F(x) ≤ K < 1

for all x ∈ B(x0, R) and h ∈ TMx with ‖h‖x = 1. Then G + H has a fixed point, provided that
L < 1 − K and d(x0, x0 + H (x0)) < R(1 − K − L).

Again, if M is finite dimensional one can replace sing(z) with cut(z) everywhere.

Proof. Define J (x, y) = y + H (x). We have that

∂ J

∂y
(x, y) = L y J (x,y),

so we can apply Theorem 35 with ε = 0. �
Let us conclude with an analogue of Corollary 32, which can be immediately deduced from

Theorem 38.

Corollary 39. Let (M,+) be a complete Riemannian manifold with an abelian Lie group
structure. Let x0 be a fixed point of a C1 function G : M → M satisfying the following condition:

〈h, dG(x0)(h)〉 ≤ K < 1 for every ‖h‖ = 1.

Then there exists a positive δ such that for every Lipschitz mapping H : M → M with Lipschitz
constant smaller than δ, the mapping G + H : M → M has a fixed point provided that
d(x0, x0 + H (x0)) < δ.

This is the second corollary mentioned in the introduction.
Let us show an easy example of a situation in which the above results are applicable. Let M

be the cylinder defined by x2 + y2 = 1 in R
3, and let G : M → M be the mapping defined by

G(x, y, z) = (x,−y,−z). Take p0 to be either (1, 0, 0) or (−1, 0, 0) (the only two fixed points
of G). We have that G is 1-Lipschitz and 〈L pqh, LG(p)qdG(p)(h)〉 = −1 := K whenever
q �∈ cut(p) ∪ cut(G(p)). Then we can apply Theorem 36 with R = π/2 to obtain that, if
we take any differentiable mapping H : M → M such that H (G(p)) �∈ cut(p) ∪ cut(G(p))

for every p ∈ B(p0, π/2) and ‖d H (p) − L pH(p)‖ < ε for every p ∈ G(B(p0, R)) and
d(p0, H (G(p0))) < R(1 − K − ε), where 0 < ε < 2, then the composition F = H ◦ G
has a fixed point in B(p0, π/2).

In a similar way one can also apply Theorem 38 to obtain that, when M is endowed with the
natural Lie group structure of S1 × R, the mapping G + H has a fixed point near p0 provided
H : M → M is a relatively small Lipschitz function.
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