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In this note we prove that if a differentiable function oscillates between y« and
« on the boundary of the unit ball then there exists a point in the interior of the
ball in which the differential of the function has norm equal or less than « . This
kind of approximate Rolle’s theorem is interesting because an exact Rolle’s
theorem does not hold in many infinite dimensional Banach spaces. A characteri-
zation of those spaces in which Rolle’s theorem does not hold is given within a
large class of Banach spaces. This question is closely related to the existence of C1

� 4diffeomorphisms between a Banach space X and X _ 0 which are the identity out
of a ball, and we prove that such diffeomorphisms exist for every C1 smooth
Banach space which can be linearly injected into a Banach space whose dual norm

Ž .is locally uniformly rotund LUR . Q 1997 Academic Press

1. INTRODUCTION

Rolle’s theorem in finite dimensional spaces states that for every open
connected and bounded subset UU in R n and every continuous function f :
UU ª R such that f is differentiable in UU and constant on ­ UU, there exists

Ž .an x in UU such that df x s 0. In a paper published in 1992, S. A. Shkarin
w x10 proved that Rolle’s theorem fails in a large class of infinite dimen-
sional Banach spaces, including all super-reflexive and all non-reflexive
Banach spaces having a Frechet differentiable norm}although he did not´
study the reflexive but non-super-reflexive case. Other explicit examples

*Supported in part by DGICYT PB93r0452.
† E-mail address: daniel@sunam1.mat.ucm.es.
‡ E-mail address: javier@sunam1.mat.ucm.es.
§ E-mail address: jaramil@eucmax.sim.ucm.es.

487

0022-247Xr97 $25.00
Copyright Q 1997 by Academic Press

All rights of reproduction in any form reserved.



AZAGRA, GOMEZ, AND JARAMILLO´488

w xwere found in c and l by J. Ferrera and J. Bes 7 and independently by´0 2
w xJ. Ferrer 8 . On the other hand it is clear that Rolle’s theorem trivially

holds in all non-Asplund Banach spaces because of the harmonic be-
haviour of differentiable maps in such spaces. It is natural to conjecture
that a reasonable version of Rolle’s theorem in infinite dimensional
Banach spaces holds if and only if our space does not have a C1 bump
function and we prove this conjecture to be true within the class of those
Banach spaces X which can be linearly injected into a Banach space Y
with an equivalent norm whose dual norm is locally uniformly rotund
Ž . Ž .LUR in Y *. This geometrical condition, which we shall call ) for short,

Ž .is satisfied by every WCG Banach space, every space which can be
Ž .injected into some c G , and even by every space injectable into some0

Ž . Žv 1.C K , where K is a scattered compact with K s B. This conjecture is
w xclosely related to the question posed in 4 whether for every Banach space

X having a C1 bump function there exists a C1 diffeomorphism w :
� 4X ª X _ 0 such that w is the identity out of a ball. We give an

affirmative answer to this question within the class of all Banach spaces X
Ž .verifying ) .

An interesting approximate version of Rolle’s theorem remains never-
theless true in all Banach spaces, as we prove in this note. By an
approximate Rolle’s theorem we mean that if a differentiable function
oscillates between y« and « on the boundary of the unit ball then there
exists a point in the interior of the ball in which the differential of the
function has norm less than or equal to « .

The authors gratefully acknowledge their debt to Juan Ferrera, who
called their attention to this kind of problem. They are also grateful to
Jesus Ferrer for pointing out some inaccuracies in the original version of´
this note.

2. THE APPROXIMATE ROLLE’S THEOREM

In order to prove the approximate Rolle’s theorem we need the follow-
ing lemmas, which are themselves interesting.

LEMMA 2.1. Let X be a Banach space and UU be an open bounded
connected subset of X. Let f : UU ª R be a continuous bounded function such
that:

Ž .1 f is Gateaux differentiable in UUˆ
Ž . Ž . Ž . Ž . Ž .2 inf f UU - inf f ­ UU or sup f UU ) sup f ­ UU .

5 Ž .5Then, for e¨ery a ) 0 there exists x g UU such that df x F a .
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Ž . Ž .Proof. We may suppose inf f UU - inf f ­ UU . Let us choose x g UU0
Ž . Ž . Ž .such that f x - inf f ­ UU , and let a , l be such that 0 - a - inf f ­ UU0

Ž . �5 5 4y f x and 0 - l - arR, where R s sup x y x : x g UU q 1. From0 0
Ž w x w x.Ekeland’s Variational Principle see Lemma 3.13 in 9 , or 5 it follows

that there exists x g UU such that1

5 5f x - f x q l x y x 1Ž . Ž . Ž .1 1

for all x / x . In particular1

5 5f x F f x q l x y x F f x q lR - inf f ­ UUŽ . Ž . Ž . Ž .1 0 0 1 0

Ž .and therefore x g UU. On the other hand, inequality 1 implies that for1
5 5every h such that h s 1,

f x q th y f xŽ . Ž .1 1
df x h s lim G yl,Ž . Ž .1 q ttª0

5 Ž .5which proves df x F l - a .1

LEMMA 2.2. Let X be a Banach space and UU be an open bounded
connected subset of X. Let f : UU ª R be a continuous bounded function such
that:

Ž .1 f is Gateaux differentiable in UUˆ
Ž . Ž . w x2 f UU : a, b , where a - b.

Ž .Then, for e¨ery x g UU and R ) 0 such that B x , R : UU, there exists0 0
Ž . 5 Ž .5 Ž .x g B x , R such that df x F b y a r2 R.1 0 1

w x w xProof. We may suppose that a, b s y« , « . Two cases will be consid-
ered.

Ž . Ž . Ž Ž .Case I. f x / 0. We may suppose f x - 0 the case f x ) 0 is0 0 0
. Ž w xanalogous . From Ekeland’s Variational Principle see Lemma 3.13 in 9 ,

w x.or 5 it follows that there exists x g UU such that1

Ž . 5 5 Ž Ž . . Ž .1 x y x F f x q « r «rR - R, and0 1 0

Ž . Ž . Ž . Ž .5 52 f x - f x q «rR x y x for all x / x .1 1 1

Ž . Ž . 5 5From 1 we get x g UU and 2 implies that for every h with h s 11

f x q th y f xŽ . Ž .1 1
df x h s lim G y«rR ,Ž . Ž .1 q ttª0

5 Ž .5which proves df x F «rR.1
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Ž . 5 Ž .5Case II. f x s 0. We may suppose df x ) «rR, since we would0 0
5 Ž .5 5 5have finished otherwise. If df x ) «rR there exists h with h s 10

Ž .Ž .such that df x h - y«rR and therefore there exists d ) 0 such that0
Ž .f x q d h rd - y«rR. Applying Ekeland’s Variational Principle again we0

obtain x g UU such that:1

Ž . 5 Ž .5 Ž Ž . . Ž . Ž1 x y x q d h F f x q d h q « r «rR - y«drR q1 0 0
. Ž .« r «rR s R y d and

Ž . Ž . Ž . Ž .5 52 f x - f x q «rR x y x for all x / x .1 1 1

Ž . 5 5 5 Ž .5From 1 it follows that x y x F x y x q d h q d - R, so that1 0 1 0
Ž . Ž . 5 Ž .5x g B x , R : UU, and 2 implies df x F «rR.1 0 1

The following result is immediately deduced as a consequence of Lem-
mas 2.1 and 2.2.

Ž .THEOREM 2.3 Approximate Rolle’s Theorem . Let X be a Banach
space and UU be an open bounded connected subset of X. Let f : UU ª R be a
continuous bounded function. Suppose that f is Gateaux differentiable in UUˆ

w xand f ­ UU : a, b , with a - b. Then, for e¨ery R ) 0 and x g UU suchŽ . 0
Ž .that B x , R : UU, there exists x g UU such that0 1

b y a
5 5df x F .Ž .1 2 R

From this we can immediately deduce the following

COROLLARY 2.4. Let UU be an open connected bounded subset of a
Banach space X. Let f : UU:ª R be continuous, bounded, and Gateauxˆ
differentiable in UU. Suppose that f is constant on ­ UU. Then,

5 5inf f 9 x s 0.Ž .
xgUU

It is easy to see, using Ekeland’s Variational Principle, that if X is a
Banach space and f : X ª R is continuous, Gateaux differentiable, andˆ

Ž . 5 Ž .5bounded below or bounded above , then inf f 9 x s 0. Alterna-x g X
tively, if we assume that f is bounded, this is an immediate consequence of
Theorem 2.3.

� 43. DIFFEOMORPHISMS BETWEEN X AND X _ 0

We use in this section Bessaga’s non-complete norm technique to prove
that every Banach space X verifying the condition

Ž . 5 5) There exists a Banach space Y with an equivalent norm .
5 5 Ž .whose dual norm . * is locally uniformly rotund LUR in Y * and a

continuous linear injection T : X ª Y
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1 � 4is C diffeomorphic to X _ 0 . If moreover X has a differentiable bump
1 � 4function then there exits a C diffeomorphism w : X ª X _ 0 such that

w is the identity out of a ball centered at 0.
Ž .It is not difficult to see that condition ) is equivalent to saying that X

Ž .admits a continuous not necessarily equivalent norm whose dual norm is
Ž . Ž 5 5.LUR . Recall that a norm r in a Banach space X, . is said to be

Ž .non-complete provided the normed space X, r is not complete.

THEOREM 3.1. Let X be an infinite dimensional Banach space that ¨erifies
Ž .condition ) . Then

Ž . 1Ž � 4.1 X admits a C X _ 0 non-complete norm v ;
Ž . 1 � 4 Ž .2 there exists a C diffeomorphism w : X ª X _ 0 such that w x

Ž .s x if v x G 1.

Proof. First of all let us see that every Banach space Y with an
5 5 5 5 Ž . 1Ž � 4.equivalent norm . whose dual norm . * is LUR admits a C Y _ 0

non-complete norm v. It is known that every infinite dimensional Banach
Ž wspace admits a continuous non-complete norm see 2, Chap. III, Lemma

x.5.1 . Let g : Y ª R be such a norm in Y. Define

1r222 5 5v y s inf g u q y y u : u g Y , y g Y .Ž . Ž .� 4

Ž . Ž .It is easy to check that v is a continuous norm in Y. As v y F g y for
all y g Y and g is non-complete, it is obvious that v is also non-

Ž w x.complete. On the other hand, it is known see 6, Proposition 2.3 that if
Ž 5 5. 5 5Y, . is a Banach space such that the dual norm . * is LUR then for

Ž xevery proper convex lsc function f : Y ª y`, q` the infimal convolu-
tion with the squared norm

5 5 2f y s inf f u q n y y u : u g Y , y g Y ,Ž . Ž .� 4n

1 Žis C smooth and convex and if moreover f is bounded on bounded sets,
. 2then f ª f uniformly on bounded sets as n ª ` . Taking f s g andn

2 1Ž . 1Ž � 4.n s 1, from this result we obtain that v is C Y , so that v is C Y _ 0 .
Now we should note that every subspace Z in Y has an equivalent norm

whose dual norm is LUR. Indeed, considering the projection p : Y * ª Z*,
Ž . U Ž . w xp y* s y , and using Theorem 2.1 ii of 3, Chap. II , we get that Z* has< Z

an equivalent LUR dual norm. Therefore, if Y * has an equivalent LUR
dual norm, then every closed subspace of Y admits a C1 non-complete
norm.
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Ž .So let X, Y, and T : X ª Y be as in condition ) and consider
1Ž .Z s T X . If T X s Z, since Z has a C non-complete norm v andŽ .

Ž . Ž Ž .. 1T : X ª Z is a linear isomorphism, v x s v T x defines a C non-0
Ž .complete norm on X. If, on the contrary, T X is a dense but not closed

Ž . 5 Ž .5 1subspace of Z, it is clear that v x s T x defines a C non-complete0
norm on X. In any case we get a C1 non-complete norm on X. This

Ž .proves 1 .
Ž .Now one can prove 2 using Bessaga’s non-complete norm technique as

w x Ž .T. Dobrowolski does in 4 . In fact 2 is immediately deduced from
w xTheorem 3.3 in 4 . Nevertheless we will say a few words about the way one

can construct the diffeomorphism w. There exists a linearly independent
� 4̀ ` kq6 Ž .sequence y in X such that Ý 2 v y y y - 1r2, wherek ks2 ks1 kq1 k

Ž .y s 0, and a point y in the completion of X, v such that y f X and1
`Ž . w xlim v y y y s 0. Let g : R ª 0, 1 be a C function with g s 1 ink k

Ž x y1Ž . w . 5 5 Ž .ỳ , 1r2 , g 0 s 1, ` , and g 9 F 4. Define p : 0, ` ª X by`

`
ky1p t s y q g 2 t y y yŽ . Ž . Ž .Ý1 kq1 k

ks1

` Ž Ž . Ž .. < <for t G 0. p is a C path satisfying v p t y p s F 1r2 t y s ,
Ž . Ž Ž .. Ž .lim p t s y, v p9 t - 1r2 for all t ) 0 and p t s 0 if and only ift ª 0

w . w .t G 1. Let x be an arbitrary vector in X and let F : 0, ` ª 0, ` be
Ž . Ž Ž .. Ž . Ž .defined by F a s v x y p a for a ) 0 and F 0 s v x y y . We have

< Ž . Ž . < < <F a y F b F 1r2 a y b , so from Banach’s contraction principle ap-
w . Ž .plied to the interval 0, ` , it follows that the equation F a s a has a

Ž .unique solution. This means that for any x g X, a number a x with the
property

v x y p a x s a xŽ . Ž .Ž .Ž .

is uniquely determined. Moreover, since x, being in X, cannot be equal to
Ž .y, we have a x / 0. This implies that the mapping

c z s p v z q zŽ . Ž .Ž .

� 4is one-to-one from X _ 0 onto X, with

cy1 x s x y p a x .Ž . Ž .Ž .

1 Ž . Ž Ž ..As v and p are C , so is c . Let F x, a s a y v x y p a . Since for
Ž Ž ..any x g X we have x y p a x / 0, the mapping F is differentiable on a
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Ž .neighbourhood of any point in X = 0, ` . On the other hand,

­ F x , aŽ .
G 1 y 1r2 ) 0

­a

< Ž . Ž . < < <because F a y F b F 1r2 a y b . So, using the implicit function
� 4 1theorem we obtain that c : X _ 0 ª X is a C diffeomorphism. Finally,

Ž . Ž .it is clear that c z s z whenever v z G 1.

Ž .THEOREM 3.2. For a Banach space X satisfying condition ) , the follow-
ing are equï alent.

Ž . 11 X has a C bump function.
Ž . 1 � 42 There exists a C diffeomorphism w : X ª X _ 0 such that w is

the identity out of a ball centered at 0.

� 4 1 Ž .Proof. If w : X ª X _ 0 is a C diffeomorphism such that w x s x
5 5 Ž Ž ..whenever x G r for some r ) 0, then, taking p g X* such that p w 0

Ž . Ž Ž . . 1/ 0 and defining f x s p w x y x we obtain a C bump function f
Ž . Ž . 5 5 Ž .such that f 0 / 0 and f x s 0 if x G r, which proves that 2 implies

Ž .1 .
1 wNow suppose that X has a C bump function. Proposition 5.1 in 3,

x 1 � 4Chap. II gives us a function c on X such that c is C smooth on X _ 0 ,
Ž . < < Ž .c tx s t c x for x g X and t g R, and there are constants a ) 0 and

5 5 Ž . 5 5 Ž . Ž .b ) 0 such that a x F c x F b x for x g X. Let l : 0, ` ª 0, ` be
` Ž . Ž .a non-decreasing C function such that l t s 0 for t F 1r2 and l t s 1

for t G 1. Let

c xŽ .
H x s l c x q 1 y l c x x ,Ž . Ž . Ž .Ž . Ž .

v xŽ .

Ž .for x / 0, and H 0 s 0. H is a one-to-one mapping from X onto X
� Ž . 4 � Ž . 4transforming the set x g X : c x F 1 onto x g X : v x F 1 , and H is

C1. Using the implicit function theorem as in the preceding theorem we
obtain that Hy1 is also C1. By composing this diffeomorphism with that of

1 � 4Theorem 3.1 we get a C diffeomorphism between X and X _ 0 that is
the identity out of a ball centered at 0.

w xNow we can prove as in 1 the following

Ž .COROLLARY 3.3. If a Banach space X ¨erifies condition ) and has a
Frechet smooth equï alent norm then the sphere S is C1 diffeomorphic to´ X
each hyperplane in X. If moreo¨er X is isomorphic to one of its hyperplanes,
then X is C1 diffeomorphic to its sphere.
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Remark 3.4. All the results in this section remain true if we replace
Ž .condition ) by the following one

Ž .)) There exist a Banach space Y with an equivalent differentiable
5 5norm . , an infinite-dimensional reflexive closed subspace Z : Y, and a

Ž .continuous linear injection T : X ª Y such that Z : T X : Y.

Indeed, if X, Y, and Z are as in this condition, let us consider any
continuous noncomplete norm v on Z and let us define0

1r222 5 5v x s inf w z q x y z : z g Z , x g X .Ž . Ž .� 40

Ž .Since Z is reflexive the infimum defining v x is attained and using the
5 5differentiability of . it is easy to see that the norm v is differentiable in

Ž . Ž .Y. Moreover v is non-complete because v z F v z for all z g Z and0
Ž .v is non-complete on the closed subspace Z : Y. Now define v x s0 1

Ž Ž ..v T x for each x g X. It is clear that v is a differentiable non-1
complete norm in X, and so we can construct the diffeomorphisms

� 4between X and X _ 0 in the same way as before.

4. AN EXACT ROLLE’S THEOREM IN INFINITE
DIMENSIONAL BANACH SPACES FAILS

In this section we use the preceding results to prove that an exact
Rolle’s theorem either fails or trivially holds in infinite dimensional

Ž .Banach spaces verifying ) . The following result, whose proof is clearly
w xmotivated by Shkarin’s ideas in 10 , provides a characterization of spaces

that do not verify Rolle’s theorem within the class of those spaces verifying
Ž .) .

Ž .THEOREM 4.1. If a Banach space X ¨erifies condition ) , the following
are equï alent:

Ž . 11 X has a C bump function.
Ž .2 There exists an open connected bounded subset UU and a continuous

1Ž .bounded function f : UU ª R such that f is C UU , f ' 0 on ­ UU, and yet
Ž .df x / 0 for all x g UU; that is, Rolle’s theorem fails in X.

Ž . 1Ž .3 There exists a C X bounded function f : X ª R and an open
connected bounded subset UU in X such that f ' 0 on X _ UU and yet
Ž .df x / 0 for all x g UU.

Ž . Ž . Ž .Proof. It is obvious that 3 implies 2 and one can easily check that 2
Ž . Ž . Ž . wimplies 1 . Let us prove that 1 implies 3 . By Proposition 5.1 in 3, Chap.
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x 1 � 4II , there exists a function c on X such that c is C smooth on X _ 0 ,
Ž . < < Ž .c tx s t c x for x g X and t g R, and there are constants a ) 0 and

5 5 Ž . 5 5b ) 0 such that a x F c x F b x for x g X. From Theorem 3.2 we get
1 � 4a C diffeomorphism w : X ª X _ 0 such that w is the identity out of a

ball centered at 0. Let u : R ª R be an even C` function such that
Ž . Ž . Ž . Ž .u 0 s 1, u 9 t - 0 for all t g 0, 1 and u t s 0 for all t G 1. We define

f : X ª R by f s u (c (w. Since f is the composition of the C1 functions
� 4 � 4 1w : X ª X _ 0 , c : X _ 0 ª R and u , f is C , and f is bounded

Ž . Ž Ž ..because so is u . Moreover, we have f x s 0 if c w x G 1. However,
Ž . Ž Ž ..f 9 x / 0 for all x such that c w x - 1, because

f 9 x y s u 9 c w x dc w x w9 x y / 0Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .
Ž . Ž .for some y g X since w9 x is a linear isomorphism, dc z / 0 for all

� 4 Ž Ž Ž ... Ž Ž ..z g X _ 0 and u 9 c w x - 0 whenever c w x - 1. So, taking UU s
� Ž Ž .. 4 Ž . Ž .x g X : c w x - 1 , 1 implies 3 is proved.

Remark 4.2. Rolle’s theorem trivially holds in non-Asplund Banach
spaces: if X is a non-Asplund Banach space, UU is an open connected
bounded subset in X, and we have a continuous bounded function f :
UU ª R that is Frechet differentiable in UU and f ' 0 on ­ UU, then´

Ž w x.necessarily f ' 0 on UU see 3, Chap. III, p. 97 .
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