# Approximation by smooth functions with no critical points on separable Banach spaces 

D. Azagra ${ }^{1}$, M. Jiménez-Sevilla ${ }^{*, 2}$<br>Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain

Received 1 March 2006; accepted 29 August 2006
Available online 17 October 2006
Communicated by G. Pisier


#### Abstract

We characterize the class of separable Banach spaces $X$ such that for every continuous function $f: X \rightarrow \mathbb{R}$ and for every continuous function $\varepsilon: X \rightarrow(0,+\infty)$ there exists a $C^{1}$ smooth function $g: X \rightarrow \mathbb{R}$ for which $|f(x)-g(x)| \leqslant \varepsilon(x)$ and $g^{\prime}(x) \neq 0$ for all $x \in X$ (that is, $g$ has no critical points), as those infinitedimensional Banach spaces $X$ with separable dual $X^{*}$. We also state sufficient conditions on a separable Banach space so that the function $g$ can be taken to be of class $C^{p}$, for $p=1,2, \ldots,+\infty$. In particular, we obtain the optimal order of smoothness of the approximating functions with no critical points on the classical spaces $\ell_{p}(\mathbb{N})$ and $L_{p}\left(\mathbb{R}^{n}\right)$. Some important consequences of the above results are (1) the existence of a non-linear Hahn-Banach theorem and the smooth approximation of closed sets, on the classes of spaces considered above; and (2) versions of all these results for a wide class of infinite-dimensional Banach manifolds.


© 2006 Elsevier Inc. All rights reserved.
Keywords: Morse-Sard theorem; Smooth bump functions; Critical points; Approximation by smooth functions; Sard functions

[^0]
## 1. Introduction and main results

The Morse-Sard theorem $[25,26]$ states that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a $C^{r}$ smooth function, with $r>\max \{n-m, 0\}$, and $C_{f}$ is the set of critical points of $f$, then the set of critical values $f\left(C_{f}\right)$ is of Lebesgue measure zero in $\mathbb{R}^{m}$. This result has proven to be very valuable in a large number of areas, especially in differential topology and analysis (see for instance [19,30] and the references therein). Additional geometric and analytical properties of the set of critical values in different versions of the Morse-Sard theorem, together with a study on the sharpness of the hypothesis of the Morse-Sard theorem, have been obtained in [5-9,22].

For many important applications of the Morse-Sard theorem, it is enough to know that any given continuous function can be uniformly approximated by a smooth map whose set of critical values has empty interior $[19,30]$. We refer to this as an approximate Morse-Sard theorem. The same type of approximation could prove key to the study of related problems in the infinitedimensional domain.

In this paper, we will prove the strongest version of an approximate Morse-Sard theorem that one can expect to be true for a general infinite-dimensional separable Banach space, namely that every continuous function $f: X \rightarrow \mathbb{R}$, where $X$ is an infinite-dimensional Banach space $X$ with separable dual $X^{*}$, can be uniformly approximated by a $C^{1}$ smooth function $g: X \rightarrow \mathbb{R}$ which does not have any critical point. In some cases where more information about the structure of the Banach space $X$ is known, we will extend our result to higher order of differentiability, $C^{p}$ ( $p>1$ ).

Our result will also allow us to demonstrate one important corollary: the existence of a nonlinear Hahn-Banach theorem which shows that two disjoint closed subsets in $X$ can be separated by a 1-codimensional $C^{p}$ smooth manifold of $X$ (which is the set of zeros of a $C^{p}$ smooth function with no critical points on $X$ ). This implies that every closed subset of $X$ can be approximated by $C^{p}$ smooth open subsets of $X$.

To put our work in context, let us briefly review some of the work established for the infinitedimensional version of the Morse-Sard theorem. Smale [29] proved that if $X$ and $Y$ are separable connected smooth manifolds modeled on Banach spaces and $f: X \rightarrow Y$ is a $C^{r}$ Fredholm map then $f\left(C_{f}\right)$ is of first Baire category and, in particular, $f\left(C_{f}\right)$ has no interior points provided that $r>\max \{\operatorname{index}(d f(x)), 0\}$ for all $x \in X$. Here, index $(d f(x))$ stands for the index of the Fredholm operator $d f(x)$, that is, the difference between the dimension of the kernel of $d f(x)$ and the codimension of the image of $d f(x)$, which are both finite. These assumptions are very strong as they impose that when $X$ is infinite-dimensional then $Y$ is necessarily infinite-dimensional too (in other words, there is no Fredholm map $f: X \rightarrow \mathbb{R}$ ). In fact, as Kupka proved in [20], there are $C^{\infty}$ smooth functions $f: \ell_{2} \rightarrow \mathbb{R}$ (where $\ell_{2}$ is the separable Hilbert space) such that their sets of critical values $f\left(C_{f}\right)$ contain intervals and hence have non-empty interiors and positive Lebesgue measure. Bates and Moreira $[9,22]$ showed that this function $f$ can even be taken to be a polynomial of degree three. Azagra and Cepedello Boiso [2] have shown that every continuous mapping from the separable Hilbert space into $\mathbb{R}^{m}$ can be uniformly approximated by $C^{\infty}$ smooth mappings with no critical points. Unfortunately, since part of their proof requires the use of the properties of the Hilbertian norm, this cannot be extended to non-Hilbertian Banach spaces. P. Hájek and M. Johanis [18] established the same kind of result in the case when $X$ is a separable Banach space which contains $c_{0}$ and admits a $C^{p}$-smooth bump function. In this case, the approximating functions are of class $C^{p}, p=1,2, \ldots, \infty$. This method is based on the result that the set of real-valued, $C^{\infty}$ smooth functions defined on $c_{0}$ that locally depend on finitely many coordinates, is dense in the space of real-valued, continuous functions defined on $c_{0}$ [11].

However, as the authors noted, their method is not applicable when the space $X$ has the RadonNikodým property (e.g., when $X$ is reflexive), which leaves out all the classical Banach spaces $\ell_{p}(\mathbb{N})$ and $L_{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$.

As stated above, we prove that for any infinite-dimensional Banach space $X$ with a separable dual $X^{*}$, the set of $C^{1}$ smooth, real-valued functions with no critical points is uniformly dense in the space of all continuous, real-valued functions on $X$. This solves completely the problem of the approximation on separable Banach spaces by smooth, real-valued functions with no critical points when the order of smoothness of the approximating functions is one. Hence, we obtain the following characterization. For a separable infinite-dimensional Banach space $X$, the following are equivalent: (i) $X^{*}$ is separable, and (ii) the set of $C^{1}$ smooth, real-valued functions on $X$ with no critical points is uniformly dense in the space of all continuous, real-valued functions on $X$.

This result can be included in our main theorem which also applies to higher order of differentiability. Before stating our main theorem, recall that a norm $\|\cdot\|$ in a Banach space $X$ is LUR (locally uniformly rotund [11]) if $\lim _{n}\left\|x_{n}-x\right\|=0$ whenever the sequence $\left\{x_{n}\right\}_{n}$ and the point $x$ are included in the unit sphere of the norm $\|\cdot\|$ and $\lim _{n}\left\|x_{n}+x\right\|=2$. A norm $\|\cdot\|$ in $X$ is $C^{p}$ smooth (Gâteaux smooth) if it is $C^{p}$ smooth (Gâteaux smooth, respectively) in $X \backslash\{0\}$.

Theorem 1.1. Let $X$ be an infinite-dimensional separable Banach space $X$ with a LUR and $C^{p}$ smooth norm $\|\cdot\|$, where $p \in \mathbb{N} \cup\{\infty\}$. Then, for every continuous mapping $f: X \rightarrow \mathbb{R}$ and for every continuous function $\varepsilon: X \rightarrow(0, \infty)$, there exists a $C^{p}$ smooth mapping $g: X \rightarrow \mathbb{R}$ such that $|f(x)-g(x)| \leqslant \varepsilon(x)$ for all $x \in X$ and $g$ has no critical points.

Our proof involves: (i) the use of renormings in $Y=X \oplus \mathbb{R}$ with good properties of smoothness and convexity; (ii) a special construction of carefully perturbed partitions of unity in an open subset denoted by $S^{+}$of the unit sphere of the Banach space $Y$ by means of a sequence of linear functionals in $Y^{*}$; (iii) the study and use of the properties of the range of the derivative of the norm in $Y, Y^{*}$ and their finite-dimensional subspaces (Lemmas 2.1 and 2.2 below); and (iv) the use of the stereographic projection from $X$ to $S^{+}$and $C^{p}$ deleting diffeomorphisms from $X$ onto $X \backslash O$, where $O$ is a bounded, closed, convex and $C^{p}$ smooth subset of $X$.

Recall that the stereographic projections on LUR spheres were used in approximation results in [21] and later in [17,31].

The following example gives the optimal order of smoothness of the approximation functions with no critical points for $\ell_{p}(\mathbb{N})$ and $L_{p}\left(\mathbb{R}^{n}\right)$.

Example 1.2. It follows immediately from Theorem 1.1 that one can approximate every continuous, real-valued function on $\ell_{p}(\mathbb{N})$ and $L_{p}\left(\mathbb{R}^{n}\right)(1<p<\infty)$ with $C^{\bar{p}}$ smooth, real-valued functions with no critical points, where $\bar{p}=[p]$ if $p$ is not an integer, $\bar{p}=p-1$ if $p$ is an odd integer, and $\bar{p}=\infty$ if $p$ is an even integer. Indeed, the standard norms of the classical separable Banach spaces $\ell_{p}(\mathbb{N})$ and $L_{p}\left(\mathbb{R}^{n}\right)$ are LUR and $C^{\bar{p}}$ smooth [11].

Since every Banach space with separable dual admits an equivalent LUR and $C^{1}$ smooth norm [11], we immediately deduce from Theorem 1.1 the announced characterization of the property of approximation by $C^{1}$ smooth functions with no critical points.

Corollary 1.3. Let $X$ be an infinite-dimensional separable Banach space. The following are equivalent:
(1) the dual space $X^{*}$ is separable;
(2) for every continuous mapping $f: X \rightarrow \mathbb{R}$ and for every continuous function $\varepsilon: X \rightarrow(0, \infty)$, there exists a $C^{1}$ smooth mapping $g: X \rightarrow \mathbb{R}$ such that $|f(x)-g(x)| \leqslant \varepsilon(x)$ and $g$ has no critical points.

Next, we establish a similar statement for higher order smoothness on separable Banach spaces with a $C^{p}$ smooth bump function ( $p \geqslant 2$ ) and unconditional basis. We combine Theorem 1.1 and the results on $C^{1}$-fine approximation given in [4], to obtain the optimal order of smoothness of the approximating functions with no critical points on a large class within the Banach spaces with separable dual. In particular the following corollary applies even when the space $X$ lacks a norm which is simultaneously LUR and $C^{2}$ smooth.

Corollary 1.4. Let $X$ be an infinite-dimensional separable Banach space with unconditional basis. Assume that $X$ has a $C^{p}$ smooth Lipschitz bump function, where $p \in \mathbb{N} \cup\{\infty\}$. Then, for every continuous mapping $f: X \rightarrow \mathbb{R}$ and for every continuous function $\varepsilon: X \rightarrow(0, \infty)$, there exists a $C^{p}$ smooth mapping $g: X \rightarrow \mathbb{R}$ such that $|f(x)-g(x)| \leqslant \varepsilon(x)$ and $g$ has no critical points.

Proof. Since $X$ is separable and admits a $C^{p}$ smooth bump function, the dual space $X^{*}$ is separable. Thus we obtain, from Corollary 1.3, a $C^{1}$ smooth function $h: X \rightarrow \mathbb{R}$ such that $h^{\prime}(x) \neq 0$ and $|f(x)-h(x)|<\frac{\varepsilon(x)}{2}$ for every $x \in X$. Let us denote by $\|\cdot\|$ the dual norm on $X^{*}$. Define the continuous function $\bar{\varepsilon}: X \rightarrow(0, \infty), \bar{\varepsilon}(x)=\frac{1}{2} \min \left\{\varepsilon(x),\left\|h^{\prime}(x)\right\|\right\}$, for $x \in X$. Now, by the main result of [4], there is a $C^{p}$ smooth function $g: X \rightarrow \mathbb{R}$ such that $|h(x)-g(x)|<\bar{\varepsilon}(x)$ and $\left\|h^{\prime}(x)-g^{\prime}(x)\right\|<\bar{\varepsilon}(x)$, for every $x \in X$. The latter implies that $\left\|h^{\prime}(x)\right\|-\left\|g^{\prime}(x)\right\|<\frac{1}{2}\left\|h^{\prime}(x)\right\|$, and therefore $0<\frac{1}{2}\left\|h^{\prime}(x)\right\|<\left\|g^{\prime}(x)\right\|$ for every $x \in X$. Hence, $g$ is a $C^{p}$ smooth function with no critical points and $|f(x)-g(x)|<|f(x)-h(x)|+|h(x)-g(x)|<\varepsilon(x)$ for every $x \in X$.

Let us mention that the first one to study the problem of $C^{p}$-fine approximations $(p \in \mathbb{N})$ in infinite-dimensional Banach spaces was N. Moulis in her seminal paper [24]. In particular, she establishes results on $C^{1}$-fine approximations by $C^{\infty}$ smooth functions of Sard type on $\ell_{2}(\mathbb{N})$ (that is, the set of the critical values has empty interior).

The proof of the above corollary yields to the following remark.
Remark 1.5. Assume that an infinite-dimensional separable Banach space $X$ satisfies the $C^{1}$ fine approximation property by $C^{p}$ smooth, real-valued functions, i.e., for every $C^{1}$ smooth function $f: X \rightarrow \mathbb{R}$ and every continuous function $\varepsilon: X \rightarrow(0, \infty)$ there is a $C^{p}$ smooth function $h: X \rightarrow \mathbb{R}$ such that $|f(x)-h(x)| \leqslant \varepsilon(x)$ and $\left|f^{\prime}(x)-h^{\prime}(x)\right| \leqslant \varepsilon(x)$, for every $x \in X$. Then, the conclusion of Corollary 1.4 holds.

Furthermore, our results allow us to make the following conclusions.

## Remark 1.6.

(1) All of the results presented above hold in the case when one replaces $X$ with an open subset $U$ of $X$. Actually, the same proof given in the section to follow (with obvious modifications) can be used.
(2) Whenever $X$ has the property that every continuous, real-valued function on $X$ can be approximated by $C^{p}$ smooth, real-valued functions with no critical points, one can deduce the following corollaries.

Recall that an open subset $U$ of $X$ is said to be $C^{p}$ smooth provided its boundary $\partial U$ is a $C^{p}$ smooth one-codimensional submanifold of $X$.

## Corollary 1.7.

(i) (A nonlinear Hahn-Banach theorem.) Let $X$ be any of the Banach spaces considered in the above results. Then, for every two disjoint closed subsets $C_{1}, C_{2}$ of $X$, there exists a $C^{p}$ smooth function $\varphi: X \rightarrow \mathbb{R}$ with no critical points, such that the level set $M=\varphi^{-1}(0)$ is a 1-codimensional $C^{p}$ smooth submanifold of $X$ that separates $C_{1}$ and $C_{2}$, in the following sense: define $U_{1}=\{x \in X: \varphi(x)<0\}$ and $U_{2}=\{x \in X: \varphi(x)>0\}$, then $U_{1}$ and $U_{2}$ are disjoint $C^{p}$ smooth open subsets of $X$ with common boundary $\partial U_{1}=\partial U_{2}=M$, and such that $C_{i} \subset U_{i}$ for $i=1,2$.
(ii) (Smooth approximation of closed sets.) Every closed subset of any of the Banach spaces $X$ considered above can be approximated by $C^{p}$ smooth open subsets of $X$ in the following sense: for every closed set $C \subset X$ and every open set $W \subset X$ such that $C \subset W$ there is a $C^{p}$ smooth open set $U \subset X$ so that $C \subset U \subseteq W$.

The following corollary should be compared with the main result of [3].
Corollary 1.8 (Failure of Rolle's theorem). For every open subset $U$ of any of the above Banach spaces $X$ there is a real-valued, Fréchet differentiable function $f$ defined on $X$ whose support is the closure of $U$, and such that $f$ is $C^{p}$ smooth on $U$ and yet $f$ has no critical points in $U$.

We refer to [ $3,10,16,23,27,28$ ] for previous results on the study of the set of critical points of a function and related topics.

Corollary 1.9. The conclusion of Theorem 1.1 and Corollaries 1.7 and 1.8 remain true, in the case $p=\infty$, if we replace $X$ with a parallelizable connected and metrizable Banach manifold $M$ modeled on a separable infinite-dimensional Banach space E satisfying one of the following properties:
(1) E has a Schauder basis and a $C^{\infty}$ smooth and LUR norm; or
(2) E has an unconditional basis and a $C^{\infty}$ smooth Lipschitz bump function.

Proof. If $E$ satisfies (1) or (2) then all the above results are applicable to any open subset $U$ of $E$. On the other hand, according to [14, Theorem 1A], any parallelizable connected and metrizable manifold $M$ modelled on $E$ is $C^{\infty}$-diffeomorphic to an open subset $U$ of $E$. Since the property of approximation by smooth functions with no critical points is preserved by diffeomorphisms, the result follows.

## 2. Proof of Theorem 1.1

Recall that a norm $N(\cdot)$, in a Banach space $E$, is (1) strictly convex if the unit sphere of the norm $N(\cdot)$ does not include any line segment. Equivalently, $N\left(\frac{x+y}{2}\right)<1$ for every $x, y$ in the unit sphere with $x \neq y$; (2) WUR (weakly uniformly rotund) if $\lim _{n}\left(x_{n}-y_{n}\right)=0$ in the weak topology whenever the sequences $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ are included in the unit sphere and $\lim _{n} N\left(x_{n}+y_{n}\right)=2$.

We let $\left[u_{1}, \ldots, u_{n}\right]$ stand for the linear span of the vectors $u_{1}, \ldots, u_{n}$. Let us denote by $S_{\|\cdot\|}$ and $S_{\|\cdot\|^{*}}$ the unit sphere of a Banach space $(Z,\|\cdot\|)$ and its dual $\left(Z^{*},\|\cdot\|^{*}\right)$, respectively.

The following two geometrical lemmas will be essential to the proof of Theorem 1.1.
Lemma 2.1. Let $Z=\left[u_{1}, \ldots, u_{n}\right]$ be a $n$-dimensional space $(n>1)$ with a differentiable norm $\|\cdot\|$ (Gâteaux or Fréchet differentiable, since both notions coincide for convex functions defined on finite-dimensional spaces). Let us consider real numbers $\alpha_{i}$, for $i=1, \ldots, n-1$. Then, the cardinal of the set

$$
\begin{equation*}
\left\{T \in S_{\|\cdot\| *}: T\left(u_{i}\right)=\alpha_{i}, i=1, \ldots, n-1\right\} \tag{2.1}
\end{equation*}
$$

is at most two.
Before we give the proof, let us observe that the condition of differentiability of the norm in Lemma 2.1 as well as in Lemma 2.2 below is only required in the case that there is $\alpha_{i} \neq 0$ such that

$$
\begin{equation*}
\left\|\frac{u_{i}}{\alpha_{i}}\right\|=1 \tag{*}
\end{equation*}
$$

Moreover, in this case we only need the differentiability of $\|\cdot\|$ at the points $u_{i}$ satisfying (*). The case $(*)$ does not appear in the proof of Theorem 1.1. Nevertheless, to simplify the lemmas we use the condition of differentiability of the norm.

Proof. Consider the $n-1$ affine hyperplanes of $Z^{*}, H_{i}=\left\{T \in Z^{*}: T\left(u_{i}\right)=\alpha_{i}\right\}, i=$ $1, \ldots, n-1$. Since $\left\{u_{1}, \ldots, u_{n-1}\right\}$ are linearly independent, the intersection $H=H_{1} \cap \cdots \cap H_{n-1}$ is an affine 1-dimensional subspace of $Z^{*}$. The dual norm $\|\cdot\|^{*}$ is strictly convex (because the norm $\|\cdot\|$ is differentiable and $Z$ is finite-dimensional, see [11]), and therefore there are at most two points in the intersection $H \cap S_{\|\cdot\|^{*}}$ and the proof concludes.

From the proof of Lemma 2.1 we obtain the following.
Lemma 2.2. Let $Z=\left[u_{1}, \ldots, u_{n}\right]$ be a $n$-dimensional space $(n>1)$ with a differentiable norm $\|\cdot\|$. Consider real numbers $\alpha_{i}$, for $i=1, \ldots, n-1$ and define the set $\mathcal{S}$ of real numbers $\alpha$ such that

$$
\begin{equation*}
\left\{T \in S_{\|\cdot\|}: T\left(u_{i}\right)=\alpha_{i}, i=1, \ldots, n-1, T\left(u_{n}\right)=\alpha\right\}=\emptyset \tag{2.2}
\end{equation*}
$$

Then, the cardinal of $\mathbb{R} \backslash \mathcal{S}$ is at most two.
Proof. From Lemma 2.1, we know that the cardinal of the set $\left\{T \in S_{\|\cdot\| *}: T\left(u_{i}\right)=\alpha_{i}, i=\right.$ $1, \ldots, n-1\}$ is at most two. Assume that there are two elements $T_{i}, i=1,2$ in this set (the other cases are similar). Then, we have that $\mathbb{R} \backslash \mathcal{S}=\left\{T_{1}\left(u_{n}\right), T_{2}\left(u_{n}\right)\right\}$.

The general strategy of the proof of Theorem 1.1 is as follows. We consider the space $Y=$ $X \oplus \mathbb{R}$ and define the following norm on $Y$ :
(a) If $p>1$, for every $y=(x, r) \in Y$, put $N(y)=N(x, r)=\left(\|x\|^{2}+r^{2}\right)^{1 / 2}$, where $\|\cdot\|$ is a LUR and $C^{p}$ smooth norm on $X$. Then, clearly the norm $N$ is LUR and $C^{1}$ smooth on $Y$. Moreover, $N$ is $C^{p}$ smooth on the open set $Y \backslash\{(0, \lambda): \lambda \in \mathbb{R}\}$. Define $\nu=(0,1) \in Y$ and
take $\beta \in Y^{*} \backslash\{0\}$ such that $X=\operatorname{ker} \beta$. Select $\beta_{1} \in Y^{*} \backslash[\beta]$ such that $\beta_{1}(\nu) \neq 0$ and $\omega \in$ $\operatorname{ker} \beta \backslash \operatorname{ker} \beta_{1}$. Consider the closed hyperplane of $Y, X_{1}=\operatorname{ker} \beta_{1}$. Then, the restriction of the norm $N$ to $X_{1}$ is a $C^{p}$ smooth and LUR norm on $X_{1}$. Now, the (equivalent) norm considered in $Y=X_{1} \oplus[\omega]$, defined as $|z+\lambda \omega|=\left(N(z)^{2}+\lambda^{2}\right)^{1 / 2}$, where $z \in X_{1}$ and $\lambda \in \mathbb{R}$, is LUR and $C^{1}$ smooth on $Y$ and $C^{p}$ smooth on $Y \backslash[\omega]$. In particular, the norm $|\cdot|$ is $C^{p}$ smooth on the open set $\mathcal{U}=Y \backslash \operatorname{ker} \beta=\{(x, r): x \in X, r \neq 0\}$.
It could also be proved that the Banach space $Y$ admits an equivalent LUR and $C^{p}$ smooth norm on $Y$ with bounded derivatives up to the order $p$. Nevertheless, a LUR and $C^{1}$ smooth norm on $Y$ and $C^{p}$ smooth on $\mathcal{U}$, is sufficient to prove our result. Recall that if $X$ has a LUR and $C^{p}$ smooth norm and $p>1$, then $X$ is superreflexive [11].
(b) If $p=1$, since the dual space $Y^{*}$ is separable, there is a norm $|\cdot|$ on $Y$ which is LUR, $C^{1}$ smooth and WUR whose dual is strictly convex [11]. Recall that if the norm $|\cdot|$ is WUR, then the dual norm $|\cdot|^{*}$ is uniformly Gâteaux smooth, and thus, Gâteaux smooth.

Therefore, in any of the cases (a) or (b) the norm $|\cdot|$ is LUR and $C^{1}$ smooth. If in addition, $X$ is reflexive, then it can be proved $\left[15\right.$, p. 272] that $|\cdot|^{*}$ is LUR and $C^{1}$ smooth as well. If $X$ is not reflexive, we know from the conditions given in (b) that the dual norm $|\cdot|^{*}$ is strictly convex and Gâteaux smooth.

Let us denote $S:=S_{|\cdot|}$, the unit sphere of $(Y,|\cdot|)$ and $S^{*}:=S_{|\cdot|^{*}}$, the unit sphere of $\left(Y^{*},|\cdot|^{*}\right)$. Let us consider, the duality mapping of the norm $|\cdot|$ defined as

$$
\begin{aligned}
& D: S \longrightarrow S^{*} \\
& D(x)=|\cdot|^{\prime}(x),
\end{aligned}
$$

which is $|\cdot|-|\cdot|^{*}$ continuous because the norm $|\cdot|$ is of class $C^{1}$.
We establish a $C^{p}$ diffeomorphism $\Phi$ between $X$ and half unit sphere in $Y, S^{+}:=\{y=$ $(x, r) \in Y: r>0\}$, as follows: $\Phi: X \rightarrow S^{+}$is the composition $\Phi=\Pi \circ i$, where $i$ is the inclusion $i: X \rightarrow Y, i(x)=(x, 1)$ and $\Pi$ is defined by $\Pi: Y \backslash\{0\} \rightarrow S, \Pi(y)=\frac{y}{|y|}$.

In order to simplify the notation, we will make the proof for the case of a constant $\varepsilon>0$. By taking some standard technical precautions the same proof will work in the case of a positive continuous function $\varepsilon: X \rightarrow(0,+\infty)$ (at the end of the proof we will explain what small changes should be made).

Now, given a continuous function $f: X \rightarrow \mathbb{R}$, we consider the composition $F:=f \circ$ $\Phi^{-1}: S^{+} \rightarrow \mathbb{R}$, which is continuous as well. For any given $\varepsilon>0$ we will $3 \varepsilon$-approximate $F$ by a $C^{p}$ smooth function $H: S^{+} \rightarrow \mathbb{R}$ with the properties that:

- the set of critical points of $H$ is the countable union of a family of disjoint sets $\left\{K_{n}\right\}_{n}$;
- there are countable families of open slices $\left\{O_{n}\right\}_{n}$ and $\left\{B_{n}\right\}_{n}$ in $S^{+}$, such that $\bigcup_{n} \bar{B}_{n}$ is relatively closed in $S^{+}, \operatorname{dist}\left(B_{n}, X \times\{0\}\right)>0, K_{n} \subset O_{n} \subset B_{n}, \operatorname{dist}\left(O_{n}, S^{+} \backslash B_{n}\right)>0$ and $\operatorname{dist}\left(B_{n}, \bigcup_{m \neq n} B_{m}\right)>0$, for every $n \in \mathbb{N}$;
- the oscillation of $F$ in every $B_{n}$ is less than $\varepsilon$.
(We will consider slices of $S^{+}$of the form $\{x \in S: f(x)>r\}$, where $f$ is a continuous linear functional of norm one and $0<r<1$. Recall also that the distance between two sets $A$ and $A^{\prime}$ in a Banach space $\left(M,|\cdot|_{M}\right)$ is defined as the real number $\operatorname{dist}\left(A, A^{\prime}\right):=\inf \left\{\left|a-a^{\prime}\right|_{M}\right.$ : $\left.a \in A, a^{\prime} \in A^{\prime}\right\}$.)

Then we will prove that the function $h:=H \circ \Phi$ is a $C^{p}$ smooth function on $X$, which $3 \varepsilon$ approximates $f$, and the set of critical points of $h, \mathcal{C}=\left\{x \in X: h^{\prime}(x)=0\right\}$, can be written as $\mathcal{C}=\bigcup_{n=1}^{\infty} \mathcal{K}_{n}$, where, for every $n \in \mathbb{N}$, the set $\mathcal{K}_{n}:=\Phi^{-1}\left(K_{n}\right)$ is contained in the open, convex, bounded and $C^{p}$ smooth body $\mathcal{O}_{n}:=\Phi^{-1}\left(O_{n}\right)$, which in turn is contained in the open, convex, bounded and $C^{p}$ smooth body $\mathcal{B}_{n}:=\Phi^{-1}\left(B_{n}\right)$, in such a way that $\operatorname{dist}\left(\mathcal{O}_{n}, X \backslash \mathcal{B}_{n}\right)>0$, the oscillation of $f$ in $\mathcal{B}_{n}$ is less than $\varepsilon, \bigcup_{n} \overline{\mathcal{B}}_{n}$ is closed and $\operatorname{dist}\left(\mathcal{B}_{n}, \bigcup_{m \neq n} \mathcal{B}_{m}\right)>0$. Once we have done this, we will compose the function $h$ with a sequence of deleting diffeomorphisms which will eliminate the critical points of $h$. More precisely, for each set $\mathcal{O}_{n}$ we will find a $C^{p}$ diffeomorphism $\Psi_{n}$ from $X$ onto $X \backslash \overline{\mathcal{O}}_{n}$ so that $\Psi_{n}$ is the identity off $\mathcal{B}_{n}$. Then, by defining $g:=h \circ \bigcirc_{n=1}^{\infty} \Psi_{n}$, we will get a $C^{p}$ smooth function which $4 \varepsilon$-approximates $f$ and which has no critical points.

The most difficult part in this scheme is the construction of the function $H$. We will inductively define linearly independent functionals $g_{k} \in Y^{*}$, open subsets $U_{k}$ of $S^{+}$, points $x_{k} \in U_{k}$, real numbers $a_{k} \neq 0$ satisfying $\left|a_{k}-F\left(x_{k}\right)\right|<\varepsilon$, real numbers $\gamma_{k}$ and $\gamma_{i, j}$ in the interval $(0,1)$ (with $i+j=k$ ), functions $h_{k}$ of the form $h_{k}=\varphi_{k}\left(g_{k}\right) \phi_{k-1,1}\left(g_{k-1}\right) \cdots \phi_{1, k-1}\left(g_{1}\right)$, where the $\varphi_{k}, \phi_{k-1,1}, \ldots, \phi_{1, k-1}$ are suitably chosen $C^{\infty}$ functions on the real line, and functions $r_{k}$ of the form $r_{k}=s_{k} g_{k}+\left(1-s_{k} g_{k}\left(x_{k}\right)\right)$ (with very small $s_{k} \neq 0$ ), and put

$$
\mathbf{H}_{\mathbf{k}}=\frac{\sum_{i=1}^{k} a_{i} r_{i} h_{i}}{\sum_{i=1}^{k} h_{i}},
$$

where $\mathbf{H}_{\mathbf{k}}: U_{1} \cup \cdots \cup U_{k} \rightarrow \mathbb{R}$. The interior of the support of $h_{k}$ will be the set

$$
U_{k}=\left\{x \in S^{+}: g_{1}(x)<\gamma_{1, k-1}, \ldots, g_{k-1}(x)<\gamma_{k-1,1} \text { and } g_{k}(x)>\gamma_{k}\right\},
$$

where the oscillation of the function $F$ will be less than $\varepsilon$. Denote by $T_{x}$ the (vectorial) tangent hyperplane to $S^{+}$at the point $x$, that is $T_{x}:=\operatorname{ker} D(x)$. The derivative of $\mathbf{H}_{\mathbf{k}}$ at every point $x \in U_{1} \cup \cdots \cup U_{k}$ will be shown to be the restriction to $T_{x}$ of a nontrivial linear combination of the linear functionals $g_{1}, \ldots, g_{k}$. Then, by making use of Lemmas 2.1 and 2.2 and choosing the $\gamma_{i, j}$ close enough to $\gamma_{i}$, we will prove that the set of critical points of $\mathbf{H}_{\mathbf{k}}$ is a finite union of pairwise disjoint sets which are contained in a finite union of pairwise disjoint slices, with positive distance between any two slices (see Fig. 1). These slices will be determined by functionals in finite sets $N_{k} \subset Y^{*}$ defined by a repeated application of Lemmas 2.1 and 2.2. The function $H$ will be then defined as

$$
H=\frac{\sum_{k=1}^{\infty} a_{k} r_{k} h_{k}}{\sum_{k=1}^{\infty} h_{k}}
$$

Let us begin with the formal construction of the functions $\mathbf{H}_{\mathbf{k}}$. We will use the notation $H_{k}$ and $H_{k}^{\prime}$ when the function $\frac{\sum_{i=1}^{k} a_{i} r_{i} h_{i}}{\sum_{i=1}^{k} h_{i}}$ and its derivative are thought to be defined on the open subset of $Y$ where $\sum_{i=1}^{k} h_{i} \neq 0$ (we consider the functions $r_{i}$ and $h_{i}$ defined on $Y$ ) and reserve the symbols $\mathbf{H}_{\mathbf{k}}$ and $\mathbf{H}_{\mathbf{k}}^{\prime}(x)$ for the restriction of $H_{k}$ and $H_{k}^{\prime}(x)$ to a subset of $S$ and to the tangent space $T_{x}$ of $S$ at $x$, respectively.

Since the norm $|\cdot|$ is LUR we can find, for every $x \in S^{+}$, open slices $R_{x}=\left\{y \in S: f_{x}(y)>\right.$ $\left.\delta_{x}\right\} \subset S^{+}$and $P_{x}=\left\{y \in S: f_{x}(y)>\delta_{x}^{4}\right\} \subset S^{+}$, where $0<\delta_{x}<1$ and $\left|f_{x}\right|=1=f_{x}(x)$, so that
the oscillation of $F$ in every $P_{x}$ is less than $\varepsilon$. We also assume, for technical reasons, and with no loss of generality, that $\operatorname{dist}\left(P_{x}, X \times\{0\}\right)>0$.

Since $Y$ is separable we can select a countable subfamily of $\left\{R_{x}\right\}_{x \in S^{+}}$, which covers $S^{+}$. Let us denote this countable subfamily by $\left\{S_{n}\right\}_{n}$, where $S_{n}:=\left\{y \in S: f_{n}(y)>\delta_{n}\right\}$. Recall that the oscillation of $F$ in every $P_{n}:=\left\{y \in S: f_{n}(y)>\delta_{n}^{4}\right\}$ is less than $\varepsilon$ and $\operatorname{dist}\left(P_{n}, X \times\{0\}\right)>0$.

- For $k=1$, define

$$
\begin{aligned}
& h_{1}: S^{+} \longrightarrow \mathbb{R} \\
& h_{1}=\varphi_{1}\left(f_{1}\right)
\end{aligned}
$$

where $\varphi_{1}$ is a $C^{\infty}$ function on $\mathbb{R}$ satisfying

$$
\begin{aligned}
& \varphi_{1}(t)=0 \quad \text { if } t \leqslant \delta_{1}, \\
& \varphi_{1}(1)=1, \\
& \varphi_{1}^{\prime}(t)>0 \quad \text { if } t>\delta_{1} .
\end{aligned}
$$

Notice that the interior of the support of $h_{1}$ is the open set $S_{1}$. Denote by $x_{1}$ the point of $S^{+}$ satisfying $f_{1}\left(x_{1}\right)=1$. Now select $a_{1} \in \mathbb{R}^{*}:=\mathbb{R} \backslash\{0\}$ with $\left|a_{1}-F\left(x_{1}\right)\right|<\varepsilon$ and define the auxiliary function

$$
\begin{aligned}
& r_{1}: S^{+} \longrightarrow \mathbb{R} \\
& r_{1}=s_{1} f_{1}+\left(1-s_{1} f_{1}\left(x_{1}\right)\right)
\end{aligned}
$$

where we have selected $s_{1}$ so that $a_{1} s_{1}>0$ and $\left|s_{1}\right|$ small enough so that the oscillation of $r_{1}$ on $S_{1}$ is less than $\frac{\varepsilon}{\left|a_{1}\right|}$. Notice that $r_{1}\left(x_{1}\right)=1$. Define

$$
\begin{aligned}
& \mathbf{H}_{\mathbf{1}}: S_{1} \longrightarrow \mathbb{R} \\
& \mathbf{H}_{\mathbf{1}}=\frac{a_{1} r_{1} h_{1}}{h_{1}}=a_{1} r_{1}
\end{aligned}
$$

The function $\mathbf{H}_{\mathbf{1}}$ is $C^{p}$ smooth in $S_{1}$ and the set of critical points of $\mathbf{H}_{\mathbf{1}}$,

$$
Z_{1}=\left\{x \in S_{1}: H_{1}^{\prime}(x)=0 \text { on } T_{x}\right\}
$$

consists of the unique point $x_{1}$. Indeed, $\mathbf{H}_{1}^{\prime}(x)=\left.H_{1}^{\prime}(x)\right|_{T_{x}}=\left.a_{1} s_{1} f_{1}\right|_{x_{x}} \equiv 0$ iff $D(x)=f_{1}$. This implies that $Z_{1}=\left\{x_{1}\right\}$. Now select real numbers $\gamma_{1,1}^{\prime}, t_{1}$ and $l_{1}$ such that $\delta_{1}<\gamma_{1,1}^{\prime}<t_{1}<l_{1}<1$ and define the open slices

$$
O_{f_{1}}=\left\{x \in S: f_{1}(x)>l_{1}\right\} \quad \text { and } \quad B_{f_{1}}=\left\{x \in S: f_{1}(x)>t_{1}\right\} .
$$

Clearly the above sets satisfy that $Z_{1} \subset O_{f_{1}} \subset B_{f_{1}} \subset S_{1}$, $\operatorname{dist}\left(O_{f_{1}}, S \backslash B_{f_{1}}\right)>0$ and $\operatorname{dist}\left(B_{f_{1}}\right.$, $\left.\left\{x \in S: f_{1}(x) \leqslant \gamma_{1,1}^{\prime}\right\}\right)>0$.

In order to simplify the notation in the rest of the proof, let us denote by $\gamma_{1}=\delta_{1}, U_{1}=$ $R_{1}=S_{1}, g_{1}=f_{1}, z_{1}=x_{1}$ and $\Gamma_{1}=N_{1}=\left\{g_{1}\right\}$. Let us define $\sigma_{1,1}=a_{1} s_{1}$ and write $\mathbf{H}_{1}^{\prime}=\sigma_{1,1} \mathbf{g}_{\mathbf{1}}$
on $U_{1}$ where $\mathbf{g}_{1}$ is the restriction of $g_{1}$ to $T_{x}$ whenever we evaluate $\mathbf{H}_{1}^{\prime}(x)$. In addition, if $A \subset S$, we denote by $A^{c}=S \backslash A$.

- For $k=2$. Let us denote by $y_{2} \in S^{+}$the point satisfying $f_{2}\left(y_{2}\right)=1$. If either $\left\{g_{1}, D\left(y_{2}\right)=f_{2}\right\}$ are linearly dependent (this only occurs when $g_{1}=f_{2}$ ) or $g_{1}\left(y_{2}\right)=\gamma_{1}$, we use the density of the norm attaining functionals (Bishop-Phelps theorem) and the continuity of $D$ to modify $y_{2}$ and find $z_{2} \in S^{+}$so that $\left\{g_{1}, D\left(z_{2}\right):=g_{2}\right\}$ are linearly independent, $g_{1}\left(z_{2}\right) \neq \gamma_{1}$ and

$$
\left\{x \in S: f_{2}(x)>\delta_{2}^{2}\right\} \subset\left\{x \in S: g_{2}(x)>v_{2}\right\} \subset\left\{x \in S: f_{2}(x)>\delta_{2}^{3}\right\}
$$

for some $\nu_{2} \in(0,1)$. If $g_{1}\left(y_{2}\right) \neq \gamma_{1}$ and $\left\{g_{1}, f_{2}\right\}$ are linearly independent, define $g_{2}=f_{2}$ and $z_{2}=y_{2}$. Then, apply Lemma 2.2 to the 2-dimensional space [ $g_{1}, g_{2}$ ] with the norm $|\cdot|^{*}$ (the restriction to $\left[g_{1}, g_{2}\right]$ of the dual norm $|\cdot|^{*}$ considered in $\left.Y^{*}\right)$ and the real number $\gamma_{1} \in(0,1)$ to obtain $\gamma_{2} \in(0,1)$ close enough to $\nu_{2}$ so that

$$
S_{2}=\left\{x \in S: f_{2}(x)>\delta_{2}\right\} \subset\left\{x \in S: g_{2}(x)>\gamma_{2}\right\} \subset\left\{x \in S: f_{2}(x)>\delta_{2}^{4}\right\}=P_{2}
$$

and

$$
\begin{equation*}
\left\{T \in\left[g_{1}, g_{2}\right]^{*}:|T|=1, T\left(g_{1}\right)=\gamma_{1} \text { and } T\left(g_{2}\right)=\gamma_{2}\right\}=\emptyset . \tag{2.3}
\end{equation*}
$$

Recall that the norm $|\cdot|^{*}$ is Gâteaux differentiable on $Y^{*}$ and therefore the restriction of this norm to $\left[g_{1}, g_{2}\right]$, which we shall denote by $|\cdot|^{*}$ as well, is a differentiable norm on the space $\left[g_{1}, g_{2}\right]$ (Gâteaux and Fréchet notions of differentiability are equivalent in the case of convex functions defined on finite-dimensional spaces). Therefore, we can apply Lemma 2.2 to the norm $|\cdot|^{*}$ in the space $\left[g_{1}, g_{2}\right]$. In fact, the same argument works for any finite-dimensional subspace of $Y^{*}$ and we will apply Lemma 2.2 in the next steps to larger finite-dimensional subspaces of $Y^{*}$. Define the sets

$$
\begin{gathered}
R_{2}=\left\{x \in S: g_{2}(x)>\gamma_{2}\right\}, \quad \text { and } \\
U_{2}^{\prime}=\left\{x \in S: g_{1}(x)<\gamma_{1,1}^{\prime}, g_{2}(x)>\gamma_{2}\right\} .
\end{gathered}
$$

Assume that $U_{1} \cap R_{2} \neq \emptyset$ and consider the set

$$
M_{2}=D^{-1}\left(\left[g_{1}, g_{2}\right]\right) \cap U_{2}^{\prime} \cap U_{1}
$$

In the case that $M_{2}=\emptyset$, we select as $\gamma_{1,1}$ any point in $\left(\gamma_{1}, \gamma_{1,1}^{\prime}\right)$. In the case that $M_{2} \neq \emptyset$ and $\gamma_{1}<\inf \left\{g_{1}(x): x \in M_{2}\right\}$, we select $\gamma_{1,1}$ so that

$$
\gamma_{1}<\gamma_{1,1}<\inf \left\{g_{1}(x): x \in M_{2}\right\} .
$$

In the case that $\gamma_{1}=\inf \left\{g_{1}(x): x \in M_{2}\right\}$ and in order to obtain an appropriate $\gamma_{1,1}$ we need to study the limits of the sequences $\left\{x_{n}\right\} \subset M_{2}$ such that $\lim _{n} g_{1}\left(x_{n}\right)=\gamma_{1}$. Define

$$
F_{2}^{\prime}=\left\{T \in\left[g_{1}, g_{2}\right]^{*}:|T|=1 \text { and } T\left(g_{1}\right)=\gamma_{1}\right\} .
$$

From Lemma 2.1, we deduce that the cardinal of the set $F_{2}^{\prime}$ is at most two. Furthermore, since $|\cdot|^{*}$ is strictly convex, the cardinal of the set

$$
N_{2}^{\prime}=\left\{g \in S^{*} \cap\left[g_{1}, g_{2}\right]: T(g)=1 \text { for some } T \in F_{2}^{\prime}\right\}
$$

is at most two.
Let us take any sequence $\left\{x_{n}\right\} \subset M_{2}$ with $\lim _{n} g_{1}\left(x_{n}\right)=\gamma_{1}$. Consider every $x_{n}$ as an element of $X^{* *}$ and denote by $\mathbf{x}_{\mathbf{n}}$ its restriction to [ $\left.g_{1}, g_{2}\right]$. Recall that if $x_{n} \in M_{2}$, then $D\left(x_{n}\right) \in S^{*} \cap$ [ $\left.g_{1}, g_{2}\right]$, for every $n \in \mathbb{N}$. Moreover, the sequence of restrictions $\left\{\mathbf{x}_{\mathbf{n}}\right\} \subset\left[g_{1}, g_{2}\right]^{*}$ satisfies that

$$
1=\left|x_{n}\right| \geqslant\left|\mathbf{x}_{\mathbf{n}}\right|=\max \left\{\mathbf{x}_{\mathbf{n}}(h): h \in S^{*} \cap\left[g_{1}, g_{2}\right]\right\} \geqslant \mathbf{x}_{\mathbf{n}}\left(D\left(x_{n}\right)\right)=D\left(x_{n}\right)\left(x_{n}\right)=1
$$

for every $n \in \mathbb{N}$. Thus, there is a subsequence $\left\{\mathbf{x}_{\mathbf{n}_{\mathrm{j}}}\right\}$ converging to an element $T \in\left[g_{1}, g_{2}\right]^{*}$ with $|T|=1$. Since $\lim _{j} g_{1}\left(x_{n_{j}}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{1}\right)=\gamma_{1}$, then $T\left(g_{1}\right)=\gamma_{1}$ and this implies that $T \in F_{2}^{\prime}$. Furthermore, if $g \in N_{2}^{\prime}$ and $T(g)=1$, then $\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}(g)=1$. In addition, $T\left(g_{2}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{2}\right)=$ $\lim _{j} g_{2}\left(x_{n_{j}}\right) \geqslant \gamma_{2}$. Then, from condition (2.3), we deduce that $T\left(g_{2}\right)>\gamma_{2}$. Let us define

$$
\begin{gathered}
F_{2}=\left\{T \in F_{2}^{\prime}: \text { there is a sequence }\left\{x_{n}\right\} \subset M_{2} \text { with } \lim _{n} \mathbf{x}_{\mathbf{n}}=T \text { and } \lim _{n} \mathbf{x}_{\mathbf{n}}\left(g_{1}\right)=\gamma_{1}\right\}, \\
N_{2}=\left\{g \in N_{2}^{\prime}: T(g)=1 \text { for some } T \in F_{2}\right\} .
\end{gathered}
$$

Select a real number $\gamma_{2}^{\prime}$ satisfying $\gamma_{2}<\gamma_{2}^{\prime}<\min \left\{T\left(g_{2}\right): T \in F_{2}\right\}$ (recall that $F_{2}$ is finite). Let us prove the following fact.

## Fact 2.3.

(1) There are numbers $0<t_{2}<l_{2}<1$ such that for every $g \in N_{2}$, the slices

$$
O_{g}:=\left\{x \in S: g(x)>l_{2}\right\} \quad \text { and } \quad B_{g}:=\left\{x \in S: g(x)>t_{2}\right\}
$$

satisfy that

$$
\begin{gather*}
O_{g} \subset B_{g} \subset\left\{x \in S: g_{1}(x)<\gamma_{1,1}^{\prime}, g_{2}(x)>\gamma_{2}^{\prime}\right\} \quad \text { and }  \tag{2.4}\\
\operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right)>0, \quad \text { whenever } g, g^{\prime} \in N_{2}, g \neq g^{\prime} . \tag{2.5}
\end{gather*}
$$

(2) There is $\gamma_{1,1} \in\left(\gamma_{1}, \gamma_{1,1}^{\prime}\right)$, such that if $x \in M_{2}$ and $g_{1}(x)<\gamma_{1,1}$, then $x \in O_{g}$ for some $g \in N_{2}$.

Proof. (1) First, if $X$ is reflexive, we know that for every $g \in N_{2}$ there is $x_{g} \in S$ such that $D\left(x_{g}\right)=g$. Since $\mathbf{x}_{\mathbf{g}}(g)=1$ and $|\cdot|^{*}$ is Gâteaux smooth, then $\mathbf{x}_{\mathbf{g}} \in F_{2}$. This implies that $\mathbf{x}_{\mathbf{g}}\left(g_{1}\right)=$ $\gamma_{1}<\gamma_{1,1}^{\prime}$ and $\mathbf{x}_{\mathbf{g}}\left(g_{2}\right)>\gamma_{2}^{\prime}$. Hence, $x_{g} \in\left\{x \in S: g_{1}(x)<\gamma_{1,1}^{\prime}, g_{2}(x)>\gamma_{2}^{\prime}\right\}$. Now, since the norm $|\cdot|$ is LUR and $D\left(x_{g}\right)=g$, the functional $g$ strongly exposes $S$ at the point $x_{g}$. Taking into account that $N_{2}$ is finite we can hence obtain real numbers $0<t_{2}<l_{2}<1$ and slices $O_{g}$ and $B_{g}$ satisfying conditions (2.4) and (2.5) for every $g \in N_{2}$.

Now consider a non-reflexive Banach space $X$. Let us first prove (2.4). Assume, on the contrary, that there is a point $g \in N_{2}$ and there is a sequence $\left\{y_{n}\right\} \subset S$ satisfying $g\left(y_{n}\right)>1-\frac{1}{n}$ with
either $g_{1}\left(y_{n}\right) \geqslant \gamma_{1,1}^{\prime}$ or $g_{2}\left(y_{n}\right) \leqslant \gamma_{2}^{\prime}$, for every $n \in \mathbb{N}$. Since $g \in N_{2}$ there is a sequence $\left\{x_{n}\right\} \subset M_{2}$ with $\lim _{n} g_{1}\left(x_{n}\right)=\gamma_{1}, \lim _{n} g_{2}\left(x_{n}\right)>\gamma_{2}^{\prime}$ and $\lim _{n} g\left(x_{n}\right)=1$. In particular,

$$
\frac{g\left(x_{n}\right)+1-\frac{1}{n}}{2}<g\left(\frac{x_{n}+y_{n}}{2}\right) \leqslant\left|\frac{x_{n}+y_{n}}{2}\right| \leqslant 1,
$$

and thus $\lim _{n}\left|\frac{x_{n}+y_{n}}{2}\right|=1$. Recall that, in this case the norm $|\cdot|$ is WUR, and hence $x_{n}-y_{n} \xrightarrow{\omega} 0$ (weakly converges to zero). This last assertion gives a contradiction since either $\lim \sup _{n} g_{1}\left(x_{n}-\right.$ $\left.y_{n}\right) \leqslant \gamma_{1}-\gamma_{1,1}^{\prime}<0$ or $\liminf _{n} g_{2}\left(x_{n}-y_{n}\right) \geqslant \lim _{n} g_{2}\left(x_{n}\right)-\gamma_{2}^{\prime}>0$. Therefore we can find real numbers $0<t_{2}<l_{2}<1$ and slices $O_{g}$ and $B_{g}$ for every $g \in N_{2}$, satisfying condition (2.4). In order to obtain (2.5) we just need to modify $t_{2}$ and $l_{2}$ and select them close enough to 1 . Indeed, assume on the contrary, that there are sequences $\left\{y_{n}\right\} \subset S$ and $\left\{z_{n}\right\} \subset S$ and $g, g^{\prime} \in N_{2}, g \neq g^{\prime}$, such that $\lim _{n} g\left(y_{n}\right)=1, \lim _{n} g^{\prime}\left(z_{n}\right)=1$ and $\lim _{n}\left|y_{n}-z_{n}\right|=0$. Then,

$$
\begin{aligned}
\frac{g\left(y_{n}\right)+g^{\prime}\left(z_{n}\right)}{2} & =\frac{\left(g+g^{\prime}\right)\left(y_{n}\right)+g^{\prime}\left(z_{n}-y_{n}\right)}{2} \leqslant \frac{\left(g+g^{\prime}\right)\left(y_{n}\right)+\left|z_{n}-y_{n}\right|}{2} \\
& \leqslant \frac{\left|g+g^{\prime}\right|^{*}}{2}+\frac{\left|z_{n}-y_{n}\right|}{2} \leqslant 1+\frac{\left|z_{n}-y_{n}\right|}{2}
\end{aligned}
$$

Since the limit of the first and last terms in the above chain of inequalities is 1 , we deduce that $\left|g+g^{\prime}\right|^{*}=2$. Since the norm $|\cdot|^{*}$ is strictly convex, we deduce that $g=g^{\prime}$, a contradiction.
(2) Assume, on the contrary, that for every $n \in \mathbb{N}$, there is $x_{n} \in M_{2}$ with $g_{1}\left(x_{n}\right) \leqslant \gamma_{1}+\frac{1}{n}$ and $\left\{x_{n}: n \in \mathbb{N}\right\} \cap\left(\bigcup_{g \in N_{2}} O_{g}\right)=\emptyset$. Since $\lim _{n} g_{1}\left(x_{n}\right)=\gamma_{1}$ and $\left\{x_{n}\right\} \subset M_{2}$, from the comments preceding Fact 2.3, we know that there is a subsequence $\left\{x_{n_{j}}\right\}$ and $g \in N_{2}$ satisfying that $\lim _{j} g\left(x_{n_{j}}\right)=1$, which is a contradiction. This finishes the proof of Fact 2.3.

If $U_{1} \cap R_{2}=\emptyset$, we can select as $\gamma_{1,1}$ any number in $\left(\gamma_{1}, \gamma_{1,1}^{\prime}\right)$. Now, we define,

$$
\begin{aligned}
& h_{2}: S^{+} \longrightarrow \mathbb{R} \\
& h_{2}=\varphi_{2}\left(g_{2}\right) \phi_{1,1}\left(g_{1}\right)
\end{aligned}
$$

where $\varphi_{2}$ and $\phi_{1,1}$ are $C^{\infty}$ functions on $\mathbb{R}$ satisfying:

$$
\begin{aligned}
& \varphi_{2}(t)=0 \quad \text { if } t \leqslant \gamma_{2}, \\
& \varphi_{2}(1)=1, \\
& \varphi_{2}^{\prime}(t)>0 \quad \text { if } t>\gamma_{2},
\end{aligned}
$$

and

$$
\begin{array}{ll}
\phi_{1,1}(t)=1 & \text { if } t \leqslant \frac{\gamma_{1}+\gamma_{1,1}}{2}, \\
\phi_{1,1}(t)=0 & \text { if } t \geqslant \gamma_{1,1} \\
\phi_{1,1}^{\prime}(t)<0 & \text { if } t \in\left(\frac{\gamma_{1}+\gamma_{1,1}}{2}, \gamma_{1,1}\right) .
\end{array}
$$

Notice that the interior of the support of $h_{2}$ is the open set

$$
U_{2}=\left\{x \in S: g_{1}(x)<\gamma_{1,1}, g_{2}(x)>\gamma_{2}\right\} .
$$

Select one point $x_{2} \in U_{2}$, a real number $a_{2} \in \mathbb{R}^{*}$ with $\left|a_{2}-F\left(x_{2}\right)\right|<\varepsilon$ and define the auxiliary function

$$
\begin{aligned}
& r_{2}: S^{+} \longrightarrow \mathbb{R} \\
& r_{2}=s_{2} g_{2}+\left(1-s_{2} g_{2}\left(x_{2}\right)\right),
\end{aligned}
$$

where we have selected $s_{2}$ so that $s_{2} a_{2}>0$ and $\left|s_{2}\right|$ is small enough so that the oscillation of $r_{2}$ on $U_{2}$ is less than $\frac{\varepsilon}{\left|a_{2}\right|}$. Notice that $r_{2}\left(x_{2}\right)=1$.

Let us study the critical points $Z_{2}$ of the function

$$
\begin{align*}
& \mathbf{H}_{\mathbf{2}}: U_{1} \cup U_{2} \longrightarrow \mathbb{R} \\
& \mathbf{H}_{\mathbf{2}}=\frac{a_{1} r_{1} h_{1}+a_{2} r_{2} h_{2}}{h_{1}+h_{2}} . \tag{2.6}
\end{align*}
$$

Let us prove that $Z_{2}=\left\{x \in U_{1} \cup U_{2}: H_{2}^{\prime}(x)=0\right.$ on $\left.T_{x}\right\}$ can be included in a finite number of pairwise disjoint slices within $U_{1} \cup U_{2}$ by splitting it conveniently into up to four sets.

First, if $x \in U_{1} \backslash U_{2}$, from (2.6), we obtain that $\mathbf{H}_{2}(x)=a_{1} r_{1}(x)$ and the derivative $\mathbf{H}_{2}^{\prime}(x)=\left.H_{2}^{\prime}(x)\right|_{T_{x}}=\left.a_{1} s_{1} g_{1}\right|_{T_{x}} \equiv 0$ iff $D(x)=g_{1}$. Thus, $Z_{2} \cap\left(U_{1} \backslash U_{2}\right) \subseteq\left\{z_{1}\right\}$. Similarly, if $x \in U_{2} \backslash U_{1}$, from (2.6), we obtain that $\mathbf{H}_{\mathbf{2}}(x)=a_{2} r_{2}(x)$ and the derivative $\mathbf{H}_{2}^{\prime}(x)=\left.H_{2}^{\prime}(x)\right|_{T_{x}}=$ $\left.a_{2} s_{2} g_{2}\right|_{x_{x}} \equiv 0$ iff $D(x)=g_{2}$. Then, if $z_{2} \in U_{2} \backslash U_{1}, \mathbf{H}_{2}$ has one critical point in $U_{2} \backslash U_{1}$, namely $z_{2}$; in this case, since $g_{1}\left(z_{2}\right) \neq \gamma_{1}$, the point $z_{2}$ actually belongs to $U_{2} \backslash \bar{U}_{1}$.

Now, let us study the critical points of $\mathbf{H}_{\mathbf{2}}$ in $U_{1} \cap U_{2}$. In order to simplify the notation, let us put $\Lambda_{1}=\frac{h_{1}}{h_{1}+h_{2}}$, and denote by $\mathbf{g}_{1}$ and $\mathbf{g}_{2}$ the restrictions $\left.g_{1}\right|_{T_{x}}$ and $\left.g_{2}\right|_{T_{x}}$, respectively, whenever we consider $\mathbf{H}_{\mathbf{2}}^{\prime}(x)$ and $\Lambda_{1}^{\prime}(x)$. Then, $\mathbf{H}_{\mathbf{2}}=a_{1} r_{1} \Lambda_{1}+a_{2} r_{2}\left(1-\Lambda_{1}\right)$ and

$$
\begin{aligned}
\mathbf{H}_{\mathbf{2}}^{\prime} & =a_{1} s_{1} \Lambda_{1} \mathbf{g}_{\mathbf{1}}+a_{2} s_{2}\left(1-\Lambda_{1}\right) \mathbf{g}_{\mathbf{2}}+\left(a_{1} r_{1}-a_{2} r_{2}\right) \Lambda_{1}^{\prime} \\
& =\sigma_{1,1} \Lambda_{1} \mathbf{g}_{1}+a_{2} s_{2}\left(1-\Lambda_{1}\right) \mathbf{g}_{\mathbf{2}}+\left(H_{1}-a_{2} r_{2}\right) \Lambda_{1}^{\prime}
\end{aligned}
$$

By computing $\Lambda_{1}^{\prime}$, we obtain $\Lambda_{1}^{\prime}=\xi_{1,1} \mathbf{g}_{\mathbf{1}}+\xi_{1,2} \mathbf{g}_{\mathbf{2}}$, where the coefficients $\xi_{1,1} \xi_{1,2}$ are continuous functions on $U_{1} \cup U_{2}$ and have the following form,

$$
\begin{aligned}
\xi_{1,1} & =\frac{\varphi_{1}^{\prime}\left(g_{1}\right) h_{2}-h_{1} \varphi_{2}\left(g_{2}\right) \phi_{1,1}^{\prime}\left(g_{1}\right)}{\left(h_{1}+h_{2}\right)^{2}} \\
\xi_{1,2} & =\frac{-h_{1} \varphi_{2}^{\prime}\left(g_{2}\right) \phi_{1,1}\left(g_{1}\right)}{\left(h_{1}+h_{2}\right)^{2}}
\end{aligned}
$$

Thus $\mathbf{H}_{\mathbf{2}}^{\prime}=\sigma_{2,1} \mathbf{g}_{\mathbf{1}}+\sigma_{2,2} \mathbf{g}_{\mathbf{2}}$, where $\sigma_{2,1}$ and $\sigma_{2,2}$ are continuous functions on $U_{1} \cup U_{2}$ and have the following form:

$$
\begin{align*}
& \sigma_{2,1}=\sigma_{1,1} \Lambda_{1}+\left(H_{1}-a_{2} r_{2}\right) \xi_{1,1}  \tag{2.7}\\
& \sigma_{2,2}=a_{2} s_{2}\left(1-\Lambda_{1}\right)+\left(H_{1}-a_{2} r_{2}\right) \xi_{1,2}
\end{align*}
$$

Notice that if $x \in U_{1} \cap U_{2}$, then $\sigma_{1,1}>0, a_{2} s_{2}>0, \Lambda_{1}>0,1-\Lambda_{1}>0, \xi_{1,1}>0$ and $\xi_{1,2}<0$. Therefore, on $U_{1} \cap U_{2}$, the coefficient $\sigma_{2,1}$ is strictly positive whenever $H_{1}-a_{2} r_{2} \geqslant 0$, and the coefficient $\sigma_{2,2}$ is strictly positive whenever $H_{1}-a_{2} r_{2} \leqslant 0$. Since the vectors $g_{1}$ and $g_{2}$ are linearly independent, if $x \in U_{1} \cap U_{2}$ and $\mathbf{H}_{2}^{\prime}(x): T_{x} \rightarrow \mathbb{R}$ is identically zero, there is necessarily $\varrho \neq 0$ with $D(x)=\varrho\left(\sigma_{2,1}(x) g_{1}+\sigma_{2,2}(x) g_{2}\right)$. Thus, $D(x) \in\left[g_{1}, g_{2}\right]$.

The set $Z_{2}$ can be split into the disjoint sets $Z_{2}=Z_{1} \cup Z_{2,1} \cup Z_{2,2}$, where

$$
Z_{2,1}= \begin{cases}\left\{z_{2}\right\} & \text { if } z_{2} \in U_{2} \backslash \bar{U}_{1} \\ \emptyset & \text { otherwise }\end{cases}
$$

and $Z_{2,2}$ is a subset (possibly empty) within $U_{1} \cap U_{2} \cap D^{-1}$ ( $\left[g_{1}, g_{2}\right]$ ). Now, let us check that $Z_{2,2} \subset \bigcup_{g \in N_{2}} O_{g}$. Indeed, if $x \in Z_{2,2}$, then $x \in U_{1} \cap U_{2} \subset U_{1} \cap U_{2}^{\prime}, D(x) \in\left[g_{1}, g_{2}\right]$ and $g_{1}(x)<\gamma_{1,1}$. This implies, according to Fact 2.3, that $x \in \bigcup_{g \in N_{2}} O_{g}$.

In the case that $Z_{2,1}=\left\{z_{2}\right\}$ and $z_{2} \notin \bigcup_{g \in N_{2}} \bar{O}_{g}$, we select, if necessary, a larger $t_{2}$ with $t_{2}<l_{2}$, so that $z_{2} \notin \bigcup_{g \in N_{2}} \bar{B}_{g}$. Since the norm $|\cdot|$ is LUR and $D\left(z_{2}\right)=g_{2}$, the functional $g_{2}$ strongly exposes $S$ at the point $z_{2}$ and we may select numbers $0<t_{2}^{\prime}<l_{2}^{\prime}<1$ and open slices, which are neighborhoods of $z_{2}$, defined by

$$
O_{g_{2}}:=\left\{x \in S: g_{2}(x)>l_{2}^{\prime}\right\} \quad \text { and } \quad B_{g_{2}}:=\left\{x \in S: g_{2}(x)>t_{2}^{\prime}\right\},
$$

satisfying $O_{g_{2}} \subset B_{g_{2}} \subset\left\{x \in S: g_{1}(x)<\gamma_{1,1}^{\prime}, g_{2}(x)>\gamma_{2}^{\prime}\right\}$ and $\operatorname{dist}\left(B_{g_{2}}, B_{g}\right)>0$ for every $g \in N_{2}$. In this case, we define $\Gamma_{2}=N_{2} \cup\left\{g_{2}\right\}$.

Now, if $Z_{2,1}=\left\{z_{2}\right\} \in \bigcup_{g \in N_{2}} \bar{O}_{g}$, we select, if necessary, a smaller constant $l_{2}$, with $0<t_{2}<$ $l_{2}<1$, so that $Z_{2,1}=\left\{z_{2}\right\} \in \bigcup_{g \in N_{2}} O_{g}$. In this case, and also when $Z_{2,1}=\emptyset$, we define $\Gamma_{2}=N_{2}$.

Notice that, in any of the cases mentioned above, Fact 2.3 clearly holds for the (possibly) newly selected real numbers $t_{2}$ and $l_{2}$.

Notice that the distance between any two sets $B_{g}, B_{g^{\prime}}, g, g^{\prime} \in \Gamma_{1} \cup \Gamma_{2}, g \neq g^{\prime}$, is positive. Moreover, $Z_{1} \subset O_{g_{1}} \subset B_{g_{1}} \subset U_{1}=R_{1}$, and $Z_{2,1} \cup Z_{2,2} \subset \bigcup_{g \in \Gamma_{2}} O_{g} \subset \bigcup_{g \in \Gamma_{2}} B_{g} \subset U_{2}^{\prime} \subset R_{2}$. Therefore, $Z_{2}=Z_{1} \cup Z_{2,1} \cup Z_{2,2} \subset \bigcup_{g \in \Gamma_{1} \cup \Gamma_{2}} O_{g} \subset \bigcup_{g \in \Gamma_{1} \cup \Gamma_{2}} B_{g} \subset U_{1} \cup U_{2}=R_{1} \cup R_{2}$. In addition, we have $\operatorname{dist}\left(\bigcup_{g \in \Gamma_{1} \cup \Gamma_{2}} B_{g},\left(U_{1} \cup U_{2}\right)^{c}\right)>0$.

It is worth remarking that $\mathbf{H}_{2}^{\prime}=\sigma_{2,1} \mathbf{g}_{1}+\sigma_{2,2} \mathbf{g}_{2}$ in $U_{1} \cup U_{2}$, where $\sigma_{2,1}$ and $\sigma_{2,2}$ are continuous functions and at least one of the coefficients $\sigma_{2,1}(x), \sigma_{2,2}(x)$ is strictly positive, for every $x \in$ $U_{1} \cup U_{2}$. Moreover, since $H_{2}^{\prime}=\sigma_{2,1} g_{1}+\sigma_{2,2} g_{2}, H_{2}^{\prime}(x)=a_{2} s_{2} g_{2}$ whenever $x \in U_{2} \backslash U_{1}$ and $H_{2}^{\prime}(x)=a_{1} s_{1} g_{1}$ whenever $x \in U_{1} \backslash U_{2}$, then $\sigma_{2,1}(x)=0$ whenever $x \in U_{2} \backslash U_{1}$, and $\sigma_{2,2}(x)=0$ whenever $x \in U_{1} \backslash U_{2}$.

In order to clarify the construction in the general case, let us also explain in detail the construction of the function $h_{3}$ and locate the critical points of the function $\mathbf{H}_{3}^{\prime}$.

- For $k=3$, let us denote by $y_{3} \in S$ the point satisfying $f_{3}\left(y_{3}\right)=1$. If either $\left\{g_{1}, g_{2}, f_{3}\right\}$ are linearly dependent or $g_{1}\left(y_{3}\right)=\gamma_{1}$ or $g_{2}\left(y_{3}\right)=\gamma_{2}$, we can use the density of the norm attaining functionals (Bishop-Phelps theorem) and the continuity of $D$ to modify $y_{3}$ and find $z_{3} \in S$ so that: $g_{1}\left(z_{3}\right) \neq \gamma_{1}, g_{2}\left(z_{3}\right) \neq \gamma_{2},\left\{g_{1}, g_{2}, g_{3}:=D\left(z_{3}\right)\right\}$ are linearly independent, and

$$
\left\{x \in S: f_{3}(x)>\delta_{3}^{2}\right\} \subset\left\{x \in S: g_{3}(x)>\nu_{3}\right\} \subset\left\{x \in S: f_{3}(x)>\delta_{3}^{3}\right\}
$$

for some $\nu_{3} \in(0,1)$. If $\left\{g_{1}, g_{2}, f_{3}\right\}$ are linearly independent, $g_{1}\left(y_{3}\right) \neq \gamma_{1}$, and $g_{2}\left(y_{3}\right) \neq \gamma_{2}$, we define $g_{3}=f_{3}$ and $z_{3}=y_{3}$. Then, we apply Lemma 2.2 to the linearly independent vectors,
$\left\{g_{1}, g_{2}, g_{3}\right\}$ and the real numbers $\gamma_{1} \in(0,1), \gamma_{2} \in(0,1)$ and obtain $\gamma_{3} \in(0,1)$ close enough to $\nu_{3}$ so that

$$
\begin{gather*}
S_{3}=\left\{x \in S: f_{3}(x)>\delta_{3}\right\} \subset\left\{x \in S: g_{3}(x)>\gamma_{3}\right\} \subset\left\{x \in S: f_{3}(x)>\delta_{3}^{4}\right\}=P_{3}, \\
\left\{T \in\left[g_{1}, g_{2}, g_{3}\right]^{*}: T\left(g_{1}\right)=\gamma_{1}, T\left(g_{2}\right)=\gamma_{2}, T\left(g_{3}\right)=\gamma_{3} \text { and }|T|=1\right\}=\emptyset,  \tag{2.8}\\
\left\{T \in\left[g_{1}, g_{3}\right]^{*}: T\left(g_{1}\right)=\gamma_{1}, T\left(g_{3}\right)=\gamma_{3} \text { and }|T|=1\right\}=\emptyset,  \tag{2.9}\\
\left\{T \in\left[g_{2}, g_{3}\right]^{*}: T\left(g_{2}\right)=\gamma_{2}, T\left(g_{3}\right)=\gamma_{3} \text { and }|T|=1\right\}=\emptyset . \tag{2.10}
\end{gather*}
$$

Select $\gamma_{2,1}^{\prime} \in\left(\gamma_{2}, \gamma_{2}^{\prime}\right)$ and define

$$
\begin{gathered}
R_{3}=\left\{x \in S: g_{3}(x)>\gamma_{3}\right\} \quad \text { and } \\
U_{3}^{\prime}=\left\{s \in S: g_{1}(x)<\gamma_{1,2}^{\prime}, g_{2}(x)<\gamma_{2,1}^{\prime} \text { and } g_{3}(x)>\gamma_{3}\right\},
\end{gathered}
$$

where $\gamma_{1,2}^{\prime}$ is a number in $\left(\gamma_{1}, \frac{\gamma_{1}+\gamma_{1,1}}{2}\right)$.
Notice that $\operatorname{dist}\left(B_{g}, U_{3}^{\prime}\right)>0$ for every $g \in \Gamma_{1} \cup \Gamma_{2}$. Assume that $R_{3} \cap\left(U_{1} \cup U_{2}\right) \neq \emptyset$, and consider the sets

$$
\begin{aligned}
M_{3,1} & =\left\{x \in\left(U_{1} \cap U_{3}^{\prime}\right) \backslash U_{2}: D(x) \in\left[g_{1}, g_{3}\right]\right\} \\
M_{3,2} & =\left\{x \in\left(U_{2} \cap U_{3}^{\prime}\right) \backslash U_{1}: D(x) \in\left[g_{2}, g_{3}\right]\right\} \\
M_{3,1,2} & =\left\{x \in U_{1} \cap U_{2} \cap U_{3}^{\prime}: D(x) \in\left[g_{1}, g_{2}, g_{3}\right]\right\}
\end{aligned}
$$

and $M_{3}=M_{3,1} \cup M_{3,2} \cup M_{3,1,2}$.
In the case that $M_{3}=\emptyset$, we select as $\gamma_{2,1}$ any point in $\left(\gamma_{2}, \gamma_{2,1}^{\prime}\right)$ and $\gamma_{1,2}$ any point in $\left(\gamma_{1}, \gamma_{1,2}^{\prime}\right)$.
In the case that $M_{3} \neq \emptyset$ and $\operatorname{dist}\left(M_{3},\left(U_{1} \cup U_{2}\right)^{c}\right)>0$ we can easily find $\gamma_{2,1} \in\left(\gamma_{2}, \gamma_{2,1}^{\prime}\right)$ and $\gamma_{1,2} \in\left(\gamma_{1}, \gamma_{1,2}^{\prime}\right)$ with $M_{3} \subset\left\{x \in S: g_{1}(x)>\gamma_{1,2}\right\} \cup\left\{x \in S: g_{2}(x)>\gamma_{2,1}\right\}$.

In the case that $\operatorname{dist}\left(M_{3},\left(U_{1} \cup U_{2}\right)^{c}\right)=0$ and in order to obtain suitable constants $\gamma_{2,1}$ and $\gamma_{1,2}$, we need to study the limits of the sequences $\left\{x_{n}\right\} \subset M_{3}$ such that

$$
\lim _{n} \operatorname{dist}\left(x_{n},\left(U_{1} \cup U_{2}\right)^{c}\right)=0
$$

Define the sets

$$
\begin{aligned}
F_{3, i}^{\prime} & =\left\{T \in\left[g_{i}, g_{3}\right]^{*}: T\left(g_{i}\right)=\gamma_{i} \text { and }|T|=1\right\} \quad \text { for } i=1,2, \\
F_{3,1,2}^{\prime} & =\left\{T \in\left[g_{1}, g_{2}, g_{3}\right]^{*}: T\left(g_{1}\right)=\gamma_{1}, T\left(g_{2}\right)=\gamma_{2} \text { and }|T|=1\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
N_{3, i}^{\prime} & =\left\{g \in S^{*} \cap\left[g_{i}, g_{3}\right]: T(g)=1 \text { for some } T \in F_{3, i}^{\prime}\right\} \quad \text { for } i=1,2, \\
N_{3,1,2}^{\prime} & =\left\{g \in S^{*} \cap\left[g_{1}, g_{2}, g_{3}\right]: T(g)=1 \text { for some } T \in F_{3,1,2}^{\prime}\right\} .
\end{aligned}
$$

Since the norm $|\cdot|^{*}$ is Gâteaux smooth, we apply Lemma 2.1 to the finite-dimensional space [ $\left.g_{1}, g_{2}, g_{3}\right]$ and the restriction of the norm $|\cdot|^{*}$ to $\left[g_{1}, g_{2}, g_{3}\right]$ (which is a differentiable norm
on the space $\left[g_{1}, g_{2}, g_{3}\right]$ ), and deduce that the cardinal of any of the sets $F_{3, i}^{\prime}, F_{3,1,2}^{\prime}$ is at most two. Furthermore, from the strict convexity of the norm $|\cdot|^{*}$ we obtain that the cardinal of any of the sets $N_{3, i}^{\prime}$ and $N_{3,1,2}^{\prime}$, is at most two. Let us consider, for $i=1,2$, the norm-one extensions to $\left[g_{1}, g_{2}, g_{3}\right]$ of the functionals of $F_{3, i}^{\prime}$, that is,

$$
F_{3, i}^{\prime \prime}=\left\{T \in\left[g_{1}, g_{2}, g_{3}\right]^{*}:\left.T\right|_{\left[g_{i}, g_{3}\right]} \in F_{3, i}^{\prime} \text { and }|T|=1\right\} .
$$

Since the norm $|\cdot|^{*}$ is Gâteaux smooth, for every $G \in F_{3, i}^{\prime}$ there is exactly one norm-one extension $T$ to $\left[g_{1}, g_{2}, g_{3}\right]$. Therefore the cardinal of the set $F_{3, i}^{\prime \prime}$ is at most two. Hence the sets $F_{3}^{\prime}:=F_{3,1}^{\prime \prime} \cup F_{3,2}^{\prime \prime} \cup F_{3,1,2}^{\prime}$ and $N_{3}^{\prime}:=N_{3,1}^{\prime} \cup N_{3,2}^{\prime} \cup N_{3,1,2}^{\prime}$ are finite. In addition, as a consequence of the equalities (2.8), (2.9) and (2.10), we deduce that $T\left(g_{3}\right) \neq \gamma_{3}$ for every $T \in F_{3}^{\prime}$. Indeed, if $T \in F_{3,1,2}^{\prime}$ the assertion follows immediately from (2.8). If $T \in F_{3, i}^{\prime \prime}$ for some $i \in\{1,2\}$, then $\left.T\right|_{\left[g_{i}, g_{3}\right]} \in F_{3, i}^{\prime}$, that is, $|T|_{\left[g_{i}, g_{3}\right]} \mid=1$ and $T\left(g_{i}\right)=\gamma_{i}$. From (2.9) for $i=1$, and (2.10) for $i=2$, we obtain that $T\left(g_{3}\right) \neq \gamma_{3}$. We can restrict our study to one of the following kind of sequences:
(1) Fix $i \in\{1,2\}$. Consider any sequence $\left\{x_{n}\right\} \subset M_{3, i}$ such that $\lim _{n} \operatorname{dist}\left(x_{n},\left(U_{1} \cup U_{2}\right)^{c}\right)=0$. Then, it easily follows that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$. Indeed,

- if $\left\{x_{n}\right\} \subset M_{3,1}$, then in particular $\left\{x_{n}\right\} \subset U_{1}=R_{1}$. Therefore, $\operatorname{dist}\left(x_{n},\left(U_{1} \cup U_{2}\right)^{c}\right) \geqslant$ $\operatorname{dist}\left(x_{n}, R_{1}^{c}\right)$. Thus, $\lim _{n} \operatorname{dist}\left(x_{n}, R_{1}^{c}\right)=0$ and this implies that $\lim _{n} g_{1}\left(x_{n}\right)=\gamma_{1}$;
- if $\left\{x_{n}\right\} \subset M_{3,2}$, then in particular $\left\{x_{n}\right\} \subset U_{2} \subset R_{2}$. Recall that $U_{1} \cup U_{2}=R_{1} \cup R_{2}$. Therefore, $\operatorname{dist}\left(x_{n},\left(U_{1} \cup U_{2}\right)^{c}\right) \geqslant \operatorname{dist}\left(x_{n}, R_{2}^{c}\right)$. Thus, $\lim _{n} \operatorname{dist}\left(x_{n}, R_{2}^{c}\right)=0$ and this implies that $\lim _{n} g_{2}\left(x_{n}\right)=\gamma_{2}$.
Now, let us take any sequence $\left\{x_{n}\right\} \subset M_{3, i}$ such that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$. Consider every $x_{n}$ as an element of $X^{* *}$ and denote by $\mathbf{x}_{\mathbf{n}}$ its restriction to $\left[g_{1}, g_{2}, g_{3}\right]$. Recall that $D\left(x_{n}\right) \in$ $S^{*} \cap\left[g_{i}, g_{3}\right]$ for every $n \in \mathbb{N}$. Then, the sequence of restrictions $\left\{\mathbf{x}_{\mathbf{n}}\right\} \subset\left[g_{1}, g_{2}, g_{3}\right]^{*}$ satisfies that

$$
\begin{aligned}
1 & =\left|x_{n}\right| \geqslant\left|\mathbf{x}_{\mathbf{n}}\right| \geqslant\left|\mathbf{x}_{\mathbf{n}}\right|\left[g_{i}, g_{3}\right] \mid=\max \left\{\mathbf{x}_{\mathbf{n}}(h): h \in S^{*} \cap\left[g_{i}, g_{3}\right]\right\} \\
& \geqslant \mathbf{x}_{\mathbf{n}}\left(D\left(x_{n}\right)\right)=D\left(x_{n}\right)\left(x_{n}\right)=1
\end{aligned}
$$

for every $n \in \mathbb{N}$. Thus, there is a subsequence $\left\{\mathbf{x}_{\mathbf{n}_{\mathrm{j}}}\right\}$ converging to an element $T \in$ $\left[g_{1}, g_{2}, g_{3}\right]^{*}$ with $|T|=|T|_{\left[g_{i}, g_{3}\right]} \mid=1$. Since $\lim _{j} g_{i}\left(x_{n_{j}}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{i}\right)=\gamma_{i}$, we have that $T\left(g_{i}\right)=\gamma_{i}$ and this implies that $\left.T\right|_{\left[g_{i}, g_{3}\right]} \in F_{3, i}^{\prime}$ and $T \in F_{3, i}^{\prime \prime}$. Furthermore, if $g \in N_{3, i}^{\prime}$ and $T(g)=1$, then $\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}(g)=1$. In addition, $T\left(g_{3}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{3}\right)=\lim _{j} g_{3}\left(x_{n_{j}}\right) \geqslant \gamma_{3}$ because $\left\{x_{n_{j}}\right\} \subset U_{3}^{\prime}$. Then, from condition (2.10) if $i=1$ and condition (2.9) if $i=2$, we deduce that $T\left(g_{3}\right)>\gamma_{3}$. Finally, let us check that $T\left(g_{s}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{s}\right) \leqslant \gamma_{s}$, where $s \in\{1,2\}$ and $s \neq i$ :

- if $i=1$, the sequence $\left\{x_{n_{j}}\right\} \subset M_{3,1}$ and thus $\left\{x_{n_{j}}\right\} \subset\left(U_{1} \cap U_{3}^{\prime}\right) \backslash U_{2}$. In particular $\left\{x_{n_{j}}\right\} \subset$ $U_{3}^{\prime}$ and $g_{1}\left(x_{n_{j}}\right)<\gamma_{1,2}^{\prime}<\gamma_{1,1}$ for every $j \in \mathbb{N}$. Therefore, if $x_{n_{j}} \notin U_{2}$ for all $j$, we must have $\mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{2}\right)=g_{2}\left(x_{n_{j}}\right) \leqslant \gamma_{2}$ for every $j \in \mathbb{N}$;
- if $i=2$, the sequence $\left\{x_{n_{j}}\right\} \subset M_{3,2}$ and thus $\left\{x_{n_{j}}\right\} \subset\left(U_{2} \cap U_{3}^{\prime}\right) \backslash U_{1}$. In particular $x_{n_{j}} \notin$ $U_{1}=R_{1}$, for every $j \in \mathbb{N}$ and this implies $\mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{1}\right)=g_{1}\left(x_{n_{j}}\right) \leqslant \gamma_{1}$ for every $j \in \mathbb{N}$.
(2) Consider a sequence $\left\{x_{n}\right\} \subset M_{3,1,2}$, such that $\lim _{n} \operatorname{dist}\left(x_{n},\left(U_{1} \cup U_{2}\right)^{c}\right)=0$. Then, it easily follows that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$ for $i=1$, 2. Indeed, $U_{1} \cup U_{2}=R_{1} \cup R_{2}$ and then $\operatorname{dist}\left(x_{n},\left(R_{1} \cup\right.\right.$ $\left.\left.R_{2}\right)^{c}\right) \geqslant \operatorname{dist}\left(x_{n}, R_{i}^{c}\right)$ for every $n \in \mathbb{N}$ and $i=1,2$. Hence $\lim _{n} \operatorname{dist}\left(x_{n}, R_{i}^{c}\right)=0$. Since $\left\{x_{n}\right\} \subset$ $R_{i}$ for $i=1$, 2, we obtain that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$ for $i=1,2$.

Now, let us take any sequence $\left\{x_{n}\right\} \subset M_{3,1,2}$ such that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$, for every $i=1,2$. Consider every $x_{n}$ as an element of $X^{* *}$ and denote by $\mathbf{x}_{\mathbf{n}}$ its restriction to [ $g_{1}, g_{2}, g_{3}$ ]. Then, the sequence of restrictions $\left\{\mathbf{x}_{\mathbf{n}}\right\} \subset\left[g_{1}, g_{2}, g_{3}\right]^{*}$ satisfies that

$$
1=\left|x_{n}\right| \geqslant\left|\mathbf{x}_{\mathbf{n}}\right|=\max \left\{\mathbf{x}_{\mathbf{n}}(h): h \in S^{*} \cap\left[g_{1}, g_{2}, g_{3}\right]\right\} \geqslant \mathbf{x}_{\mathbf{n}}\left(D\left(x_{n}\right)\right)=D\left(x_{n}\right)\left(x_{n}\right)=1
$$

for every $n \in \mathbb{N}$. Thus, there is a subsequence $\left\{\mathbf{x}_{\mathbf{n}_{j}}\right\}$ converging to an element $T \in$ $\left[g_{1}, g_{2}, g_{3}\right]^{*}$ with $|T|=1$. Since $\lim _{j} g_{i}\left(x_{n_{j}}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{i}\right)=\gamma_{i}$ for $i=1,2$, then $T\left(g_{i}\right)=$ $\gamma_{i}$ for $i=1,2$, and this implies that $T \in F_{3,1,2}^{\prime}$. Furthermore, if $g \in N_{3,1,2}^{\prime}$ and $T(g)=1$, then $\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}(g)=1$. In addition, $T\left(g_{3}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{3}\right)=\lim _{j} g_{3}\left(x_{n_{j}}\right) \geqslant \gamma_{3}$ because $\left\{x_{n_{j}}\right\} \subset U_{3}^{\prime}$. Then, from condition (2.8), we deduce that $T\left(g_{3}\right)>\gamma_{3}$.

Let us define, for $i=1,2$,

$$
\begin{aligned}
F_{3, i}= & \left\{T \in F_{3, i}^{\prime \prime}: \text { there is }\left\{x_{n}\right\} \subset M_{3, i} \text { with } \lim _{n} \mathbf{x}_{\mathbf{n}}\left(g_{i}\right)=\gamma_{i}, \text { and } \lim _{n} \mathbf{x}_{\mathbf{n}}=T\right\}, \\
F_{3,1,2}= & \left\{T \in F_{3,1,2}^{\prime}: \text { there is }\left\{x_{n}\right\} \subset M_{3,1,2} \text { with } \lim _{n} \mathbf{x}_{\mathbf{n}}\left(g_{1}\right)=\gamma_{1}, \lim _{n} \mathbf{x}_{\mathbf{n}}\left(g_{2}\right)=\gamma_{2}\right. \\
& \text { and } \left.\lim _{n} \mathbf{x}_{\mathbf{n}}=T\right\},
\end{aligned}
$$

and

$$
\begin{equation*}
F_{3}=F_{3,1} \cup F_{3,2} \cup F_{3,1,2} \tag{2.11}
\end{equation*}
$$

Select a real number $\gamma_{3}^{\prime}$ satisfying $\gamma_{3}<\gamma_{3}^{\prime}<\min \left\{T\left(g_{3}\right): T \in F_{3}\right\}$ (recall that $F_{3}$ is finite), and define,

$$
\begin{gathered}
N_{3, i}=\left\{g \in N_{3, i}^{\prime}: \text { there is } T \in F_{3, i} \text { with } T(g)=1\right\} \quad \text { for } i=1,2, \\
N_{3,1,2}=\left\{g \in N_{3,1,2}^{\prime}: \text { there is } T \in F_{3,1,2} \text { with } T(g)=1\right\},
\end{gathered}
$$

and $N_{3}=N_{3,1} \cup N_{3,2} \cup N_{3,1,2}$. Let us prove the following fact.

## Fact 2.4.

(1) There are numbers $0<t_{3}<l_{3}<1$ such that for every $g \in N_{3}$, the slices

$$
O_{g}:=\left\{x \in S: g(x)>l_{3}\right\} \quad \text { and } \quad B_{g}:=\left\{x \in S: g(x)>t_{3}\right\}
$$

satisfy that

$$
\begin{gather*}
O_{g} \subset B_{g} \subset\left\{x \in S: g_{1}(x)<\gamma_{1,2}^{\prime}, g_{2}(x)<\gamma_{2,1}^{\prime}, g_{3}(x)>\gamma_{3}^{\prime}\right\} \quad \text { and }  \tag{2.12}\\
\operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right)>0, \quad \text { whenever } g, g^{\prime} \in N_{3}, g \neq g^{\prime} . \tag{2.13}
\end{gather*}
$$

(2) There are numbers $\gamma_{1,2} \in\left(\gamma_{1}, \gamma_{1,2}^{\prime}\right)$ and $\gamma_{2,1} \in\left(\gamma_{2}, \gamma_{2,1}^{\prime}\right)$ such that if $x \in M_{3}, g_{1}(x)<\gamma_{1,2}$ and $g_{2}(x)<\gamma_{2,1}$, then $x \in O_{g}$ for some $g \in N_{3}$.

Proof. (1) First, if $X$ is reflexive, we know that for every $g \in N_{3}$ there is $x_{g} \in S$ such that $D\left(x_{g}\right)=g$. Let us study the three possible cases:

- If $g \in F_{3,1}$, denote by $\mathbf{x}_{\mathbf{g}}$ the restriction of $x_{g}$ to $\left[g_{1}, g_{2}, g_{3}\right]$. Since $\mathbf{x}_{\mathbf{g}}(g)=1$ and $|\cdot|^{*}$ is Gâteaux smooth, then $\mathbf{x}_{\mathbf{g}}=T$ for some $T \in F_{3,1}$. This implies that $\mathbf{x}_{\mathbf{g}}\left(g_{1}\right)=$ $\gamma_{1}<\gamma_{1,2}^{\prime}, \mathbf{x}_{\mathbf{g}}\left(g_{3}\right)>\gamma_{3}^{\prime}$ and $\mathbf{x}_{\mathbf{g}}\left(g_{2}\right) \leqslant \gamma_{2}<\gamma_{2,1}^{\prime}$. Hence, $x_{g} \in\left\{x \in S: g_{1}(x)<\gamma_{1,2}^{\prime}\right.$, $g_{2}(x)>\gamma_{2,1}^{\prime}$ and $\left.g_{3}(x)>\gamma_{3}^{\prime}\right\}$.
- If $g \in F_{3,2}$, denote by $\mathbf{x}_{\mathbf{g}}$ the restriction of $x_{g}$ to $\left[g_{1}, g_{2}, g_{3}\right]$. Since $\mathbf{x}_{\mathbf{g}}(g)=1$ and $|\cdot|^{*}$ is Gâteaux smooth, then $\mathbf{x}_{\mathbf{g}}=T$ for some $T \in F_{3,2}$. This implies that $\mathbf{x}_{\mathbf{g}}\left(g_{2}\right)=$ $\gamma_{2}<\gamma_{2,1}^{\prime}, \mathbf{x}_{\mathbf{g}}\left(g_{3}\right)>\gamma_{3}^{\prime}$ and $\mathbf{x}_{\mathbf{g}}\left(g_{1}\right) \leqslant \gamma_{1}<\gamma_{1,2}^{\prime}$. Hence, $x_{g} \in\left\{x \in S: g_{1}(x)<\gamma_{1,2}^{\prime}\right.$, $g_{2}(x)>\gamma_{2,1}^{\prime}$ and $\left.g_{3}(x)>\gamma_{3}^{\prime}\right\}$.
- If $g \in F_{3,1,2}$, denote by $\mathbf{x}_{\mathbf{g}}$ the restriction of $x_{g}$ to $\left[g_{1}, g_{2}, g_{3}\right]$. Since $\mathbf{x}_{\mathbf{g}}(g)=1$ and $|\cdot|^{*}$ is Gâteaux smooth, then $\mathbf{x}_{\mathbf{g}}=T$ for some $T \in F_{3,1,2}$. This implies that $\mathbf{x}_{\mathbf{g}}\left(g_{1}\right)=$ $\gamma_{1}<\gamma_{1,2}^{\prime}, \mathbf{x}_{\mathbf{g}}\left(g_{2}\right)=\gamma_{2}<\gamma_{2,1}^{\prime}$ and $\mathbf{x}_{\mathbf{g}}\left(g_{3}\right)>\gamma_{3}^{\prime}$. Hence, $x_{g} \in\left\{x \in S: g_{1}(x)<\gamma_{1,2}^{\prime}\right.$, $g_{2}(x)>\gamma_{2,1}^{\prime}$ and $\left.g_{3}(x)>\gamma_{3}^{\prime}\right\}$.

Now, since the norm $|\cdot|$ is LUR and $D\left(x_{g}\right)=g$, the functional $g$ strongly exposes $S$ at the point $x_{g}$ for every $g \in N_{3}$. Since $N_{3}$ is finite, we can hence obtain real numbers $0<t_{3}<l_{3}<1$ and slices $O_{g}$ and $B_{g}$, for every $g \in N_{3}$, satisfying conditions (2.12) and (2.13).

Now consider a non-reflexive Banach space $X$. Let us first prove (2.12). Assume, on the contrary, that there is a point $g \in N_{3}$ and there is a sequence $\left\{y_{n}\right\} \subset S$ satisfying $g\left(y_{n}\right)>1-\frac{1}{n}$ and such that for every $n \in \mathbb{N}$ either $g_{1}\left(y_{n}\right) \geqslant \gamma_{1,2}^{\prime}$ or $g_{2}\left(y_{n}\right) \geqslant \gamma_{2,1}^{\prime}$ or $g_{3}\left(y_{n}\right) \leqslant \gamma_{3}^{\prime}$. If $g \in N_{3}$ there is a sequence $\left\{x_{n}\right\} \subset M_{3}$ with $\lim _{n} g_{i}\left(x_{n}\right) \leqslant \gamma_{i}$, for $i=1,2, \lim _{n} g_{3}\left(x_{n}\right)>\gamma_{3}^{\prime}$ and $\lim _{n} g\left(x_{n}\right)=1$. In particular,

$$
\frac{g\left(x_{n}\right)+1-\frac{1}{n}}{2} \leqslant g\left(\frac{x_{n}+y_{n}}{2}\right) \leqslant\left|\frac{x_{n}+y_{n}}{2}\right| \leqslant 1,
$$

and thus $\lim _{n}\left|\frac{x_{n}+y_{n}}{2}\right|=1$. Recall that in the non-reflexive case, the norm $|\cdot|$ is WUR, and then $x_{n}-y_{n} \xrightarrow{\omega} 0$ (weakly converges to zero). This last assertion gives a contradiction since we have either $\lim \sup _{n} g_{1}\left(x_{n}-y_{n}\right) \leqslant \gamma_{1}-\gamma_{1,2}^{\prime}<0$ or $\limsup _{n} g_{2}\left(x_{n}-y_{n}\right) \leqslant \gamma_{2}-\gamma_{2,1}^{\prime}<0$ or $\liminf _{n} g_{3}\left(x_{n}-y_{n}\right) \geqslant \lim _{n} g_{3}\left(x_{n}\right)-\gamma_{3}^{\prime}>0$. Therefore we can find real numbers $0<t_{2}<l_{2}<1$ and slices $O_{g}$ and $B_{g}$ for every $g \in N_{3}$, satisfying condition (2.12). The proof of (2.13) is the same as the one given in Fact 2.3, where the only property we need is the strict convexity of $|\cdot|^{*}$.
(2) Assume, on the contrary, that for every $n \in \mathbb{N}$, there is $x_{n} \in M_{3}$ with $g_{i}\left(x_{n}\right) \leqslant \gamma_{i}+\frac{1}{n}$, for $i=1,2$ and $\left\{x_{n}: n \in \mathbb{N}\right\} \cap\left(\bigcup_{g \in N_{3}} O_{g}\right)=\emptyset$. Then, there is a subsequence of $\left\{x_{n}\right\}$, which we keep denoting by $\left\{x_{n}\right\}$, such that either $\left\{x_{n}\right\} \subset M_{3,1}$ or $\left\{x_{n}\right\} \subset M_{3,2}$ or $\left\{x_{n}\right\} \subset M_{3,1,2}$. In the first case, $\lim _{n} g_{1}\left(x_{n}\right)=\gamma_{1}$. In the second case, $\lim _{n} g_{2}\left(x_{n}\right)=\gamma_{2}$. In the third case, $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$, for every $i=1,2$. From the definition of $F_{3}$ and $N_{3}$ and the comments preceding Fact 2.4, we know that there is a subsequence $\left\{x_{n_{j}}\right\}$ and $g \in N_{3}$ satisfying that $\lim _{j} g\left(x_{n_{j}}\right)=1$, which is a contradiction. This finishes the proof of Fact 2.4.

If $R_{3} \cap\left(U_{1} \cup U_{2}\right)=\emptyset$ we may select as $\gamma_{1,2}$ any number in $\left(\gamma_{1}, \gamma_{1,2}^{\prime}\right)$ and $\gamma_{2,1}$ any number in $\left(\gamma_{2}, \gamma_{2,1}^{\prime}\right)$.

Now we define $h_{3}$ as follows:

$$
\begin{aligned}
& h_{3}: S^{+} \longrightarrow \mathbb{R} \\
& h_{3}=\varphi_{3}\left(g_{3}\right) \phi_{2,1}\left(g_{2}\right) \phi_{1,2}\left(g_{1}\right),
\end{aligned}
$$

where $\varphi_{3}, \phi_{2,1}$ and $\phi_{1,2}$ are $C^{\infty}$ functions on $\mathbb{R}$ satisfying that

$$
\begin{aligned}
& \varphi_{3}(t)=0 \text { if } t \leqslant \gamma_{3}, \\
& \varphi_{3}(1)=1, \\
& \varphi_{3}^{\prime}(t)>0 \text { if } t>\gamma_{3},
\end{aligned}
$$

and

$$
\begin{array}{lll}
\phi_{1,2}(t)=1 & \text { if } t \leqslant \frac{\gamma_{1}+\gamma_{1,2}}{2}, & \phi_{2,1}(t)=1 \quad \text { if } t \leqslant \frac{\gamma_{2}+\gamma_{2,1}}{2} \\
\phi_{1,2}(t)=0 & \text { if } t \geqslant \gamma_{1,2}, & \phi_{2,1}(t)=0
\end{array} \quad \text { if } t \geqslant \gamma_{2,1}, ~\left(\frac{\gamma_{2}+\gamma_{2,1}}{2}, \gamma_{2,1}\right) .
$$

Clearly the interior of the support of $h_{3}$ is the set

$$
U_{3}=\left\{x \in S^{+}: g_{1}(x)<\gamma_{1,2}, g_{2}(x)<\gamma_{2,1} \text { and } g_{3}(x)>\gamma_{3}\right\} .
$$

Select one point $x_{3} \in U_{3}$, a real number $a_{3} \in \mathbb{R}^{*}$ with $\left|a_{3}-F\left(x_{3}\right)\right|<\varepsilon$ and define the auxiliary function

$$
\begin{aligned}
& r_{3}: S^{+} \longrightarrow \mathbb{R} \\
& r_{3}=s_{3} g_{3}+\left(1-s_{3} g_{3}\left(x_{3}\right)\right),
\end{aligned}
$$

where we have selected $s_{3}$ so that $s_{3} a_{3}>0$ and $\left|s_{3}\right|$ is small enough so that the oscillation of $r_{3}$ on $U_{3}$ is less than $\frac{\varepsilon}{\left|a_{3}\right|}$. Notice that $r_{3}\left(x_{3}\right)=1$.

Let us study the critical points $Z_{3}$ of the $C^{p}$ smooth function

$$
\begin{align*}
& \mathbf{H}_{3}: U_{1} \cup U_{2} \cup U_{3} \longrightarrow \mathbb{R} \\
& \mathbf{H}_{\mathbf{3}}=\frac{a_{1} r_{1} h_{1}+a_{2} r_{2} h_{2}+a_{3} r_{3} h_{3}}{h_{1}+h_{2}+h_{3}} . \tag{2.14}
\end{align*}
$$

Let us prove that $Z_{3}:=\left\{x \in U_{1} \cup U_{2} \cup U_{3}: H_{3}^{\prime}(x)=0\right.$ on $\left.T_{x}\right\}$ can be included in a finite number of disjoint slices within $U_{1} \cup U_{2} \cup U_{3}$ by splitting it conveniently into the (already defined) $Z_{1}$, $Z_{2}$ and up to four more disjoint sets within $U_{3}$, as Fig. 1 suggests.

The function $\mathbf{H}_{\mathbf{3}}^{\prime}$ can be written as $\mathbf{H}_{\mathbf{3}}^{\prime}=\sigma_{3,1} \mathbf{g}_{\mathbf{1}}+\sigma_{3,2} \mathbf{g}_{\mathbf{2}}+\sigma_{3,3} \mathbf{g}_{\mathbf{3}}$, where $\sigma_{3, i}$ are continuous and real functions on $U_{1} \cup U_{2} \cup U_{3}$ and $\mathbf{g}_{\mathbf{i}}$ denotes the restriction $\left.g_{i}\right|_{T_{x}}, i=1,2,3$, whenever we evaluate $\mathbf{H}_{\mathbf{3}}^{\prime}(x)$ on $T_{x}$.

Clearly, from (2.14), $\mathbf{H}_{3}$ and $\mathbf{H}_{\mathbf{3}}^{\prime}$ restricted to $\left(U_{1} \cup U_{2}\right) \backslash U_{3}$ coincide with $\mathbf{H}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}^{\prime}$, respectively. Then, $Z_{3} \backslash U_{3}=Z_{3} \backslash \bar{U}_{3}=Z_{2}$. Let us study the set $Z_{3} \cap U_{3}$. First, if $x \in U_{3} \backslash\left(U_{1} \cup U_{2}\right)$, from (2.14), we obtain that $\mathbf{H}_{\mathbf{3}}(x)=a_{3} r_{3}(x)$ and $H_{3}^{\prime}(x)=a_{3} r_{3}^{\prime}(x)=a_{3} s_{3} g_{3}$. Therefore $\mathbf{H}_{\mathbf{3}}^{\prime}(x)=$


Fig. 1. Case $n=3$ : the decomposition of $Z_{3}$.
$\left.a_{3} s_{3} g_{3}\right|_{T_{x}} \equiv 0$ iff $D(x)=g_{3}$. If the point $z_{3} \in U_{3} \backslash\left(U_{1} \cup U_{2}\right)$ then, $\mathbf{H}_{3}$ has exactly one critical point in $U_{3} \backslash\left(U_{1} \cup U_{2}\right)$; in this case, since $g_{1}\left(z_{3}\right) \neq \gamma_{1}$ and $g_{2}\left(z_{3}\right) \neq \gamma_{2}$, the point $z_{3}$ actually belongs to $U_{3} \backslash\left(\bar{U}_{1} \cup \bar{U}_{2}\right)$.

Secondly, let us study the critical points of $\mathbf{H}_{3}$ in $U_{3} \cap\left(U_{1} \cup U_{2}\right)$. If we define $\Lambda_{2}=\frac{h_{1}+h_{2}}{h_{1}+h_{2}+h_{3}}$, then we can rewrite $\mathbf{H}_{3}$ in $U_{3} \cap\left(U_{1} \cup U_{2}\right)$ as

$$
\mathbf{H}_{\mathbf{3}}=\frac{a_{1} r_{1} h_{1}+a_{2} r_{2} h_{2}}{h_{1}+h_{2}} \cdot \frac{h_{1}+h_{2}}{h_{1}+h_{2}+h_{3}}+\frac{a_{3} r_{3} h_{3}}{h_{1}+h_{2}+h_{3}}=\mathbf{H}_{\mathbf{2}} \Lambda_{2}+a_{3} r_{3}\left(1-\Lambda_{2}\right),
$$

and

$$
\mathbf{H}_{\mathbf{3}}^{\prime}=\mathbf{H}_{\mathbf{2}}^{\prime} \Lambda_{2}+a_{3} s_{3}\left(1-\Lambda_{2}\right) \mathbf{g}_{\mathbf{3}}+\left(\mathbf{H}_{\mathbf{2}}-a_{3} r_{3}\right) \Lambda_{2}^{\prime}
$$

By computing $\Lambda_{2}^{\prime}$, we obtain $\Lambda_{2}^{\prime}=\xi_{2,1} \mathbf{g}_{\mathbf{1}}+\xi_{2,2} \mathbf{g}_{\mathbf{2}}+\xi_{2,3} \mathbf{g}_{\mathbf{3}}$, where the coefficients $\xi_{2,1}, \xi_{2,2}$ and $\xi_{2,3}$ are continuous functions of the following form:

$$
\begin{align*}
\xi_{2,1} & =\frac{-\varphi_{3}\left(g_{3}\right) \phi_{2,1}\left(g_{2}\right) \phi_{1,2}^{\prime}\left(g_{1}\right)\left(h_{1}+h_{2}\right)+h_{3} \varphi_{1}^{\prime}\left(g_{1}\right)+h_{3} \varphi_{2}\left(g_{2}\right) \phi_{1,1}^{\prime}\left(g_{1}\right)}{\left(h_{1}+h_{2}+h_{3}\right)^{2}}, \\
\xi_{2,2} & =\frac{-\varphi_{3}\left(g_{3}\right) \phi_{2,1}^{\prime}\left(g_{2}\right) \phi_{1,2}\left(g_{1}\right)\left(h_{1}+h_{2}\right)+h_{3} \varphi_{2}^{\prime}\left(g_{2}\right) \phi_{1,1}\left(g_{1}\right)}{\left(h_{1}+h_{2}+h_{3}\right)^{2}}, \\
\xi_{2,3} & =\frac{-\varphi_{3}^{\prime}\left(g_{3}\right) \phi_{2,1}\left(g_{2}\right) \phi_{1,2}\left(g_{1}\right)\left(h_{1}+h_{2}\right)}{\left(h_{1}+h_{2}+h_{3}\right)^{2}} . \tag{2.15}
\end{align*}
$$

Since $g_{1}(x)<\gamma_{1,2}<\frac{\gamma_{1}+\gamma_{1,1}}{2}$ for every $x \in U_{3}$, we have that $\phi_{1,1}^{\prime}\left(g_{1}(x)\right)=0$ for every $x \in U_{3}$, and we can drop the term $h_{3} \varphi_{2}\left(g_{2}\right) \phi_{1,1}^{\prime}\left(g_{1}\right)$ in the above expression of $\xi_{2,1}$. Thus, if $x \in U_{3} \cap$ ( $U_{1} \cup U_{2}$ ), the coefficients $\sigma_{3,1}, \sigma_{3,2}, \sigma_{3,3}$ for $\mathbf{H}_{3}^{\prime}$ have the following form,

$$
\begin{aligned}
& \sigma_{3,1}=\sigma_{2,1} \Lambda_{2}+\left(\mathbf{H}_{\mathbf{2}}-a_{3} r_{3}\right) \xi_{2,1} \\
& \sigma_{3,2}=\sigma_{2,2} \Lambda_{2}+\left(\mathbf{H}_{\mathbf{2}}-a_{3} r_{3}\right) \xi_{2,2} \\
& \sigma_{3,3}=a_{3} s_{3}\left(1-\Lambda_{2}\right)+\left(\mathbf{H}_{2}-a_{3} r_{3}\right) \xi_{2,3}
\end{aligned}
$$

where $a_{3} s_{3}>0, \Lambda_{2}>0,1-\Lambda_{2}>0, \xi_{2,1} \geqslant 0, \xi_{2,2} \geqslant 0, \xi_{2,1}+\xi_{2,2}>0$ and $\xi_{2,3}<0$ on $U_{3} \cap$ $\left(U_{1} \cup U_{2}\right)$. Therefore, if $H_{2}-a_{3} r_{3} \leqslant 0$, the coefficient $\sigma_{3,3}>0$. When $H_{2}-a_{3} r_{3} \geqslant 0$ and
$\sigma_{2,2}>0$, we have that $\sigma_{3,2}>0$. Finally, when $H_{2}-a_{3} r_{3} \geqslant 0$ and $\sigma_{2,1}>0$, we have $\sigma_{3,1}>0$ (recall that for every $x \in U_{1} \cup U_{2}$, there is $j \in\{1,2\}$ such that $\sigma_{2, j}(x)>0$ ). Since the vectors $\left\{g_{1}, g_{2}, g_{3}\right\}$ are linearly independent we get that, if $\mathbf{H}_{\mathbf{3}}^{\prime}(x)=0$ for some $x \in U_{3} \cap\left(U_{1} \cup U_{2}\right)$, then there necessarily exists $\varrho \neq 0$ such that $D(x)=\varrho\left(\sigma_{3,1}(x) g_{1}+\sigma_{3,2}(x) g_{2}+\sigma_{3,3}(x) g_{3}\right)$, that is $D(x) \in\left[g_{1}, g_{2}, g_{3}\right]$.

In fact we can be more accurate and obtain that if $x \in\left(U_{3} \cap U_{2}\right) \backslash U_{1}$ and $\mathbf{H}_{3}^{\prime}(x)=0$ then $D(x) \in\left[g_{2}, g_{3}\right]$. Indeed, in step 2 we proved that $\sigma_{2,1}=0$ in $U_{2} \backslash U_{1}$. Moreover, the functions $\varphi_{1}\left(g_{1}\right), \phi_{1,1}\left(g_{1}\right)$ and $\phi_{1,2}\left(g_{1}\right)$ are constant outside $U_{1}$, thus their derivatives vanish outside $U_{1}$. This implies $\xi_{2,1}=0$ and consequently $\sigma_{3,1}=0$ in $\left(U_{3} \cap U_{2}\right) \backslash U_{1}$. Similarly, if $x \in\left(U_{3} \cap\right.$ $\left.U_{1}\right) \backslash U_{2}$ and $\mathbf{H}_{3}^{\prime}(x)=0$, then $D(x) \in\left[g_{1}, g_{3}\right]$. Indeed, from step 2 we know that $\sigma_{2,2}=0$ on $U_{1} \backslash U_{2}$. Moreover, the function $\varphi_{2}^{\prime}\left(g_{2}\right) \phi_{1,1}\left(g_{1}\right)$ vanishes outside $U_{2}$. In addition, if $x \in\left(U_{3} \cap\right.$ $\left.U_{1}\right) \backslash U_{2}$ then $g_{1}(x)<\gamma_{1,2}<\gamma_{1,1}$ and hence $g_{2}(x) \leqslant \gamma_{2}$. Thus $\phi_{2,1}^{\prime}\left(g_{2}(x)\right)=0$, which implies $\xi_{2,2}(x)=0$. Consequently $\sigma_{3,2}(x)=0$ if $x \in\left(U_{3} \cap U_{1}\right) \backslash U_{2}$.

Define the sets

$$
\begin{aligned}
& Z_{3,1}= \begin{cases}\left\{z_{3}\right\} & \text { if } z_{3} \in U_{3} \backslash\left(\bar{U}_{1} \cup \bar{U}_{2}\right), \\
\emptyset & \text { otherwise },\end{cases} \\
& Z_{3,2}=Z_{3} \cap U_{3} \cap\left(U_{1} \cup U_{2}\right) .
\end{aligned}
$$

Now, let us check that $Z_{3,2} \subset \bigcup_{g \in N_{3}} O_{g}$. Indeed, if $x \in Z_{3,2}$, then $x \in\left(U_{1} \cup U_{2}\right) \cap U_{3}$. Now,

- if $x \in\left(U_{1} \cap U_{3}\right) \backslash U_{2}$, then $D(x) \in\left[g_{1}, g_{3}\right]$. Since $\left(U_{1} \cap U_{3}\right) \backslash U_{2} \subset\left(U_{1} \cap U_{3}^{\prime}\right) \backslash U_{2}$ we can deduce that $x \in M_{3,1} \subset M_{3}$;
- if $x \in\left(U_{2} \cap U_{3}\right) \backslash U_{1}$, then $D(x) \in\left[g_{2}, g_{3}\right]$. Since $\left(U_{2} \cap U_{3}\right) \backslash U_{1} \subset\left(U_{2} \cap U_{3}^{\prime}\right) \backslash U_{1}$ we can deduce that $x \in M_{3,2} \subset M_{3}$;
- if $x \in U_{1} \cap U_{2} \cap U_{3}$, then $D(x) \in\left[g_{1}, g_{2}, g_{3}\right]$. Since $U_{1} \cap U_{2} \cap U_{3} \subset U_{1} \cap U_{2} \cap U_{3}^{\prime}$ we can deduce that $x \in M_{3,1,2} \subset M_{3}$.

Finally, since $x \in U_{3}$, we have that $g_{1}(x)<\gamma_{1,2}$ and $g_{2}(x)<\gamma_{2,1}$. We apply Fact 2.4(2) to conclude that there is $g \in N_{3}$ such that $x \in O_{g}$.

In the case that $Z_{3,1}=\left\{z_{3}\right\} \notin \bigcup_{g \in N_{3}} \bar{O}_{g}$, we select if necessary, a larger $t_{3}$, with $t_{3}<l_{3}$, so that $z_{3} \notin \bigcup_{g \in N_{3}} \bar{B}_{g}$. Since the norm is LUR and $D\left(z_{3}\right)=g_{3}$ we may select numbers $0<t_{3}^{\prime}<l_{3}^{\prime}<1$ and open slices, which are neighborhoods of $z_{3}$ defined by

$$
O_{g_{3}}:=\left\{x \in S: g_{3}(x)>l_{3}^{\prime}\right\} \quad \text { and } \quad B_{g_{3}}:=\left\{x \in S: g_{3}(x)>t_{3}^{\prime}\right\},
$$

satisfying $O_{g_{3}} \subset B_{g_{3}} \subset\left\{x \in S: g_{1}(x)<\gamma_{1,2}^{\prime}, g_{2}(x)<\gamma_{2,1}^{\prime}, g_{3}(x)>\gamma_{3}^{\prime}\right\}$ and $\operatorname{dist}\left(B_{g_{3}}, B_{g}\right)>0$ for every $g \in N_{3}$. In this case, we define $\Gamma_{3}=N_{3} \cup\left\{g_{3}\right\}$.

Now, if $Z_{3,1}=\left\{z_{3}\right\} \in \bigcup_{g \in N_{3}} \bar{O}_{g}$, we select, if necessary, a smaller constant $l_{3}$, with $0<t_{3}<$ $l_{3}<1$, so that $Z_{3,1}=\left\{z_{3}\right\} \in \bigcup_{g \in N_{3}} O_{g}$. In this case, and also when $Z_{3,1}=\emptyset$, we define $\Gamma_{3}=N_{3}$.

Notice that, in any of the cases mentioned above, Fact 2.4 clearly holds for the (possibly) newly selected real numbers $t_{3}$ and $l_{3}$.

Then, the distance between any two sets $B_{g}, B_{g^{\prime}}, g, g^{\prime} \in \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}, g \neq g^{\prime}$, is strictly positive. Moreover $Z_{3,1} \cup Z_{3,2} \subset \bigcup_{g \in \Gamma_{3}} O_{g} \subset \bigcup_{g \in \Gamma_{3}} B_{g} \subset U_{3}^{\prime} \subset R_{3}$. Therefore, $Z_{3}=Z_{1} \cup Z_{2} \cup$ $Z_{3,1} \cup Z_{3,2} \subset \bigcup_{g \in \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}} O_{g} \subset \bigcup_{g \in \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}} B_{g} \subset U_{1} \cup U_{2} \cup U_{3}=R_{1} \cup R_{2} \cup R_{3}$. Finally, recall that $\operatorname{dist}\left(B_{g}, R_{3}^{c}\right)>0$, for every $g \in \Gamma_{3}$ and $\operatorname{dist}\left(B_{g},\left(U_{1} \cup U_{2} \cup U_{3}\right)^{c}\right)>0$ for every $g \in$ $\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$.

It is worth mentioning that, by combining all the results obtained in the step $k=3$, we can deduce that $\mathbf{H}_{3}^{\prime}=\sigma_{3,1} \mathbf{g}_{\mathbf{1}}+\sigma_{3,2} \mathbf{g}_{\mathbf{2}}+\sigma_{3,3} \mathbf{g}_{\mathbf{3}}$, where $\sigma_{3, i}$ are continuous functions on $U_{1} \cup U_{2} \cup U_{3}$, $H_{3}^{\prime}=\sigma_{3,1} g_{1}+\sigma_{3,2} g_{2}+\sigma_{3,3} g_{3}$, where $\sigma_{3, i}$ are continuous functions in the corresponding open subset of $Y, \sigma_{3, i}(x)=0$ whenever $x \in\left(U_{1} \cup U_{2} \cup U_{3}\right) \backslash U_{i}$, and for every $x \in U_{1} \cup U_{2} \cup U_{3}$ there is at least one coefficient $\sigma_{3, i}(x)>0$.

- Assume that, in the steps $j=2, \ldots, k$, with $k \geqslant 2$, we have selected points $z_{j} \in S^{+}$and constants $\gamma_{j} \in(0,1)$, with $g_{1}\left(z_{j}\right) \neq \gamma_{1}, \ldots, g_{j-1}\left(z_{j}\right) \neq \gamma_{j-1},\left\{g_{1}, \ldots, g_{k}:=D\left(z_{k}\right)\right\}$ linearly independent functionals such that

$$
\begin{equation*}
S_{j}=\left\{x \in S: f_{j}(x)>\delta_{j}\right\} \subset\left\{x \in S: g_{j}(x)>\gamma_{j}\right\} \subset\left\{x \in S: f_{j}(x)>\delta_{j}^{4}\right\}=P_{j} \tag{2.16}
\end{equation*}
$$

for all $j=2, \ldots, k$, and

$$
\left\{T \in\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{j}\right]^{*}: g_{i_{1}}(x)=\gamma_{i_{1}}, \ldots, g_{i_{s}}(x)=\gamma_{i_{s}}, g_{j}(x)=\gamma_{j} \text { and }|T|=1\right\}=\emptyset
$$

for every $1 \leqslant i_{1}<\cdots<i_{s} \leqslant j-1$, and $1 \leqslant s \leqslant j-1,2 \leqslant j \leqslant k$. Assume we have defined the functions $h_{j}=\varphi_{j}\left(g_{j}\right) \phi_{j-1,1}\left(g_{j-1}\right) \cdots \phi_{1, j-1}\left(g_{1}\right)$, where $\varphi_{j}, \phi_{j-1,1}, \ldots, \phi_{1, j-1}$ are $C^{\infty}$ functions on $\mathbb{R}$ satisfying

$$
\begin{aligned}
& \varphi_{j}(t)=0 \quad \text { if } t \leqslant \gamma_{j}, \\
& \varphi_{j}(1)=1, \\
& \varphi_{j}^{\prime}(t)>0 \text { if } t>\gamma_{j},
\end{aligned}
$$

and

$$
\begin{array}{llll}
\phi_{1, j-1}(t)=1 & \text { if } t \leqslant \frac{\gamma_{1}+\gamma_{1, j-1}}{2}, & \ldots, & \phi_{j-1,1}(t)=1 \quad \text { if } t \leqslant \frac{\gamma_{j-1}+\gamma_{j-1,1}}{2}, \\
\phi_{1, j-1}(t)=0 & \text { if } t \geqslant \gamma_{1, j-1}, & \ldots, & \phi_{j-1,1}(t)=0 \\
& \text { if } t \geqslant \gamma_{j-1,1}, \\
\phi_{1, j-1}^{\prime}(t)<0 & \text { if } t \in\left(\frac{\gamma_{1}+\gamma_{1, j-1}}{2}, \gamma_{1, j-1}\right), & \ldots, & \\
\phi_{j-1,1}^{\prime}(t)<0 & \text { if } t \in\left(\frac{\gamma_{j-1}+\gamma_{j-1,1}}{2}, \gamma_{j-1,1}\right),
\end{array}
$$

where $\gamma_{1}<\gamma_{1, j-1}, \ldots, \gamma_{j-1}<\gamma_{j-1,1}$, and $2 \leqslant j \leqslant k$.
The interior of the support of $h_{j}$ is the set

$$
U_{j}=\left\{x \in S: g_{1}(x)<\gamma_{1, j-1}, \ldots, g_{j-1}(x)<\gamma_{j-1,1} \text { and } g_{j}(x)>\gamma_{j}\right\} .
$$

Assume we have also defined the $C^{p}$ smooth functions $r_{j}$ and $\mathbf{H}_{\mathbf{j}}$ :

$$
\begin{array}{ll}
r_{j}: S^{+} \longrightarrow \mathbb{R} & \mathbf{H}_{\mathbf{j}}: U_{1} \cup U_{2} \cup \cdots \cup U_{j} \longrightarrow \mathbb{R} \\
r_{j}=s_{j} g_{j}+\left(1-s_{j} g_{j}\left(x_{j}\right)\right), & \mathbf{H}_{\mathbf{j}}=\frac{\sum_{i=1}^{j} a_{i} r_{i} h_{i}}{\sum_{i=1}^{j} h_{i}},
\end{array}
$$

for $2 \leqslant j \leqslant k$, where $x_{j} \in U_{j}$ the numbers $a_{j}, s_{j} \in \mathbb{R}^{*}$ satisfy that $\left|a_{j}-F\left(x_{j}\right)\right|<\varepsilon, s_{j} a_{j}>0$, and the oscillation of $r_{j}$ on $U_{j}$ is less than $\frac{\varepsilon}{\left|a_{j}\right|}$.

Assume that for $2 \leqslant j \leqslant k$ the set of critical points $Z_{j}$ of $\mathbf{H}_{\mathbf{j}}$ is a union of the form $Z_{j}=$ $Z_{j-1} \cup Z_{j, 1} \cup Z_{j, 2}$, where $Z_{j-1}$ is the set of critical points of $\mathbf{H}_{\mathbf{j}-\mathbf{1}}$, the sets $Z_{j-1}, Z_{j, 1}, Z_{j, 2}$ are pairwise disjoint, $Z_{j} \subset D^{-1}\left(\left[g_{1}, \ldots, g_{j}\right]\right), Z_{j-1} \subset\left(U_{1} \cup \cdots \cup U_{j-1}\right) \backslash \bar{U}_{j}$ and $Z_{j, 1} \cup Z_{j, 2} \subset U_{j}$. Furthermore, assume that (i) there is an open subset $U_{j}^{\prime}$ such that

$$
U_{j} \subset U_{j}^{\prime} \subset R_{j}:=\left\{x \in S: g_{j}(x)>\gamma_{j}\right\}
$$

and $\operatorname{dist}\left(B_{g}, U_{j}^{\prime}\right)>0$, for every $g \in \Gamma_{1} \cup \cdots \cup \Gamma_{j-1}$, (ii) there is a finite subset $\Gamma_{j} \subset S^{*}$ and open slices of $S$,

$$
B_{g}:=\left\{x \in S: g(x)>t_{j}\right\} \quad \text { and } \quad O_{g}:=\left\{x \in S: g(x)>l_{j}\right\}, \quad 0<t_{j}<l_{j}<1
$$

satisfying $B_{g} \subset U_{j}^{\prime}$ for every $g \in \Gamma_{j}, \operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right)>0$ whenever $g, g^{\prime} \in \Gamma_{j}, g \neq g^{\prime}$ and there is $\gamma_{j}^{\prime} \in\left(\gamma_{j}, 1\right)$ such that

$$
Z_{j, 1} \cup Z_{j, 2} \subset \bigcup_{g \in \Gamma_{j}} O_{g} \subset \bigcup_{g \in \Gamma_{j}} B_{g} \subset U_{j}^{\prime} \cap\left\{x \in S: g_{j}(x)>\gamma_{j}^{\prime}\right\} \subset U_{j}
$$

Assume also that for $2 \leqslant j \leqslant k, \mathbf{H}_{\mathbf{j}}^{\prime}=\sigma_{j, 1} \mathbf{g}_{\mathbf{1}}+\cdots+\sigma_{j, j} \mathbf{g}_{\mathbf{j}}$ on $U_{1} \cup \cdots \cup U_{j}$, where $\sigma_{j, i}$ are continuous functions on $U_{1} \cup \cdots \cup U_{j}$, and $H_{j}^{\prime}=\sigma_{j, 1} g_{1}+\cdots+\sigma_{j, j} g_{j}$, where $\sigma_{j, i}$ are continuous functions on the corresponding open subset of $Y$. Finally, assume that for $2 \leqslant j \leqslant k$, and for every $x \in U_{1} \cup \cdots \cup U_{j}$ there is at least one index $m \in\{1, \ldots, j\}$ such that $\sigma_{j, m}(x)>0$, and that if $x \in\left(U_{1} \cup \cdots \cup U_{j}\right) \backslash U_{m}$, with $m \in\{1, \ldots, j\}$, then $\sigma_{j, m}(x)=0$.
$\bullet$ Now, let us denote by $y_{k+1} \in S$ the point satisfying $f_{k+1}\left(y_{k+1}\right)=1$. If either $\left\{g_{1}, \ldots, g_{k}, f_{k+1}\right\}$ are linearly dependent or $g_{i}\left(y_{k+1}\right)=\gamma_{i}$ for some $i \in\{1, \ldots, k\}$, we can use the density of the norm attaining functionals (Bishop-Phelps theorem) and the continuity of $D$ to modify $y_{k+1}$ and find $z_{k+1} \in S$ so that $g_{i}\left(z_{k+1}\right) \neq \gamma_{i}$, for every $i=1, \ldots, k,\left\{g_{1}, \ldots, g_{k}, g_{k+1}:=D\left(z_{k+1}\right)\right\}$ are linearly independent and

$$
\left\{x \in S: f_{k+1}(x)>\delta_{k+1}^{2}\right\} \subset\left\{x \in S: g_{k+1}(x)>v_{k+1}\right\} \subset\left\{x \in S: f_{k+1}(x)>\delta_{k+1}^{3}\right\}
$$

for some $\nu_{k+1} \in(0,1)$. If $g_{i}\left(y_{k+1}\right) \neq \gamma_{i}$ for every $i \in\{1, \ldots, k\}$ and $\left\{g_{1}, \ldots, g_{k}, f_{k+1}\right\}$ are linearly independent, we define $z_{k+1}=y_{k+1}$ and $g_{k+1}=f_{k+1}$. Then we apply Lemma 2.2 to the linearly independent vectors, $\left\{g_{1}, \ldots, g_{k+1}\right\}$ and the real numbers $\gamma_{1}, \ldots, \gamma_{k}$ and obtain $\gamma_{k+1} \in(0,1)$ close enough to $\nu_{k+1}$ so that

$$
\begin{aligned}
S_{k+1} & =\left\{x \in S: f_{k+1}(x)>\delta_{k+1}\right\} \subset\left\{x \in S: g_{k+1}(x)>\gamma_{k+1}\right\} \\
& \subset\left\{x \in S: f_{k+1}(x)>\delta_{k+1}^{4}\right\}=P_{k+1}
\end{aligned}
$$

and

$$
\begin{align*}
& \left\{T \in\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]^{*}: T\left(g_{i_{1}}\right)=\gamma_{i_{1}}, \ldots, T\left(g_{i_{s}}\right)=\gamma_{i_{s}},\right. \\
& \left.\quad T\left(g_{k+1}\right)=\gamma_{k+1} \text { and }|T|=1\right\}=\emptyset \tag{2.17}
\end{align*}
$$

for every $1 \leqslant i_{1}<\cdots<i_{s} \leqslant k$ and $1 \leqslant s \leqslant k$.

Define

$$
R_{k+1}=\left\{x \in S: g_{k+1}(x)>\gamma_{k+1}\right\} .
$$

Recall that $\bigcup_{g \in \Gamma_{k}} B_{g} \subset U_{k}^{\prime} \cap\left\{x \in S: g_{k}(x)>\gamma_{k}^{\prime}\right\}$ and select $\gamma_{k, 1}^{\prime} \in\left(\gamma_{k}, \gamma_{k}^{\prime}\right)$. In addition, we select numbers

$$
\begin{equation*}
\gamma_{k-1,2}^{\prime} \in\left(\gamma_{k-1}, \frac{\gamma_{k-1}+\gamma_{k-1,1}}{2}\right), \quad \ldots, \quad \gamma_{1, k}^{\prime} \in\left(\gamma_{1}, \frac{\gamma_{1}+\gamma_{1, k-1}}{2}\right), \tag{2.18}
\end{equation*}
$$

and define the open set

$$
\begin{equation*}
U_{k+1}^{\prime}=\left\{x \in S: g_{1}(x)<\gamma_{1, k}^{\prime}, \ldots, g_{k}(x)<\gamma_{k, 1}^{\prime} \text { and } g_{k+1}(x)>\gamma_{k+1}\right\} . \tag{2.19}
\end{equation*}
$$

Notice that $\operatorname{dist}\left(B_{g}, U_{k+1}^{\prime}\right)>0$ for every $g \in \Gamma_{1} \cup \cdots \cup \Gamma_{k}$.
Assume that $R_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right) \neq \emptyset$ and define, for every $1 \leqslant i_{1}<\cdots<i_{s} \leqslant k$ and $1 \leqslant s \leqslant k$, the set

$$
\begin{aligned}
M_{k+1, i_{1}, \ldots, i_{s}}= & \left\{x \in U_{i_{1}} \cap \cdots \cap U_{i_{s}} \cap U_{k+1}^{\prime}: x \notin U_{j} \text { for every } j \in\{1, \ldots, k\} \backslash\left\{i_{1}, \ldots, i_{s}\right\},\right. \\
& \text { and } \left.D(x) \in\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]\right\}
\end{aligned}
$$

and

$$
M_{k+1}=\bigcup\left\{M_{k+1, i_{1}, \ldots, i_{s}}: 1 \leqslant i_{1}<\cdots<i_{s} \leqslant k \text { and } 1 \leqslant s \leqslant k\right\} .
$$

In the case when $M_{k+1}=\emptyset$ we select as $\gamma_{1, k}$ any point in $\left(\gamma_{1}, \gamma_{1, k}^{\prime}\right), \ldots$, and $\gamma_{k, 1}$ any point in ( $\gamma_{k}, \gamma_{k, 1}^{\prime}$ ).

Notice that $U_{1} \cup \cdots \cup U_{k}=R_{1} \cup \cdots \cup R_{k}$. In the case when $M_{k+1} \neq \emptyset$ and $\operatorname{dist}\left(M_{k+1},\left(U_{1} \cup\right.\right.$ $\left.\left.\cdots \cup U_{k}\right)^{c}\right)=\operatorname{dist}\left(M_{k+1},\left(R_{1} \cup \cdots \cup R_{k}\right)^{c}\right)>0$, we can immediately find $\gamma_{1, k} \in\left(\gamma_{1}, \gamma_{1, k}^{\prime}\right), \ldots$, $\gamma_{k, 1} \in\left(\gamma_{k}, \gamma_{k, 1}^{\prime}\right)$ with $M_{k+1} \subset\left\{x \in S: g_{1}(x)>\gamma_{1, k}\right\} \cup \cdots \cup\left\{x \in S: g_{k}(x)>\gamma_{k, 1}\right\}$.

In the case when $\operatorname{dist}\left(M_{k+1},\left(U_{1} \cup \cdots \cup U_{k}\right)^{c}\right)=0$ and in order to find suitable positive numbers $\gamma_{1, k}, \ldots, \gamma_{k, 1}$, we need to study the limits of the sequences $\left\{x_{n}\right\} \subset M_{k+1}$ such that $\lim _{n} \operatorname{dist}\left(x_{n},\left(U_{1} \cup \cdots \cup U_{k}\right)^{c}\right)=0$. Define, for every $1 \leqslant i_{1}<\cdots<i_{s} \leqslant k$ and $1 \leqslant s \leqslant k$, the sets

$$
\begin{aligned}
F_{k+1, i_{1}, \ldots, i_{s}}^{\prime} & =\left\{T \in\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]^{*}: T\left(g_{i}\right)=\gamma_{i} \text { for every } i \in\left\{i_{1}, \ldots, i_{s}\right\} \text { and }|T|=1\right\}, \\
N_{k+1, i_{1}, \ldots, i_{s}}^{\prime} & =\left\{g \in S^{*} \cap\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]: T(g)=1 \text { for some } T \in F_{k+1, i_{1}, \ldots, i_{s}}^{\prime}\right\} .
\end{aligned}
$$

Since the norm $|\cdot|^{*}$ is Gâteaux smooth, we can apply Lemma 2.1 to the finite-dimensional space $\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]$ with the norm $|\cdot|^{*}$ restricted to this finite-dimensional space, and deduce that the cardinal of any of the sets $F_{k+1, i_{1}, \ldots, i_{s}}^{\prime}$ is at most two. Moreover, since the norm is strictly convex, the cardinal of each set $N_{k+1, i_{1}, \ldots, i_{s}}^{\prime}$ is at most two. Let us consider the norm-one extensions to $\left[g_{1}, \ldots, g_{k}, g_{k+1}\right]$ of the elements of $F_{k+1, i_{1}, \ldots, i_{s}}^{\prime}$, that is,

$$
F_{k+1, i_{1}, \ldots, i_{s}}^{\prime \prime}=\left\{T \in\left[g_{1}, \ldots, g_{k+1}\right]^{*}:\left.T\right|_{\left[g_{i_{1}}, \ldots, g_{i s}, g_{k+1}\right]} \in F_{k+1, i_{1}, \ldots, i_{s}}^{\prime} \text { and }|T|=1\right\} .
$$

Since the norm $|\cdot|^{*}$ is Gâteaux smooth, for every $G \in F_{k+1, i_{1}, \ldots, i_{s}}^{\prime}$ there is a unique norm-one extension $T$ defined on $\left[g_{1}, \ldots, g_{k+1}\right]$. Thus, the cardinal of the every set $F_{k+1, i_{1}, \ldots, i_{s}}^{\prime \prime}$ is at most two. Therefore the sets

$$
\begin{aligned}
& F_{k+1}^{\prime}=\bigcup\left\{F_{k+1, i_{1}, \ldots, i_{s}}^{\prime \prime}: 1 \leqslant i_{1}<\cdots<i_{s} \leqslant k \text { and } 1 \leqslant s \leqslant k\right\}, \\
& N_{k+1}^{\prime}=\bigcup\left\{N_{k+1, i_{1}, \ldots, i_{s}}^{\prime}: 1 \leqslant i_{1}<\cdots<i_{s} \leqslant k \text { and } 1 \leqslant s \leqslant k\right\}
\end{aligned}
$$

are finite. As a consequence of equality (2.17), we deduce that $T\left(g_{k+1}\right) \neq \gamma_{k+1}$ for every $T \in F_{k+1}^{\prime}$. We can restrict our study to the following kind of sequences. Fix $1 \leqslant s \leqslant k$ and $1 \leqslant i_{1}<\cdots<i_{s} \leqslant k$ and consider a sequence $\left\{x_{n}\right\} \subset M_{k+1, i_{1}, \ldots, i_{s}}$ such that $\lim _{n} \operatorname{dist}\left(x_{n},\left(U_{1} \cup\right.\right.$ $\left.\left.\cdots \cup U_{k}\right)^{c}\right)=0$. Let us prove that for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}, \lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$. Indeed, if $\left\{x_{n}\right\} \subset M_{k+1, i_{1}, \ldots, i_{s}}$, then in particular $\left\{x_{n}\right\} \subset U_{i} \subset R_{i}$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. Recall that $U_{1} \cup \cdots \cup U_{k}=R_{1} \cup \cdots \cup R_{k}$. Therefore, $\operatorname{dist}\left(x_{n},\left(U_{1} \cup \cdots \cup U_{k}\right)^{c}\right) \geqslant \operatorname{dist}\left(x_{n}, R_{i}^{c}\right)$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. Thus, $\lim _{n} \operatorname{dist}\left(x_{n}, R_{i}^{c}\right)=0$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. Since $\left\{x_{n}\right\} \subset R_{i}$, this implies that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$, for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$.

Now, let us take any sequence $\left\{x_{n}\right\} \subset M_{k+1, i_{1}, \ldots, i_{s}}$ such that $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$, for $i \in$ $\left\{i_{1}, \ldots, i_{s}\right\}$. Consider every $x_{n}$ as an element of $X^{* *}$ and denote by $\mathbf{x}_{\mathbf{n}}$ its restriction to $\left[g_{1}, \ldots, g_{k+1}\right]$. Recall that $D\left(x_{n}\right) \in S^{*} \cap\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]$ for every $n \in \mathbb{N}$. Then, the sequence of restrictions $\left\{\mathbf{x}_{\mathbf{n}}\right\} \subset\left[g_{1}, \ldots, g_{k+1}\right]^{*}$ satisfies that

$$
\begin{aligned}
1 & =\left|x_{n}\right| \geqslant\left|\mathbf{x}_{\mathbf{n}}\right| \geqslant\left|\mathbf{x}_{\mathbf{n}}\right|\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right] \\
& \geqslant \mathbf{x}_{\mathbf{n}}\left(D\left(x_{n}\right)\right)=D\left(x_{n}\right)\left(x_{n}\right)=1
\end{aligned}
$$

for every $n \in \mathbb{N}$. Thus, there is a subsequence $\left\{\mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\right\}$ converging to an element $T \in\left[g_{1}, \ldots, g_{k+1}\right]^{*}$ with $|T|=1$ and $|T|_{\left[g_{i_{1}}, \ldots, g_{s}, g_{k+1}\right]} \mid=1$. Since $\lim _{j} g_{i}\left(x_{n_{j}}\right)=\gamma_{i}$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$, we have that $T\left(g_{i}\right)=\gamma_{i}$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. This implies that $\left.T\right|_{\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]} \in F_{k+1, i_{1}, \ldots, i_{s}}^{\prime}$ and $T \in F_{k+1, i_{1}, \ldots, i_{s}}^{\prime \prime}$. Furthermore, if $g \in N_{k+1, i_{1}, \ldots, i_{s}}^{\prime}$ and $T(g)=1$, then $\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}(g)=1$. In addition, $T\left(g_{k+1}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{k+1}\right)=\lim _{j} g_{k+1}\left(x_{n_{j}}\right) \geqslant \gamma_{k+1}$ because $\left\{x_{n_{j}}\right\} \subset U_{k+1}^{\prime}$. Then, from condition (2.17), we deduce that $T\left(g_{k+1}\right)>\gamma_{k+1}$. Finally, let us check that $g_{i}\left(x_{n}\right) \leqslant \gamma_{i}$ for every $i \in\{1, \ldots, k\} \backslash\left\{i_{1}, \ldots, i_{s}\right\}$ and $n \in \mathbb{N}$. Indeed, since $\left\{x_{n}\right\} \subset U_{k+1}^{\prime}$, we have $g_{1}(x)<\gamma_{1, k}^{\prime}<$ $\gamma_{1, i-1}, \ldots, g_{i-1}(x)<\gamma_{i-1, k+2-i}^{\prime}<\gamma_{i-1,1}$. Now, from the definition of $U_{i}$ and the fact that $\left\{x_{n}: n \in \mathbb{N}\right\} \cap U_{i}=\emptyset$, we deduce that $g_{i}\left(x_{n}\right) \leqslant \gamma_{i}$, for every $n \in \mathbb{N}$. Finally, if $T=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}$ in $\left[g_{1}, \ldots, g_{k+1}\right]$, then $T\left(g_{i}\right)=\lim _{j} \mathbf{x}_{\mathbf{n}_{\mathbf{j}}}\left(g_{i}\right) \leqslant \gamma_{i}$, for every $i \in\{1, \ldots, k\} \backslash\left\{i_{1}, \ldots, i_{s}\right\}$.

Let us define, for every $1 \leqslant s \leqslant k$ and $1 \leqslant i_{1}<\cdots<i_{s} \leqslant k$, the sets

$$
\begin{gathered}
F_{k+1, i_{1}, \ldots, i_{s}}=\left\{T \in F_{k+1, i_{1}, \ldots, i_{s}}^{\prime \prime}: \text { there is }\left\{x_{n}\right\} \subset M_{k+1, i_{1}, \ldots, i_{s}}, \text { with } \lim _{n} \mathbf{x}_{\mathbf{n}}\left(g_{i}\right)=\gamma_{i},\right. \\
\\
\text { for } \left.i \in\left\{i_{1}, \ldots, i_{s}\right\} \text { and } \lim _{n} \mathbf{x}_{\mathbf{n}}=T\right\}, \\
N_{k+1, i_{1}, \ldots, i_{s}}=\left\{g \in N_{k+1, i_{1}, \ldots, i_{s}}^{\prime}: \text { there is } T \in F_{k+1, i_{1}, \ldots, i_{s}} \text { with } T(g)=1\right\},
\end{gathered}
$$

and

$$
\begin{aligned}
& F_{k+1}=\bigcup\left\{F_{k+1, i_{1}, \ldots, i_{s}}: 1 \leqslant s \leqslant k \text { and } 1 \leqslant i_{1}<\cdots<i_{s} \leqslant k\right\}, \\
& N_{k+1}=\bigcup\left\{N_{k+1, i_{1}, \ldots, i_{s}}: 1 \leqslant s \leqslant k \text { and } 1 \leqslant i_{1}<\cdots<i_{s} \leqslant k\right\},
\end{aligned}
$$

which are all finite. Select a real number $\gamma_{k+1}^{\prime}$ satisfying $\gamma_{k+1}<\gamma_{k+1}^{\prime}<\min \left\{T\left(g_{k+1}\right): T \in\right.$ $\left.F_{k+1}\right\}$.

## Fact 2.5.

(1) There are numbers $0<t_{k+1}<l_{k+1}<1$ such that for every $g \in N_{k+1}$, the slices

$$
O_{g}:=\left\{x \in S: g(x)>l_{k+1}\right\} \quad \text { and } \quad B_{g}:=\left\{x \in S: g(x)>t_{k+1}\right\}
$$

satisfy that

$$
\begin{gather*}
O_{g} \subset B_{g} \subset\left\{x \in S: g_{1}(x)<\gamma_{1, k}^{\prime}, \ldots, g_{k}(x)<\gamma_{k, 1}^{\prime}, g_{k+1}(x)>\gamma_{k+1}^{\prime}\right\} \quad \text { and }  \tag{2.20}\\
\operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right)>0, \quad \text { whenever } g, g^{\prime} \in N_{k+1}, g \neq g^{\prime} . \tag{2.21}
\end{gather*}
$$

(2) There are numbers $\gamma_{1, k} \in\left(\gamma_{1}, \gamma_{1, k}^{\prime}\right), \ldots, \gamma_{k, 1} \in\left(\gamma_{k}, \gamma_{k, 1}^{\prime}\right)$ such that if $x \in M_{k+1}, g_{1}(x)<$ $\gamma_{1, k} 1, \ldots, g_{k}(x)<\gamma_{k, 1}$, then $x \in O_{g}$, for some $g \in N_{k+1}$.

Proof. (1) First, if $X$ is reflexive, we know that for every $g \in N_{k+1}$ there is $x_{g} \in S$ such that $D\left(x_{g}\right)=g$. There is $1 \leqslant s \leqslant k$ and $1 \leqslant i_{1}<\cdots<i_{s} \leqslant k$ such that $g \in F_{k+1, i_{1}, \ldots, i_{s}}$. Denote by $\mathbf{x}_{\mathbf{g}}$ the restriction of $x_{g}$ to $\left[g_{1}, \ldots, g_{k+1}\right]$. Since $\mathbf{x}_{\mathbf{g}}(g)=1$ and $|\cdot|^{*}$ is Gâteaux smooth, we have that $\mathbf{x}_{\mathbf{g}}=T$ for some $T \in F_{k+1, i_{1}, \ldots, i_{s}}$. This implies that $\mathbf{x}_{\mathbf{g}}\left(g_{i}\right)=\gamma_{i}<\gamma_{i, k+1-i}^{\prime}$ whenever $i \in$ $\left\{i_{1}, \ldots, i_{s}\right\}, \mathbf{x}_{\mathbf{g}}\left(g_{k+1}\right)>\gamma_{k+1}^{\prime}$ and $\mathbf{x}_{\mathbf{g}}\left(g_{i}\right) \leqslant \gamma_{i}<\gamma_{i, k+1-i}^{\prime}$, whenever $i \in\{1, \ldots, k\} \backslash\left\{i_{1}, \ldots, i_{s}\right\}$. Hence, $x_{g} \in\left\{x \in S: g_{1}(x)<\gamma_{1, k}^{\prime}, \ldots, g_{k}(x)<\gamma_{k, 1}^{\prime}\right.$ and $\left.g_{k+1}(x)>\gamma_{k+1}^{\prime}\right\}$.

Now, since the norm $|\cdot|$ is LUR and $D\left(x_{g}\right) \stackrel{k}{=} g$, the functional $g$ strongly exposes $S$ at the point $x_{g}$ for every $g \in N_{k+1}$. Since $N_{k+1}$ is finite, we can obtain real numbers $0<t_{k+1}<l_{k+1}<$ 1 and slices $O_{g}$ and $B_{g}$, for every $g \in N_{k+1}$, satisfying conditions (2.20) and (2.21).

Now consider a non-reflexive Banach space $X$. Let us first prove (2.20). Assume, on the contrary, that there is a point $g \in N_{k+1}$ and there is a sequence $\left\{y_{n}\right\} \subset S$ satisfying $g\left(y_{n}\right)>$ $1-\frac{1}{n}$ with either $g_{1}\left(y_{n}\right) \geqslant \gamma_{1, k}^{\prime}, \ldots$, or $g_{k}\left(y_{n}\right) \geqslant \gamma_{k, 1}^{\prime}$, or $g_{k+1}\left(y_{n}\right) \leqslant \gamma_{k+1}^{\prime}$, for every $n \in \mathbb{N}$. If $g \in N_{k+1}$ there is a sequence $\left\{x_{n}\right\} \subset M_{k+1}$ with $\lim _{n} g_{i}\left(x_{n}\right) \leqslant \gamma_{i}$, for every $i \in\{1, \ldots, k\}$, $\lim _{n} g_{k+1}\left(x_{n}\right)>\gamma_{k+1}^{\prime}$ and $\lim _{n} g\left(x_{n}\right)=1$. In particular,

$$
\frac{g\left(x_{n}\right)+1-\frac{1}{n}}{2} \leqslant g\left(\frac{x_{n}+y_{n}}{2}\right) \leqslant\left|\frac{x_{n}+y_{n}}{2}\right| \leqslant 1,
$$

and thus $\lim _{n}\left|\frac{x_{n}+y_{n}}{2}\right|=1$. Since in this case the norm $|\cdot|$ is WUR, we have that $x_{n}-$ $y_{n} \xrightarrow{\omega} 0$ (weakly converges to zero). This last assertion gives a contradiction since either $\limsup _{n} g_{i}\left(x_{n}-y_{n}\right) \leqslant \gamma_{i}-\gamma_{i, k+1-i}^{\prime}<0$ for some $i \in\{1, \ldots, k\}$ or $\liminf _{n} g_{k+1}\left(x_{n}-y_{n}\right) \geqslant$ $\lim _{n} g_{k+1}\left(x_{n}\right)-\gamma_{k+1}^{\prime}>0$. Therefore, we can find real numbers $0<t_{k+1}<l_{k+1}<1$ and slices $O_{g}$ and $B_{g}$ for every $g \in N_{k+1}$, satisfying condition (2.20). The proof of (2.21) is the same as the one given in Fact 2.3, where the only property we need is the strict convexity of $|\cdot|^{*}$.
(2) Assume, on the contrary, that for every $n \in \mathbb{N}$, there is $x_{n} \in M_{k+1}$ with $g_{i}\left(x_{n}\right) \leqslant \gamma_{i}+$ $\frac{1}{n}$ for every $i \in\{1, \ldots, k\}$ and $\left\{x_{n}: n \in \mathbb{N}\right\} \cap\left(\bigcup_{g \in N_{k+1}} O_{g}\right)=\emptyset$. Then there is a subsequence of $\left\{x_{n}\right\}$, which we denote by $\left\{x_{n}\right\}$ as well, and there are numbers $1 \leqslant s \leqslant k$ and $1 \leqslant i_{1}<\cdots<$ $i_{s}<k$ such that $\left\{x_{n}\right\} \subset M_{k+1, i_{1}, \ldots, i_{s}}$. In particular, $\left\{x_{n}\right\} \subset U_{i} \subset R_{i}$ and then $g_{i}\left(x_{n}\right)>\gamma_{i}$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$ and $n \in \mathbb{N}$. Hence, $\lim _{n} g_{i}\left(x_{n}\right)=\gamma_{i}$ for every $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. Since $\left\{x_{n}\right\} \subset$ $M_{k+1, i_{1}, \ldots, i_{s}}$, from the comments preceding Fact 2.5, we know that there is a subsequence $\left\{x_{n_{j}}\right\}$ and $g \in N_{k+1, i_{1}, \ldots, i_{s}}$ satisfying that $\lim _{j} g\left(x_{n_{j}}\right)=1$, which is a contradiction. This finishes the proof of Fact 2.5.

If $R_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right)=\emptyset$ we may select as $\gamma_{1, k}$ any number in $\left(\gamma_{1}, \gamma_{1, k}^{\prime}\right), \ldots$, and $\gamma_{k, 1}$ any number in $\left(\gamma_{k}, \gamma_{k, 1}^{\prime}\right)$.

Now we define $h_{k+1}$,

$$
\begin{aligned}
& h_{k+1}: S^{+} \longrightarrow \mathbb{R} \\
& h_{k+1}=\varphi_{k+1}\left(g_{k+1}\right) \phi_{k, 1}\left(g_{k}\right) \cdots \phi_{1, k}\left(g_{1}\right)
\end{aligned}
$$

with $\varphi_{k+1}, \phi_{k, 1}, \ldots, \phi_{1, k} C^{\infty}$ functions on $\mathbb{R}$ satisfying

$$
\begin{aligned}
& \varphi_{k+1}(t)=0 \quad \text { if } t \leqslant \gamma_{k+1}, \\
& \varphi_{k+1}(1)=1, \\
& \varphi_{k+1}^{\prime}(t)>0 \quad \text { if } t>\gamma_{k+1},
\end{aligned}
$$

and

$$
\begin{aligned}
& \phi_{1, k}(t)=1 \quad \text { if } t \leqslant \frac{\gamma_{1}+\gamma_{1, k}}{2}, \quad \ldots, \quad \phi_{k, 1}(t)=1 \quad \text { if } t \leqslant \frac{\gamma_{k}+\gamma_{k, 1}}{2}, \\
& \phi_{1, k}(t)=0 \quad \text { if } t \geqslant \gamma_{1, k}, \quad \ldots, \quad \phi_{k, 1}(t)=0 \quad \text { if } t \geqslant \gamma_{k, 1}, \\
& \phi_{1, k}^{\prime}(t)<0 \quad \text { if } t \in\left(\frac{\gamma_{1}+\gamma_{1, k}}{2}, \gamma_{1, k}\right), \quad \ldots, \quad \phi_{k, 1}^{\prime}(t)<0 \quad \text { if } t \in\left(\frac{\gamma_{k}+\gamma_{k, 1}}{2}, \gamma_{k, 1}\right) .
\end{aligned}
$$

Clearly the interior of the support of $h_{k+1}$ is the set

$$
U_{k+1}=\left\{x \in S: g_{1}(x)<\gamma_{1, k}, \ldots, g_{k}(x)<\gamma_{k, 1} \text { and } g_{k+1}(x)>\gamma_{k+1}\right\} .
$$

Select one point $x_{k+1} \in U_{k+1}$, a real number $a_{k+1} \in \mathbb{R}^{*}$ with $\left|a_{k+1}-F\left(x_{k+1}\right)\right|<\varepsilon$ and define the auxiliary function

$$
\begin{aligned}
& r_{k+1}: S^{+} \longrightarrow \mathbb{R} \\
& r_{k+1}=s_{k+1} g_{k+1}+\left(1-s_{k+1} g_{k+1}\left(x_{k+1}\right)\right)
\end{aligned}
$$

where we have selected $s_{k+1}$ so that $s_{k+1} a_{k+1}>0$ and $\left|s_{k+1}\right|$ is small enough so that the oscillation of $r_{k+1}$ on $U_{k+1}$ is less than $\frac{\varepsilon}{\left|a_{k+1}\right|}$. Notice that $r_{k+1}\left(x_{k+1}\right)=1$.

Let us study the set of critical points $Z_{k+1}$ of the $C^{p}$ smooth function

$$
\begin{align*}
& \mathbf{H}_{\mathbf{k}+\mathbf{1}}: U_{1} \cup \cdots \cup U_{k+1} \longrightarrow \mathbb{R} \\
& \mathbf{H}_{\mathbf{k}+\mathbf{1}}=\frac{\sum_{i=1}^{k+1} a_{i} r_{i} h_{i}}{\sum_{i=1}^{k+1} h_{i}} \tag{2.22}
\end{align*}
$$

Let us prove that $Z_{k+1}:=\left\{x \in U_{1} \cup \cdots \cup U_{k+1}: H_{k+1}^{\prime}(x)=0\right.$ on $\left.T_{x}\right\}$ can be included in a finite union of disjoint slices within $U_{1} \cup \cdots \cup U_{k+1}$ by splitting $Z_{k+1}$ conveniently into the (already defined) set $Z_{k}$ and a finite number of disjoint sets within $U_{k+1}$.

It is straightforward to verify that $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}=\sigma_{k+1,1} \mathbf{g}_{\mathbf{1}}+\cdots+\sigma_{k+1, k+1} \mathbf{g}_{\mathbf{k}+\mathbf{1}}$, where $\sigma_{k+1, i}$ are continuous functions on $U_{1} \cup \cdots \cup U_{k+1}$ and $\mathbf{g}_{\mathbf{i}}$ denotes the restriction $\left.g_{i}\right|_{T_{x}}, i=1, \ldots, k+1$, whenever we evaluate $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}(x)$.

From (2.22), the restriction of $\mathbf{H}_{\mathbf{k}+\mathbf{1}}$ and $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}$ to $\left(U_{1} \cup \cdots \cup U_{k}\right) \backslash U_{k+1}$ coincide with $\mathbf{H}_{\mathbf{k}}$ and $\mathbf{H}_{\mathbf{k}}^{\prime}$, respectively. Then, $Z_{k+1} \backslash U_{k+1}=Z_{k}=Z_{k+1} \backslash \bar{U}_{k+1}$. Let us study the set $Z_{k+1} \cap U_{k+1}$. First, if $x \in U_{k+1} \backslash\left(U_{1} \cup \cdots \cup U_{k}\right)$, from (2.22), we obtain that $\mathbf{H}_{\mathbf{k}+\mathbf{1}}(x)=a_{k+1} r_{k+1}(x)$ and the derivative $H_{k+1}^{\prime}(x)=a_{k+1} r_{k+1}^{\prime}(x)$. Therefore $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}(x)=a_{k+1} s_{k+1} g_{k+1} \mid T_{x}=0$ iff $D(x)=g_{k+1}$. If the point $z_{k+1} \in U_{k+1} \backslash\left(U_{1} \cup \cdots \cup U_{k}\right)$, then $\mathbf{H}_{\mathbf{k}+\mathbf{1}}$ has exactly one critical point in $U_{k+1} \backslash\left(U_{1} \cup \cdots \cup U_{k}\right)$; in this case, since $g_{i}\left(z_{k+1}\right) \neq \gamma_{i}$ for every $i=1, \ldots, k$, the point $z_{k+1}$ actually belongs to $U_{k+1} \backslash\left(\bar{U}_{1} \cup \cdots \cup \bar{U}_{k}\right)$.

Secondly, let us study the critical points of $\mathbf{H}_{\mathbf{k}+\mathbf{1}}$ in $U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right)$. If we define $\Lambda_{k}=\frac{\sum_{i=1}^{k} h_{i}}{\sum_{i=1}^{k+1} h_{i}}$, then we can rewrite $\mathbf{H}_{\mathbf{k}+\mathbf{1}}$ on $U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right)$ as

$$
\mathbf{H}_{\mathbf{k}+\mathbf{1}}=\frac{\sum_{i=1}^{k} a_{i} r_{i} h_{i}}{\sum_{i=1}^{k} h_{i}} \cdot \frac{\sum_{i=1}^{k} h_{i}}{\sum_{i=1}^{k+1} h_{i}}+\frac{a_{k+1} r_{k+1} h_{k+1}}{\sum_{i=1}^{k+1} h_{i}}=\mathbf{H}_{\mathbf{k}} \Lambda_{k}+a_{k+1} r_{k+1}\left(1-\Lambda_{k}\right),
$$

and

$$
\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}=\mathbf{H}_{\mathbf{k}}^{\prime} \Lambda_{k}+a_{k+1} s_{k+1}\left(1-\Lambda_{k}\right) \mathbf{g}_{\mathbf{k}+\mathbf{1}}+\left(\mathbf{H}_{\mathbf{k}}-a_{k+1} r_{k+1}\right) \Lambda_{k}^{\prime} .
$$

Notice that, on the open set $U_{k+1}$, we have that $\phi_{i, j}\left(g_{i}\right) \equiv 1$, whenever $i+j \leqslant k$. Indeed, on the one hand, if $x \in U_{k+1}$, and $i \in\{1, \ldots, k\}$, then $g_{i}(x)<\gamma_{i, k+1-i} \leqslant \frac{\gamma_{i}+\gamma_{i, j}}{2}$, whenever $i+j \leqslant k$. On the other hand, $\phi_{i, j}(t) \equiv 1$ if $t \leqslant \frac{\gamma_{i}+\gamma_{i, j}}{2}$. Therefore $\left.h_{i}\right|_{U_{k+1}}=\varphi_{i}\left(g_{i}\right)$, for every $i=1, \ldots, k$, and

$$
\Lambda_{k}=\frac{\sum_{i=1}^{k} \varphi_{i}\left(g_{i}\right)}{\sum_{i=1}^{k} \varphi_{i}\left(g_{i}\right)+h_{k+1}} .
$$

By computing $\Lambda_{k}^{\prime}$ in $U_{k+1}$, we obtain $\Lambda_{k}^{\prime}=\xi_{k, 1} \mathbf{g}_{\mathbf{1}}+\cdots+\xi_{k, k+1} \mathbf{g}_{\mathbf{k}+\mathbf{1}}$, where the coefficients $\xi_{k, 1}, \ldots, \xi_{k, k+1}$ are continuous functions of the following form:

$$
\begin{gathered}
\xi_{k, j}=\frac{-\varphi_{k+1}\left(g_{k+1}\right) \phi_{j, k+1-j}^{\prime}\left(g_{j}\right)\left(\prod_{i=1 ; i \neq j}^{k} \phi_{i, k+1-i}\left(g_{i}\right)\right)\left(\sum_{i=1}^{k} h_{i}\right)+h_{k+1} \varphi_{j}^{\prime}\left(g_{j}\right)}{\left(\sum_{i=1}^{k+1} h_{i}\right)^{2}}, \\
j=1, \ldots, k, \\
\xi_{k, k+1}=\frac{-\varphi_{k+1}^{\prime}\left(g_{k+1}\right)\left(\prod_{i=1}^{k} \phi_{i, k+1-i}\left(g_{i}\right)\right)\left(\sum_{i=1}^{k} h_{i}\right)}{\left(\sum_{i=1}^{k+1} h_{i}\right)^{2}}
\end{gathered}
$$

Thus, if $x \in U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right)$, the coefficients $\sigma_{k+1,1}, \ldots, \sigma_{k+1, k+1}$ for $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}$ have the following form,

$$
\begin{gathered}
\sigma_{k+1, j}=\sigma_{k, j} \Lambda_{k}+\left(\mathbf{H}_{\mathbf{k}}-a_{k+1} r_{k+1}\right) \xi_{k, j} \quad \text { for } j=1, \ldots, k \\
\sigma_{k+1, k+1}=a_{k+1} s_{k+1}\left(1-\Lambda_{k}\right)+\left(\mathbf{H}_{\mathbf{k}}-a_{k+1} r_{k+1}\right) \xi_{k, k+1}
\end{gathered}
$$

Notice that in $U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right), a_{k+1} s_{k+1}>0, \Lambda_{k}>0,1-\Lambda_{k}>0, \xi_{k, j} \geqslant 0$, for every $j=1, \ldots, k, \sum_{j=1}^{k} \xi_{k, j}>0$ and $\xi_{k, k+1}<0$. Therefore, if $H_{k}-a_{k+1} r_{k+1} \leqslant 0$, the coefficient $\sigma_{k+1, k+1}>0$. When $H_{k}-a_{k+1} r_{k+1} \geqslant 0$ and $\sigma_{k, j}>0$, the coefficient $\sigma_{k+1, j}>0$ (recall that, from the step $k$ we know that, for every $x \in U_{1} \cup \cdots \cup U_{k}$ there exists at least one $j \in\{1, \ldots, k\}$ with $\left.\sigma_{k, j}>0\right)$. Hence, if $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}(x)=0$ for some $x \in U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right)$, there necessarily exists $\varrho \neq 0$ such that $D(x)=\varrho\left(\sigma_{k+1,1}(x) g_{1}+\cdots+\sigma_{k+1, k+1}(x) g_{k+1}\right)$, that is $D(x) \in\left[g_{1}, \ldots, g_{k+1}\right]$.

In fact we can be more accurate and obtain that if $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}(x)=0, x \in U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right)$ and $x \notin \bigcup_{j \in F} U_{j}$ for some proper subset $F \subset\{1, \ldots, k\}$, then $D(x) \in \operatorname{span}\left\{g_{j}: j \in\{1, \ldots\right.$, $k+1\} \backslash F\}$. Indeed, from step $k$ we know that, if $x \in\left(U_{1} \cup \cdots \cup U_{k}\right) \backslash U_{j}$, where $j \in\{1, \ldots, k\}$, then $\sigma_{k, j}(x)=0$. Now, if $j \in F$ and $j=1$, it is clear that the functions $\varphi_{1}^{\prime}\left(g_{1}\right)$ and $\phi_{1, k}^{\prime}\left(g_{1}\right)$ vanish outside $U_{1}$. This implies $\xi_{k, 1}(x)=0$ and consequently $\sigma_{k+1,1}(x)=0$. If $j \in F$ and $2 \leqslant$ $j \leqslant k$, since $x \in U_{k+1}$ we know that

$$
g_{1}(x)<\gamma_{1, k}<\gamma_{1, j-1}, \quad \ldots, \quad g_{j-1}(x)<\gamma_{j-1, k+2-j}<\gamma_{j-1,1},
$$

and then necessarily $g_{j}(x) \leqslant \gamma_{j}$. Since the functions $\varphi_{j}^{\prime}\left(g_{j}\right)$ and $\phi_{j, k+1-j}^{\prime}\left(g_{j}\right)$ vanish whenever $g_{j} \leqslant \gamma_{j}$, we deduce $\xi_{k, j}(x)=0$ and thus $\sigma_{k+1, j}(x)=0$.

Let us now define the sets

$$
\begin{aligned}
Z_{k+1,1} & = \begin{cases}\left\{z_{k+1}\right\} & \text { if } z_{k+1} \in U_{k+1} \backslash\left(\bar{U}_{1} \cup \cdots \cup \bar{U}_{k}\right), \\
\emptyset & \text { otherwise },\end{cases} \\
Z_{k+1,2} & =Z_{k+1} \cap U_{k+1} \cap\left(U_{1} \cup \cdots \cup U_{k}\right) .
\end{aligned}
$$

Now, let us check that $Z_{k+1,2} \subset \bigcup_{g \in N_{k+1}} O_{g}$. Indeed, if $x \in Z_{k+1,2}$, there are constants $1 \leqslant$ $s \leqslant k$ and $1 \leqslant i_{1}<\cdots<i_{k} \leqslant k$, such that $x \in U_{k+1} \cap U_{i_{1}} \cap \cdots \cap U_{i_{s}}$ and $x \notin \bigcup_{j \in F} U_{j}$, where $F=\{1, \ldots, k\} \backslash\left\{i_{1}, \ldots, i_{s}\right\}$. From the preceding assertion, $D(x) \in\left[g_{i_{1}}, \ldots, g_{i_{s}}, g_{k+1}\right]$. From the definition of $M_{k+1, i_{1}, \ldots, i_{s}}$ and the fact that $U_{k+1} \subset U_{k+1}^{\prime}$, we obtain that $x \in M_{k+1, i_{1}, \ldots, i_{s}} \subset M_{k+1}$. Since $x \in U_{k+1}$, we have that $g_{1}(x)<\gamma_{1, k}, \ldots, g_{k}(x)<\gamma_{k, 1}$. We apply Fact $2.5(2)$ to conclude that there is $g \in N_{k+1}$ such that $x \in O_{g}$.

In the case when $Z_{k+1,1}=\left\{z_{k+1}\right\} \notin \bigcup_{g \in N_{k+1}} \bar{O}_{g}$, we select, if necessary, a larger $t_{k+1}$, with $t_{k+1}<l_{k+1}$, so that $z_{k+1} \notin \bigcup_{g \in N_{k+1}} \bar{B}_{g}$ for every $g \in N_{k+1}$. Since the norm is LUR and $D\left(z_{k+1}\right)=g_{k+1}$ we may select numbers $0<t_{k+1}^{\prime}<l_{k+1}^{\prime}<1$ and open slices, which are neighborhoods of $z_{k+1}$ defined by

$$
O_{g_{k+1}}:=\left\{x \in S: g_{k+1}(x)>l_{k+1}^{\prime}\right\} \quad \text { and } \quad B_{g_{k+1}}:=\left\{x \in S: g_{k+1}(x)>t_{k+1}^{\prime}\right\}
$$

satisfying $O_{g_{k+1}} \subset B_{g_{k+1}} \subset\left\{x \in S: g_{1}(x)<\gamma_{1, k}^{\prime}, \ldots, g_{k}(x)<\gamma_{k, 1}^{\prime}, g_{k+1}(x)>\gamma_{k+1}^{\prime}\right\}$ and $\operatorname{dist}\left(B_{g_{k+1}}, O_{g}\right)>0$, for every $g \in N_{k+1}$. In this case, we define $\Gamma_{k+1}=N_{k+1} \cup\left\{g_{k+1}\right\}$.

Now, if $Z_{k+1,1}=\left\{z_{k+1}\right\} \in \bigcup_{g \in N_{k+1}} \bar{O}_{g}$, we select, if necessary a smaller constant $l_{k+1}$, with $0<t_{k+1}<l_{k+1}<1$, so that $Z_{k+1,1}=\left\{z_{k+1}\right\} \in \bigcup_{g \in N_{k+1}} O_{g}$. In this case, and also when $Z_{k+1,1}=\emptyset$, we define $\Gamma_{k+1}=N_{k+1}$.

Notice that, in any of the cases mentioned above, Fact 2.5 clearly holds for the (possibly) newly selected real numbers $t_{k+1}$ and $l_{k+1}$.

Then, the distance between any two sets $B_{g}, B_{g^{\prime}}$, where $g, g^{\prime} \in \Gamma_{1} \cup \cdots \cup \Gamma_{k+1}$, and $g \neq g^{\prime}$, is strictly positive. Moreover $Z_{k+1,1} \cup Z_{k+1,2} \subset \bigcup_{g \in \Gamma_{k+1}} O_{g} \subset \bigcup_{g \in \Gamma_{k+1}} B_{g} \subset U_{k+1}^{\prime} \subset R_{k+1}$. Therefore, $Z_{k+1}=Z_{1} \cup \cdots \cup Z_{k} \cup Z_{k+1,1} \cup Z_{k+1,2} \subset \bigcup_{g \in \Gamma_{1} \cup \ldots \cup \Gamma_{k+1}} O_{g} \subset \bigcup_{g \in \Gamma_{1} \cup \ldots \cup \Gamma_{k+1}} B_{g} \subset$ $U_{1} \cup \cdots \cup U_{k+1}=R_{1} \cup \cdots \cup R_{k+1}$. Also, recall that dist $\left(B_{g}, R_{k+1}^{c}\right)>0$, for every $g \in \Gamma_{k+1}$ and $\operatorname{dist}\left(B_{g},\left(U_{1} \cup \cdots \cup U_{k+1}\right)^{c}\right)>0$, for every $g \in \Gamma_{1} \cup \cdots \cup \Gamma_{k+1}$.

Finally, let us notice that, by combining the results obtained in step $k+1$, we deduce that $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}=a_{k+1} s_{k+1} \mathbf{g}_{\mathbf{k}+\mathbf{1}}$ in $U_{k+1} \backslash\left(U_{1} \cup \cdots \cup U_{k}\right)$ and $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}=\mathbf{H}_{\mathbf{k}}^{\prime}$ on $\left(U_{1} \cup \cdots \cup U_{k}\right) \backslash U_{k+1}$, and in general $\mathbf{H}_{\mathbf{k}+\mathbf{1}}^{\prime}=\sigma_{k+1,1} \mathbf{g}_{\mathbf{1}}+\cdots+\sigma_{k+1, k+1} \mathbf{g}_{\mathbf{k}+\mathbf{1}}$ on $U_{1} \cup \cdots \cup U_{k+1}$ where $\sigma_{k+1, i}$ are continuous functions on $U_{1} \cup \cdots \cup U_{k+1}$ and $H_{k+1}^{\prime}=\sigma_{k+1,1} g_{1}+\cdots+\sigma_{k+1, k+1} g_{k+1}$ where $\sigma_{k+1, i}$ are continuous functions on the corresponding open subset of $Y$. Moreover, for every $x \in$ $U_{1} \cup \cdots \cup U_{k+1}$ there is at least one index $i \in\{1, \ldots, k+1\}$ such that $\sigma_{k+1, i}(x)>0$. Furthermore, $\sigma_{k+1, j}(x)=0$ whenever $x \in\left(U_{1} \cup \cdots \cup U_{k+1}\right) \backslash U_{j}, j \in\{1, \ldots, k+1\}$.

Once we have defined, by induction, the functions $h_{k}, r_{k}$ and the constants $a_{k}$, for all $k \in \mathbb{N}$, we define

$$
\begin{aligned}
& H: S^{+} \longrightarrow \mathbb{R} \\
& H=\frac{\sum_{k=1}^{\infty} a_{k} r_{k} h_{k}}{\sum_{k=1}^{\infty} h_{k}}
\end{aligned}
$$

It is straightforward to verify that the family $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ of open sets of $S^{+}$is a locally finite open covering of $S^{+}$. Thus, for every $x \in S^{+}$there is $k_{x} \in \mathbb{N}$ and a (relatively open in $S^{+}$) neighborhood $V_{x} \subset S^{+}$of $x$, such that $V_{x} \cap\left(\bigcup_{k>k_{x}} U_{k}\right)=\emptyset$ and therefore $\left.H\right|_{V_{x}}=\mathbf{H}_{\mathbf{k}_{\mathbf{x}}} \mid V_{x}$. Thus $H$ is $C^{p}$ smooth whenever the functions $\left\{h_{k}\right\}_{k \in \mathbb{N}}$ are $C^{p}$ smooth.

Fact 2.6. The function $H 3 \varepsilon$-approximates $F$ in $S^{+}$.
Proof. Recall that the oscillation of $F$ in $U_{k}$ is less that $\varepsilon$, the oscillation of $r_{k}$ in $U_{k}$ is less than $\frac{\varepsilon}{\left|a_{k}\right|},\left|a_{k}-F\left(x_{k}\right)\right|<\varepsilon$ and $r_{k}\left(x_{k}\right)=1$, for every $k \in \mathbb{N}$. Now, if $h_{k}(x) \neq 0$, then $x \in U_{k}$ and

$$
\begin{align*}
\left|a_{k} r_{k}(x)-F(x)\right| & \leqslant\left|a_{k} r_{k}(x)-a_{k} r_{k}\left(x_{k}\right)\right|+\left|a_{k} r_{k}\left(x_{k}\right)-F(x)\right| \\
& =\left|a_{k}\right|\left|r_{k}(x)-r_{k}\left(x_{k}\right)\right|+\left|a_{k}-F(x)\right| \\
& \leqslant\left|a_{k}\right| \frac{\varepsilon}{\left|a_{k}\right|}+\left|a_{k}-F\left(x_{k}\right)\right|+\left|F\left(x_{k}\right)-F(x)\right| \leqslant 3 \varepsilon \tag{2.23}
\end{align*}
$$

Hence,

$$
|H(x)-F(x)|=\frac{\left|\sum_{k=1}^{\infty}\left(a_{k} r_{k}(x)-F(x)\right) h_{k}(x)\right|}{\sum_{k=1}^{\infty} h_{k}(x)} \leqslant \frac{\sum_{k=1}^{\infty}\left|a_{k} r_{k}(x)-F(x)\right| h_{k}(x)}{\sum_{k=1}^{\infty} h_{k}(x)} \leqslant 3 \varepsilon .
$$

Let us denote by $C$ the critical points of $H$ in $S^{+}$. Since for every $x \in S^{+}$, there is $k_{x} \in \mathbb{N}$ and a (relatively open in $S^{+}$) neighborhood $V_{x} \subset S^{+}$of $x$ such that $V_{x} \cap\left(\bigcup_{k>k_{x}} U_{k}\right)=\emptyset$, we have that
$\left.H\right|_{V_{x}}=\mathbf{H}_{\mathbf{k}_{\mathbf{x}}} \mid V_{x}$ and $C \subset \bigcup_{k} Z_{k}$. Recall that $\bigcup_{k} Z_{k} \subset \bigcup\left\{O_{g}: g \in \bigcup_{k} \Gamma_{k}\right\} \subset \bigcup\left\{B_{g}: g \in \bigcup_{k} \Gamma_{k}\right\}$, the oscillation of $F$ on $B_{g}$ is less than $\varepsilon$ and $\operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right)>0$, for every $g, g^{\prime} \in \bigcup_{k} \Gamma_{k}$ with $g \neq g^{\prime}$. Furthermore, from the inductive construction of the sets $\left\{B_{g}: g \in \bigcup_{k} \Gamma_{k}\right\}$, it is straightforward to verify that (i) for every $k>1$, if $g \in \Gamma_{k}$ and $g^{\prime} \in \bigcup_{m>k} \Gamma_{m}$, then $\operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right) \geqslant$ $\gamma_{k}^{\prime}-\gamma_{k, 1}^{\prime}>0$ and (ii) if $g \in \Gamma_{1}$ and $g^{\prime} \in \bigcup_{m>1} \Gamma_{m}$, then $\operatorname{dist}\left(B_{g}, B_{g^{\prime}}\right) \geqslant t_{1}-\gamma_{1,1}^{\prime}>0$. Therefore, for every $g \in \bigcup_{k} \Gamma_{k}$,

$$
\begin{equation*}
\operatorname{dist}\left(B_{g}, \bigcup\left\{B_{g^{\prime}}: g^{\prime} \in \bigcup_{k} \Gamma_{k}, g^{\prime} \neq g\right\}\right)>0 \tag{2.24}
\end{equation*}
$$

We relabel the countable families of open slices $\left\{O_{g}\right\}_{g \in \cup_{k} \Gamma_{k}}$ and $\left\{B_{g}\right\}_{g \in \cup_{k}} \Gamma_{k}$ as $\left\{O_{n}\right\},\left\{B_{n}\right\}$, respectively. Notice that the set $\bigcup_{n} \bar{B}_{n}$ is a (relatively) closed set in $S^{+}$. Indeed, if $\left\{x_{j}\right\} \subset \bigcup_{n} \bar{B}_{n}$ and $\lim _{j} x_{j}=x \in S^{+}$, since $\bigcup_{n} U_{n}^{\prime}$ is also a locally finite open covering of $S^{+}$, there is $n_{x}$ and a (relatively open in $S^{+}$) neighborhood $W_{x} \subset S^{+}$of $x$, such that $W_{x} \cap\left(\bigcup_{n>n_{x}} U_{n}^{\prime}\right)=\emptyset$. In addition, from the construction of the family $\left\{B_{n}\right\}$, there is $N \in \mathbb{N}$ such that $\bigcup_{n>N} \bar{B}_{n} \subset$ $\bigcup_{n>n_{x}} U_{n}^{\prime}$, and thus there is $j_{0} \in \mathbb{N}$ with $\left\{x_{j}\right\}_{j>j_{0}} \subset \bigcup_{n=1}^{N} \bar{B}_{n}$. Hence $x \in \bigcup_{n=1}^{N} \bar{B}_{n} \subset \bigcup_{n} \bar{B}_{n}$.

Let us denote $\mathcal{B}_{n}=\Phi^{-1}\left(B_{n}\right)$ and $\mathcal{O}_{n}=\Phi^{-1}\left(O_{n}\right)$ for every $n \in \mathbb{N}$.
Fact 2.7. $\mathcal{O}_{n}$ and $\mathcal{B}_{n}$ are open, convex and bounded subsets of $X$, for every $n \in \mathbb{N}$.
Proof. Since $\Phi$ is continuous, it is clear that $\mathcal{O}_{n}$ and $\mathcal{B}_{n}$ are open sets. The sets $O_{n}$ and $B_{n}$ are slices of the form $R=\{x \in S: b(x)>\delta\}$ for some $b \in S^{*}$ and $\delta>0$ such that $\operatorname{dist}(R, X \times$ $\{0\})>0$. Let us prove that $\mathcal{R}:=\Phi^{-1}(R)$ is convex and bounded in $X$. First, let us check that the cone in $Y$ generated by $R$ and defined by

$$
\operatorname{cone}(R)=\{\lambda x: x \in R, \lambda>0\}=\left\{x \in Y: b\left(\frac{x}{|x|}\right)>\delta\right\}
$$

is a convex set: consider $0 \leqslant \alpha \leqslant 1$ and $x, x^{\prime} \in \operatorname{cone}(R)$. Then,

$$
\begin{aligned}
b\left(\alpha x+(1-\alpha) x^{\prime}\right) & =\alpha b(x)+(1-\alpha) b\left(x^{\prime}\right)>\alpha \delta|x|+(1-\alpha) \delta\left|x^{\prime}\right| \\
& =\delta|\alpha x|+\delta\left|(1-\alpha) x^{\prime}\right| \geqslant \delta\left|\alpha x+(1-\alpha) x^{\prime}\right|,
\end{aligned}
$$

and this implies that $\alpha x+(1-\alpha) x^{\prime} \in \operatorname{cone}(R)$. Therefore, the intersection of the two convex sets cone $(R) \cap(X \times\{1\})=\Pi^{-1}(R)$ is convex. Now, it is clear that $\mathcal{R}=\Phi^{-1}(R)=i^{-1}\left(\Pi^{-1}(R)\right)$ is convex as well.

Let us prove that $\Pi^{-1}(R)$ is bounded in $Y$. Consider the linear bounded operator $\pi_{2}: Y=$ $X \oplus \mathbb{R} \rightarrow \mathbb{R}, \pi_{2}(x, r)=r$ for every $(x, r) \in X \oplus \mathbb{R}$. Then, $\Pi^{-1}(y)=\frac{y}{\pi_{2}(y)}$ for every $y \in S^{+}$. On the one hand, $d:=\operatorname{dist}(R, X \times\{0\})>0$ and then

$$
\pi_{2}(x, r)=r=\frac{|(x, r)-(x, 0)|}{|(0,1)|} \geqslant \frac{d}{|(0,1)|}:=s>0 \quad \text { for every }(x, r) \in R
$$

On the other hand,

$$
\left|\Pi^{-1}(y)\right|=\frac{|y|}{\pi_{2}(y)}=\frac{1}{\pi_{2}(y)} \leqslant \frac{1}{s} \quad \text { for every } y \in R
$$

and thus $\Pi^{-1}(R)$ is bounded. Since the norm $\|\cdot\|$ considered on $X \times\{0\}$ (defined as $\|(x, 0)\|=$ $\|x\|)$ and the restriction of the norm $|\cdot|$ to $X \times\{0\}$ are equivalent norms on $X \times\{0\}$, there exist constants $m, M>0$ such that $m\left\|x-x^{\prime}\right\| \leqslant\left|i(x)-i\left(x^{\prime}\right)\right|=\left|(x, 1)-\left(x^{\prime}, 1\right)\right|=\left|\left(x-x^{\prime}, 0\right)\right| \leqslant$ $M\left\|x-x^{\prime}\right\|$ for every $x, x^{\prime} \in X$. Hence,

$$
\begin{aligned}
\left\|\Phi^{-1}(y)\right\| & =\left\|i^{-1}\left(\Pi^{-1}(y)\right)-i^{-1}(0,1)\right\| \leqslant \frac{1}{m}\left|\Pi^{-1}(y)-(0,1)\right| \\
& \leqslant \frac{1}{m}\left(\left|\Pi^{-1}(y)\right|+|(0,1)|\right) \leqslant \frac{1+s|(0,1)|}{s \cdot m}
\end{aligned}
$$

for every $y \in R$, what shows that $\mathcal{R}$ is bounded in $X$.
Fact 2.8. $\overline{\mathcal{O}}_{n}$ and $\overline{\mathcal{B}}_{n}$ are (closed convex and bounded) $C^{p}$ smooth bodies for every $n \in \mathbb{N}$.

Proof. We already know that these sets are closed, convex and bounded bodies, hence it is enough to prove that their boundaries $\partial \mathcal{O}_{n}$ and $\partial \mathcal{B}_{n}$ are $C^{p}$ smooth one-codimensional submanifolds of $X$. Since $\partial \mathcal{B}_{n}=\Phi^{-1}\left(\partial B_{n}\right), \partial \mathcal{O}_{n}=\Phi^{-1}\left(\partial O_{n}\right)$, and $\Phi$ is a $C^{p}$ diffeomorphism, this is the same as showing that $\partial O_{n}$ and $\partial B_{n}$ are $C^{p}$ smooth one-codimensional submanifolds of $S$. But, if $O_{n}$ is defined by $O_{n}=\left\{y \in S: g_{n}(y)>\beta_{n}\right\}$, we have that $\partial O_{n}$ is the intersection of $S$ with the hyperplane $X_{n}=\left\{y \in Y: g_{n}(y)=\beta_{n}\right\}$ of $Y$, and $X_{n}$ is transversal to $S$ at every point of $\partial O_{n}$ (otherwise the hyperplane $X_{n}$ would be tangent to $S$ at some point of $\partial O_{n}$ and, by strict convexity of $S$, this implies that $\partial O_{n}=X_{n} \cap S$ is a singleton, which contradicts the fact that $O_{n}$ is a nonempty open slice of $S$ ), hence the intersection $\partial O_{n}=S \cap X_{n}$ is a one-codimensional submanifold of $S$. The same argument applies to $\partial B_{n}$.

Fact 2.9. $\operatorname{dist}\left(\mathcal{O}_{n}, X \backslash \mathcal{B}_{n}\right)>0$ and $\operatorname{dist}\left(\mathcal{B}_{n}, \bigcup_{m \neq n} \mathcal{B}_{m}\right)>0$, for every $n \in \mathbb{N}$.
Proof. This is a consequence of the fact that $\operatorname{dist}\left(O_{n}, S^{+} \backslash B_{n}\right)>0, \operatorname{dist}\left(B_{n}, \bigcup_{m \neq n} B_{m}\right)>0$, and $\Phi$ is Lipschitz. Indeed, on the one hand, recall that $\left|i(x)-i\left(x^{\prime}\right)\right|=\left|\left(x-x^{\prime}, 0\right)\right| \leqslant M\left\|x-x^{\prime}\right\|$, for every $x, x^{\prime} \in X$. On the other hand,

$$
\left|\Pi(y)-\Pi\left(y^{\prime}\right)\right|=\frac{|y| y^{\prime}\left|-y^{\prime}\right| y| |}{|y|\left|y^{\prime}\right|}=\frac{\left|y\left(\left|y^{\prime}\right|-|y|\right)+\left(y-y^{\prime}\right)\right| y| |}{|y|\left|y^{\prime}\right|} \leqslant \frac{2\left|y-y^{\prime}\right|}{\left|y^{\prime}\right|} \leqslant \frac{2}{\zeta}\left|y-y^{\prime}\right|
$$

for every $y, y^{\prime} \in X \times\{1\}$, where $\zeta=\operatorname{dist}(0, X \times\{1\})>0$. Therefore, $\left|\Phi(x)-\Phi\left(x^{\prime}\right)\right| \leqslant$ $\frac{2 M}{\zeta}\left\|x-x^{\prime}\right\|$, for every $x, x^{\prime} \in X$. Now, if two sets $A, A^{\prime} \subset S^{+}$satisfy that $\operatorname{dist}\left(A, A^{\prime}\right)>0$, then $\operatorname{dist}\left(A, A^{\prime}\right) \leqslant\left|a-a^{\prime}\right| \leqslant \frac{2 M}{\zeta}\left\|\Phi^{-1}(a)-\Phi^{-1}\left(a^{\prime}\right)\right\|$, for every $a \in A, a^{\prime} \in A^{\prime}$. Therefore, $0<\operatorname{dist}\left(A, A^{\prime}\right) \leqslant \frac{2 M}{\zeta} \operatorname{dist}\left(\Phi^{-1}(A), \Phi^{-1}\left(A^{\prime}\right)\right)$.

Fact 2.10. For every $n \in \mathbb{N}$, there exists a $C^{p}$ diffeomorphism $\Psi_{n}$ from $X$ onto $X \backslash \overline{\mathcal{O}}_{n}$ such that $\Psi_{n}$ is the identity off $\mathcal{B}_{n}$.

Proof. Assume that $0 \in \mathcal{O}_{n}$. Since $\operatorname{dist}\left(\mathcal{O}_{n}, X \backslash \mathcal{B}_{n}\right)>0$, there is $\delta_{n}>0$ such that $\operatorname{dist}((1+$ $\left.\left.\delta_{n}\right) \mathcal{O}_{n}, \mathcal{B}_{n}\right)>0$. We can easily construct a $C^{p}$ smooth radial diffeomorphism $\Psi_{n, 2}$ from $X \backslash\{0\}$ onto $X \backslash \overline{\mathcal{O}}_{n}$ satisfying $\Psi_{n, 2}(x)=x$ if $x \notin\left(1+\delta_{n}\right) \mathcal{O}_{n}$. Indeed, take a $C^{\infty}$ smooth function
$\lambda_{n}:[0, \infty) \rightarrow[1, \infty)$ satisfying that $\lambda_{n}(t)=t$ for $t \geqslant 1+\delta_{n}, \lambda_{n}(0)=1$ and $\lambda_{n}^{\prime}(t)>0$ for $t>0$, and define

$$
\Psi_{n, 2}(x)=\lambda_{n}\left(\mu_{n}(x)\right) \frac{x}{\mu_{n}(x)}
$$

for $x \in X \backslash\{0\}$, where $\mu_{n}$ is the Minkowski functional of $\overline{\mathcal{O}}_{n}$, which is $C^{p}$ smooth on $X \backslash\{0\}$.
Now, since $0 \in \mathcal{O}_{n}$, there is $\alpha_{n}>0$ such that $\alpha_{n} B_{\|\cdot\|} \subset \mathcal{O}_{n}$. According to [13, Proposition 3.1] and [12, Lemma 2] (see also [1]), there exists a $C^{p}$ diffeomorphism $\Psi_{n, 1}$ from $X$ onto $X \backslash\{0\}$ such that $\Psi_{n, 1}$ is the identity off $\alpha_{n} B_{\|\cdot\|}$ (this set may be regarded as the unit ball of a equivalent $C^{p}$ smooth norm on $X$ ).

Then, the composition $\Psi_{n}:=\Psi_{n, 2} \circ \Psi_{n, 1}$ is a $C^{p}$ diffeomorphism from $X$ onto $X \backslash \overline{\mathcal{O}}_{n}$ such that $\Psi_{n}$ is the identity off $\mathcal{B}_{n}$. If $0 \notin \mathcal{O}_{n}$, select $\omega_{n} \in \mathcal{O}_{n}$ and repeat the above construction of the diffeomorphism with the sets $\mathcal{O}_{n}-\omega_{n}$ and $\mathcal{B}_{n}-\omega_{n}$. Then, $\Psi_{n}:=\tau_{\omega_{n}} \circ \Psi_{n, 2} \circ \Psi_{n, 1} \circ \tau_{-\omega_{n}}$ is the required $C^{p}$ diffeomorphism, where $\tau_{\omega}(x)=x+\omega$.

Now, the infinite composition $\Psi=\bigcirc_{n=1}^{\infty} \Psi_{n}$ is a well-defined $C^{p}$ diffeomorphism from $X$ onto $X \backslash \bigcup_{n} \overline{\mathcal{O}}_{n}$, which is the identity outside $\bigcup_{n} \mathcal{B}_{n}$ and $\Psi\left(\mathcal{B}_{n}\right) \subset \mathcal{B}_{n}$. This follows from the fact that, for every $x \in X$, there is an open neighborhood $V_{x}$ and $n_{x} \in \mathbb{N}$ such that $V_{x} \cap\left(\bigcup_{n \neq n_{x}} \mathcal{B}_{n}\right)=\emptyset$, and therefore $\left.\Psi\right|_{V_{x}}=\Psi_{n_{x}} \mid V_{x}$.

Finally, let us check that the $C^{p}$ smooth function

$$
\begin{aligned}
& g: X \longrightarrow \mathbb{R} \\
& g:=H \circ \Phi \circ \Psi
\end{aligned}
$$

$4 \varepsilon$-approximates $f$ on $X$ and $g$ does not have critical points. Indeed, for every $x \in X$, if $\Psi(x) \neq x$ then there is $\mathcal{B}_{n_{x}}$ such that $x \in \mathcal{B}_{n_{x}}$. Since the oscillation of $f$ in $\mathcal{B}_{n_{x}}$ is less than $\varepsilon$ and $\Psi(x) \in$ $\mathcal{B}_{n_{x}}$, we can deduce that $|f(\Psi(x))-f(x)|<\varepsilon$, for every $x \in X$. Recall that $F \circ \Phi=f$ and $|H(x)-F(x)|<3 \varepsilon$, for every $x \in S^{+}$. Then,

$$
\begin{align*}
|g(x)-f(x)| & =|H \circ \Phi(\Psi(x))-F \circ \Phi(x)| \\
& \leqslant|H(\Phi(\Psi(x)))-F(\Phi(\Psi(x)))|+|F \circ \Phi(\Psi(x))-F \circ \Phi(x)| \\
& \leqslant 3 \varepsilon+\varepsilon=4 \varepsilon \tag{2.25}
\end{align*}
$$

for every $x \in X$. Since $\Phi$ and $\Psi$ are $C^{p}$ diffeomorphisms, we have that $g^{\prime}(x)=0$ if and only if $H^{\prime}(\Phi(\Psi(x)))=0$. For every $x \in X, \Psi(x) \notin \bigcup_{n} \overline{\mathcal{O}}_{n}$ and thus $\Phi(\Psi(x)) \notin \bigcup_{n} \bar{O}_{n}$. It follows that $H^{\prime}(\Phi(\Psi(x))) \neq 0$ and $g$ does not have any critical point.

Before finishing the proof, let us say what additional precautions are required in the case when $\varepsilon$ is a strictly positive continuous function:

- the slices $S_{k}=\left\{x \in S: f_{k}(x)>\delta_{k}\right\}(k \in \mathbb{N})$ are selected with the additional property that the oscillations of the two functions $F$ and $\bar{\varepsilon}=\varepsilon \circ \Phi^{-1}$ in $S_{k}$ are less than $\frac{\bar{\varepsilon}\left(y_{k}\right)}{2}$, where $y_{k}$ is the point of $S^{+}$satisfying $f_{k}\left(y_{k}\right)=1$; this implies, in particular, that $\frac{1}{2} \bar{\varepsilon}\left(y_{k}\right)<\bar{\varepsilon}(x)<\frac{3}{2} \bar{\varepsilon}\left(y_{k}\right)$ for every $x \in S_{k}$;
- the real numbers $a_{k} \in \mathbb{R}^{*}$ satisfy that $\left|a_{k}-F\left(x_{k}\right)\right|<\frac{\bar{\varepsilon}\left(y_{k}\right)}{2}$;
- the oscillation of $r_{k}$ in $S_{k}$ is less than $\frac{\bar{\varepsilon}\left(y_{k}\right)}{\left|a_{k}\right|}$.

From the above conditions and inequality (2.23), it can be deduced that if $x \in U_{k}$, then $\left|a_{k} r_{k}(x)-F(x)\right| \leqslant 2 \bar{\varepsilon}\left(y_{k}\right)<4 \bar{\varepsilon}(x)$. From this, it can be obtained that $|H(x)-F(x)| \leqslant 4 \bar{\varepsilon}(x)$, for every $x \in S^{+}$. Equivalently, $|H \circ \Phi(x)-F \circ \Phi(x)|=|H \circ \Phi(x)-f(x)|<4 \varepsilon(x)$, for every $x \in X$. Now, if $x \neq \Psi(x)$, then there is $\mathcal{B}_{n_{x}}$ such that $x, \Psi(x) \in \mathcal{B}_{n_{x}}$. Thus, $|f(\Psi(x))-f(x)|<$ $\frac{\varepsilon\left(\Phi^{-1}\left(y_{n_{x}}\right)\right)}{2}<\varepsilon(x)$. Now, from inequality (2.25), we obtain: (a) if $x \in B_{n_{x}}$ for some $n_{x}$, then $|g(x)-f(x)| \leqslant 4 \varepsilon(\Psi(x))+\varepsilon(x) \leqslant 6 \varepsilon\left(\Phi^{-1}\left(y_{n_{x}}\right)\right)+\varepsilon(x) \leqslant 13 \varepsilon(x)$, and (b) if $x \notin \bigcup_{n} B_{n}$, then $|g(x)-f(x)| \leqslant 4 \varepsilon(\Psi(x))=4 \varepsilon(x)$. This finishes the proof of Theorem 1.1.

Remark 2.11. The construction of the function $g$ with no critical points that approximates $f$ with a constant $\varepsilon>0$, is considerably shorter in the case that either (i) $X=\ell_{2}(\mathbb{N})$ (and we use West's theorem [32]) or (ii) $X$ is non-reflexive and the norm $|\cdot|$ considered on $Y$ can be constructed with the additional property that the set $\left\{f \in Y^{*}: f\right.$ does not attain its norm $\}$ contains a dense subspace (except the zero functional) of $Y^{*}$.

Indeed, in the first case, we can define as $|\cdot|$ the standard norm on $\ell_{2}(\mathbb{N})$. In both cases, the use of the auxiliary functions $r_{n}$ is not required, we can consider the slice $R_{n}:=S_{n}$ (that is, the additional construction of the sequence of slices $\left\{R_{n}\right\}$ is not required) and we can select for every $n \in \mathbb{N}$, any strictly decreasing sequence $\left\{\gamma_{n, i}\right\}_{i \in \mathbb{N}}$ such that $\lim _{i} \gamma_{n, i}=\delta_{n}$. Then, let us choose a non-zero functional $w \in Y^{*} \backslash\left[f_{n}: n \in \mathbb{N}\right]$ (where $\left[f_{n}: n \in \mathbb{N}\right]$ denotes the space of all finite linear combinations of the set $\left\{f_{n}: n \in \mathbb{N}\right\}$ ) with $|w|^{*}<\varepsilon$, and define $H=\frac{\sum_{i} a_{i} h_{i}}{\sum_{i} h_{i}}+w$ and $\mathbf{H}_{\mathbf{n}}=\frac{\sum_{i=1}^{n} a_{i} h_{i}}{\sum_{i=1}^{n} h_{i}}+w$, for every $n \in \mathbb{N}$. We obtain in the case (i), that $Z_{n}$ (the critical points of $\left.\mathbf{H}_{\mathbf{n}}\right)$, is included in the compact set $D^{-1}\left(\left[f_{1}, \ldots, f_{n}, w\right] \cap S^{*}\right)$. Then, it can be proved that the set $C$ of critical points of $H$ and thus the set $\mathcal{C}$ of critical points of the composition $H \circ \Phi$, are closed and locally compact sets of $S^{+}$and $\ell_{2}(\mathbb{N})$, respectively. Now, $g$ is obtained, by applying West theorem [32], considering a $C^{\infty}$ deleting diffeomorphism $\Psi$ from $\ell_{2}(\mathbb{N})$ onto $\ell_{2}(\mathbb{N}) \backslash \mathcal{C}$, with the additional property that the family $\left\{(x, \Psi(x)): x \in \ell_{2}(\mathbb{N})\right\}$ refines the open covering $\left.\left\{\Phi^{-1}\left(S_{n}\right) ; n \in \mathbb{N}\right\}\right)$. Finally, we can define $g:=H \circ \Phi \circ \Psi$.

In the case (ii), we can select the family $\mathcal{G}=\left\{f_{n}: n \in \mathbb{N}\right\} \cup\{w\}$ with the additional requirement that $[\mathcal{G}] \backslash\{0\}$ is included in the set of non-norm attaining functionals. Thus, it can be proved that the sets of critical points of both $\mathbf{H}_{\mathbf{n}}$ and $H$ are empty. Therefore, the set of critical points of $g:=H \circ \Phi$ is empty and $g$ approximates $f$. Notice that this case is particularly interesting because the use of a deleting diffeomorphism is not required.

## Open Problems 2.12.

(1) The analytical case for the Hilbert space $\ell_{2}$. Can every continuous function $f: \ell_{2} \rightarrow \mathbb{R}$ be uniformly approximated by real-analytic smooth functions with no critical points?
(2) Remark 2.11(ii) suggests the following problem: if $X$ is a non-reflexive separable Banach space, can we construct an equivalent norm $|\cdot|$ on $X$ with good properties of smoothness and convexity and the additional property that the set $N A^{c} \cup\{0\}$ contains a dense subspace of $X^{*}$, where $N A^{c}:=\left\{f \in X^{*}: f\right.$ does not attain its norm $\}$ ?

## Acknowledgments

This research was carried out during Jiménez-Sevilla's stay at the Mathematics Department of Ohio State University; Jiménez-Sevilla wishes to thank very especially Peter March and Boris Mityagin for their kind hospitality and Aleix Martinez for fruitful discussions. Azagra thanks Gilles Godefroy and Yves Raynaud for all their help during his stay at Institut de Mathématiques de Jussieu (Université Paris 6).

## References

[1] D. Azagra, Diffeomorphisms between spheres and hyperplanes between infinite-dimensional Banach spaces, Studia Math. 125 (2) (1997) 179-186.
[2] D. Azagra, M. Cepedello Boiso, Uniform approximation of continuous mappings by smooth mappings with no critical points on Hilbert manifolds, Duke Math. J. 124 (2004) 207-226.
[3] D. Azagra, M. Jiménez-Sevilla, The failure of Rolle's theorem in infinite-dimensional Banach spaces, J. Funct. Anal. 182 (2001) 207-226.
[4] D. Azagra, R. Fry, J. Gómez Gil, J.A. Jaramillo, M. Lovo, $C^{1}$-fine appoximation of functions on Banach spaces with unconditional basis, Q. J. Math. 56 (2005) 13-20.
[5] S.M. Bates, On the image size of singular maps. I, Proc. Amer. Math. Soc. 114 (3) (1992) 699-705.
[6] S.M. Bates, On the image size of singular maps. II, Duke Math. J. 68 (3) (1992) 463-476.
[7] S.M. Bates, Toward a precise smoothness hypothesis in Sard's theorem, Proc. Amer. Math. Soc. 117 (1) (1993) 279-283.
[8] S.M. Bates, On smooth rank-1 mappings of Banach spaces onto the plane, J. Differential Geom. 37 (3) (1993) 729-733.
[9] S.M. Bates, C.G. Moreira, De nouvelles perspectives sur le théorème de Morse-Sard, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 13-17.
[10] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 14 (1966) 27-31.
[11] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., vol. 64, Longman, Harlow, 1993.
[12] T. Dobrowolski, Relative classification of smooth convex bodies, Bull. Acad. Polon. Sci. Sér. Sci. Math. 25 (1977) 309-312.
[13] T. Dobrowolski, Smooth and R-analytic negligibility of subsets and extensions of homeomorphisms in Banach spaces, Studia Math. 65 (1979) 115-139.
[14] J. Eells, K.D. Elworthy, Open embeddings of certain Banach manifolds, Ann. of Math. 91 (3) (1970) 465-485.
[15] M. Fabian, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books Math., vol. 8, Springer-Verlag, Berlin, 2001.
[16] J. Ferrer, Rolle's theorem for polynomials of degree four in a Hilbert space, J. Math. Anal. Appl. 265 (2) (2002) 322-331.
[17] J. Frontisi, Smooth partitions of unity in Banach spaces, Rocky Mountain J. Math. 25 (1995) 1295-1304.
[18] P. Hájek, M. Johanis, Smooth approximations without critical points, Cent. Eur. J. Math. 1 (3) (2003) 284-291.
[19] M.W. Hirsch, Differential Topology, Grad. Texts in Math., vol. 33, Springer-Verlag, New York, 1976.
[20] I. Kupka, Counterexample to the Morse-Sard theorem in the case of infinite-dimensional manifolds, Proc. Amer. Math. Soc. 16 (1965) 954-957.
[21] V.D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspekhi Mat. Nauk 26 (6(162)) (1971) 73-149 (in Russian). English transl. in: Russian Math. Surveys 26 (6) (1971) 79-163.
[22] C.G. Moreira, Hausdorff measures and the Morse-Sard theorem, Publ. Mat. 45 (2001) 149-162.
[23] A. Morse, The behavior of a function on its critical set, Ann. of Math. 40 (1939) 62-70.
[24] N. Moulis, Approximation de fonctions différentiables sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble) 21 (4) (1971) 293-345.
[25] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942) 883-890.
[26] A. Sard, Images of critical sets, Ann. of Math. 68 (1958) 247-259.
[27] A. Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965) 158-174.
[28] S.A. Shkarin, On Rolle's theorem in infinite-dimensional Banach spaces. Translatted from: Mat. Zametki 51 (3) (1992) 128-136.
[29] S. Smale, An infinite-dimensional version of Sard's theorem, Amer. J. Math. 87 (1965) 861-866.
[30] Y. Yomdin, G. Comte, Tame Geometry with Applications in Smooth Analysis, Lecture Notes in Math., vol. 1834, Springer-Verlag, Berlin, 2004.
[31] J. Vanderwerff, Smooth approximations in Banach spaces, Proc. Amer. Math. Soc. 115 (1992) 113-120.
[32] James E. West, The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds, Compos. Math. 21 (1969) 271-291.


[^0]:    * Corresponding author.

    E-mail addresses: azagra@mat.ucm.es (D. Azagra), mm_jimenez@mat.ucm.es (M. Jiménez-Sevilla).
    ${ }^{1}$ Supported by a Marie Curie Intra-European Fellowship of the European Community, Human Resources and Mobility Programme under contract number MEIF CT2003-500927.
    ${ }^{2}$ Supported by a Fellowship of the Secretaría de Estado de Universidades e Investigación (Ministerio de Educación y Ciencia).

