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Abstract. We show that, for every infinite-dimensional Banach space X with
a Schauder basis, the following are equivalent: (1) X has a Cp smooth bump
function; (2) for every compact subset K and every open subset U of X with
K ⊂ U , there exists a Cp diffeomorphism h : X → X \ K such that h is the
identity on X \ U .

A subset K of X is said to be topologically negligible provided there exists a home-
omorphism h : X → X \ K. The homeomorphism h is usually required to be the
identity outside a given neighborhood U of K. Here X can be a Banach space, a
manifold, or just a topological space, but we will only consider the case when X is
an infinite-dimensional Banach space and h is a diffeomorphism (recall that points
are not topologically negligible in finite-dimensional spaces). Such h will be called
a deleting diffeomorphism, and we will say that h has its support on U .

Deleting diffeomorphisms are very powerful tools in infinite-dimensional global
analysis and nonlinear analysis. We do not intend to make a history of the develop-
ment of topological negligibility and its applications, and we refer the reader to the
introductions of the papers [5, 10, 20] and the references therein for a better insight
and a glimpse of the many important applications of smooth negligibility. We will
only mention two facts here. First, in the case when X is the separable Hilbert space
or even a Hilbert manifold, the most powerful result on smooth negligibility is that
of West’s [28]: for every locally compact set K, every open set U ⊃ K, and every
open covering G of X, there exists a C∞ diffeomorphism h : X → X \K such that
h is the identity off U and is limited by G (this means that h can be made to be ar-
bitrarily close to the identity mapping). Second, when X is any infinite-dimensional
Banach space with a (not necessarily equivalent) Cp smooth norm, for every com-
pact set K and every ball B containing K there exists a Cp smooth diffeomorphism
h : X → X \ K such that h is the identity off B. That is, the supports of those
deleting diffeomorphisms are balls; see [5].

This paper could be regarded both as an addendum to [5] and as a bridge to
possible generalizations of West’s theorem [28]. Here we are concerned with the
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supports of diffeomorphisms deleting compacta from a Banach space: when can one
get a diffeomorphism h deleting a compact set K from a Banach space X such that
h is the identity outside a prescribed open neighborhood U of K?

Some readers might have the impression that the question about the supports of
deleting diffeomorphisms is too technical, but the truth is that, for some important
applications of negligibility, this is a crucial issue. For instance, Manuel Cepedello
Boiso and the first-named author have recently shown that the C∞ smooth functions
with no critical points are dense in the set of continuous functions on the separable
Hilbert space (or a Hilbert manifold); this is a sort of very strong approximate
Morse-Sard theorem [3]. A key part of the proof of this result can only be made
either by applying West’s theorem or by using the fact that every compact set K
of `2 can be removed by a diffeomorphism h which remains the identity outside
a prescribed open neighborhood of K. If one is to establish strong approximate
Morse-Sard-like theorems for infinite-dimensional Banach spaces other than `2, the
first step should be to try to extend West’s theorem to those spaces, or at least to
show the existence of diffeomorphism deleting compacta with prescribed supports
(as a matter of fact, the proof of West’s theorem already uses the existence of such
deleting diffeomorphisms with given supports, so this seems to be the first question
one should look at).

Of course, if one wants to construct diffeomorphisms deleting compacta with
supports that are much tighter than balls, it is reasonable to demand that the space
X has some structure richer than merely possessing a smooth norm. In this respect,
the assumption that X is separable and has a Schauder basis does not seem too
restrictive: for instance, all the classical spaces meet this demand. Our main result
says that diffeomorphisms deleting compacta with prescribed supports do exist in
such spaces, provided they have a smooth bump function (a condition which is
necessary as well).

Theorem 1. Let X be an infinite-dimensional Banach space with a Schauder basis,
and p ∈ N ∪ {∞}. The following statements are equivalent:

(1) X has a Cp smooth bump function.
(2) For every compact subset K and every open subset U of X with K ⊂ U ,

there exists a Cp diffeomorphism h : X → X \K such that h is the identity
on X \ U .

In the case when X is the Hilbert space, Theorem 1 is a particular instance of
the above mentioned theorem of West’s [28]. A simple proof of Theorem 1 for the
Hilbert space was obtained by M. Cepedello Boiso and the first-named author and
was included in the first version of the paper [3] (that version was then improved
and the mentioned proof discarded because it was no longer needed). This proof of
the result in the Hilbert case inspired the one we present here for any Banach space
with a Schauder basis.

The proof of Theorem 1 is done mainly in two steps, which we next explain. The
first one uses the noncomplete (asymmetric) norm technique of deleting compact sets
introduced in [5, 19]. The main result of [5], Theorem 2.1, shows that a mapping of
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the form φ(x) = x + p(f(x)), x ∈ X \ K, for a certain function f : X → [0,+∞)
with f−1(0) = K and a path p : (0,+∞) → X, establishes a C∞ diffeomorphism
between X \ K and X. The map φ can be viewed as a small perturbation of the
identity. In order that the perturbation p ◦ f be small, p and f must satisfy some
Lipschitzian-type conditions with respect to a certain distance dω induced by a
smooth noncomplete (asymmetric) norm ω. The function f(x) can be viewed as
a smooth substitute for the ω-distance function from x to the set K, and has the
additional property that f(x) = 1 whenever dω(x,K) ≥ ε, where ε is a given fixed
positive number. The path p is constructed in such a way that p(t) asymptotically
avoids compact sets by getting lost in the infinitely many dimensions of X as t goes
to 0; moreover, p(t) = 0 for all t ≥ 1, so that φ(x) = x whenever dω(x,K) ≥ ε. By
pushing away ω-neighborhoods of K along the path p, the mapping φ−1 makes K
disappear. Besides, from the formula defining φ and the properties of p and f it is
clear that φ is the identity on the set {x ∈ X : dω(x,K) ≥ ε}. This last property is
shown in the proof of [5, Theorem 2.1], but is not explicitly stated in that Theorem.

Let us make a precise definition of this ω-distance, which plays an important role
in the proof of Theorem 1.

Definition 2. Let (X, ‖ · ‖) be a Banach space. We say that a functional ω : X →
[0,∞) is a noncomplete (asymmetric) norm provided ω is the Minkowski functional
of a radially bounded convex body which is not bounded (and which is not necessarily
symmetric either). That is, provided ω satisfies the following properties:

(1) ω(x+ y) ≤ ω(x) + ω(y) for all x, y ∈ X;
(2) ω(rx) = rω(x) for all r ≥ 0, x ∈ X;
(3) ω(x) = 0 if and only if x = 0.

We will say that ω is Cp smooth if it is so away from the origin. For each x ∈ X,
A ⊂ X and r > 0, we define the ω-body of center x and radius r as

Bω(x, r) = B(x, r;ω) = {y ∈ X : ω(y − x) ≤ r},

and we define the ω-distance from x to the set A by

dω(x,A) = d(x,A;ω) = inf{ω(x− z) : z ∈ A}.

Finally, a subset V of X will be said to be an ω-neighborhood of A ⊂ X provided
that, for each x ∈ A, there exists r > 0 so that B(x, r;ω) ⊂ V .

It is proved in [5] that every infinite-dimensional Banach space X with a Cp

smooth equivalent norm has a Cp smooth noncomplete asymmetric norm ω as well.

With these notations, we can now state what the proof of [5, Theorem 2.1] really
shows.

Theorem 3 (Azagra and Dobrowolski). Let (X, ‖ · ‖) be a Banach space with a Cp

smooth noncomplete (asymmetric) norm ω, where p ∈ N ∪ {∞}. Then, for every
ε > 0 and every compact set K ⊂ X, there exists a Cp diffeomorphism φε : X →
X \K such that φε is the identity on {x ∈ X : dω(x,K) ≥ ε}.
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The second step in the proof of Theorem 1 is to construct a Cp smooth non-
complete norm ω and Cp diffeomorphism F : X → X such that F (K) = K and
F (U) is a ω-neighborhood of K. Then, in order to obtain the desired deleting dif-
feomorphism h : X → X \K with support on U , it will be enough to compose F
with a diffeomorphism deleting K from X and being the identity off F (U). The
next Corollary makes sure that we can combine those two steps to obtain a proof of
Theorem 1, but it also tells us under what more general conditions we can expect to
obtain diffeomorphisms deleting compacta and with support on a prescribed open
set: it turns out that we only need a diffeomorphism F : X → X such that F (U) is
an ω-neighborhood of F (K) for some noncomplete (asymmetric) Cp smooth norm
ω on X.

Corollary 4. Let (X, ‖ · ‖) be a Banach space. Assume that, for a compact set
K ⊂ X and an open set U ⊃ K, there are:

(1) a Cp smooth noncomplete (asymmetric) norm ω and
(2) a Cp diffeomorphism F : X → X such that F (U) is an ω-neighborhood of

F (K).
Then there exists a Cp diffeomorphism h : X → X \K such that h is the identity
on X \ U .

Proof. Since F (U) is a ω-neighborhood of F (K), for each y ∈ F (K) there exists
ry > 0 so that Bω(y, 2ry) ⊂ F (U). We have

F (K) ⊂
⋃

y∈F (K)

Bω(y, ry) ⊂
⋃

y∈F (K)

Bω(y, 2ry) ⊂ F (U).

Since F (K) is a compact set and the Bω(y, ry) are open in (X, ‖ · ‖), we can get a
finite number of points y1, ..., yn ∈ F (K) so that

F (K) ⊂
n⋃
j=1

Bω(yj , rj) ⊂
n⋃
j=1

Bω(y, 2rj) ⊂ F (U), (1)

where we write rj = ryj for short. It follows that, for ε := min{rj : j = 1, ..., n},
{x ∈ X : dω(x, F (K)) < ε} ⊂ F (U) (2)

(indeed, if dω(x, F (K)) < ε then, by definition, there exists y ∈ F (K) so that
ω(x− y) < ε; now, since y ∈ F (K) ⊂

⋃n
j=1Bω(yj , rj), there exists j0 ∈ {1, ..., n} so

that ω(y−yj0) < rj0 , and therefore ω(x−yj0) ≤ ω(x−y)+ω(y−yj0) < ε+rj0 ≤ 2rj0 ,
that is, x ∈ Bω(yj0 , 2rj0) ⊂ F (U)).

Now we can apply Theorem 3 above with the noncomplete (asymmetric) norm
ω, the compact set F (K) and the positive number ε = min{rj : j = 1, ..., n} to
obtain a Cp diffeomorphism φε : X → X \F (K) so that φε is the identity on the set
{x ∈ X : dω(x,K) ≥ ε}, and in particular (thanks to (2) above) φε is the identity
outside F (U).

Define then h := F−1 ◦ φε ◦ F . It is clear that h is a Cp diffeomorphism from
X onto X \K. Finally, if x /∈ U , then F (x) /∈ F (U), hence φε(F (x)) = F (x), and
h(x) = x. �
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In the case when X has a Schauder basis, for instance, we are able to construct a
diffeomorphism F and a noncomplete norm ω with such properties. The construction
is rather technical and will be split into several lemmas. The reader is advised to skip
a few pages and begin reading the proof of Proposition 14, which goes directly into
the construction of ω and F , and only later go back to the most technical details.

We will also need to make use of smooth starlike bodies and their Minkowski
functionals. A closed subset A of a Banach space X is said to be a starlike body if
there exists a point a0 in the interior of A such that every ray emanating from a0

meets ∂A, the boundary of A, at most once. We will say that a0 is a center of A.
There can obviously exist many centers for a given starlike body. Up to a suitable
translation, we can always assume that a0 = 0 is the origin of X, and we will often
do so, unless otherwise stated. For a starlike body A with center a0, we define the
characteristic cone of A as

ccA = {x ∈ X|a0 + r(x− a0) ∈ A for all r > 0},
and the Minkowski functional of A with respect to the center a0 as

µA,a0(x) = µA(x) = inf{t > 0 | x− a0 ∈ t(−a0 +A)} for all x ∈ X.

Note that µA(x) = µ−a0+A(x − a0) for all x ∈ X. It is easily seen that µA is a
continuous function which satisfies µA(a0 + rx) = rµA(a0 + x) for every r ≥ 0
and x ∈ X, and µ−1

A (0) = ccA. Moreover, A = {x ∈ X|µA(x) ≤ 1}, and ∂A =
{x ∈ X | µA(x) = 1}. Conversely, if ψ : X → [0,∞) is continuous and satisfies
ψ(a0 + λx) = λψ(a0 + x) for all λ ≥ 0, then Aψ = {x ∈ X | ψ(x) ≤ 1} is a
starlike body. Of every such function we will say that ψ is a positively homogeneous
functional.

We will say that A is a Cp smooth starlike body provided its Minkowski functional
µA is Cp smooth on the setX\ccA = X\µ−1

A (0). This is equivalent to saying that ∂A
is a Cp smooth one-codimensional submanifold of X such that no affine hyperplane
tangent to ∂A contains a ray emanating from the center a0. Throughout this paper,
p = 0, 1, 2, ....,∞, and C0 smooth means just continuous.

All the starlike bodies that we will deal with in this paper are radially bounded. A
starlike body A is said to be radially bounded provided that, for every ray emanating
from the center a0 of A, the intersection of this ray with A is a bounded set. This
amounts to saying that ccA = {a0}.

For every bounded starlike body A in a Banach space (X, ‖·‖) there are constants
M,m > 0 such that

m‖x‖ ≤ µA(x) ≤M‖x‖ for all x ∈ X.
If A is just radially bounded then we can only ensure that

µA(x) ≤M‖x‖ for all x ∈ X,
for some M > 0. As is shown implicitly in [18, Proposition II.5.1], a Banach space
X has a Cp smooth bump function if and only if there is a bounded Cp smooth
starlike body in X. The reader might want to consult the references [2, 4, 7, 8, 9]
for other properties of starlike bodies.
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Notation 5. Let (X, ‖ · ‖) be a Banach space, and ρ be the Minkowski functional
of a radially bounded Cp smooth starlike body. For each x ∈ X, A ⊂ X, r > 0, we
define the ρ-pseudoball of center x and radius r as

B(x, r; ρ) = {y ∈ X : ρ(y − x) ≤ r},

and the ρ-pseudodistance of x to the set A by

d(x,A; ρ) = inf{ρ(x− z) : z ∈ A}.

Lemma 6. Let X be a Banach space, A be a Cp smooth bounded starlike body in X
(with Minkowski functional µA), and Y and Z be linear subspaces of X satisfying
the following properties:

(i) X = Y ⊕ Z; and
(ii) the function t ∈ (0,∞) −→ µA(y + tz) is nondecreasing for each (y, z) ∈

Y × Z.

Take Υ, any finite subset of Y ; δ and ∆, numbers with 0 < δ < ∆; and {rυ : υ ∈ Υ}
and {Rυ : υ ∈ Υ}, families of numbers such that 0 < rυ < Rυ for each υ ∈ Υ. Then,
there exists a function g : X = Y ⊕ Z −→ [0,+∞) satisfying:

(1) g is Cp smooth on X;
(2) g = 0 on

⋃
υ∈ΥB(υ, rυ;µA) ∪ {(y, z) ∈ X : µA(z) ≤ δ};

(3) g = 1 on [X \
⋃
υ∈ΥB(υ,Rυ;µA)] ∩ {(y, z) ∈ X : µA(z) ≥ ∆}; and

(4) the function t ∈ (0,∞) −→ g(y + tz) is nondecreasing, for every (y, z) ∈
Y × Z.

Proof. For each υ ∈ Υ, pick a function θυ ∈ C∞(R, [0, 1]) which is nondecreasing
and satisfies θ−1

υ (0) = (−∞, rυ] and θ−1
υ (1) = [Rυ,+∞). Take also a nondecreasing

function θ ∈ C∞(R, [0, 1]) such that θ−1(0) = (−∞, δ] and θ−1(1) = [∆,+∞). Then
we can define g : X −→ [0, 1] as

g(x) = g(y, z) = θ(µA(z))
∏
υ∈Υ

θυ(µA(y − υ + z)).

It is obvious that g satisfies conditions (1), (2) and (3). Condition (4) follows from
(ii), and the facts that Υ ⊂ Y and the functions {θυ : υ ∈ Υ} and θ are nonnegative
and nondecreasing. �

Lemma 7. Let X be a Banach space; D be a Cp smooth bounded starlike body, with
Minkowski functional ρ; Y and Z be linear subspaces of X; and g, ω : X −→ [0,+∞)
be functions satisfying the following properties:

(i) X = Y ⊕ Z;
(ii) g is Cp smooth on X; g = 0 on the set {(y, z) ∈ X : ρ(z) ≤ δ}, for some

δ > 0; and the function t ∈ (0,∞) −→ g(y + tz) is nondecreasing for each
(y, z) ∈ Y × Z;

(iii) ω is the Minkowski functional of a Cp smooth radially bounded convex body
W such that W ∩ Z contains D ∩ Z (that is ω ≤ ρ on Z).
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Then, the mapping F : X = Y ⊕ Z −→ X defined by

F (x) = F (y, z) =
(
y,

[
g(x)

ρ(z)
ω(z)

+1−g(x)
]
z
)

if z 6= 0, and F (y, z) = (y, z) if z = 0

is a Cp diffeomorphism.

Proof. It is clear that F is of class Cp on the set {(y, z) ∈ X : z 6= 0}. Bearing
in mind that g = 0 on {(y, z) ∈ X : ρ(z) ≤ δ}, we immediately see that F is the
identity on this set, and therefore, F is Cp on X.

Let us check that F is a bijection. Since F is the identity on {(y, z) ∈ X : z = 0},
it will suffice to show that for every (y, z) ∈ X with z 6= 0, there exists a unique
t(y, z) > 0 with F (y, t(y, z)z) = (y, z). Take x0 = (y0, z0) ∈ X such that z0 6= 0.
Consider the function Gx0 = G(y0,z0) : [0,∞) −→ [0,∞) defined by

Gx0(t) = [g(y0 + tz0)
ρ(z0)
ω(z0)

+ 1− g(y0 + tz0)]t,

which is of class Cp. We have that Gx0(0) = 0 and limt→+∞Gx0(t) = +∞, and the
derivative of Gx0 is given by

dGx0

dt
= [g(y0 + tz0)

ρ(z0)
ω(z0)

+ 1− g(y0 + tz0)] + tDg(y0 + tz0)(z0)[
ρ(z0)
ω(z0)

− 1].

Now, for t ≥ 0, condition (ii) implies that Dg(y0 + tz0)(z0) ≥ 0. Hence,
dGx0

dt
≥ [g(y0 + tz0)

ρ(z0)
ω(z0)

+ 1− g(y0 + tz0)] ≥ 1,

and Gx0 is strictly increasing. Therefore, there is a unique t(y0, z0) > 0 such that
G(y0,z0)(t(y0, z0)) = 1, which means F (y0, t(y0, z0)z0) = (y0, z0).

Finally, from the fact that dGx0
dt ≥ 1, and by using the implicit function theorem,

it is immediate that the function X \ Y 3 (y, z) −→ t(y, z) is of class Cp, and
therefore F is a Cp diffeomorphism. �

Lemma 8. Let (X, ‖ · ‖) be a normed space, and Y and Z be linear subspaces of X
with X = Y ⊕Z. Assume that the norm ‖·‖ has the following property of symmetry:

‖(y,−z)‖ = ‖(y, z)‖ for every (y, z) ∈ Y × Z.

Then, for any given (y, z) ∈ Y × Z, the function

[0,∞) 3 t −→ g(t) = ‖(y, tz)‖
is nondecreasing.

Proof. The function g is obviously convex, and limt→∞ g(t) = ∞. A standard con-
vexity argument shows that g is nondecreasing if and only if g has a global minimum
at the point t = 0, that is, if and only if ‖(y, 0)‖ ≤ ‖(y, tz)‖ for all t > 0. Therefore
it suffices to check that ‖(y, 0)‖ ≤ ‖(y, v)‖ for all v ∈ Z. The verification is trivial
thanks to the symmetry condition:

‖(y, 0)‖ = ‖1
2
(y, v) +

1
2
(y,−v)‖ ≤ 1

2
‖(y, v)‖+

1
2
‖(y,−v)‖ = ‖(y, v)‖.
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�

Definition 9. We say that a subset V of the plane R2 is a smooth square provided
(i) V is a C∞ smooth bounded convex body with the origin as an interior point;
(ii) (y, z) ∈ ∂V ⇔ (ε1y, ε2z) ∈ ∂V for every (ε1, ε2) ∈ {−1, 1}2.
(iii) [−1

2 ,
1
2 ]× {−1, 1} ∪ {−1, 1} × [−1

2 ,
1
2 ] ⊂ ∂V ;

(iv) V ⊂ [−1, 1]× [−1, 1].

It is obvious that there are plenty of smooth squares in R2. As we will see, whenever
we have a decomposition X = Y ⊕Z, smooth squares V are very useful to combine
two norms ρY , ρZ (or two Minkowski functionals of starlike bodies) defined on Y
and Z into a norm (or a Minkowski functional of a starlike body) defined on X by

ρ(x) = ρ(y, z) = µV (ρY (y), ρZ(z)),

without losing any differentiability property of ρY and ρZ , and keeping the equiv-
alence with the functional max{ρY (y), ρZ(z)}. The next lemma (whose proof is
easy and therefore omitted) says this is indeed so. The rather strange statement
of property (iv) tells us that the unit sphere of µV is locally flat and orthogonal
to the axis (in a neighborhood of the intersection of ∂V with the lines x = 0 and
y = 0). This property (iv) accounts for the fact that such ρ enjoys the same degree
of differentiability as ρY and ρZ do.

Lemma 10. Let V ⊂ R2 be a smooth square. Then, its Minkowski functional
µV : R2 → R is a C∞ smooth norm in R2 such that

(1) µV ≤ ‖ · ‖1 ≤ 2µV ;
(2) ‖ · ‖∞ ≤ µV ≤ 2‖ · ‖∞;
(3) µV (0, z) = |z|, µV (y, 0) = |y|;
(4) for every (y, z) ∈ R2 \ {(0, 0)}, there exist σ > 0 and (κ1, κ2) ∈ R2 such

that µV (y′, z′) = κ1 · y′ if ‖(y′ − y, z′)‖∞ ≤ σ, and µV (y′, z′) = κ2 · z′ if
‖(y′, z′ − z)‖∞ ≤ σ.

(5) the functions t ∈ (0,∞) → µV (y, tz) and t ∈ (0,∞) → µV (ty, z) are both
nondecreasing.

Here, as is customary, ‖(x, y)‖1 = |x|+ |y|, and ‖(x, y)‖∞ = sup{|x|, |y|}.

Notation 11. Let (X, ‖ · ‖) be a Banach space with Schauder basis (ei)∞i=1. For
each n ∈ N, let us consider

Yn := span{ei : 1 ≤ i ≤ n}, Zn := span{ei : i > n}.

The uniformly bounded family of canonical projections X → Yn associated to the
basis (ei)∞=1 will be denoted by (Pn)∞n=1.

Lemma 12. Let (X, ‖ · ‖) be a Banach space with Schauder basis (ei)∞i=1, and let
A ⊂ X be a Cp smooth bounded starlike body. Consider a smooth square V ⊂ R2.
Then, for every n ∈ N, the function ρn : X = Yn × Zn → R defined by

ρn(y, z) = µV (µA(y), µA(z))
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is the Minkowski functional of a Cp smooth bounded starlike body An such that the
functions

(0,∞) 3 t→ ρn(y, tz) and (0,∞) 3 t→ ρn(ty, z)
are both nondecreasing. Moreover, there exists α > 0 such that

α−1ρn ≤ ‖ · ‖ ≤ αρn

for every n ∈ N.

Proof. Thanks to Lemma 10 and Lemma 8 it is straightforward to check that ρn
has the above properties. We only show the existence of an α > 0 satisfying the last
part of the statement. Choose M > 0 such that M−1‖ · ‖ ≤ µA ≤M‖ · ‖ and

sup{‖Pn‖ : n ∈ N} ≤M,

where (Pn)n≥1 are the projections associated to the Schauder basis of X. Fix an
n ∈ N.

Let x = (y + z) ≡ (y, z) ∈ Yn × Zn. If ρn(y, z) ≤ 1 then, by Lemma 10, we
have that ‖(µA(y), µA(z))‖∞ ≤ 1, hence ‖(‖y‖, ‖z‖)‖∞ ≤ M . This implies that
‖y + z‖ ≤ 2M and ‖ · ‖ ≤ 2Mρn.

On the other hand, for each (y, z) ∈ Yn × Zn we have

‖y‖ = ‖Pn(y + z)‖ ≤M‖y + z‖ ≤ (1 +M)‖y + z‖,
‖z‖ = ‖y + z − y‖ ≤ ‖y + z‖+ ‖y‖ ≤ (1 +M)‖y + z‖.

Therefore, again by Lemma 10, we can estimate

ρn(y, z) ≤ ‖(µA(y), µA(z))‖1 ≤M(‖y‖+ ‖z‖) ≤ 2M(1 +M)‖y + z‖.
Now we can deduce that

[2M(1 +M)]−1ρn ≤ ‖ · ‖ ≤ 2Mρn

for each n ∈ N. Hence it is enough to choose α > 0 with α ≥ 2M(1 +M). �

Lemma 13. Let (X, ‖ · ‖) be a Banach space with Schauder basis(ei)i≥1 and A ⊂ X
be a Cp smooth bounded starlike body. Consider a smooth square V ⊂ R2. Let
K ⊂ X be a compact subset of X and U ⊃ K an open set. Then, for every γ > 1,
there exist a number N ∈ N, a finite subset Υ of YN := sp{ei : 1 ≤ i ≤ N}, and
positive numbers r and R satisfying the following properties:

(1) R
r ≥ γ;

(2) K ⊂
⋃
υ∈ΥB(υ, r; ρN ) ⊂

⋃
υ∈ΥB(υ,R; ρN ) ⊂ U,

where ρN is defined as in the statement of Lemma 12.

Proof. By Lemma 12, there exists α ≥ 1 such that α−1ρn ≤ ‖ · ‖ ≤ αρn for every
n ∈ N. Let us define L := 2

[
α2 + γ−1

]
. Set R′ = 1

2dist(K,X \ U) > 0, and
r′ = (Lγ)−1R′. For each point ξ ∈ K we have that B(ξ, r′; ‖·‖) ⊂ B(ξ,R′; ‖·‖) ⊂ U .
Since K is compact, there is a finite subset I of K such that

K ⊂
⋃
ξ∈I

B(ξ, r′; ‖ · ‖) ⊂
⋃
ξ∈I

B(ξ,R′; ‖ · ‖) ⊂ U.
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Taking into account that R′

r′ = Lγ = 2(γα2 + 1), we may find an ε > 0 such that

R′ − ε

r′ + ε
≥ γα2 > 1.

Now let N ∈ N be such that I ⊂ YN + εBX (such N exists because (ei)∞i=1 is a
Schauder basis of X). For every ξ ∈ I, choose υξ ∈ YN satisfying ‖ξ − υξ‖ ≤ ε. The
set Υ := {υξ : ξ ∈ I} is a finite subset of YN . Moreover,

K ⊂
⋃
ξ∈I

B(ξ, r′; ‖ · ‖) ⊂
⋃
ξ∈I

B(υξ, r′ + ε; ‖ · ‖) ⊂
⋃
ξ∈I

B(υξ, α(r′ + ε); ρN )

⊂
⋃
ξ∈I

B(υξ,
R′ − ε

α
; ρN ) ⊂

⋃
ξ∈I

B(υξ, R′ − ε; ‖ · ‖) ⊂
⋃
ξ∈I

B(ξ,R′; ‖ · ‖) ⊂ U.

Therefore we can finish the proof by setting r := α(r′+ε) and R := α−1(R′−ε). �

Now we have all the tools we need to construct the noncomplete norm ω and the
diffeomorphism F we need.

Proposition 14. Let (X, ‖ · ‖) be a Banach space with Schauder basis and with a
Cp smooth bump function. Then, for every compact set K ⊂ X and every open
neighborhood U ⊃ K, there are a C∞ smooth noncomplete norm ω on X, and a Cp

diffeomorphism F : X → X such that F (K) = K and F (U) is a ω-neighborhood of
K.

Proof. Let (ei)∞i=1 be a normalized Schauder basis of (X, ‖ ·‖) , (Pi)∞i=1 be the family
of associated projections, and M1 the basic constant. Since X has a Cp smooth
bump function, there exists a Cp smooth bounded symmetric starlike body A ⊂ X.
Choose a smooth square V ⊂ R2. Define the family (ρn)n≥1 , as in the statement of
Lemma 12, that is

ρn(y, z) = µV (µA(y), µA(z)).
By Lemma 12, there exists some α ≥ 1 satisfying α−1ρn ≤ ‖ · ‖ ≤ αρn for all n ∈ N.
Take M2 ≥ 1 such that M−1

2 ‖ · ‖ ≤ µA ≤M2‖ · ‖. Define M = M1 +M2 + α. Then
we have

sup{‖Pi‖ : i ∈ N} ≤M ;
M−1ρn ≤ ‖ · ‖ ≤Mρn, for each n ∈ N;
M−1‖ · ‖ ≤ µA ≤M‖ · ‖.

Now, for our given sets K ⊂ U , by applying Lemma 13 with γ = 12M6, we get
an N ∈ N, a finite subset Υ of YN := sp{ei : 1 ≤ i ≤ N}, and numbers 0 < r < R
satisfying:

(i) R/r ≥ γ;
(ii) K ⊂

⋃
υ∈ΥB(υ, r; ρN ) ⊂

⋃
υ∈ΥB(υ,R; ρN ) ⊂ U,

By Lemma 12 again, we know that ρN is the Minkowski functional of a Cp smooth
bounded starlike body such that the functions

(0,∞) 3 t→ ρN (y, tz) and (0,∞) 3 t→ ρN (ty, z) are nondecreasing.
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Next, choose numbers numbers δ,∆ with 0 < δ < ∆ < 1
2R, and apply Lemma 6 to

find a Cp smooth function g : X = YN ⊕ ZN −→ [0,+∞) such that

(iii) g = 0 on
⋃
υ∈ΥB(υ, r; ρN ) ∪ {(y, z) ∈ X : ρN (z) ≤ δ};

(iv) g = 1 on [X \
⋃
υ∈Υ(υ,R; ρN )] ∩ {(y, z) ∈ X : ρN (z) ≥ ∆};

(v) t ∈ (0,∞) −→ g(y + tz) is nondecreasing, for each (y, z) ∈ YN × ZN .

To save notation we will denote ρ := ρN . We are going to construct a C∞ smooth
noncomplete norm ω on (X, ‖ · ‖) such that ω ≤ ρ. It is well known that every
bounded symmetric convex body in Rn = Yn can be approximated in the Hausdorff
distance by C∞ smooth bounded symmetric convex bodies. In particular, for the
body conv(A) ∩ YN ⊂ RN , there exists a C∞ smooth bounded symmetric convex
body WN in YN such that

conv(A) ∩ YN ⊂WN ⊂ (MBX ∩ YN ).

In particular, since M−1BX ⊂ A, we know that

conv(A) ∩ YN ⊂W ⊂ (MBX ∩ YN ) = M2(
1
M
BX ∩ YN ) ⊂

M2(A ∩ YN ) ⊂M2(conv(A) ∩ YN ) (1)

Let (e′i)i≥1 be an orthonormal basis in `2. Consider the mapping T : X → `2 defined
by

T (
∞∑
i=1

xiei) =
∑
i≥1

xi
2i
e′i

for each x =
∑∞

i=1 xiei ∈ X. For every j ∈ N and x ∈ X we have that |xj | ≤ 2M‖x‖.
It follows that ‖T (x)‖`2 ≤ 2M‖x‖ for every x ∈ X. Then T is an injective continuous
linear map. Define now ω : X = YN ⊕ ZN −→ R by

ω(x) = ω(y, z) =
1

3M2
µV (µW (y), ‖T (z)‖`2).

Taking into account the properties of V stated in Lemma 10, it is clear that ω is a
C∞ smooth norm on X. To see that ω is not complete it is enough to consider the
sequence (2

i
2 ei)i>N , which is not bounded in (X, ‖ · ‖) and yet

ω
(
2

i
2 ei

)
= ω

(
0, 2

i
2 ei

)
=

1
3M2

µV (0, 2−
i
2 ) =

1
3M2

2−
i
2

for each i > N , so the sequence (2
i
2 ei)i>N is bounded in (X,ω). Therefore ω is not

equivalent to ‖ · ‖, that is, ω is not complete. Finally, let us check that ω ≤ ρ. Let
us first see that

µW (y) ≤M2ρ(y, z) for each (y, z) ∈ YN × ZN .

Indeed, if ρ(y, z) ≤ 1 then ‖y‖ ≤ MµA(y) ≤ MµV (µA(y), µA(z)) ≤ M . Since
M−1BX ∩ YN ⊂ W , we get that M−2y ∈ W , and µW (y) = M2µW ( y

M2 ) ≤ M2.
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Hence µW (y) ≤M2ρ(y, z). Now, for any (y, z)× YN × ZN we have that

µV (µW (y), ‖T (z)‖`2) ≤ µW (y) + ‖T (z)‖`2
≤M2ρ(y, z) + 2M‖z‖ ≤M2ρ(y, z) + 2M2µA(z)
= M2ρ(y, z) + 2M2µV (0, µA(z)) ≤ 3M2ρ(y, z),

and therefore ω ≤ ρ.
From Lemma 10 and the definition of ω, it is obvious that the functions

t ∈ (0,∞) → ω(ty, z) and t ∈ (0,∞) → ω(y, tz) are nondecreasing, (2)

for every (y, z) ∈ YN ⊕ ZN . By Lemma 7, and according to properties (iii)-(iv)-(v)
above, the mapping F : X = YN ⊕ ZN −→ X defined by

F (x) = F (y, z) =

{
(y, [g(x) ρ(z)ω(z) + 1− g(x)]z) if z 6= 0,
(y, z) if z = 0

is a Cp diffeomorphisms.
It only remains to check that F (K) = K and F (U) is an ω-neighborhood of

K. From property (iii) above it follows that g = 0 en
⋃
υ∈ΥB(υ, r; ρ) ∪ {(y, z) ∈

X : ρ(z) ≤ δ} ⊃ K, hence F is the identity on K. Let us show that F (U) is an
ω-neighborhood of K. Take x = (y, z) ∈ X and a vector υ ∈ Υ so that ρ(x − υ) =
ρ(y − υ, z) ≥ R. Then

‖
(
µA(y − υ), µA(z)

)
‖∞ ≥ 1

2
µV

(
µA(y − υ), µA(z)

)
=

1
2
ρ(y − υ, z) ≥ R

2
. (3)

We now have to consider three cases.
First case. Assume that ρ(z) ≤ ∆. Then we get

µA(z) = µV (0, µA(z)) = ρ(z) ≤ ∆ <
R

2
and, bearing (3) in mind, we deduce that

µA(y − υ) ≥ R

2
. (4)

Now, by combining (1), (2), (3), (4), and the inclusion conv(A) ⊂ M2A, we may
estimate as follows

ω(F (x)− υ) = ω(y − υ, [g(x)
ρ(z)
ω(z)

+ 1− g(x)]z) ≥ ω(y − υ, 0)

=
1

3M2
· µV

(
µW (y − υ), 0

)
=

1
3M2

· µW (y − υ)

≥ 1
3M4

· µconv(A)∩YN
(y − υ) =

1
3M4

· µconv(A)(y − υ)

≥ 1
3M6

· µA(y − υ) ≥ R

2
· 1
3M6

=
R

6M6
> r.

Second case. If ρ(z) ≥ ∆ and µA(y − υ) ≥ 1
2R, we may copy the estimation just

done to see that ω(F (x)− υ) > r.
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Third case. Suppose that ρ(z) ≥ ∆ and µA(y − υ) < 1
2R. Then, from (3) it follows

that µA(z) ≥ R
2 , and

ω(F (x)− υ) = ω(y − υ,
ρ(z)
ω(z)

) ≥ ω(0,
ρ(z)
ω(z)

)

= ρ(z) = µV (0, µA(z)) = µA(z) ≥ R

2
> r.

From this discussion we conclude F
(
X \

⋃
υ∈ΥB(υ,R; ρ)

)
⊂ X \

⋃
υ∈ΥB(υ, r;ω),

that is, ⋃
υ∈Υ

B(υ, r;ω) ⊂ F
( ⋃
υ∈Υ

B(υ,R; ρ)
)
.

We have thus shown that

K ⊂
⋃
υ∈Υ

B(υ, r; ρ) ⊂
⋃
υ∈Υ

B(υ, r;ω) ⊂ F
( ⋃
υ∈Υ

B(υ,R; ρ)
)
⊂ F (U),

and F (U) is an ω-neighborhood of K. �

Proof of Theorem 1
(1) ⇒ (2). It is enough to combine Corollary 4 with Proposition 14.
(2) ⇒ (1). Take U an open bounded set containing the origin. By the hypothesis
there exists a Cp diffeomorphism h : X → X \ {0} such that h is the identity off U .
Consider the mapping g : X → X defined as g(x) = h(x) − x for each x ∈ X. The
mapping g is Cp smooth, it vanishes outside U , and g(0) = h(0) 6= 0. Choose a con-
tinuous linear functional x∗ ∈ X∗ satisfying x∗(g(0)) 6= 0, and define b := x∗◦g. Then
b is a Cp smooth bump function on X. �
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