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Abstract. Let H be a Hilbert space, E ⊂ H be an arbitrary subset and
f : E → R, G : E → H be two functions. We give a necessary and suffi-
cient condition on the pair (f,G) for the existence of a convex function
F ∈ C1,1(H) such that F = f and ∇F = G on E. We also show that,
if this condition is met, F can be taken so that Lip(∇F ) = Lip(G). We
give a geometrical application of this result, concerning interpolation of
sets by boundaries of C1,1 convex bodies in H. Finally, we give a coun-
terexample to a related question concerning smooth convex extensions
of smooth convex functions with derivatives which are not uniformly
continuous.

1. Introduction and main results

Throughout this paper H will be a real Hilbert space equipped with inner
product 〈· , ·〉. The norm in H will be denoted by ‖ · ‖. By a 1-jet (f,G)
on a subset E ⊂ H we understand a pair of functions f : E → R, G :
E → H. Given a 1-jet (f,G) defined on E ⊂ H, Le Gruyer proved in [9]
that a necessary and sufficient condition on the jet (f,G) for having a C1,1

extension F to the whole space H is that

Γ(f,G,E) := sup
x,y∈E

(√
A2
x,y +B2

x,y + |Ax,y|
)
<∞,

where

Ax,y =
2(f(x)− f(y)) + 〈G(x) +G(y), y − x〉

‖x− y‖2
and

Bx,y =
‖G(x)−G(y)‖
‖x− y‖

for all x, y ∈ E, x 6= y.

This condition is equivalent to

2 sup
y∈H

sup
a6=b∈E

f(a)− f(b) + 〈G(a), y − a〉 − 〈G(b), y − b〉
‖a− y‖2 + ‖b− y‖2

<∞,
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and in particular Le Gruyer’s Theorem provides a generalization (to the
setting of Hilbert spaces) of Glaeser’s version of the Whitney Extension
Theorem [13, 8] for C1,1 functions. See also [12] for another generalization
of the C1,1 version of the Whitney Extension Theorem for functions defined
on subsets of the Hilbert space, and for a proof that the Whitney Extension
Theorem fails for C3 functions on Hilbert spaces. We also refer to [10] for a
version of the Whitney Extension Theorem for C1 functions on some Banach
spaces (including Hilbert spaces).

Le Gruyer also shows in [9] that the extension F satisfies

Lip(∇F ) = Γ(F,∇F,H) = Γ(f,G,E).

Our purpose in this paper is to solve an analogous problem for convex
functions. In a recent paper [2], by introducing a new condition (CW 1,1),
see Definition 1.1 below, we gave a satisfactory solution to this problem for
convex functions of the class C1,1(Rn) (in fact, for all the classes C1,ω(Rn),
where ω is a modulus of continuity), with a good control of the Lipschitz
constant of the gradient of the extension in terms of that of G, namely
Lip(∇F ) ≤ c(n) Lip(G), where c(n) only depends on n (but tends to infinity
with n); see also [1] for information about related problems of higher order.
In this paper we generalize and improve this result for C1,1 convex functions
defined on an arbitrary Hilbert space, showing in particular that those con-
stants c(n) can all be taken equal to 1. Nevertheless, it must be observed
that whereas the proofs in [2] (and of course the proof of the C1,1 version
of the Whitney Extension Theorem too) are constructive, the proofs of Le
Gruyer’s Theorem in [9] and of the main result in the present paper (which
is strongly inspired by that of Le Gruyer’s) are not, as they both rely on an
application of Zorn’s lemma.

Definition 1.1. We will say that a pair of functions f : E → R, G : E → H
defined on a subset E ⊂ H, satisfies condition (CW 1,1) on E provided that
there exists a constant M > 0 with

f(x)− f(y)− 〈G(y), x− y〉 ≥ 1

2M
‖G(x)−G(y)‖2 (CW 1,1)

for all x, y ∈ E.
Remark 1.2. If (f,G) satisfies (CW 1,1) on E, then

f(x) ≥ f(y) + 〈G(y), x− y〉 for all x, y ∈ E
and

sup
x 6=y, x,y∈E

{
|f(x)− f(y)− 〈G(y), x− y〉|

‖x− y‖2
,
‖G(x)−G(y)‖
‖x− y‖

}
≤M.

In particular G is M -Lipschitz on E.

Proof. The first inequality is obvious. For the second one, given x, y ∈ E,
the condition (CW 1,1) gives us the inequalities:

f(x)− f(y)− 〈G(y), x− y〉 ≥ 1

2M
‖G(x)−G(y)‖2 and
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f(y)− f(x)− 〈G(x), y − x〉 ≥ 1

2M
‖G(y)−G(x)‖2,

the sum of which yields

〈G(x)−G(y), x− y〉 ≥ 1

M
‖G(x)−G(y)‖2,

which in turn implies ‖G(x)−G(y)‖ ≤M‖x− y‖. On the other hand, using
again (CW 1,1) we obtain

0 ≤ f(x)− f(y)− 〈G(y), x− y〉 ≤ 〈G(y)−G(x), y − x〉.
The desired inequality follows by combining the last one with the fact that
G is M -Lipschitz on E. �

The main result of this paper is as follows.

Theorem 1.3. Let E be a subset of H and f : E → R, G : E → H be two
functions. Then there exists a convex function F of class C1,1(H) such that
F = f and ∇F = G on E if and only if (f,G) satisfies condition (CW 1,1)
on E. Moreover, if M > 0 is as in Definition 1.1, then F can be taken such
that (F,∇F ) also satisfies (CW 1,1) on H with the same constant M.

Equivalently, bearing in mind Remark 1.2, Theorem 1.3 can be reformu-
lated in terms of the Lipschitz constant as follows.

Theorem 1.4. Let E be a subset of H, f : E → R be a function and
G : E → H a nonconstant Lipschitz mapping. A necessary and sufficient
condition on the pair (f,G) for the existence of a convex function F of class
C1,1(H) such that F = f and ∇F = G on E is that (f,G) satisfies condition
(CW 1,1) on E with M = Lip(G). In addition, if this condition is met, F
can be taken such that Lip(∇F ) = Lip(G).

Obviously, there is no loss of generality in assuming that G is not constant,
as the problem is trivial otherwise (a 1-jet (f,G) on E satisfying f(x)−f(y)−
〈G(y), x− y〉 ≥ 0 for x, y ∈ E and such that G constant extends to an affine
function on H).

As in [2], we can use the above results to solve a geometrical problem
concerning characterizations of subsets of a Hilbert space which can be in-
terpolated by boundaries of C1,1 convex bodies (with prescribed unit outer
normals). Namely, if C is a subset of a Hilbert space H and we are given a
Lipschitz map N : C → H such that |N(y)| = 1 for every y ∈ C, it is natural
to ask what conditions on C and N are necessary and sufficient for C to
be a subset of the boundary of a C1,1 convex body V such that 0 ∈ int(V )
and N(y) is outwardly normal to ∂V at y for every y ∈ C. A suitable set of
conditions is:

(O) 〈N(y), y〉 ≥ δ for all y ∈ C;

(KW1,1) 〈N(y), y − x〉 ≥ δ|N(y)−N(x)|2 for all x, y ∈ C,
for some δ > 0. The proof of [2, Theorem 1.5] can easily be adapted to
obtain the following.
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Corollary 1.5. Let C be a subset of a Hilbert space H, and let N : C → H
be a Lipschitz mapping such that |N(y)| = 1 for every y ∈ C. Then the
following statements are equivalent:

(1) There exists a C1,1 convex body V with 0 ∈ int(V ) and such that
C ⊆ ∂V and N(y) is outwardly normal to ∂V at y for every y ∈ C.

(2) C and N satisfy conditions (O) and (KW1,1) for some δ > 0.

It is natural to look for analogues of Theorems 1.3 and 1.4 for 1-jets
(f,G) on a closed subset C of a Hilbert space H with G not necessarily
Lipschitz. If G is uniformly continuous, it seems plausible that the condition
(CW 1,ω) found in [2] may be necessary and sufficient for (f,G) to have a C1,ω

extension to H. However, the proofs in the present paper cannot be adapted
to that purpose. On the other hand, for the method of proof of [2] to work in
an infinite-dimensional setting, we would need to have, among other things,
a C1,ω version of Whitney’s extension theorem valid for infinite-dimensional
Hilbert spaces, and to the best of our knowledge no one has established such
a result (with the exception of Wells and Le Gruyer [12, 9] in the particular
case that ω(t) = t). What we do know is that the conditions (C), (CW 1)
and (W 1) of [2, Theorem 1.7] are not sufficient in the infinite-dimensional
setting because, as we will show in Example 2.9 below, there exist bounded,
smooth convex functions defined on an open neighborhood of a closed ball
in H which have no continuous convex extensions to all of H.

2. Proof of Theorem 1.3

2.1. Necessity. The necessity of condition (CW 1,1) in Theorem 1.3 follows
from the following Proposition.

Proposition 2.1. Let f ∈ C1,1(H) be convex, and assume that f is not
affine. Then

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2M
‖∇f(x)−∇f(y)‖2

for all x, y ∈ H, where

M = sup
x,y∈H, x 6=y

‖∇f(x)−∇f(y)‖
‖x− y‖

.

On the other hand, if f is affine, it is obvious that (f,∇f) satisfies (CW 1,1)
on every E ⊂ H, for every M > 0.

Proof. Suppose that there exist different points x, y ∈ H such that

f(x)− f(y)− 〈∇f(y), x− y〉 < 1

2M
‖∇f(x)−∇f(y)‖2,

and we will get a contradiction.
Case 1. Assume further that M = 1, f(y) = 0, and ∇f(y) = 0. By
convexity this implies f(x) ≥ 0. Then we have

0 ≤ f(x) <
1

2
‖∇f(x)‖2.
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Call a = ‖∇f(x)‖ > 0, b = f(x), set

v = − 1

‖∇f(x)‖
∇f(x),

and define

ϕ(t) = f(x+ tv)

for every t ∈ R. We have ϕ(0) = b, ϕ′(0) = −a, and ϕ′ is 1-Lipschitz. This
implies that

|ϕ(t)− b+ at| ≤ t2

2
for every t ∈ R+, hence also that

ϕ(t) ≤ −at+ b+
t2

2
for all t ∈ R+,

By assumption we have b < 1
2a

2, and therefore

f (x+ av) = ϕ (a) ≤ −a2 + b+
a2

2
< 0,

which is in contradiction with the assumptions that f is convex, f(y) = 0,
and ∇f(y) = 0. This shows that

f(x) ≥ 1

2
‖∇f(x)‖2.

Case 2. Assume only that M = 1. Define

g(z) = f(z)− f(y)− 〈∇f(y), z − y〉

for every z ∈ H. Then g(y) = 0 and ∇g(y) = 0. By Case 1, we get

g(x) ≥ 1

2
‖∇g(x)‖2,

and since ∇g(x) = ∇f(x)−∇f(y) the Proposition is thus proved in the case
when M = 1.
Case 3. In the general case, we may assume M > 0 (the result is trivial
for M = 0). Consider ψ = 1

M f , which satisfies the assumption of Case 2.
Therefore

ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 ≥ 1

2
‖∇ψ(x)−∇ψ(y)‖2,

which is equivalent to the desired inequality. �

2.2. Sufficiency. Now we assume that (f,G) satisfies condition (CW 1,1) on
the set E ⊂ H with constant M > 0. If we prove that for any x ∈ H\E there

exist zx ∈ R and Zx ∈ H such that the pair (f̃ , G̃), defined by f̃ = f, G̃ = G

on E and f̃(x) = zx, G̃(x) = Zx, satisfies (CW 1,1) on E ∪ {x} with the
same constant M, then Zorn’s Lemma will imply the existence of a pair
(F, ∇̃F ) satisfying (CW 1,1) on H with constant M. Hence by Remark 1.2,
F will be a convex function of class C1,1(H) such that F = f, ∇F = G on
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E and Lip(∇F ) ≤ M , and this simultaneously will complete the proofs of
Theorems 1.3 and 1.4.

To sum up, our only assumption is

(2.1) f(b)− f(a)− 〈G(a), b− a〉 ≥ 1

2M
‖G(a)−G(b)‖2 for all a, b ∈ E,

and we have to show that for every x ∈ H \ E there exist f(x) ∈ R and
G(x) ∈ H (denoted above by zx and Zx respectively) such that

f(x)− f(a)− 〈G(a), x− a〉 ≥ 1

2M
‖G(x)−G(a)‖2 and

f(a)− f(x)− 〈G(x), a− x〉 ≥ 1

2M
‖G(x)−G(a)‖2 for all a ∈ E.

Note that these conditions are equivalent to

f(x) ≥ f(a) + 〈G(a), x− a〉+
1

2M
‖G(x)−G(a)‖2 and

f(x) ≤ f(b)− 〈G(x), b− x〉 − 1

2M
‖G(x)−G(b)‖2 for all a, b ∈ E.

If we prove the existence of a vector G(x) ∈ H such that

s(x) := sup
a∈E

(
f(a) + 〈G(a), x− a〉+

1

2M
‖G(x)−G(a)‖2

)
≤ I(x) := inf

b∈E

(
f(b)− 〈G(x), b− x〉 − 1

2M
‖G(x)−G(b)‖2

)
,

then it will be enough for us to take f(x) as any number in the interval
[s(x), I(x)].

In what follows we will essentially keep Le Gruyer’s notation because,
although our numbers αa,b, βa,b, Φ((a, b), (c, d)), etc, are different from Le
Gruyer’s, they will play a similar role in the proof. Inspired by a strategy in
Le Gruyer’s proof of [9, Theorem 2.6], we will express the condition s(x) ≤
I(x) in the following way.

Lemma 2.2. The inequality s(x) ≤ I(x) is equivalent to

‖G(x)− Za,b‖2 ≤ αa,b + βa,b, for all a, b ∈ E,

where

αa,b := M
(
f(b)− f(a)− 〈G(a), b− a〉

)
− 1

2‖G(a)−G(b)‖2,

βa,b :=
∥∥∥1
2

(
G(b)−G(a) +M(x− b)

)∥∥∥2,
Za,b := 1

2

(
G(a) +G(b) +M(x− b)

)
.

Proof. We have that s(x) ≤ I(x) if and only if, for all a, b ∈ E,

f(a)+〈G(a), x−a〉+ 1

2M
‖G(x)−G(a)‖2 ≤ f(b)−〈G(x), b−x〉− 1

2M
‖G(x)−G(b)‖2.
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Multiplying by M we have that

1

2

(
‖G(x)−G(a)‖2 + ‖G(x)−G(b)‖2

)
+M〈G(x), b−x〉 ≤M(f(b)−f(a))+M〈G(a), a−x〉.

Applying the Paralelogram Law to the left-side term we obtain

1

4

(
‖2G(x)−G(a)−G(b)‖2 + ‖G(b)−G(a)‖2

)
+M〈G(x), b− x〉

≤M(f(b)− f(a)) +M〈G(a), a− x〉,

or equivalently∥∥∥∥G(x)− G(a) +G(b)

2

∥∥∥∥2 +M〈G(x), b− x〉

≤M(f(b)− f(a)) +M〈G(a), a− x〉 − 1

4
‖G(b)−G(a)‖2.

This can be written as∥∥∥∥G(x)− G(a) +G(b)

2

∥∥∥∥2 − 2
〈
G(x)− G(a) +G(b)

2
,
M

2
(x− b)

〉
+
M2

4
‖x− b‖2

≤M(f(b)− f(a)) +M〈G(a), a− x〉 − 1

4
‖G(b)−G(a)‖2

+ 2
〈G(a) +G(b)

2
,
M

2
(x− b)

〉
+
M2

4
‖x− b‖2,

which is equivalent to∥∥∥∥(G(x)− G(a) +G(b)

2

)
− M

2
(x− b)

∥∥∥∥2 ≤
≤M

(
f(b)− f(a)− 〈G(a), b− a〉

)
− 1

2
‖G(a)−G(b)‖2 +M〈G(a), b− a〉

+
〈
G(a) +G(b),

M

2
(x− b)

〉
+
M2

4
‖x− b‖2 +M〈G(a), a− x〉+

1

4
‖G(a)−G(b)‖2.

By the definition of Za,b and αa,b we obtain

‖G(x)− Za,b‖2 ≤ αa,b +M〈G(a), b− a〉+
〈
G(a) +G(b),

M

2
(x− b)

〉
+
M2

4
‖x− b‖2 +M〈G(a), a− x〉+

1

4
‖G(a)−G(b)‖2

= αa,b +
〈
G(b),

M

2
(x− b)

〉
−
〈
G(a),

M

2
(x− b)

〉
+

1

4
‖G(a)−G(b)‖2 +

M2

4
‖x− b‖2

= αa,b +
1

4
‖G(a)−G(b)‖2 + 2

〈G(b)−G(a)

2
,
M

2
(x− b)

〉
+
M2

4
‖x− b‖2

= αa,b +

∥∥∥∥1

2
(G(b)−G(a)) +

M

2
(x− b)

∥∥∥∥2 = αa,b + βa,b.

�
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Note that, by condition (2.1), the number αa,b of Lemma 2.2 is nonneg-

ative. This allows us to introduce the radii ra,b :=
√
αa,b + βa,b and the

closed balls Ba,b := B (Za,b, ra,b) centered at Za,b and radius ra,b, for every
(a, b) ∈ E2. Hence Lemma 2.2 shows that our problem can be reduced to
showing that ⋂

(a,b)∈E

Ba,b 6= ∅,

because in this case it would be enough to take G(x) as any point in⋂
(a,b)∈E Ba,b. In fact, thanks to the weak compactness of the closed balls

in H, this is equivalent to prove⋂
(a,b)∈F

Ba,b 6= ∅ for every finite subset F ⊂ E.

Thus, from now on we may and do assume that E is finite. We now introduce
some new notations:

Φ((a, b), (c, d)) := r2a,b + r2c,d − ‖Za,b‖2 − ‖Zc,d‖2 for all (a, b), (c, d) ∈ E2,

γ1(a) := G(a), γ2(a) := G(a) +M(x− a) for all a ∈ E.

As in Le Gruyer’s proof of [9, Theorem 2.6], a crucial step consists in showing
an inequality concerning Φ((a, b), (c, d)) and the funcions γ1, γ2.

Lemma 2.3. For every (a, b), (c, d) ∈ E2 we have

Φ((a, b), (c, d)) ≥ −〈γ1(a), γ2(d)〉 − 〈γ1(c), γ2(b)〉.

Proof. Using that

αa,b = M
(
f(b)− f(a)− 〈G(a), b− a〉

)
− 1

2‖G(a)−G(b)‖2 and

αc,d = M
(
f(d)− f(c)− 〈G(c), d− c〉

)
− 1

2‖G(c)−G(d)‖2

we obtain

αa,b + αc,d

= M
(
f(d)− f(a)− 〈G(a), d− a〉

)
− 1

2‖G(a)−G(d)‖2(= αa,d)

+M
(
f(b)− f(c)− 〈G(c), b− c〉

)
− 1

2‖G(c)−G(b)‖2(= αc,b)

+M
(
〈G(a), d− b〉+ 〈G(c), b− d〉

)
(=: δ1)

+
1

2

(
− ‖G(a)−G(b)‖2 − ‖G(c)−G(d)‖2 + ‖G(a)−G(d)‖2 + ‖G(c)−G(b)‖2

)
(=: δ2)

= αa,d + αc,b + δ1 + δ2.

Of course, because (a, d), (c, b) ∈ E2, condition (2.1) implies that αa,d, αc,b ≥
0. As for δ1, we have that

δ1 = M〈G(a)−G(c), d− b〉.
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Computing term by term in δ2 we obtain

δ2 =
1

2

(
− ‖G(a)‖2 − ‖G(b)‖2 + 2〈G(a), G(b)〉 − ‖G(c)‖2 − ‖G(d)‖2 + 2〈G(c), G(d)〉

+ ‖G(a)‖2 + ‖G(d)‖2 − 2〈G(a), G(d)〉+ ‖G(c)‖2 + ‖G(b)‖2 − 2〈G(c), G(b)〉
)

= 〈G(a), G(b)〉+ 〈G(c), G(d)〉 − 〈G(a), G(d)〉 − 〈G(c), G(b)〉.

Claim 2.4. We have that

δ1 + δ2 = −〈γ1(a), γ2(d)〉 − 〈γ1(c), γ2(b)〉+ 〈γ1(a), γ2(b)〉+ 〈γ1(c), γ2(d)〉.

Indeed, computing the term in the right side we obtain

−
〈
G(a), G(d) +M(x− d)

〉
−
〈
G(c), G(b) +M(x− b)

〉
+
〈
G(a), G(b) +M(x− b)

〉
+
〈
G(c), G(d) +M(x− d)

〉
= −〈G(a), G(d)− 〈G(b), G(c)〉+ 〈G(a), G(b)〉+ 〈G(c), G(d)〉

+M
(
− 〈G(c), x− b〉 − 〈G(a), x− d〉+ 〈G(a), x− b〉+ 〈G(c), x− d〉

)
= δ2 +M

(
〈G(c), b− d〉+ 〈G(a), d− b〉

)
= δ2 + δ1,

and this proves our Claim.
On the other hand we note that

γ2(b)− γ1(a) = G(b)−G(a) +M(x− b),

and therefore

βa,b =
∥∥∥1
2

(
G(b)−G(a) +M(x− b)

)∥∥∥2 =
∥∥∥γ1(a)− γ2(b)

2

∥∥∥2.
Similarly we have βc,d =

∥∥∥γ1(c)−γ2(d)2

∥∥∥2. We also see that

(2.2) γ1(a) + γ2(b) = G(a) +G(b) +M(x− b) = 2Za,b

and γ1(c) + γ2(d) = 2Zc,d. These equations show that

βa,b + βc,d =
∥∥∥γ1(a)− γ2(b)

2

∥∥∥2 +
∥∥∥γ1(c)− γ2(d)

2

∥∥∥2
‖Za,b‖2 + ‖Zc,d‖2 =

∥∥∥γ1(a) + γ2(b)

2

∥∥∥2 +
∥∥∥γ1(c) + γ2(d)

2

∥∥∥2.
By subtracting the second equation from the first one we obtain

βa,b + βc,d − ‖Za,b‖2 − ‖Zc,d‖2 = −〈γ1(a), γ2(b)〉 − 〈γ1(c), γ2(d)〉.
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Finally, by using first Claim 2.4 and then the preceding equation we deduce

Φ((a, b), (c, d)) = αa,b + αc,d + βa,b + βc,d − ‖Za,b‖2 − ‖Zc,d‖2

= αa,d + αc,b + δ1 + δ2 + βa,b + βc,d − ‖Za,b‖2 − ‖Zc,d‖2

≥ δ1 + δ2 + βa,b + βc,d − ‖Za,b‖2 − ‖Zc,d‖2

= −〈γ1(a), γ2(d)〉 − 〈γ1(c), γ2(b)〉.

�

In order to establish that
⋂

(a,b)∈E2 Ba,b 6= ∅ we first have to study the

situation in which at least one of the balls of this family is a singleton.

Lemma 2.5. Suppose that there is (a, b) ∈ E2 with ra,b = 0. Then⋂
(c,d)∈E2

Bc,d = {Za,b}

and, in particular, the intersection is nonempty.

Proof. The hyphotesis ra,b = 0 in particular implies that

0 = βa,b =
∥∥∥1
2

(
G(b)−G(a) +M(x− b)

)∥∥∥2,
and then we must have

γ1(a) = G(a) = G(b) +M(x− b) = γ2(b).

Because 2Za,b = γ1(a)+γ2(b) (see equation (2.2)) we have that Za,b = γ1(a)
and similarly 2Zc,d = γ1(c) + γ2(d). Combining this with the inequality of
Lemma 2.3 we deduce, for all (c, d) ∈ E2,

Φ((a, b), (c, d)) ≥ −〈γ1(a), γ2(d)〉 − 〈γ1(c), γ2(b)〉 = −〈γ1(a), γ1(c) + γ2(d)〉
= −2〈γ1(a), Zc,d〉 = −2〈Za,b, Zc,d〉.

On the other hand, by definition of Φ we have

Φ((a, b), (c, d)) = r2c,d−‖Za,b‖2−‖Zc,d‖2 = r2c,d−‖Za,b−Zc,d‖2−2〈Za,b, Zc,d〉,

and by plugging the last inequality in this expression we easily obtain

‖Za,b − Zc,d‖2 ≤ r2c,d for all (c, d) ∈ E2.

�

Since the preceding Lemma covers the case ra,b = 0 for some (a, b) ∈ E2,
we may suppose from this moment on that ra,b > 0 for all (a, b) ∈ E2. Recall
that we are also assuming that E is finite. The following Lemma is essentially
a restatement (for P a finite set and replacing Rn with a Hilbert space) of
[4, 2.10.40, p. 199], whose proof obviously extends for balls in Hilbert spaces
if we bear in mind that they are compact in the weak topology.
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Lemma 2.6 (Kirszbraun). For every λ ≥ 0, we denote Ba,b(λ) = B(Za,b, λra,b).
Define λ0 ≥ 0 as

λ0 := inf

{
λ ≥ 0 :

⋂
(a,b)∈E2

Ba,b(λ) 6= ∅
}
.

Then
⋂

(a,b)∈E2 Ba,b(λ0) = {Z0}, where

Z0 ∈ co
{
Za,b : (a, b) ∈ E2 and ‖Z0 − Za,b‖ = λ0ra,b

}
.

We will finish the proof of Theorem 1.3 by establishing the following.

Lemma 2.7. With the notation of Lemma 2.6, the number λ0 satisfies λ0 ≤
1. In particular, the family of balls {Ba,b : (a, b) ∈ E2} has nonempty
intersection.

Proof. If we define E = {(a, b) ∈ E2 : ‖Z0 − Za,b‖ = λ0ra,b}, from Lemma
2.6 we learn that
(2.3)

Z0 =
∑

(a,b)∈E

ξa,bZa,b with
∑

(a,b)∈E

ξa,b = 1, ξa,b ≥ 0 for all (a, b) ∈ E .

By these properties we have that∑
(a,b)∈E

ξa,b(Z0 − Za,b) =
∑

(c,d)∈E

ξc,d(Z0 − Zc,d) = 0,

and therefore

(2.4)
∑

(a,b), (c,d)∈E

ξa,bξc,d〈Z0 − Za,b, Z0 − Zc,d〉 = 0.

For any (a, b), (c, d) ∈ E we have that ‖Za,b − Z0‖2 = λ20r
2
a,b and ‖Zc,d −

Z0‖2 = λ20r
2
c,d, and it is also clear that

‖Za,b − Zc,d‖2 = ‖Za,b − Z0‖2 + ‖Zc,d − Z0‖2 − 2〈Z0 − Za,b, Z0 − Zc,d〉.
Hence, multiplying by ξa,bξc,d, taking sums over (a, b), (c, d) ∈ E and using
(2.4) we obtain∑

(a,b), (c,d)∈E

ξa,bξc,d‖Za,b − Zc,d‖2 = λ20
∑

(a,b), (c,d)∈E

ξa,bξc,d(r
2
a,b + r2c,d),

Now we set

∆ : =
∑

(a,b), (c,d)∈E

ξa,bξc,d
(
−‖Za,b − Zc,d‖2 + r2a,b + r2c,d

)
= (1− λ20)

∑
(a,b), (c,d)∈E

ξa,bξc,d(r
2
a,b + r2c,d).

Since all the radii ra,b are positive, it is clear that showing λ0 ≤ 1 is equiva-
lent to ∆ ≥ 0

Claim 2.8. ∆ ≥ 0.
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We inmediately see that

∆ =
∑

(a,b), (c,d)∈E

ξa,bξc,d
(
−‖Za,b‖2 − ‖Zc,d‖2 + r2a,b + r2c,d

)
+2

∑
(a,b), (c,d)∈E

ξa,bξc,d〈Za,b, Zc,d〉.

On the other hand, by (2.3) we obtain

‖Z0‖2 =
∑

(a,b), (c,d)∈E

ξa,bξc,d〈Za,b, Zc,d〉.

This implies that

(2.5) ∆ = 2‖Z0‖2 +
∑

(a,b), (c,d)∈E

ξa,bξc,d Φ((a, b), (c, d)).

We define now

Γ1 :=
∑

(a,b)∈E

ξa,bγ1(a), Γ2 :=
∑

(a,b)∈E

ξa,bγ2(b)

and we easily deduce from equation (2.2) that

(2.6) Γ1 + Γ2 =
∑

(a,b)∈E

ξa,b(γ1(a) + γ2(b)) = 2
∑

(a,b)∈E

ξa,bZa,b = 2Z0.

Applying Lemma 2.3 we obtain∑
(a,b), (c,d)∈E

ξa,bξc,d Φ((a, b), (c, d)) ≥ −
∑

(a,b), (c,d)∈E

ξa,bξc,d

(
〈γ1(a), γ2(d)〉+ 〈γ1(c), γ2(b)〉

)
= −

〈 ∑
(a,b)∈E

ξa,bγ1(a),
∑

(c,d)∈E

ξc,dγ2(d)
〉
−
〈 ∑

(c,d)∈E

ξc,dγ1(c),
∑

(a,b)∈E

ξa,bγ2(b)
〉

= −〈Γ1,Γ2〉 − 〈Γ1,Γ2〉 = −2〈Γ1,Γ2〉.
Combining this inequality with equations (2.5) and (2.6) we have

∆ ≥ 2

∥∥∥∥Γ1 + Γ2

2

∥∥∥∥2 − 2〈Γ1,Γ2〉 = 2

∥∥∥∥Γ1 − Γ2

2

∥∥∥∥2,
which implies ∆ ≥ 0. This finishes the proof of Claim 2.8, and therefore that
of Lemma 2.7 too. �

The proofs of Theorems 1.3 and 1.4 are now complete.

Let us finish this paper by showing that there exist bounded, smooth
convex functions defined on an open neighborhood of a closed ball in X :=
`2(R) which have no continuous convex extensions to all of X. Denote by
C the closed unit ball of X. The natural complexification of the space is
XC = `2(C). Also let U = {x ∈ X : ‖x‖ < 2}, UC = {x ∈ XC : ‖x‖ < 2},
and SX = {x ∈ X : ‖x‖ = 1}.

Example 2.9. There exists a function F : U → R such that

(i) F is analytic on U ;
(ii) F is convex on U with D2F (x)(v2) ≥ 1 for every x ∈ U , v ∈ SX ;
(iii) F is bounded on C, and
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(iv) F|C has no continuous convex extension to the whole space X.

Proof. Let {en}n∈N be the canonical basis of X, and consider the sequence
of vectors {ẽn}n ⊂ C defined as follows:

ẽn =
1

2
e1 +

√
3

2
en, n ≥ 2.

For every n ≥ 2, we define the linear functional hn ∈ X∗ by hn(x) = 〈x, ẽn〉
for all x ∈ X. Equivalently, for every x = (xn)n≥1 ∈ X, we have hn(x) =
1
2x1 +

√
3
2 xn for every n ≥ 2. Now let us define

f : U −→ R
x 7−→

∑∞
n=2(hn(x))2n,

or equivalently f(x) =
∑

n≥2

(
1
2x1 +

√
3
2 xn

)2n
for all x = (xn)n ∈ U. Let

us first check that f is well defined. Given x ∈ U, take r = 2 − |x1| > 0.
Because x ∈ `2, there is some n0 ∈ N such that |xn| ≤ r

2
√
3

whenever n ≥ n0.
Therefore, if n ≥ n0, we have∣∣∣∣12x1 +

√
3

2
xn

∣∣∣∣ ≤ 1

2
|x1|+

√
3

2
|xn| =

1

2
(2− r) +

√
3

2
|xn|

≤ 1

2
(2− r) +

r

4
= 1− r

4
=: λ.

Since λ < 1, ∑
n≥n0

∣∣∣∣12x1 +

√
3

2
xn

∣∣∣∣2n ≤ ∑
n≥n0

λ2n

converges and this shows that f(x) is finite.

Claim 2.10. f is bounded by M := 49
24 on C.

Proof. Given x ∈ C, and x = (xn)n≥1, since
∑

n≥1 x
2
n ≤ 1, we have that∑

n≥2 x
2
n ≤ 1 − x21; and this implies that there is at most one coordinate

N ≥ 2 such that x2N >
1−x21
2 . Hence, the rest of the coordinates satisfy

|xn| ≤
√

1− x21
2

for every n ≥ 2 with n 6= N.

And, of course, |xN | ≤
√

1− x21. We easily have

f(x) ≤
∑
n≥2

(
1

2
|x1|+

√
3

2
|xn|

)2n

=

(
1

2
|x1|+

√
3

2
|xN |

)2N

+
∑

n≥2, n 6=N

(
1

2
|x1|+

√
3

2
|xn|

)2n

≤

(
1

2
|x1|+

√
3

2

√
1− x21

)2N

+
∑

n≥2, n 6=N

(
1

2
|x1|+

√
3

2

√
1− x21

2

)2n

.

In order to get a bound for the first sum in the last term, we consider the

function g(t) = t
2 +

√
3
2

√
1− t2, t ∈ [0, 1]. A simple calculation shows that
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g has a maximum at t = 1
2 and then g(t) ≤ g(1/2) = 1 for all t ∈ [0, 1].

Therefore (
1

2
|x1|+

√
3

2

√
1− x21

)2N

≤ 1.

The second sum can be bounded as follows. Take h(t) = t
2 +

√
3
2

√
1−t2√
2
, t ∈

[0, 1]. We easily deduce that h attains a maximum at t =
√

2
5 . Hence h(t) ≤

h
(√

2
5

)
=
√

5
8 , for every t ∈ [0, 1]. This implies

(
1

2
|x1|+

√
3

2

√
1− x21

2

)2n

≤

(√
5

8

)2n

=

(
5

8

)n
for all n ≥ 2, n 6= N.

Therefore, f(x) ≤ 1 +
∑

n≥2, n 6=N
(
5
8

)n ≤ 1 +
∑

n≥2
(
5
8

)n
= 49

24 . �

Claim 2.11. f is real analytic on U.

Proof. Consider the complex function

f̃ : UC −→ C

z 7−→
∑∞

n=2

(
1
2z1 +

√
3
2 zn

)2n
Obviously the restriction of f̃ to U is the function f, and we can see that f̃
is well defined with the same calculations as we made above for f. Of course

it is enough to prove that f̃ is holomorphic on UC, for which in turn it is
enough to check that, given z ∈ UC there are r > 0 and a sequence {Mn}n≥2
of positive numbers such that

∑
n≥2

Mn < +∞ and

∣∣∣∣12y1+
√

3

2
yn

∣∣∣∣2n ≤Mn for all y ∈ BC(z, r) ⊆ UC, n ≥ 2,

where BC(z, r) = {x ∈ XC : ‖z−y‖ ≤ r}. Indeed, fix z ∈ UC. We take r > 0

such that BC(z, r) ⊂ UC with ‖z‖ + r < 2 and r ≤ 2−|z1|
4(1+

√
3)
. Find n0 ∈ N

such that |zn| ≤ 2−|z1|
2
√
3

whenever n ≥ n0. Of course these r > 0 and n0 ∈ N
only depend on z. Define the numbers

λn =

 1 +
√

3 if 2 ≤ n ≤ n0 − 1
6 + |z1|

8
if n ≥ n0,

and Mn = λ2nn for all n ≥ 2. Since |z1| < 2, the sum
∑

n≥2Mn converges.

If y ∈ BC(z, r), with y = (yn)n≥1, then |yn| ≤ r + |zn| for every n ≥ 1.
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Therefore, if n ≥ n0, because |zn| ≤ 2−|z1|
2
√
3

and r ≤ 2−|z1|
4(1+

√
3)

we have∣∣∣∣12y1 +

√
3

2
yn

∣∣∣∣ ≤ 1

2
|y1|+

√
3

2
|yn| ≤

1

2
(|z1|+ r) +

√
3

2
(|zn|+ r)

≤ 1 +
√

3

2

2− |z1|
4(1 +

√
3)

+
|z1|+ 1

2(2− |z1|)
2

= λn.

And for integers 2 ≤ n ≤ n0 − 1, we have the obvious inequality
∣∣1
2y1 +

√
3
2 yn

∣∣ ≤ 1 +
√

3 = λn. Hence∣∣∣∣12y1 +

√
3

2
yn

∣∣∣∣2n ≤Mn for every n ≥ 2

and this proves our statement. �

Now, the convexity of f can be easily checked: The function fn = gn ◦hn,
being hn a linear functional and R 3 t→ gn(t) = t2n a convex function for all
n ≥ 2, is convex on U, and f, being the sum of convex functions, is convex on
U as well. Now define F := f +N, where N : X → R is the function defined

by N(x) = ‖x‖2
2 for all x ∈ X. Since X is a Hilbert space, the function N is

analytic on X. Of course N is bounded on C and D2N(x)(v)2 = ‖v‖2 = 1 for
all v ∈ SX and all x ∈ X. Hence F is real analytic, is bounded on C and, since
f is convex and differentiable, D2F (x)(v2) = D2f(x)(v2) +D2N(x)(v2) ≥ 1
for all x ∈ U and all v ∈ SX . We then have proved (i), (ii) and (iii) of our
Theorem.

In order to prove (iv), consider the minimal convex extension of F ,

mC(F )(x) = sup
y∈C
{F (y) + 〈∇F (y), x− y〉}, x ∈ X.

Observe that (iv) will be proved as soon as we find points x ∈ X with
mC(F )(x) = +∞. We next prove that in fact mC(F ) = +∞ for all x of the
form x = re1, with r > 2. So fix r > 2 and x = re1. For any k ≥ 2 and n ≥ 2
we inmediately see that 〈ẽn, ẽk〉 = 1/4 for n 6= k and 〈ẽk, ẽk〉 = 1. Then

f(ẽk) = 1 +
∑

n≥2, n 6=k

(
1

4

)2n

and N(ẽk) =
1

2
, k ≥ 2.

Since f is analytic, we can calculate its derivatives by differentiating the
series term by term, and then

〈∇f(ẽk), v〉 =
∑
n≥2

2n〈ẽk, ẽn〉2n−1〈v, ẽn〉 =
∑

n≥2, n 6=k
2n

(
1

4

)2n−1
〈v, ẽn〉+2k〈v, ẽk〉

for every v ∈ X and k ≥ 2. On the other hand, 〈∇N(ẽk), v〉 = 〈ẽk, v〉 for all
v ∈ X. For v = x− ẽk, we have

〈v, ẽn〉 =

〈
re1,

1

2
e1 +

√
3

2
en

〉
− 〈ẽk, ẽn〉 =

r

2
−
{

1 if n = k
1
4 if n 6= k,
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Gathering the above inequalities we obtain, for k ≥ 2,

F (ẽk) + 〈∇F (ẽk), x− ẽk〉 = f(ẽk) +N(ẽk) + 〈∇f(ẽk), x− ẽk〉+ 〈∇N(ẽk), x− ẽk〉

= 1 +
∑

n≥2, n 6=k

(
1

4

)2n

+
1

2
+

∑
n≥2, n 6=k

2n

(
1

4

)2n−1(r
2
− 1

4

)
+ 2k

(r
2
− 1
)

+
(r

2
− 1
)

≥ k(r − 2);

and the last term tends to +∞ as k goes to +∞. We thus have proved that
mC(F )(x) = +∞ for those points x ∈ X of the form x = re1, r > 2. �
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