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SOME REMARKS ABOUT THE MORSE-SARD THEOREM AND

APPROXIMATE DIFFERENTIABILITY

DANIEL AZAGRA AND MIGUEL GARCÍA-BRAVO

Abstract. Let n,m be positive integers, n ≥ m. We make several remarks on the relationship between
approximate differentiability of higher order and Morse-Sard properties. For instance, among other
things we show that if a function f : Rn → R

m is locally Lipschitz and is approximately differentiable of
order i almost everywhere with respect to the Hausdorff measure Hi+m−2, for every i = 2, . . . , n−m+1,
then f has the Morse-Sard property (that is to say, the image of the critical set of f is null with respect
to the Lebesgue measure in R

m).

1. Introduction

The Morse-Sard theorem [21, 22] states that if f : Rn → R
m is of class Ck, where k = max{n−m+1, 1},

then the set of critical values of f has measure zero in R
m. A celebrated example of Whitney’s

[24] shows that this classical result is sharp within the classes of functions Cj. Given the crucial
applications of the Morse-Sard theorem in several branches of mathematics, it is nonetheless natural
and useful to try and refine the Morse-Sard theorem for other classes of functions, and by now there
is a rich literature in this line of work. We cannot mention and comment on all of the important
contributions generated by this problem; instead we shall content ourselves with referring the reader
to [26, 19, 4, 9, 11, 5, 6, 16, 17, 15, 14, 3] and the references therein.
In this note we will show how, by combining some of the strategies and tools which are common to
several of these with the idea of the proof of [13, Theorem 1] and an induction argument, one can
obtain the following result: let n ≥ m and f : Rn → R

m be a Borel function. Suppose that f is
approximately differentiable of order 1 at Hm−almost every point and satisfies

(a) ap lim supy→x
|f(y)−f(x)|

|y−x| < +∞ for all x ∈ R
n \N0, where N0 is a countable set, and

(b) ap limy→x
|f(y)−f(x)−···

Fi(x)
i!

(y−x)i|

|y−x|i
= 0 for all i = 2, . . . , n−m+1 and for all x ∈ R

n \Ni, where

each set Ni is (i+m− 2)−sigmafinite and the coefficients Fi(x) are Borel functions,

then f has the Morse-Sard property (that is to say, the image of the critical set of f is null with respect
to the Lebesgue measure in R

m). See Theorem 18 in Section 3 below for a precise statement and proof.
In Theorem 14 we are able to dispense with the condition about the Borel measurability of the functions
but we must strengthen conditions (b) above by replacing the (s)−sigmafinite exceptional sets with
countably (Hs, s) rectifiable sets of certain classes Ck. In Theorem 16 we provide an interesting variant
of this result. See Sections 2 and 3 for auxiliary results and definitions. Theorem 14 and Theorem
18 generalize the versions of the Morse-Sard theorem provided by Bates’s theorem and the Appendix
of [3], and are not stronger, nor weaker, than the versions of [6, 16, 17] for BVn or Sobolev functions
with smaller exponents; see Section 4 below for examples and further comments.
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2. Preliminaries

Recall that a modulus of continuity is a concave, increasing function ω : [0,∞) → [0,∞) such that
ω(0+) = 0. Given a positive integer k, for a fixed modulus of continuity ω the class Ck,ω(Rn;R) is
defined as the set of functions which are k times differentiable and its partial derivatives are uniformly
continuous with modulus of continuity ω. In the particular case ω(s) = st for some t ∈ (0, 1] we will
write Ck,t(Rn;R).

A fundamental tool in our proofs of Theorem 14 and Theorem 16 will be the following version of the
Whitney extension theorem, see [12, 18, 23].

Theorem 1 (Uniform version of Whitney Extension Theorem). Let ω be a modulus of continuity. Let
C be a subset of Rn and {fα}|α|≤k be a family of real valued functions defined on C satisfying

(1) fα(x) =
∑

|β|≤k−|α|

fα+β(y)

β!
(x− y)β +Rα(x, y)

for all x, y ∈ C and all multi-indices α with |α| ≤ k. Suppose that for some constant M > 0 we have

(2) |fα(x)| ≤ M, and |Rα(x, y)| ≤ M |x− y|k−|α|ω(|x− y|) for all x, y ∈ C and all |α| ≤ k.

Then there exists a function F : Rn → R such that:

(i) F ∈ Ck,ω(Rn;R).
(ii) DαF = fα on C for all |α| ≤ k.

Our notation with multi-indices is the standard one (see e.g. [27, p. 2]). This version of the Whitney
extension theorem is usually stated for closed subsets C of Rn, but it is easily checked that Theorem 1
also holds for arbitrary subsets C ⊂ R

n, because a modification of the usual argument showing that an
uniformly continuous function defined on a set D has a unique uniformly continuous extension (with
the same modulus of continuity) to the closure D of D, together with conditions (1) and (2), imply
that if C is not closed then the functions fα have unique extensions to C that also satisfy (1) and
(2) on C. The theorem also remains true if we replace the target space R with R

m, as one can apply
the above result to the coordinate functions of f = (f1, . . . , fm). In our proofs of Theorem 14 and
Theorem 16 we will use this version of the Whitney extension theorem in the particular instances of
ω(s) = s (thus obtaining extensions of class Ck,1), or ω(s) = st, with 0 < t < 1 (in which case we will
have extensions belonging to the Hölder differentiability classes Ck,t).
We will also use Whitney’s original theorem for Ck, which we next restate for the reader’s convenience.

Theorem 2 (Whitney Extension Theorem). Let C ⊂ R
n be closed. A necessary and sufficient

condition, for a function f : C → R and a family of functions {fα}|α|≤k defined on C satisfying
f = f0 and

fα(x) =
∑

|β|≤k−|α|

fα+β(y)

β!
(x− y)β +Rα(x, y)

for all x, y ∈ C and all multi-indices α with |α| ≤ k, to admit a Ck extension F to all of Rn such that
DαF = fα on C for all |α| ≤ k, is that

lim
|x−y|→0

Rα(x, y)

|x− y|m−|α|
= 0 (Wm)

uniformly on compact subsets of C, for every |α| ≤ k.
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Let us set some other notation. We denote by L
n(E) the outer Lebesgue measure of a set E ⊆ R

n.
For s ≥ 0, the s−dimensional Hausdorff measure is denoted by H

s, and the s−dimensional Hausdorff
content by H

s
∞. Recall that for any subset E of Rn we have, by definition,

H
s(E) = lim

δց0
H

s
δ(E) = sup

δ>0
H

s
δ(E),

where for each 0 < δ ≤ ∞,

H
s
δ(E) = inf

{

∞
∑

i=1

(diamFi)
s : diamFi ≤ δ, E ⊆

∞
⋃

i=1

Fi

}

.

It is well known that the measures Hn, Hn
∞ and L

n are equivalent on R
n, and that Hs and H

s
∞ have

the same null sets. Another important fact about the Hausdorff measure Hs is that it is Borel regular
(see e.g. [10]).
We will also say that a set is s−sigmafinite if it can be written as a countable union of sets with finite
H

s−measure.
A set N ⊆ R

n is called countably (Hs, s) rectifiable of class Ck if and only if there exist countably
many s−dimensional submanifolds Aj of class Ck such that H

s(N \
⋃∞

j=1Aj) = 0. This notion has

been introduced in [1].
We will need some more definitions. A function p : Rn → R

m is said to be a polynomial of degree k
centered at the point x ∈ R

n if it is written in the form

p(x; y) =
∑

|α|≤k

pα(x)

α!
(y − x)α,

where each pα(x) = (p1α(x), . . . , p
m
α ) ∈ R

m.
A function f : Rn → R

m is said to be approximately differentiable of order k at x ∈ R
n if there is a

polynomial pk(x; y), centered at x, and of degree at most k, such that

ap lim
y→x

|f(y)− pk(x; y)|

|y − x|k
= 0.

On the other hand f will be said to have an approximate (k − 1)−Taylor polynomial at x if there is a
polynomial pk−1(x; y), centered at x, and of degree at most k − 1, such that

ap lim sup
y→x

|f(y)− pk−1(x; y)|

|y − x|k
< +∞.

We recall that ap limy→x f(y) = l means that for every ε > 0,

lim
r→0

L
n (B(x, r) ∩ {y ∈ R

n : |f(y)− l| ≥ ε})

Ln(B(x, r))
= 0,

and that ap lim supy→x f(y) is the infimum of all those λ ∈ R such that

lim
r→0

L
n (B(x, r) ∩ {y ∈ R

n : f(y) ≥ λ})

Ln(B(x, r))
= 0.

Observe that if a function f is of class Ck then in particular f has a Taylor expansion of order k at x,
and therefore f is approximately differentiable of order k at x, with corresponding Taylor polynomial

pk(x; y) =
∑

|α|≤k

Dαf(x)

α!
(y − x)α.

(Dαf(x) = (Dαf1(x), . . . ,Dαfm(x))).
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It should be noted that if f is approximately differentiable of order k (or has an approximate (k −
1)−Taylor polynomial) at x then the corresponding polynomial pk(x; y) (or pk−1(x; y)) of degree at
most k (or k − 1) is unique. Actually all the usual rules about differentiability of sums, products and
quotients of functions apply to approximate differentiable functions as well.
Now we can change our notation and express the unique polynomial pk(x; y) by

(3) pk(x; y) =
∑

|α|≤k

fα(x)

α!
(y − x)α.

In particular f0(x) = f(x).
Observe that using the notation fα does not by any means imply that there exists a derivative Dαf
in the usual sense, nor that fα(x) = Dαf(x) even if Dαf(x) exists.
From now on, every time we say a function or a set is measurable, and unless we specify the measure,
we will mean it with respect to the Lebesgue measure.
In the proofs of Theorem 14 and Theorem 16 we will make heavy use of the following Lemma, which is
an easy consequence of an argument of Liu and Tai in the proof of [13, Theorem 1]. For completeness,
and for the reader’s convenience, we provide a detailed argument.

Lemma 3. Let f : Rn → R
m be a measurable function, k a positive integer and N a subset of Rn.

Consider the following statements.

(i) f is approximately differentiable of order k for all x ∈ R
n \N .

(ii) f has an approximate (k − 1)−Taylor polynomial for all x ∈ R
n \N .

(iii) There exists a decomposition

R
n =

∞
⋃

j=1

Bj ∪N,

such that for each j ∈ N there is a function gj ∈ Ck−1,1(Rn;Rm) with fα(x) = Dαgj(x) for all
x ∈ Bj and |α| ≤ k − 1.

Then we have that (i) ⇒ (ii) ⇒ (iii).

Proof. We will need to use the following.

Lemma 4 (De Giorgi). Let E be a measurable subset of the ball B(x, r) ⊂ R
n such that Ln(E) ≥ Arn

for some constant A > 0. Then for each positive integer k there is a positive constant C, depending
only on n, k and A, such that

|Dαp(x)| ≤
C

rn+|α|

∫

E

|p(y)| dy

for all polynomials p of degree at most k and all multi-indices |α| ≤ k.

See [7] for a proof of De Giorgi’s lemma.
(i) ⇒ (ii) : This implication is straightforward. The same points for which (i) holds make (ii) true.
Indeed, if a polynomial that gives (i) centered at some x is

pk(x; y) =
∑

|α|≤k

pα(x)

α!
(y − x)α,

we take pk−1(x; y) =
∑

|α|≤k−1
pα(x)
α! (y − x)α and let λ = 1 +

∑

|α|=k
|pα(x)|

α! < ∞. Since

|f(y)− pk−1(x; y)|

|y − x|k
≤

|f(y)− pk(x; y)|

|y − x|k
+

∑

|α|=k

|pα(x)|

α!
,
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we have that
{

y ∈ R
n : |f(y)− pk(x; y)| ≤ |y − x|k

}

⊆
{

y ∈ R
n : |f(y)− pk−1(x; y)| ≤ λ|y − x|k

}

,

hence by our hypothesis (i)

L
n
(

B(x, r) ∩
{

y ∈ R
n :

|f(y)−pk−1(x;y)|
|y−x|k

≤ λ
})

Ln(B(x, r))
≥

L
n
(

B(x, r) ∩
{

y ∈ R
n : |f(y)−pk(x;y)|

|y−x|k
≤ 1

})

Ln(B(x, r))

r→0
−−−→ 1,

which implies that

ap lim sup
y→x

|f(y)− pk−1(x; y)|

|y − x|k
≤ λ < +∞.

(ii) ⇒ (iii) : Recall that the approximate (k − 1)−Taylor polynomials are unique so we may use the
notation of (3). The idea of the proof consists in splitting R

n \ N into a countable union of sets
{Bj}j≥1, on each of which, with the help of De Giorgi’s lemma, we can apply Theorem 1. We will

show that for each j ∈ N,






|fα(y)−Dαpk−1(x; y)| ≤ M |x− y|k−|α|, ∀x, y ∈ Bj, |y − x| ≤ 1
j
, |α| ≤ k − 1

|fα(x)| ≤ j, ∀x ∈ Bj

where pk−1(x; y) is the polynomial of degree at most k − 1 that gives (ii) and M is a constant (to be
fixed later on) that depends only on n, k and j.
Let us define

ρ :=
L
n(B(x, |y − x|) ∩B(y, |y − x|))

|y − x|n
, x, y ∈ R

n, x 6= y

Wj(x; r) := B(x, r) \
{

y ∈ R
n : |f(y)− pk−1(x; y)| ≤ j|y − x|k

}

, x ∈ R
n, r > 0, j ∈ N

Bj :=
{

x ∈ R
n : Ln(Wj(x; r)) ≤ ρ rn

4 , r ≤ 1
j

}

∩ {x ∈ R
n : |fα(x)| ≤ j, |α| ≤ k − 1} .

Note that ρ only depends on n. Since f is measurable we have that Wj(x, r) are measurable sets. It
is immediately checked that Bj is an increasing sequence of sets and

∞
⋃

j=1

Bj = R
n \N.

For us it will not be important that the sets Bj and the coefficients fα are measurable, although they
are indeed so (see Liu-Tai’s proof for the delicate induction argument that allows one to show this).
Now, given j ∈ N, consider two different points x, y ∈ Bj with |y − x| ≤ 1

j
, and for r = |y − x| let

S(x, y; r, j) := [B(x, r) ∩B(y, r)] \ [Wj(x; r) ∪Wj(y; r)] ,

which is measurable. Moreover,

L
n(S(x, y; r, j)) ≥ L

n(B(x, r) ∩B(y, r))− L
n(Wj(x; r))− L

n(Wj(y; r)) ≥ ρ
rn

2
> 0.

If we take z ∈ S(x, y; r, j) then we have for q(z) = pk−1(y; z)− pk−1(x; z) the estimate

|q(z)| ≤ |pk−1(x; z)− f(z)|+ |f(z)− pk−1(y; z)| ≤ (|z − x|k + |y − z|k) ≤ 2jrk.

We now apply Lemma 1 with E = S(x, y; r, j) to obtain that for each multi-index |α| ≤ k − 1,

|Dαq(y)| = |fα(y)−Dαpk−1(x; y)| ≤
C

rn+|α|

∫

S(x,y;r,j)
|q(z)| dz ≤ 2jwnCrk−|α|,
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where wn is the volume of the unit ball in R
n and C is the constant in Lemma 1, which depends only

on n and k.
We see now that for x, y in Bj with |y − x| ≤ 1

j
, the last estimate implies

{

|fα(y)−Dαpk−1(x; y)| ≤ M(n, k, j)|x − y|k−|α|, ∀ |α| ≤ k − 1

|fα(x)| ≤ j

and by applying the Whitney Extension Theorem 1 we are done. Observe that if gj ∈ Ck−1,1 is the
extension of the restriction of f to Bj provided by Theorem 1, we do not only have that gj and f
agree in Bj, but also the first k − 1 derivatives of the smooth extension gj coincide on Bj with the
coefficients of the approximate polynomial: we have fα(x) = Dαg(x), ∀x ∈ Bj , ∀|α| ≤ k − 1. �

We will now present a variant of Lemma 3 where we allow the exponents of the denominator |y − x|
of the approximate limits to be real numbers, not necessarily integers. This change will allow us to
get decompositions with Ck−1,t functions, t ∈ (0, 1].

Lemma 5. Let f : Rn → R
m be a measurable function, k a positive integer, t ∈ (0, 1] and N a subset

of Rn. Suppose that

(4) ap lim sup
y→x

|f(y)− pk−1(x; y)|

|y − x|k−1+t
< +∞ for all x ∈ R

n \N.

Then there exists a decomposition

R
n =

∞
⋃

j=1

Bj ∪N

such that for each j ∈ N there exists gj ∈ Ck−1,t(Rn;Rm) with fα(x) = Dαgj(x) for all x ∈ Bj and
|α| ≤ k − 1.

Proof. The proof is exactly the same as that of Lemma 3, until the point where we use the Whitney
Extension Theorem 1. In this case we have that for each j ∈ N and for all x, y ∈ Bj with |y − x| ≤ 1

j
,

{

|fα(y)−Dαpk−1(x; y)| ≤ M(n, k, j)|x − y|k−1+t−|α|, ∀ |α| ≤ k − 1

|fα(x)| ≤ j.

At this point we use Theorem 1 with ω(s) = st and we conclude similarly. �

These last theorems will be useful for our versions of the Morse-Sard theorem (Theorem 14 and 16)
where the exceptional sets are countably (Hs, s) rectifiable of certain class Ck (see the statements
of the results for details). However, in order to achieve a result where we are allowed to work with
s−sigmafinite exceptional sets (Theorem 18), it will be necessary to have at our disposal a result as the
next one. We use once again the ideas of Liu-Tai [13], together with those of Whitney [25, Theorem
1].

Lemma 6. Let f : Rn → R
m be a Borel function, k a positive integer and s > 0. Suppose that f is

approximately differentiable of order k at Hs−almost every point x ∈ B, where B ⊆ R
n is a Borel set

and H
s(B) < ∞. Suppose also that the coefficients fα(x), |α| ≤ k, are Borel functions. Then there

exists a decomposition

B =

∞
⋃

j=1

Bj ∪N,

where for each j ∈ N there exists gj ∈ Ck(Rn;Rm) with fα(x) = Dαgj(x) for all x ∈ Bj , |α| ≤ k, and
H

s(N) = 0.
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Proof. Without loss of generality let us suppose that f is approximately differentiable of order k for
all x ∈ B.
Let ρ > 0 be as in the proof of Lemma 4; recall that ρ only depends on n. For each η > 0, i ∈ N,
x ∈ B, define

Wη (x; i) := B(x;
1

i
) \

{

y ∈ B : |f(y)− pk(x; y)| ≤ η|y − x|k
}

.

Since f is Borel, these sets are Borel measurable. Consider the set

T =

{

(x, y) ∈ B ×B : |y − x| <
1

i
, |f(y)− pk(x; y)| > η|y − x|k

}

.

All the fα are Borel functions, so T is a Borel measurable set in B × B. It is clear that Wη(x; i) =
{y ∈ B : (x, y) ∈ T}, hence from Fubini’s Theorem (see e.g. [8, Proposition 5.1.2.]) it follows that
L
n(Wη(x; i)) is a Borel measurable function of x.

We know that for all η > 0 and x ∈ B,

(5) lim
i→∞

L
n(Wη(x; i))

Ln(B(x; 1
i
))

= 0.

Define

φi(x) := inf

{

η > 0 : Ln(Wη(x; i)) <
ρ

4

(

1

i

)n}

.

for each i ∈ N and x ∈ B. For fixed x, φi is decreasing in η and continuous on the left. Thus

(6) φi(x) ≤ η if and only if L
n(Wη(x; i)) <

ρ

4

(

1

i

)n

and we have that φi(x) is a Borel measurable function.
From (5) and (6) it also follows that

lim
i→∞

φi(x) = 0 for every x ∈ B.

Now, with the goal of getting uniform convergence (up to a small enough set) in the previous limit,
we want to apply Egorov’s theorem for the measure H

s. Notice that we are allowed to do so because
the functions φi are Borel, the set B is H

s−finite, and H
s is a Borel measure. We thus obtain, for

each j ∈ N, a closed1 set Bj ⊆ B such that Hs(B \Bj) <
1
j
and limi→∞ φi(x) = 0 uniformly on Bj .

Observe that Hs
(

B \
⋃∞

j=1Bj

)

= 0. Let us call N = B \
⋃∞

j=1Bj.

Now we just have to see that for each of these sets Bj we can apply Theorem 2 in order to get a Ck

extension to the whole space. Fix j ∈ N and a multi-index |α| ≤ k. We have to prove that for each
ε > 0, there exists δ > 0 such that

|fα(y)−Dαpk(x; y)| ≤ ε|y − x|k−|α| if x, y ∈ Bj , |y − x| < δ.

Let then ε > 0. If C > 0 denotes the constant of De Giorgi’s Lemma 4, choose i0 ∈ N such that

|φi(x)| ≤
ε

2wnC(1 + ε)
:= ε0 for all x ∈ Bj and all i ≥ i0.

1Egorov’s theorem in general would give us Borel sets Bj , but the Hausdorff measures Hs are Borel regular measures,
so it is well known that for every Borel set A, if Hs(A) < ∞ there exists for each ε > 0 a closed set C such that C ⊆ A

and H
s(A \ C) < ε. This fact cannot be overlooked because our using Theorem 2 forces us to work with closed sets.
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Also take i1 ≥ i0 sufficiently large such that
(

1 + 1
i1

)k

≤ 1 + ε. Using (6) we have

L
n (Wε0(x; i)) <

ρ

4

(

1

i

)n

for all x ∈ Bj and all i ≥ i1.

Take δ < 1
i1

and x, y ∈ Bj with |y − x| < δ. There exists i2 ≥ i1 such that 1
i2+1 ≤ |y − x| ≤ 1

i2
. Now

consider the set S (x, y; i2, ε0) =
[

B(x, 1
i2
) ∩B(y, 1

i2
)
]

\ [Wε0(x; i2) ∪Wε0(y; i2)] analogously to Lemma

3. We have that

L
n (S (x, y; i2, ε0)) ≥ L

n

(

B

(

x,
1

i2

)

∩B

(

x+
y − x

i2|y − x|
,
1

i2

))

−
ρ

2

(

1

i2

)n

=
ρ

2

(

1

i2

)n

> 0.

Then take z ∈ S (x, y; i2, ε0) and observe that |z − x|k−|α|, |z − y|k−|α ≤ (1 + ε)|y − x|k−|α|. Using De
Giorgi’s Lemma 4 in the same way as in the previous lemmas, we conclude that

|fα(y)−Dαpk(x; y)| ≤ ε|x− y|k−|α|.

By applying the Whitney Extension Theorem 2 the proof is complete. �

3. A Morse-Sard Theorem for approximate differentiable functions

Our aim is to prove a Morse-Sard theorem for functions that only are approximately differentiable of
order k or that have approximate (k − 1)−Taylor polynomials on some sets. Consequently we will
need to deal with weaker notions of derivatives and critical sets.

Definition 7. Let f : Rn → R
m be a measurable function that is approximately differentiable of order

k at x, with unique approximate polynomial

pk(x) =
∑

|α|≤k

fα(x)

α!
(y − x)α.

For each multi-index α, |α| ≤ k, we define the α−th differential coefficient of f at x as fα(x). If f has
an approximate (k − 1)−Taylor polynomial at x we can only define the α−th differential coefficient
fα(x) for |α| ≤ k − 1.

Recall that we do not necessarily have fα(x) = Dαf(x) in any usual sense, and Dαf(x) may even not
exist.
From now on we will use the following notation

pk(x; y) =
∑

|α|≤k

fα(x)

α!
(y − x)α = f(x) + F1(x)(y − x) + · · ·

Fkf(x)

(k)!
(y − x)k.

where the Fj(x) are the j−multilinear and symetric maps whose coefficients with respect to the
standard basis of Rn are given by fα(x), |α| = j (j = 1, . . . , k). Again we stress that we do not
necessarily have Fj(x) = Djf(x), and the latter may not exist. However, if a function is one time
differentiable at x in the usual sense, we do have Df(x) = F1(x).
We are now in a position to introduce a generalized notion of critical set.

Definition 8. If f is approximately differentiable of order 1 on some set of points, we define

Cf := {x ∈ R
n : F1(x) is defined and rank (F1(x)) is not maximum} .

Remark 9. If a function f only has an approximate (0)−Taylor polynomial at almost every point of
R
n we can still define the set of critical points up to an L

n−null set. According to Liu-Tai’s result
[13, Theorem 1], f is approximately differentiable of order 1 almost everywhere, so we consider the
coefficients of the linear part of the corresponding polynomial.
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Definition 10 ((N0)−property). Let f : Rn → R
m be measurable and let us suppose we have a notion

of derivative for f , and hence a set of critical points Cf . We say that f satisfies the (N0)−property
with respect to the Hausdorff measure H

s, s ∈ (0, n], if and only if

E ⊆ Cf , H
s(E) = 0 ⇒ L

m(f(E)) = 0.

Definition 11 (Luzin’s N−property). Let f : Rn → R
m be measurable. We say that f satisfies

Luzin’s N−property with respect to the Hausdorff measure H
s, s > 0, if and only if

E ⊆ R
n, H

s(E) = 0 ⇒ H
s(f(E)) = 0.

The following theorem, due to Norton [19, Theorem 2], will also be an important ingredient in our
proofs of Theorem 14, 16 and 18.

Theorem 12 (Norton). Let k be a positive integer, t ∈ (0, 1] and f : Rn → R
m.

(i) If f ∈ Ck,t and E ⊆ Cf is H
k+t+m−1−null, then L

m(f(E)) = 0. That is to say, f has the

(N0)−property with respect to the measure H
k+t+m−1.

(ii) If f ∈ Ck and E ⊆ Cf is (k +m− 1)−sigmafinite, then L
m(f(E)) = 0

We will also need to use Bates’s version of the Morse-Sard Theorem for Cn−m,1 (see [4, Theorem 2]).

Theorem 13 (Bates). Let n, m be positive integers with m ≤ n and f : R
n → R

m. If f ∈
Cn−m,1(Rn;Rm), then the set of critical values of f has L

m−measure zero.

The first of our main results is as follows.

Theorem 14. Let f : Rn → R
m, m ≤ n. Suppose that

(a)

ap lim sup
y→x

|f(y)− f(x)|

|y − x|
< +∞ for all x ∈ R

n \N0,

where N0 is a countable set.
(b) The set

N1 := {x ∈ R
n : ap lim sup

y→x

|f(y)− f(x)− F1(x)(y − x)|

|y − x|2
= +∞}

is H
m−null.

(c) For each i = 2, . . . , n−m, the set

Ni := {x ∈ R
n : ap lim sup

y→x

∣

∣

∣
f(y)− f(x)− · · · − Fi(x)

i! (y − x)i
∣

∣

∣

|y − x|i+1
= +∞}

is countably (Hi+m−1, i+m− 1) rectifiable of class Ci.

Then L
m(f(Cf )) = 0.

The same is true if we replace R
n with an open subset U of Rn.

[Observe that if n = m we only have (a) and if n = m+ 1 we only have (a) and (b).]

Proof. Note that (a) tells us that f is approximately continuous Ln−almost everywhere so the function
f is measurable.
Let us also set some notation by writing each exceptional set Ni (i = 1, . . . , n−m) as

Ni = Ai ∪
∞
⋃

k=1

Ai,k,
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where Hi+m−1(Ai) = 0 and each subset Ai,k ⊆ R
n is an (i+m− 1)−dimensional submanifold of class

Ci.
First of all let us show that condition (a) implies Luzin’s N−condition with respect to the Hausdorff
measure H

s, s ∈ (0,m]. In fact we will see that there exists a collection {B0,j}
∞
j=1 with R

n =
⋃∞

j=1B0,j ∪ N0 and such that each restriction f |B0,j is locally Lipschitz with constant 2j. Since

L
m(f(N0)) = 0, this readily implies that the image of sets of s−Hausdorff measure zero (s ≤ m)

has s−Hausdorff measure zero. The argument is again inspired by Liu-Tai’s result ([13, Theorem 1]).
Consider the sets B0,j as in the proof of Lemma 3 above. We take x, y ∈ B0,j, |y−x| ≤ 1

j
, r = |y−x|.

Using that Ln(S(x, y; r, j)) > 0 it is possible to take z ∈ S(x, y; r, j) and then

|f(y)− f(x)| ≤ |f(y)− f(z)|+ |f(z)− f(x)| ≤ j|z − y|+ j|z − x| ≤ 2j|y − x|.

Now it is clear that, for every s ∈ (0,m], if Hs(A) = 0, A ⊆ R
n, then H

s(f(A)) = 0. Therefore
the points where Cf is not defined, which have H

m−measure zero (recall that f is approximately
differentiable of order 1 at Hm−almost every point), have L

m−null image.
Let us make a pause to comment on the special case n = m (we only have condition (a)). In this
case we also have the critical set of points defined up to a set of Ln−measure zero (see Remark 9).
Moreover Liu-Tai’s result [13, Theorem 1] asserts in particular that

R
n =

∞
⋃

j=1

Dj ∪M,

where L
n(M) = 0 and such that for each j ∈ N there is a function gj ∈ C1(Rn;Rn) with

Dj ⊆ {x ∈ R
n : f(x) = gj(x), F1(x) = Dgj(x)} .

Using the classical Morse-Sard theorem we have that for every j ∈ N,

L
n(f(Cf ∩Dj)) = L

n(f |Dj
(Cf ∩Dj)) = L

n(gj(Cgj ∩Dj)) = 0.

Consequently

L
n(f(Cf )) ≤

∞
∑

j=1

L
n(f(Cf ∩Dj)) + L

n(f(M)) = 0.

◮ Step 1: Condition (c) with i = n−m allows us to use Lemma 3 and write

R
n =

∞
⋃

j=1

Bn−m,j ∪Nn−m,

in such a way that for each j ∈ N there is a function gj ∈ Cn−m,1 with

Bn−m,j ⊆ {x ∈ R
n : f(x) = gj(x), F1(x) = Dgj(x)} .

We decompose Cf as

Cf =





∞
⋃

j=1

Cf ∩Bn−m,j



 ∪ (Cf ∩Nn−m) .

Using Bates’s result (Theorem 13) we have that for every j ∈ N,

L
m(f(Cf ∩Bn−m,j)) = L

m(f |Bn−m,j
(Cf ∩Bn−m,j)) = L

m(gj(Cgj ∩Bn−m,j)) = 0.

By the subadditivity of the Lebesgue measure we have thus reduced our problem to showing that
L
m(f(Cf ∩Nn−m)) = 0.
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◮ Step 2: We now work with the condition (c) but for the case i = n−m− 1. By applying Lemma 3
again, we obtain a decomposition

R
n =

∞
⋃

j=1

Bn−m−1,j ∪Nn−m−1,

where for each j ∈ N there is a function gj ∈ Cn−m−1,1 with

Bn−m−1,j ⊆ {x ∈ R
n : f(x) = gj(x), F1(x) = Dgj(x)} .

Recall that Nn−m = An−m ∪
⋃∞

k=1An−m,k where H
n−1(An−m) = 0 and such that there exist maps

φn−m,k : Rn−1 −→ An−m,k ⊆ R
n

of class Cn−m for each k ∈ N.
We now write Cf ∩Nn−m as

(7)

Cf ∩Nn−m =





∞
⋃

j=1

Cf ∩An−m ∩Bn−m−1,j



∪





∞
⋃

j=1

∞
⋃

k=1

Cf ∩An−m,k ∩Bn−m−1,j



∪ (Cf ∩Nn−m−1) .

Remember that Hn−1(An−m) = 0, so by using Norton Theorem 12 (i), for every j ∈ N we get

L
m(f(Cf ∩An−m ∩Bn−m−1,j)) = L

m(f |Bn−m−1,j (Cf ∩An−m ∩Bn−m−1,j)) =

= L
m(gj(Cgj ∩An−m ∩Bn−m−1,j)) = 0.

Fix j, k ∈ N. We now see that Lm(f(Cf ∩An−m,k ∩Bn−m−1,j)) = 0. Indeed,
It is easy to check that Cgj ∩An−m,k ⊆ φn−m,k(Cgj◦φn−m,k

), so

L
m(f(Cf ∩An−m,k ∩Bn−m−1,j)) = L

m(gj(Cgj ∩An−m,k ∩Bn−m−1,j)) ≤

≤ L
m(gj(φn−m,k(Cgj◦φn−m,k

) ∩Bn−m−1,j)) =

= L
m(gj ◦ φn−m,k|φ−1

n−m,k(Bn−m−1,j∩An−m,k)
(Cgj◦φn−m,k

)) = 0,

where in the last equality we have used using Bates’s theorem 13) applied to the function

gj ◦ φn−m,k|φ−1
n−m,k(Bn−m−1,j∩An−m,k)

: Rn−1 −→ R
m,

which is of class Cn−m−1,1
loc (Rn−1;Rm).

Therefore, by the subadditivity of the Lebesgue measure and (7), our problem boils down to checking
that Lm(f(Cf ∩Nn−m−1)) = 0.

◮ Final step: Reasoning in the same way for the cases i = n−m− 2, . . . , i = 1, we inductively arrive
to the conclusion that it is enough to prove that Lm(f(Cf ∩N1)) = 0, which is now automatic using
Luzin’s N−condition with respect to the measure H

m. �

Remark 15. It is clear that the above proof can be adapted to get a similar result in which condition
(b) is dropped and condition (c) now holds for i = 1, 2, . . . , n − m. In principle this result is more
general than Theorem 14. The reason for our statement of Theorem 14 is that one of the typical
applications of Morse-Sard-type theorems is ensuring that for almost every y ∈ R

m the set f−1(y) is
regular enough (for instance, it is a C1 manifold if f is assumed to be C1), a property that we would
lose if we do not require condition (b).
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Let us consider now the simpler case where the exceptional setsNi areH
i+m−1−null for i = 1, . . . , n−m

(i.e Ai,k = ∅ for all k ≥ 1). We establish an alternate version of the preceding result, in which we let
the exponents of the denominators |y − x| be smaller, and not integers. In return we must ask these
limits to be finite in larger sets in order to achieve the Morse-Sard property. The arguments will be
the same, but for our use of Lemma 5 instead of Lemma 3.

Theorem 16. Let f : Rn → R
m, m ≤ n.

If n > m+ 1, for each i = 0, . . . , n −m− 1 choose numbers s(i) ∈ (i, i+ 1] and suppose that

(a) For i = 0,

ap lim sup
y→x

|f(y)− f(x)|

|y − x|s(0)
< +∞ for all x ∈ R

n \N0, where N0 is countable.

(b) For i = 1,

ap lim sup
y→x

|f(y)− f(x)− F1(x)(y − x)|

|y − x|s(1)
< +∞ for Hs(0)m − almost every x ∈ R

n.

(c) For each i = 2, . . . , n−m− 1,

ap lim sup
y→x

∣

∣

∣
f(y)− f(x)− · · · − Fi(x)

i! (y − x)i
∣

∣

∣

|y − x|s(i)
< +∞ for Hs(i−1)+m−1 − almost every x ∈ R

n.

(If n = m+ 2 we do not have this condition).
(d)

ap lim sup
y→x

∣

∣

∣
f(y)− f(x)− · · · − Fn−m(x)

(n−m)! (y − x)n−m
∣

∣

∣

|y − x|n−m+1
< +∞ for Hs(n−m−1)+m−1−almost every x ∈ R

n.

If n = m + 1, after choosing s(0) ∈ (0, 1], suppose only (a) and (d), where the exceptional set in (d)

must be H
s(n−m−1)m = H

s(0)m−null.
If n = m suppose only that condition (a) with s(0) = 1 holds everywhere except perhaps on a countable
set N0.
Then L

m(f(Cf )) = 0.

Proof. The case n = m is exactly the same as in Theorem 14. Suppose then n > m.
We will first see that (a) implies that Lm(f(A)) = 0 for every set A ⊆ R

n with H
s(0)m(A) = 0. This

will be in harmony with our definition of critical set of points (recall that (b) implies that F1 is defined

up to a set of Hs(0)m−measure zero).
Again we employ arguments similar to previous proofs. We take the same decomposition of Rn as in
Lemma 3, except that in this case we set

Wj(x; r) = B(x, r) \
{

y ∈ R
n : |f(y)− f(x)| ≤ j|y − x|s(0)

}

, x ∈ R
n, r > 0, j ∈ N.

Hence R
n =

⋃∞
j=1Bj and for j ∈ N we consider two different points x, y ∈ Bj with |y − x| ≤ 1

j
,

r = |y − x|. Using that Ln(S(x, y; r, j)) > 0 we can take z ∈ S(x, y; r, j) and then

|f(y)− f(x)| ≤ |f(y)− f(z)|+ |f(z)− f(x)| ≤ j|z − y|s(0) + j|z − x|s(0) ≤ 2j|y − x|s(0).

So we obtain

|f(y)− f(x)|m ≤ 2j|y − x|s(0)m.

From this it can be automatically checked that Lm(f(A)) = 0 for all A ⊆ R
n with H

s(0)m(A) = 0.
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◮ Step 1: Condition (d) allows us to use Lemma 3 and find a decomposition

R
n =

∞
⋃

j=1

Bj ∪Nn−m, H
s(n−m−1)+m−1(Nn−m) = 0,

such that for each j ∈ N there is a function gj ∈ Cn−m,1 with

Bj ⊆ {x ∈ R
n : f(x) = gj(x), F1(x) = Dgj(x)} .

Hence by using Bates’s result (Theorem 13) we have that for every j ∈ N,

L
m(f(Cf ∩Bj)) = L

m(f |Bj
(Cf ∩Bj)) = L

m(gj(Cgj ∩Bj)) = 0.

So we have reduced our problem to prove that all sets E ⊆ Cf with H
s(n−m−1)+m−1−measure zero

satisfy L
m(f(E)) = 0.

◮ Step 2: We work with the condition (c) for the case i = n−m− 1. We apply Lemma 5 for the case

k − 1 + t = s(n−m− 1) and µ = H
s(n−m−2)+m−1 to find a decomposition

R
n =

∞
⋃

j=1

Bj ∪Nn−m−1, H
s(n−m−2)+m−1(Nn−m−1) = 0,

where for each j ∈ N there is a function gj ∈ Cn−m−1,s(n−m−1)−n+m+1 with

Bj ⊆ {x ∈ R
n : f(x) = gj(x), F1(x) = Dgj(x)} .

We write a given set E ⊆ Cf , H
s(n−m−1)+m−1(E) = 0 as

E =
∞
⋃

j=1

(E ∩Bj) ∪ (N ∩E)

where H
s(n−m−2)+m−1(N) = 0. Now we use Norton’s result (Theorem 12 (i)) and for every j ∈ N,

L
m(f(E ∩Bj)) = L

m(f |Bj
(E ∩Bj)) = L

m(gj(Cgj ∩ E ∩Bj)) = 0.

Therefore we must only consider sets E ⊆ Cf such that H
s(n−m−2)+m−1(E) = 0 and check that

L
m(f(E)) = 0.

◮ Final step: Reasoning in the same way for the cases i = n − m − 2, . . . , i = 1, we arrive to the
conclusion that it is enough to prove that sets E ⊆ Cf with H

s(0)m−measure zero satisfy L
m(f(E)) =

0. But this follows from (a), as we have already seen. �

Remark 17. If we choose s(i) = i+1 for each i = 0, . . . , n−m− 1 we get exactly Theorem 14 in the
particular case that Hi+m−1(Ni) = 0, i = 1, . . . , n −m.

The difference between this theorem and the previous one (for the case that H
i+m−1(Ni) = 0, i =

1, . . . , n−m) is that we are able to lower the exponents in the denominator. However we must ask in
return that the sets where these properties hold are bigger than in Theorem 14. So we can say that
Theorem 16 generalizes a particular Theorem 14, but a selection of numbers s(j) make it nor stronger,
neither weaker than any other possible choice.
It is a natural question to ask whether or not we can change our exceptional sets Ni (i = 1, . . . , n−m)
to be (i +m − 1)−sigmafinite. This is the purpose of our next main result, in which we must work
with the stronger notion of approximate differentiablity instead of the property of having approximate
(k − 1)−Taylor polynomials. The result will generalize Theorem 14 but in addition we will have to
require that f and its differential coefficients fα are Borel functions in order to use Lemma 6.
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Theorem 18. Let f : Rn → R
m be a Borel function, m ≤ n. Suppose that

(a) ap lim supy→x
|f(y)−f(x)|

|y−x| < +∞ for all x ∈ R
n \ N0, where N0 is a 0−sigmafinite set (a

countable set).
(b) f is approximately differentiable of order 1 for all x ∈ R \N1, where N1 is H

m−null.
(c) For each i = 2, . . . , n−m, f is approximately differentiable of order i for all x ∈ R \Ni, where

Ni is (i+m− 2)−sigmafinite. (If n ≤ m+ 1 we do not have this condition).
(d) f has an approximate (n −m)−Taylor polynomial for all x ∈ R \Nn−m+1, where Nn−m+1 is

(n− 1)−sigmafinite.2

Suppose also that the coefficients fα(x), |α| ≤ n−m, are Borel functions.
Then L

m(f(Cf )) = 0.

Proof. The case n = m is exactly the same as in Theorem 14 and Theorem 16.
Recall that condition (a) gives us the Luzin’s N−condition with respect to the Hausdorff measure Hm.
In particular the set of points where Cf is not defined, which have H

m−measure zero, have L
m−null

image.

◮ Step 1: Condition (d) allows us to reduce our problem to showing that Lm(f(Cf ∩ Nn−m+1)) = 0
(here we use the same arguments as in Step 1 of Theorem 14).
Since the set Nn−m+1 is (n − 1)−sigmafinte, by the subadditivity of the Lebesgue measure, without
loss of generality we can assume that H

n−1(Nn−m+1) < ∞. Consequently we can focus on studying
sets A ⊆ Cf with H

n−1(A) < ∞.

◮ Step 2: We now work with the condition (c) but for the case i = n−m.
Let us call B = A ∩ (Rn \ Nn−m). If we prove that L

m(f(B)) = 0 it will only be needed to see if
L
m(f(Cf ∩ Nn−m+1 ∩ Nn−m)) = 0, or what is the same, Lm(f(Cf ∩ Nn−m)) = 0 (note that we can

suppose Nn−m ⊂ Nn−m+1).
We have that f is approximately differentiable of order n −m everywhere on B and H

n−1(B) < ∞.
We can apply Lemma 6 and write

(8) B =
∞
⋃

j=1

Bj ∪N,

where for each j ∈ N there exists gj ∈ Cn−m(Rn;Rm) with fα(x) = Dαgj(x) for all x ∈ Bj (|α| ≤
n−m), and H

n−1(N) = 0.
With the set N we proceed as in Theorem 14 when we had to deal with H

n−1−null sets and we had
to apply Lemma 3 together with Norton’s Theorem 12 (i), and we conclude that Lm(f(N)) = 0.
For the sets Bj ⊆ Cf we use Norton’s Theorem 12 (ii) with Cn−m regularity and we have

L
m(f(Bj)) = L

m(gj(Bj)) = 0.

Therefore, by the subadditivity of the Lebesgue measure and (8), our problem boils down to checking
if Lm(f(Cf ∩Nn−m)) = 0.

◮ Final step: Reasoning in the same way for the cases i = n−m− 2, . . . , i = 1, we inductively arrive
to the conclusion that it is enough to prove that Lm(f(Cf ∩N1)) = 0, where H

m(N1) = 0. But this
is automatic by (a).

�

2Observe that if n = m we only have (a) (however this implies (b) using Liu-Tai’s result [13, Theorem 1]) and if
n = m+ 1 we only have (a), (b) and (d).
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4. Final considerations and examples

A key point in the above arguments is obtaining a nice splitting of the space Rn into a countable union
of sets (plus a small enough exceptional set) such that our function has enough regularity on each of
those sets. Following the same strategy, there is another well known property that allows a similar
decomposition.

Definition 19. A measurable function f : Rn → R
m is said to have the Luzin property of order k

with respect to the measure µ if for every ε > 0 there is a function g ∈ Ck(Rn;Rm) such that

µ ({x ∈ R
n : f(x) 6= g(x)}) < ε.

It is clear that for such a function there always exist decompositions of the form

R
n =

∞
⋃

j=1

Bj ∪N,

where for each j ∈ N there is a function gj ∈ Ck(Rn;Rm) with fα(x) = Dαgj(x) for all x ∈ Bj

(|α| ≤ k), and µ(N) = 0. Therefore, if, instead of approximate differentiability in our conditions of
Theorem 14, Theorem 16 and Theorem 18, we consider Luzin properties of the corresponding orders,
with respect to the same Hausdorff measures, we may obtain the same conclusions. For example the
analogue of Theorem 14 would be the following.

Theorem 20. Let f : Rn → R
m, m < n, be locally Lipschitz. Suppose that for each i = 2, . . . , n−m+1,

f has the Luzin property of order i with respect to the measure H
i+m−2. Then we have Lm(f(Cf )) = 0.

For the proof we just mention that local Lipschitzness gives us the Luzin’s N−property with respect
to the measure Hm, and that we must use the classical Morse-Sard Theorem instead of Bates’s result.
However, we cannot deduce Theorems 14, 16 and 18 from Theorem 20, because, to the best of our
knowledge, the problem whether an H

s-a.e. approximately differentiable function of order j must have
the Luzin property of order j (or a Cj−1,1 Luzin type property) with respect to the measure H

s
∞ or

H
s is open. The proof of [13] cannot be adapted to the measures Hs

∞ or Hs (s < n).

We will finally comment on three examples that illustrate how Theorem 14 covers functions for which
none of the previous Morse-Sard type results that exist in the literature can be applied to, and also
how Theorem 14 and Theorem 18 are sharp in the following sense: for each t ∈ (0, 1] we can always
find a function f : Rn → R of class Cn−1 which has an approximate (n − 1)−Taylor polynomial
everywhere on R

n except on a set N of Hausdorff dimension n− 1 + t, but which does not satisfy the
Morse-Sard theorem.

(1) We first note that Theorem 14 is not weaker, nor stronger than the recent Bourgain-Korobkov-
Kristensen generalizations [6, 16, 17] of the Morse-Sard theorem in the case of real-valued

functions for the spaces W n,1
loc (R

n;R) and BVn,loc(R
n). The following example, taken from [2,

pag. 18],

f(x, y) =







x4 sin
(

1
x2

)

if x 6= 0,

0 if x = 0,

shows that there are functions f : R2 → R satisfying the conditions of Theorem 14 and such
that f /∈ BV2(R

2).
On the other hand there are functions f : [0, 1] → R which are in W 1,1(R;R) (and therefore

have the Morse-Sard property) and which do not satisfy assumption (a) of Theorem 14 because
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they

lim
y→x

f(y)− f(x)

y − x
= ∞

for all x in an uncountable set of measure zero. Those examples are well known, but we have
not found any appropriate reference, so let us briefly recall a possible construction. Let us
take the ternary Cantor set C on [0, 1]. For each i = 1, 2, . . . choose a sequence of closed and
disjoint intervals {Iij}j∈N such that C ⊆

⋃∞
j=1 Iij and

∑∞
j=1 ℓ(Iij) ≤ (2/3)i. Define then

f(x) :=

∫ x

0

∞
∑

i,j=1

XIij(t) dt =

∞
∑

i,j=1

ℓ(Iij ∩ [0, x]) , x ∈ [0, 1].

Since the function
∑∞

i,j=1XIij(t) is in L1[0, 1], it is clear that f is absolutely continuous. On

the other hand, it is not difficult to check that limh→0
f(x+h)−f(x)

h
= +∞ for every x ∈ C.

(2) It is also worth noting that Theorem 14 extends ([3, Theorem 3.7]): if f ∈ Cn−m(Rn;Rm) is
such that for all x ∈ R

n it has an approximate (n−m−1)−Taylor polynomial at x then f has
the Morse-Sard property. It is enough to take a function f in the conditions of [3, Theorem 3.7]
and for example change its value in all the points with rational coordinates (call this set N).
This new function stops being of class Cn−m but it still satisfies the assumptions of Theorem
14. Recall that we require condition (a) in Theorem 14 to hold everywhere except perhaps on
a countable set, and that Hs(N) = 0 for all s > 0.

(3) We begin with some definitions. A subset γ of Rn is an arc if it is the image of a continuous
injection defined on the closed unit interval. For x, y ∈ γ, let γ(x, y) denote the subarc of γ
lying between x and y. An arc γ is a quasi-arc if there is some K > 0 such that for every
x, y ∈ γ, γ(x, y) is contained in some ball of radius K|x− y|. A function f is said to be critical
on a set A if A ⊆ Cf . Let A ⊆ R

n, k ≥ 1 an integer number and t ∈ (0, 1). We say that A is

(k+ t)−critical if there exists a real-valued function f ∈ Ck,t which is critical but not constant
on A.
To provide a wide range of examples of functions f : Rn → R of class Cn−1 that have ap-
proximate (n − 1)−Taylor polynomials everywhere on R

n except on at most a set N with
H

n−1+t(N) > 0, but that do not satisfy the Morse-Sard property, we state the following
theorem from Norton ([20, Theorem 2]).

Theorem 21 (Norton). Let k ≥ 1 be an integer number and t ∈ (0, 1). If γ is a quasi-arc
with H

k+t(γ) > 0, then γ is (k + t)−critical.

In the same paper Norton noted that such arcs “are in plentiful supply (e.g. as Julia sets
for certain rational maps in the plane)”. Hence, building such a quasi-arc γ with k = n − 1,
t ∈ (0, 1) and H

n−1+t(γ) > 0, we can get a function f : Rn → R that is of class Cn−1,t and
does not satisfy the Morse-Sard theorem. Note that we have

ap lim sup
y→x

∣

∣

∣
f(y)− f(x)− · · · − Dn−1f(x)

(n−1)! (y − x)n−1
∣

∣

∣

|y − x|n
< +∞

for all x ∈ R
n \ γ, since the construction of f comes from an application of the Whitney

extension theorem and consequently f ∈ C∞(Rn \ γ;R).
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