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Abstract
We prove that every continuous mapping from a separable infinite-dimensional
Hilbert space X into Rm can be uniformly approximated by C∞-smooth mappings
with no critical points. This kind of result can be regarded as a sort of strong ap-
proximate version of the Morse-Sard theorem. Some consequences of the main the-
orem are as follows. Every two disjoint closed subsets of X can be separated by a
one-codimensional smooth manifold that is a level set of a smooth function with no
critical points. In particular, every closed set in X can be uniformly approximated
by open sets whose boundaries are C∞-smooth one-codimensional submanifolds of
X . Finally, since every Hilbert manifold is diffeomorphic to an open subset of the
Hilbert space, all of these results still hold if one replaces the Hilbert space X with
any smooth manifold M modeled on X .

1. Introduction and main results
A fundamental result in differential topology and analysis is the Morse-Sard theorem
(see [21], [22]), which states that if f : Rn

−→ Rm is a Cr -smooth function with
r > max{n−m, 0} and C f stands for the set of critical points of f (i.e., the points x at
which the differential d f (x) is not surjective), then the set of critical values, f (C f ),
is of (Lebesgue) measure zero in Rm . This result also holds true for smooth functions
f : X −→ Y between two smooth manifolds of dimensions n and m, respectively.

Several authors have dealt with the question of to what extent one can obtain a
similar result for infinite-dimensional spaces or manifolds modeled on such spaces.
Let us recall some of their results.

Smale [24] proved that if X and Y are separable connected smooth manifolds
modeled on Banach spaces and f : X −→ Y is a Cr Fredholm map (i.e., every
differential d f (x) is a Fredholm operator between the corresponding tangent spaces),
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then f (C f ) is meager, and, in particular, f (C f ) has no interior points, provided that
r > max{index(d f (x)), 0} for all x ∈ X ; here index(d f (x)) stands for the index
of the Fredholm operator d f (x), that is, the difference between the dimension of
the kernel of d f (x) and the codimension of the image of d f (x), which are both
finite. However, these assumptions are quite restrictive: for instance, if X is infinite-
dimensional, then there is no Fredholm map f : X −→ R. In general, the existence
of a Fredholm map f from a manifold X into another manifold Y implies that Y is
infinite-dimensional whenever X is.

On the other hand, one cannot dream of extending the Morse-Sard theorem to
infinite dimensions without imposing strong restrictions. Indeed, as shown by Kupka’s
counterexample in [17], there are C∞-smooth functions f : X −→ R, where X is
a Hilbert space, such that their sets of critical values f (C f ) contain intervals and, in
particular, have nonempty interiors.

More recently, S. M. Bates has carried out a deep study concerning the sharp-
ness of the hypothesis of the Morse-Sard theorem and the geometry of the sets of
critical values of smooth functions. In particular, he has shown that the above Cr -
smoothness hypothesis in the statement of the Morse-Sard theorem can be weakened
to Cr−1,1 (see [4] – [8]). C. G. Moreira and Bates have studied some generalizations
of the Morse-Sard theorem related to Hausdorff measures and Hausdorff dimensions.
They have also shown that the function f , as in Kupka’s counterexample, can even be
assumed to be a polymonial of degree three (see [9], [18]).

Nevertheless, for many applications of the Morse-Sard theorem, it is often enough
to know that any given continuous function can be uniformly approximated by a map
whose set of critical values has an empty interior. In this direction, Eells and McAlpin
[16] established the following theorem: if X is a separable Hilbert space, then every
continuous function from X into R can be uniformly approximated by a smooth func-
tion f whose set of critical values f (C f ) is of measure zero. This allowed them to
deduce a version of this theorem for mappings between smooth manifolds M and N
modeled on X and a Banach space F , respectively, which they called an approximate
Morse-Sard theorem: every continuous mapping from M into N can be uniformly ap-
proximated by a smooth function f : M −→ N so that f (C f ) has an empty interior.
However, this seemingly much more general version of the result is a bit tricky: as
they already observed (see [16, Rem. 3A]), when F is infinite-dimensional, the func-
tion f they obtain satisfies C f = M , although f (M) has an empty interior in N .
Unfortunately, even though all the results of that paper seem to be true, some of the
proofs are not correct.

In this paper we prove a much stronger result: if M is a C∞-smooth manifold
modeled on a separable infinite-dimensional Hilbert space X (in the sequel such a
manifold is called a Hilbert manifold), then every continuous mapping from M into
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Rm can be uniformly approximated by C∞-smooth mappings with no critical points.
This kind of result might be regarded as one of the strongest possible statements of
approximate Morse-Sard theorems when the target space is finite-dimensional.

As a by-product, we also obtain the following: for every open set U in a separable
Hilbert manifold M , there is a C∞-smooth function f whose support is the closure
of U and such that d f (x) 6= 0 for every x ∈ U . This result could be summed up by
saying that for every open subset U of M , there is a function f whose open support
is U and which does not satisfy Rolle’s theorem; one should compare this result with
[2, Theorem 1] (see also the references therein).

Either of these results has, in turn, interesting consequences related to smooth
approximation and separation of closed sets. For instance, every two disjoint closed
subsets in M can be separated by a smooth one-codimensional submanifold of M
which is a level set of a smooth function with no critical points. In particular, every
closed subset of M can be uniformly approximated by open sets whose boundaries
are smooth one-codimensional submanifolds of M .

So far, these are some good consequences of our main result, all of them somehow
related to Morse-Sard-type theorems. But there are some bad consequences as well,
perhaps the most noticeable one being that, since the set of smooth functions with
no critical points is dense in the set of continuous functions defined on a Hilbert
manifold, there are quite large sets of smooth functions for which no conceivable
Morse theory could be valid.

Let us now formally state our main results. For the sake of a convenient notation
in our proofs, when ϕ takes real values, we indistinctly use the symbols dϕ(x) = ϕ′(x)
to denote the derivative of ϕ at a point x , and we reserve dϕ(x) for the derivative of a
vector-valued function ϕ : M −→ Rm at a point x ∈ M .

THEOREM 1.1
Let U be an open subset of a separable infinite-dimensional Hilbert space X . Then,
for every continuous mapping f : U −→ Rm and for every continuous positive
function ε : U −→ (0,+∞), there exists a C∞-smooth mapping ψ : U −→ Rm

such that ‖ f (x) − ψ(x)‖ ≤ ε(x) and dψ(x) is surjective for all x ∈ U (i.e., ψ has
no critical points).

We prove this result in Section 2. Let us now establish the announced consequences
of Theorem 1.1.

THEOREM 1.2
Let M be a separable Hilbert manifold. Then, for every continuous mapping f :

M −→ Rm and every continuous positive function ε : M −→ (0,+∞), there exists a
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C∞-smooth mapping ψ : M −→ Rm such that ψ has no critical points and ‖ f (x)−
ψ(x)‖ ≤ ε(x) for all x ∈ M .

Proof
One could adapt the ideas in the proof of Theorem 1.1 to extend it to the setting
of Hilbert manifolds, but, for simplicity, we instead use another approach. Indeed,
bearing in mind a fundamental result on Hilbert manifolds due to Eells and Elworthy
[15] that every separable Hilbert manifold can be C∞-embedded as an open subset of
the Hilbert space, it is a triviality to observe that Theorem 1.1 still holds if we replace
U with a separable Hilbert manifold.

We say that an open subset U of a Hilbert manifold M is smooth, provided that its
boundary ∂U is a smooth one-codimensional submanifold of M .

COROLLARY 1.3
Let M be a separable Hilbert manifold. Then, for every two disjoint closed subsets C1,
C2 of M , there exists a C∞-smooth function ϕ : M −→ R with no critical points such
that the level set N = ϕ−1(0) is a one-codimensional C∞-smooth submanifold of M
which separates C1 and C2 in the following sense. Define U1 = {x ∈ M : ϕ(x) < 0}

and U2 = {x ∈ M : ϕ(x) > 0}; then U1 and U2 are disjoint C∞-smooth open sets of
M with common boundary ∂U1 = ∂U2 = N , so that Ci ⊂ Ui for i = 1, 2.

Proof
By Urysohn’s lemma, there exists a continuous function f : M −→ [−1, 1] such that
C1 ⊂ f −1(−1) and C2 ⊂ f −1(1). Taking ε = 1/3 and applying Theorem 1.2, we
get a C∞-smooth function ϕ : M −→ R which has no critical points and is such that
| f (x)− ϕ(x)| ≤ 1/3 for all x ∈ M ; in particular,

C1 ⊆ f −1(−1) ⊆ ϕ−1(−∞, 0) := U1

and
C2 ⊆ f −1(1) ⊆ ϕ−1(0,+∞) := U2.

The open sets U1 and U2 are smooth because their common boundary N = ϕ−1(0)
is a smooth one-codimensional submanifold of M (thanks to the implicit function
theorem and the fact that dϕ(x) 6= 0 for all x).

A trivial consequence of this result is that every closed subset of M can be uniformly
approximated by smooth open subsets of M . In fact, we have the following.

COROLLARY 1.4
Every closed subset of a separable Hilbert manifold M can be approximated by
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smooth open subsets of M in the following sense: for every closed set C ⊂ M and ev-
ery open set W containing C , there is a C∞-smooth open set U so that C ⊂ U ⊆ W .

Finally, the following result, which also implies the above corollary, tells us that for
every open set U in M there always exists a function whose open support is U and
which does not satisfy Rolle’s theorem.

THEOREM 1.5
For every open subset U of a Hilbert manifold M , there is a continuous function f on
M whose support is the closure of U , so that f is C∞-smooth on U and yet f has no
critical point in U .

Proof
For the same reasons as in the proof of Theorem 1.2, we may assume that U is an
open subset of the Hilbert space X = `2. Let ε : X −→ [0,+∞) be the distance
function to X \ U ; that is, let

ε(x) = dist(x, X \ U ) = inf
{
‖x − y‖ : y ∈ X \ U

}
.

The function ε is continuous on X and satisfies ε(x) > 0 if and only if x ∈ U .
According to Theorem 1.1, and setting f (x) = 2ε(x), there exists a C∞-smooth
function ψ : U −→ R which has no critical points on U and which ε-approximates
f on U ; that is, |2ε(x) − ψ(x)| ≤ ε(x) for all x ∈ U . This inequality implies that
limx→z ψ(x) = 0 for every z ∈ ∂U . Therefore, if we setψ = 0 on X \U , the extended
function ψ : X −→ [0,+∞) is continuous on the whole of X , is C∞-smooth on U ,
and has no critical points on U . On the other hand, ψ(x) ≥ ε(x) > 0 for all x ∈ U ;
hence the support of ψ is U .

2. Proof of the main result
The main idea behind the proof of Theorem 1.1 is as follows. First, we use a perturbed
smooth partition of unity to approximate the given continuous mapping f . The sum-
mands of this perturbed partition of unity are functions supported on scalloped balls
and carefully constructed in such a way that the critical set Cϕ of the approximating
sum ϕ is locally compact.

Then we have to eliminate all the critical points without losing much of the ap-
proximation. To this end, we compose the approximating mapping ϕ with a deleting
diffeomorphism h : U −→ U \Cϕ which extracts the critical points Cϕ and is as close
to the identity as we want. The existence of such a diffeomorphism is guaranteed by
the following quite elaborated result of West [25]. We say that a mapping g from a sub-
set A of M is limited by an open cover G of M if the collection {{x, g(x)} : x ∈ A}

refines G.
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THEOREM 2.1 (West [25, Th. 1])
Let C be a closed, locally compact subset of a Hilbert manifold M , let U be an open
subset of M with C ⊂ U , and let G be an open cover of M . Then there is a C∞-
diffeomorphism h of M onto M \ C which is the identity outside U and is limited
by G.

In this way we obtain a smooth mapping ψ which has no critical points and which
happens to approximate the function ϕ (which in turn approximates the original f )
because the perturbation brought on ϕ by the composition with h is not very impor-
tant. (Recall that h is arbitrarily closed to the identity.)

The following proposition shows the existence of a function ϕ with the above
properties. Recall that Cϕ stands for the set of critical points of ϕ.

PROPOSITION 2.2
Let U be an open subset of the separable Hilbert space X . Let f : U −→ Rm be
a continuous mapping, and let ε : U −→ (0,∞) be a continuous positive function.
Then there exists a C∞-smooth mapping ϕ : U −→ Rm such that
(a) Cϕ is locally compact and closed (relatively to U),
(b) ‖ϕ(x)− f (x)‖ ≤ ε(x)/2 for all x ∈ U .

Assume for a while that Proposition 2.2 is already established, and let us see how we
can deduce Theorem 1.1.

Proof of Theorem 1.1
For the given continuous mappings f and ε, take a mapping ϕ with the properties of
Proposition 2.2. Since ϕ and ε are continuous, for every z ∈ U there exists δz > 0
such that if x, y ∈ B(z, δz), then ‖ϕ(y)− ϕ(x)‖ ≤ ε(z)/4 ≤ ε(x)/2.

Let G = {B(x, δx ) : x ∈ U }, let M = U , and for the critical set C = Cϕ , use
Theorem 2.1 to find a C∞-diffeomorphism h : U −→ U \ C such that h is limited by
G. Define ψ = ϕ ◦ h.

Since h is limited by G, we have that, for any given x ∈ U , there exists z ∈ U
such that x, h(x) ∈ B(z, δz), and therefore ‖ϕ(h(x)) − ϕ(x)‖ ≤ ε(z)/4; that is, we
have

‖ψ(x)− ϕ(x)‖ ≤
ε(z)

4
≤
ε(x)

2
.

Hence, by combining this inequality with Proposition 2.2(b), we obtain

‖ψ(x)− f (x)‖ ≤ ε(x) (1)

for all x ∈ U .
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Finally, it is clear that ψ does not have any critical points. Indeed, since h(x) /∈
C = Cϕ , we have that the linear map dϕ(h(x)) is surjective, and dh(x) is a linear
isomorphism, so

dψ(x) = dϕ
(
h(x)

)
◦ d h(x) (2)

is a linear surjection from X onto Rm , for every x ∈ U .

Remark 2.3
In the case when f : U −→ R, we do not need to use the full power of West’s result
(whose proof is quite involved and extremely technical), and we can obtain a more
self-contained proof that we briefly outline next.

When the function f takes values in the real line, one can show that Cϕ is con-
tained in a countable union of small compact sets Kn which are separated from one
another by pairwise disjoint small open sets Un; that is, Cϕ ⊆

⋃
∞

n=1 Kn ⊂
⋃

∞

n=1 Un

with Un ∩ Um = ∅ whenever n 6= m, and the oscillation of ϕ on each Un is very
small. The proof of this stronger statement of Proposition 2.2 is similar to the one we
give below (Case I), but it requires taking two extra precautions to define the Kn’s
and Un’s. First, one has to slightly perturb the radii rn in such a way that, for any
finite selection of centers yn , the spheres that are the boundaries of the balls B(yn, rn)

have empty intersection with the affine subspace spanned by those centers, and no
center belongs to any other sphere. (Of course, these are generic properties of radii
and centers.) And second, one has to use Remark 2.7 in order to inductively select the
λn’s in the proof of Proposition 2.2 in a way that allows one to define the Kn’s and
Un’s. (Making a picture with only three balls helps one to guess how these sets can be
defined by induction together with the λn’s.)

Thanks to this more accurate alternative statement of Proposition 2.2, we can
replace West’s theorem with a much more elementary result that tells us that for every
compact subset K and every open subset U of X with K ⊂ U , there exists a C∞-
diffeomorphism h : X −→ X \ K such that h restricts to the identity outside U . (This
fact is well known and was probably first proved by Moulis [20]. We gave another
proof in an earlier version of the present paper which has recently been extended to
the class of Banach spaces having Schauder bases and C p-smooth bump functions;
see [3].)

In this case, to eliminate the critical points of the approximating function ϕ, we
may compose ϕ with a sequence of deleting diffeomorphisms hn : X −→ X \ Kn

which extract each of the compact sets of critical points Kn and restrict to the identity
outside each of the open sets Un . The infinite composition of deleting diffeomor-
phisms with our function, ψ = ϕ ◦ ©

∞

n=1hn , is locally finite in the sense that only a
finite number (in fact, at most one) of the diffeomorphisms are acting on some neigh-
borhood of each point, while all the rest restrict to the identity on that neighborhood.
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As in the proof above, it follows that ψ has no critical points (the same argument
works locally), and it still approximates f . (Recall that each hn restricts to the iden-
tity outside the set Un , on which ϕ has a very small oscillation, and that the Un are
pairwise disjoint.)

Proof of Proposition 2.2
We assume that U = X since the proof is completely analogous in the case of a
general open set. One has only to take some (easy but rather rambling) technical
precautions in order to make sure that the different balls considered in the argument
are in U .

In order to avoid bearing an unnecessary burden of notation, we make the proof
of this proposition for the case of a constant ε > 0. Later on, we briefly explain what
additional technical precautions must be taken in order to deduce the general form of
this result (see Rem. 2.9).

Let B(x, r) and B(x, r) stand for the open ball and closed ball, respectively, of
center x and radius r , with respect to the usual Hilbertian norm ‖ · ‖ of X .

Case I. We first consider the case of a real-valued function f : U −→ R. Fix ε > 0.
By continuity, for every x ∈ X there exists δx > 0 such that | f (y)− f (x)| ≤ ε/200
whenever y ∈ B(x, 2δx ). Since X =

⋃
x∈X B(x, δx/2) is separable, there exists a

countable subcovering, X =
⋃

∞

n=1 B(xn, rn/2), where rn = δxn for some sequence of
centers (xn). By induction (and using the fact that every finite-dimensional subspace
of X has an empty interior in X ), we can choose a sequence of linearly independent
vectors (yn) with yn ∈ B(xn, rn/2), so that

X =

∞⋃
n=1

B(yn, rn). (3)

Moreover, we have

| f (y)− f (yn)| ≤
ε

100
whenever ‖y − yn‖ ≤ rn . (4)

Now, we define the scalloped balls Bn which are the basis for our perturbed partition
of unity: set B1 = B(y1, r1), and for n ≥ 2, define

Bn = B(yn, rn) \

( n−1⋃
j=1

B(y j , λnr j )
)
,

where 1/2 < λ2 < λ3 < · · · < λn < λn+1 < · · · < 1 with limn→∞ λn = 1.

Taking into account the fact that limn→∞ λn = 1, it is easily checked that the Bn form
a locally finite open covering of X , with the nice property that | f (y)− f (yn)| ≤ ε/100
whenever y ∈ Bn .
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Next, pick a C∞-smooth function g1 : R −→ [0, 1] such that
(i) g1(t) = 1 for t ≤ 0,
(ii) g1(t) = 0 for t ≥ r1

2,
(iii) g′

1(t) < 0 if 0 < t < r1
2;

and then define ϕ1 : X −→ R by ϕ1(x) = g1(‖x − y1‖
2) for all x ∈ X . Note that ϕ1

is a C∞-smooth function whose open support is B1, and B1 ∩ Cϕ1 = {y1}; that is, y1

is the only critical point of ϕ1 which lies inside B1.
Now, for n ≥ 2, pick C∞-smooth functions θ(n, j) : R −→ [0, 1], j = 1, . . . , n,

with the following properties. For j = 1, . . . , n − 1, θ(n, j) satisfies
(i) θ(n, j)(t) = 0 for t ≤ (λnr j )

2,
(ii) θ(n, j)(t) = 1 for t ≥ r j

2,
(iii) θ ′

(n, j)(t) > 0 if (λnr j )
2 < t < r j

2;
while for j = n, the function θ(n,n) is such that
(i) θ(n,n)(t) = 1 for t ≤ 0,
(ii) θ(n,n)(t) = 0 for t ≥ rn

2,
(iii) θ ′

(n,n)(t) < 0 if 0 < t < rn
2.

Then define the function gn : Rn
−→ [0, 1] as

gn(t1, . . . , tn) =

n∏
i=1

θ(n,i)(ti )

for all t = (t1, . . . , tn) ∈ Rn . This function is clearly C∞-smooth on Rn and satisfies
the following properties:
(i) gn(t1, . . . , tn) > 0 if and only if t j > (λnr j )

2 for all j = 1, . . . , n − 1, and
tn < rn

2; and gn vanishes elsewhere;
(ii) gn(t1, . . . , tn) = θ(n,n)(tn) whenever t j ≥ r j

2 for all j = 1, . . . , n − 1;
(iii) ∇gn(t1, . . . , tn) 6= 0, provided (λnr j )

2 < t j for all j = 1, . . . , n − 1, and
0 < tn < rn

2.
Moreover, under the same conditions as in (iii) just above, we have

∂gn

∂tn
(t1, . . . , tn) =

∂θ(n,n)

∂tn
(tn)

n−1∏
i=1

θ(n,i)(ti ) < 0 (5)

since no function in this product vanishes on the specified set; while for j < n,
according to the corresponding properties of the functions θ(n, j), we have

∂gn

∂t j
(t1, . . . , tn) =

∂θ(n, j)

∂t j
(t j )

n∏
i=1,i 6= j

θ(n,i)(ti ) > 0. (6)

If we are not in the conditions of (iii), then the corresponding inequalities do still hold
but are not strict.
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Let us now define ϕn : X −→ [0, 1] by

ϕn(x) = gn
(
‖x − y1‖

2, . . . , ‖x − yn‖
2).

It is clear that ϕn is a C∞-smooth function whose open support is precisely the scal-
loped ball Bn .

As above, let us denote by Cϕn the critical set of ϕn; that is, let Cϕn = {x ∈ X :

ϕ′
n(x) = 0}. Since our norm ‖ · ‖ is Hilbertian, we have that if x ∈ Cϕn ∩ Bn , then x

belongs to the affine span of y1, . . . , yn . Indeed, if for x ∈ Bn ,

ϕ′
n(x) =

n∑
j=1

∂gn

∂t j

(
‖x − y1‖

2, . . . , ‖x − yn‖
2) 2(x − y j ) = 0, (7)

then, since the y j ’s are independent and the coefficients of the x − y j ’s are not all
zero by (5), it follows that x is in the affine span of y1, . . . , yn . Here, as is usual, we
identify the Hilbert space X with its dual X∗, and we make use of the fact that the
derivative of the function x 7→ ‖x‖

2 is the mapping x 7→ 2x .
Similarly, it can be shown that x ∈ Cϕ1+···+ϕm ∩ (B1 ∪ · · · ∪ Bm) implies that x

belongs to the affine span of y1, . . . , ym . Indeed, write (ϕ1 + · · · + ϕn)
′(x) as in (7),

and choose j such that x ∈ B j and x /∈ Bk for j < k ≤ m. Then the coefficient of
x − y j in the sum is nonzero by (5).

In order that our approximating function have a small critical set, we cannot use
the standard approximation provided by the partition of unity associated with the func-
tions (ϕ j )i∈N, namely,

x 7→

∑
∞

n=1 αnϕn(x)∑
∞

n=1 ϕn(x)
,

where αn = f (yn). Indeed, such a function would have a huge set of critical points
since it would be constant (equal to αn) on a lot of large places (at least on each Bn

minus the union of the rest of the B j ). Instead, we modify this standard approximation
by letting the αn be functions (and not mere numbers) of very small oscillation and
with only one critical point (namely, yn). So, for every n ∈ N, let us pick a C∞-smooth
real function an : [0,+∞) −→ R with the following properties:
(i) an(0) = f (yn),
(ii) a′

n(t) < 0 whenever t > 0,
(iii) |an(t)− an(0)| ≤ ε/100 for all t ≥ 0;
and define αn : X −→ R by αn(x) = an(‖x − yn‖

2) for every x ∈ X . It is clear that
αn is a C∞-smooth function on X whose only critical point is yn , and

|αn(x)− f (yn)| ≤
ε

100
for all x ∈ X .
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Now, we can define our approximating function ϕ : X −→ R by

ϕ(x) =

∑
∞

n=1 αn(x)ϕn(x)∑
∞

n=1 ϕn(x)

for every x ∈ X . Since the sums are locally finite, it is clear that ϕ is a well-defined
C∞-smooth function.

FACT 2.4
The function ϕ approximates f nicely. Namely, we have
(i) |ϕ(x)− f (x)| ≤ ε/50 for all x ∈ X , and
(ii) |ϕ(y)− f (x)| ≤ ε/25 for all x, y ∈ B(yn, rn) and each n ∈ N.

Proof
For every n, we have |αn(x) − f (yn)| ≤ ε/100 for all x ∈ X . On the other hand, by
(4), we know that | f (x) − f (yn)| ≤ ε/100 whenever x ∈ B(yn, rn). Then, by the
triangle inequality, it follows that

|αn(x)− f (x)| ≤
ε

50
(8)

whenever x ∈ B(yn, rn). Since ϕm(y) = 0 when y /∈ B(ym, rm), from (8) we get

|ϕ(x)− f (x)| =

∣∣∣∑∞

m=1(αm(x)− f (x))ϕm(x)∑
∞

m=1 ϕm(x)

∣∣∣ ≤

∑
∞

m=1(ε/50)ϕm(x)∑
∞

m=1 ϕm(x)
=

ε

50

for all x ∈ X , which shows (i).
The proof of (ii) is trivial: |ϕ(y) − f (x)| ≤ |ϕ(y) − f (y)| + | f (y) − f (yn)| +

| f (yn)− f (x)|. The first term is smaller than ε/50 by (i), and each of the other terms
is smaller than ε/100 by (4).

Now, let us have a look at the derivative of ϕ. To this end, let us introduce the auxiliary
functions fn defined by

fn(x) =

∑n
k=1 αk(x)ϕk(x)∑n

k=1 ϕk(x)
for all x ∈

n⋃
i=1

Bi .

Since the B j ’s form a locally finite cover, it follows that for each x there are a neigh-
borhood Vx and an n = nx such that Vx ⊆ Bn and Vx ∩ B j = ∅ for j > n. In
particular, ϕ = fn = fm for m ≥ n on Vx .

Then the expression for the derivative of ϕ is given by

ϕ′(x) =

∑n
j=1[α′

j (x)ϕ j (x)+ α j (x)ϕ′
j (x)]

∑n
i=1 ϕi (x)−

∑n
j=1 ϕ

′
j (x)

∑n
i=1 αi (x)ϕi (x)( ∑n

j=1 ϕ j (x)
)2 .
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Therefore, for x and n = nx as above, we have ϕ′(x) = 0 if and only if

n∑
j=1

n∑
i=1

ϕi (x)
[
α′

j (x)ϕ j (x)+ (α j (x)− αi (x))ϕ′

j (x)
]

= 0. (9)

Notation 2.5
In the sequel, A [z1, . . . , zk] stands for the affine subspace spanned by a finite se-
quence of points z1, . . . , zk ∈ X .

FACT 2.6
Let x and n = nx be as above. Then there are numbers β j (x), not all of them zero,
such that

ϕ′(x) =

n∑
k=1

βk(x)(x − yk).

In particular, if x ∈ Cϕ , then x ∈ An := A [y1, . . . , yn].

Proof
As above, in all the subsequent calculations, we identify the Hilbert space X with its
dual X∗, and we identify the derivative of ‖ · ‖

2 with the mapping x 7→ 2x . To save
notation, let us simply write

∂gn

∂t j

(
‖x − y1‖

2, . . . , ‖x − yn‖
2)

= µ(n, j)

and
a′

j
(
‖x − y j‖

2)
= η j .

Notice that, according to (5) and (6), µ(n, j) ≥ 0 for j = 1, . . . , n − 1, while
µ(n,n) ≤ 0; and µ(n,n) 6= 0, provided x ∈ Bn and x 6= yn . On the other hand, it is
clear that η j < 0 for all j unless x = y j (in which case, η j = 0).

Assuming x ∈ C fn ∩ Bn , and taking into account the expression for ϕ′

j (x) from
(7) and the fact that α′

j (x) = 2η j (x − y j ), we can write condition (9) in the form

2
n∑

j=1

n∑
i=1

ϕi (x)
[
η jϕ j (x) (x − y j )+

(
α j (x)− αi (x)

) j∑
`=1

µ( j,`) (x − y`)
]

= 0,

which in turn is equivalent (taking the common factors of each (x − y j ) together) to
the following one:

n∑
j=1

β j (x − y j ) = 0,
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where

β j :=

[
η jϕ j (x)

n∑
i=1

ϕi (x)+

n∑
k= j

( n∑
i=1

(
αk(x)− αi (x)

)
ϕi (x)

)
µ(k, j)

]
. (10)

We next show that at least one of the β j ’s is strictly negative and hence nonzero.
We can obviously assume that x is not any of the points y1, . . . , yn (which are already
in An). In this case, we have µ(n,n) < 0 and η j < 0 for all j = 1, . . . , n. For
simplicity, we make the argument only in the case of n = 3; giving a proof in a more
general case would be little instructive and tedious to read.

Let us first assume that ϕ j (x) 6= 0 for j = 1, 2, 3. We begin by looking at

β3 := η3ϕ3(x)
3∑

i=1

ϕi (x)+

3∑
i=1

(
α3(x)− αi (x)

)
ϕi (x)µ(3,3).

If
∑3

i=1(α3(x) − αi (x))ϕi (x) ≥ 0, we are done since in this case we easily see that
β3 < 0. (Remember that µ(3,3) ≤ 0, η3 < 0, and ϕ3(x) > 0.) Otherwise, we have

3∑
i=1

(
α3(x)− αi (x)

)
ϕi (x) < 0,

and then we look at the term

β2 := η2ϕ2(x)
3∑

i=1

ϕi (x)+

3∑
k=2

( 3∑
i=1

(
αk(x)− αi (x)

)
ϕi (x)

)
µ(k,2).

Now, since µ(3,2) ≥ 0, we have
∑3

i=1(α3(x) − αi (x))ϕi (x)µ(3,2) ≤ 0. On the other
hand, η2ϕ2(x)

∑3
i=1 ϕi (x) < 0, so that if

∑3
i=1(α2(x) − αi (x))ϕi (x) happens to be

nonnegative, then we also have
∑3

i=1(α2(x) − αi (x))ϕi (x)µ(2,2) ≤ 0. Then we are
done since β2, being a sum of negative terms (one of them strictly negative), must be
negative as well. Otherwise,

3∑
i=1

(
α2(x)− αi (x)

)
ϕi (x)

is negative, and then we finally pass to the term

β1 := η1ϕ1(x)
3∑

i=1

ϕi (x)+

3∑
k=1

( 3∑
i=1

(
αk(x)− αi (x)

)
ϕi (x)

)
µ(k,1).

Here, by the assumptions we have made so far and taking into account the signs of
µ(k, j) and η j , we see that

∑3
i=1(αk(x)− αi (x))ϕi (x)µ(k,1) ≤ 0 for k = 2, 3. Having
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arrived at this point, it is sure that
∑3

i=1(α1(x) − αi (x))ϕi (x) must be nonnegative(
otherwise, the numbers

∑3
i=1(αk(x)−αi (x))ϕi (x) should be strictly negative for all

k = 1, 2, 3, which is impossible if one takes αk(x) to be the maximum of the αi (x)
)
,

and now we can deduce as before that β1 < 0.
Finally, let us consider the case when some of the ϕi (x) vanish for i = 1, 2. (Re-

member that ϕ3(x) 6= 0 since x ∈ B3, the open support of ϕ3.) From the definitions
of µ(k, j), gn , and ϕn , it is clear that µ(k, j) = 0 for j > k, and bearing this fact in
mind, we can simplify equality (10) to a great extent by dropping all the terms that
now vanish.

If ϕ1(x) = ϕ2(x) = 0, then (10) reads

ϕ3(x)2η3 (x − y3) = 0,

which cannot happen since we assumed x 6= y j . (This means that the only critical
point that fn can have in B3 \ (B1 ∪ B2) is y3.)

If ϕ1(x) = 0 and ϕ2(x) 6= 0, then the term β1 accompanying (x − y1) in (10)
vanishes, and hence (10) is reduced to

3∑
j=2

[
η jϕ j (x)

3∑
i=2

ϕi (x)+

3∑
k= j

( 3∑
i=2

(
αk(x)− αi (x)

)
ϕi (x)

)
µ(k, j)

]
(x − y j ) = 0.

Since at least one of the numbers
∑3

i=2(αk(x)−αi (x))ϕi (x), k = 2, 3, is nonnegative,
the same reasoning as in the first case allows us to conclude that either β3 or β2

is strictly negative. Finally, in the case of ϕ1(x) 6= 0 and ϕ2(x) = 0, it is β2 that
vanishes, and (10) reads β1 (x − y1)+ β3 (x − y3) = 0, where

β3 = η3ϕ3(x)
3∑

i=1,i 6=2

ϕi (x)+

3∑
i=1,i 6=2

(
α3(x)− αi (x)

)
ϕi (x)µ(3,3)

and

β1 = η1ϕ1(x)
3∑

i=1,i 6=2

ϕi (x)+

3∑
k=1,i 6=2

3∑
i=1,i 6=2

(
αk(x)− αi (x)

)
ϕi (x)µ(k,1).

Again, at least one of the numbers
∑3

i=1,i 6=2(αk(x) − αi (x))ϕi (x), k = 1, 3, is non-
negative, and the same argument as above applies.

Remark 2.7
The above discussion actually shows the following inclusions:

C f3 ∩ B3 ⊆ A [y1, y2, y3],

C f3 ∩ (B3 \ B1) ⊆ A [y2, y3] and C f3 ∩ (B3 \ B2) ⊆ A [y1, y3],

C f3 ∩ (B3 \ (B1 ∪ B2)) ⊆ A [y3].
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More generally, for each n ∈ N and for every finite sequence of positive integers
k1 < k2 < · · · < km < n, we have C fn ∩

(
Bn \

⋃m
j=1 Bk j

)
⊆ A [{y1, . . . , yn} \

{yk1, . . . , ykm }]. This is a crucial fact when one wants to give a self-contained proof
of Theorem 1.1 (in the case of m = 1); see Remark 2.3.

Since ϕ has a continuous derivative, it is obvious that its critical set Cϕ is closed in U .
From Fact 2.6 it follows that Cϕ is locally contained in finite-dimensional subspaces;
that is, for each x ∈ Cϕ , there is an open bounded neighborhood Vx of x such that
Cϕ ∩ Vx is contained in a finite-dimensional subspace Fx of X and hence is compact
(since it is closed and bounded as well). This means that Cϕ is locally compact, and
this concludes the proof of Proposition 2.2 in the case when m = 1.

Case II. Let us now deal with the case when f : X −→ Rm with m ≥ 2. We denote
f = ( f 1, . . . , f m), where f 1, . . . , f m are the coordinate functions of f . In this case,
we have to construct C∞-smooth functions ϕ1, . . . , ϕm such that each ϕ j uniformly
approximates f j and the set of points x ∈ X at which the derivatives dϕ1(x), . . . ,
dϕm(x) are linearly dependent is locally compact. If we succeed in doing so, then it
is clear that the function ϕ = (ϕ1, . . . , ϕm) : X −→ Rm will approximate f and its
set Cϕ of critical points will be closed and locally compact.

Let us define ε j = ε/
√

4m, j = 1, . . . ,m. As each of the functions f j , with j =

1, . . . ,m, is continuous, for every x ∈ X there exists δ j
x > 0 such that

| f j (y)− f j (x)| ≤
ε j

200
for all y ∈ B(x, 2δx ).

Since X =
⋃

x∈X B(x, δ j
x /2) is separable, we may take a countable subcovering

X =

∞⋃
n=1

B
(

x j
n ,

r j
n

2

)
,

where r j
n = δ

j
xn for each j = 1, . . . ,m.

Now, we can slightly perturb the centers x j
n of the balls so that the union of all the

m sequences of centers forms a set of linearly independent vectors. Indeed, bearing in
mind that the complement of every finite-dimensional subspace of X is dense in the
infinite-dimensional space X , we may inductively choose (taking m points y1

k , . . . , ym
k

at each kth step of the induction process) sequences of points (y j
n )

∞

n=1, j = 1, . . . ,m,
with y j

n ∈ B(x j
n , r

j
n /2), such that

(i) {y j
n : n ∈ N, j = 1, . . . ,m} is a set of linearly independent vectors,

(ii) X =
⋃

∞

n=1 B(y j
n , r

j
n ) for every j = 1, . . . ,m, and

(iii) | f j (y)− f j (y j
n )| ≤ ε j/100 whenever ‖y − y j

n ‖ ≤ r j
n .
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Next, for each collection of balls {B(y j
n , r

j
n )}n∈N and each function f j , define

scalloped balls B j
n , and construct a function ϕ j exactly as in Case I, so that

|ϕ j (y)− f j (y)| ≤ ε j for all y ∈ B(y j
n , r

j
n ).

This function ϕ j is of the form

ϕ j (x) =

∑
∞

n=1 α
j
n (x)ϕ

j
n (x)∑

∞

n=1 ϕ
j
n (x)

= lim
n→∞

f j
n (x),

where

f j
n (x) =

∑n
k=1 α

j
k (x)ϕ

j
k (x)∑n

k=1 ϕ
j
k (x)

for all x ∈

n⋃
i=1

B j
i ,

the domains of the f j
n form increasing towers of open sets whose union is X , and for

each x ∈ X , there is some open neighborhood V j
x of x and some n j

x ∈ N such that
ϕ j (y) = f j

n (y) for all y ∈ V j
x and all n ≥ n j

x .
Now, define the mappings ϕ : X −→ Rm and fn :

⋂m
j=1

⋃n
i=1 B j

i −→ Rm by

ϕ(x) =
(
ϕ1(x), . . . , ϕm(x)

)
and fn(x) =

(
f 1
n (x), . . . , f m

n (x)
)
.

By the choice of the ε j and the construction of the functions ϕ j , it is clear that

‖ϕ(x)− f (x)‖ ≤
ε

2
for all x ∈ X;

that is, ϕ approximates f , as is required.

FACT 2.8
If x ∈ C fn ∩

[ ⋂m
j=1

⋃n
i=1 B j

i
]
, then x ∈ A [y j

i : 1 ≤ i ≤ n, 1 ≤ j ≤ m].

Proof
According to Fact 2.6, for each j and each x ∈

⋃n
i=1 B j

i we can assign numbers
β

j
1 (x), . . . , β

j
n (x) such that at least one of them does not vanish, and

d f j
n (x) =

n∑
k=1

β
j

k (x)(x − y j
k ). (11)

Suppose now that x ∈
⋂m

j=1
⋃n

i=1 B j
i , and suppose that the linear map d fn(x) :

X −→ Rm is not surjective (i.e., suppose that x is a critical point of fn); this means
that there are numbers γ1(x), . . . , γm(x), not all of them zero, such that

m∑
j=1

γ j (x) d f j
n (x) = 0. (12)
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Then, by combining (11) and (12), we get

m∑
j=1

n∑
k=1

γ j (x)β
j

k (x)(x − y j
k ) = 0, (13)

where not all of the numbers γ j (x)β
j

k (x) vanish. Since the vectors y j
k are all linearly

independent, it follows from (13) that x is in the affine span of the vectors y j
k with

j = 1, . . . ,m and k = 1, . . . , n.

As dϕ is continuous, the set of critical points Cϕ is closed in U . Now, we can easily
show that Cϕ is locally compact as well. Indeed, take x ∈ X . For every j = 1, . . . ,m,
we know that there exist a neighborhood V j

x of x and some n j
x ∈ N such that ϕ j (y) =

f j
n (y) for all y ∈ V j

x and every n ≥ n j
x . Fix n = nx := max{n1

x , . . . , nm
x }, and take

Wx an open bounded neighborhood of x such that Wx ⊂ Vx :=
⋂m

j=1 V j
x . Then we

have
ϕ(y) =

(
ϕ1(y), . . . , ϕm(y)

)
=

(
f 1
n (y), . . . , f m

n (y)
)

= fn(y)

for all y ∈ Vx , and, in particular, Vx ⊂
⋂m

j=1
⋃n

i=1 B j
i . Now, according to Fact 2.8,

it follows that Cϕ ∩ Vx = C fn ∩ Vx is contained in an affine subspace of dimension
nm. In particular, Cϕ ∩ Wx is compact because it is closed, bounded, and contained
in a finite-dimensional subspace.

Remark 2.9
Let us say a few words as to the way one has to modify the above proof in order to
establish Proposition 2.2 when ε is a continuous positive function. At the beginning
of the proof of Case I of Proposition 2.2, before choosing the δx ’s, we have to take
some number αx > 0 such that |ε(y) − ε(x)| ≤ ε(x)/4 whenever ‖y − x‖ ≤ 2αx ,
and then we can find some δx ≤ αx such that | f (y) − f (x)| ≤ ε(x)/200 whenever
y ∈ B(x, 2δx ). In particular, after choosing the rn = δxn as in the proof of Case I, we
have

| f (y)− f (yn)| ≤
ε(yn)

200
and ε(yn) ≤

4
3
ε(y) (14)

for all y ∈ B(yn, rn). Then we can go on with the proof, with appropriate modifica-
tions, to construct the functions ϕ and fn . Some obvious changes must be made in the
definition of the functions an and αn . Fact 2.4 now tells us that

|ϕ(y)− f (yn)| ≤
ε(yn)

4
(15)

for all y ∈ B(yn, rn). Then, by combining (14) and (15), we get

|ϕ(y)− f (y)| ≤ |ϕ(y)− f (yn)|+| f (yn)− f (y)| ≤
ε(yn)

4
+
ε(yn)

8
=

3
8
ε(yn) ≤

ε(y)
2
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for all y ∈ B(yn, rn) and, since these balls cover X , this proves that |ϕ(y)− f (y)| ≤

ε(y)/2 for all y ∈ X .
In Case II, it is enough to define the functions ε j (x) = ε(x)/

√
4m for j =

1, . . . ,m. The rest of the proof applies just by replacing ε j and ε with ε j (x) and ε(x),
and by making some obvious minor modifications as in Case I.

Open Problem 2.10
The above proof works only in Hilbert space (because Fact 2.6 fails whenever the
norm is not Hilbertian). We do not know if Theorem 1.1 is true for more general
Banach spaces X .
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Morse-Sard, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 13 – 17. MR 1805620
48

[10] C. BESSAGA, Every infinite-dimensional Hilbert space is diffeomorphic with its unit
sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966),
27 – 31. MR 0193646

[11] C. BESSAGA and A. PEŁCZYŃSKI, Selected Topics in Infinite-Dimensional Topology,
Monogr. Mat. 58, PWN, Warsaw, 1975. MR 0478168
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