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Abstract. Let S be a convex hypersurface (the boundary of a closed convex set V with
nonempty interior) in Rn. We prove that S contains no lines if and only if for every
open set U ⊃ S there exists a real-analytic convex hypersurface SU ⊂ U ∩ int(V ). We
also show that S contains no rays if and only if for every open set U ⊃ S there exists a
real-analytic convex hypersurface SU ⊂ U \ V . Moreover, in both cases, SU can be taken
strongly convex. We also establish similar results for convex functions defined on open
convex subsets of Rn, completely characterizing the class of convex functions that can be
approximated in the C0-fine topology by smooth convex functions from above or from
below. We also provide similar results for C1-fine approximations.

1. Main results

The main purpose of this paper is to establish the following two results.

Theorem 1. Let S = ∂V , where V ⊂ Rn is a closed convex set with nonempty interior.
The following statements are equivalent.

(1) S contains no rays.
(2) For every open set U ⊃ S there exists a real-analytic convex hypersurface SU ⊂

U \ V .
(3) For every open set U ⊃ S there exists a real-analytic strongly convex hypersurface

SU ⊂ U \ V .

Theorem 2. Let S = ∂V , where V is a closed convex set with nonempty interior in Rn.
The following statements are equivalent.

(1) S contains no lines.
(2) For every open set U ⊃ S there exists a real-analytic convex hypersurface SU ⊂

U ∩ int(V ).
(3) For every open set U ⊃ S there exists a real-analytic strongly convex hypersurface

SU ⊂ U ∩ int(V ).

Corollary 3. If S is a strictly convex hypersurface in Rn, then for every open set U ⊃ S
there exist real-analytic strongly convex hypersurfaces SI and SO such that SI ⊂ U ∩ int(V )
and SO ⊂ U \ V .
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Results of this kind are important for extending locally concave functions, which are
commonly used as Bellman functions of certain extremal problems in harmonic analysis.
Results similar to Corollary 3 may be found along the lines of Section 4 in [5]. Our initial
motivation comes from the need of Corollary 3 in higher dimensional generalizations of the
work of that paper.

The preceding theorems are relatively easy consequences of the following results, which,
as we believe, are of independent interest in themselves.

Theorem 4. Let U ⊆ Rn be a non-empty open convex set, let f : U → R be convex. The
following statements are equivalent.

(1) The graph of f does not contain any ray.
(2) For every continuous function ε : U → (0,∞) there exists a real-analytic strongly

convex function g : U → R such that f − ε < g < f .
(3) For every continuous function ε : U → (0,∞) there exists a convex function g : U →

R such that f − ε < g < f .

Theorem 5. Let U ⊆ Rn be a non-empty open convex set, let f : U → R be convex. The
following statements are equivalent.

(1) The graph of f does not contain any line.
(2) For every continuous function ε : U → (0,∞) there exists a real-analytic strongly

convex function g : U → R such that f < g < f + ε.
(3) For every continuous function ε : U → (0,∞) there exists a convex function g : U →

R such that f < g < f + ε.

In order to avoid any possible ambiguity in the preceding statements, let us fix some
definitions. A convex hypersurface S is the boundary of a convex set with nonempty
interior. Such a set S will be called strictly convex provided that S contains no line
segments. Similarly, a convex function is strictly convex if its graph does not contain
any line segment. If U is a nonempty convex subset of Rn, we say that a C2 function
f : U → R is strongly convex whenever D2f(x) is strictly positive definite for every x ∈ U .
A (not necessarily C2) function ϕ : U → R will be said to be strongly convex if for every
x ∈ U there exist rx > 0 and a C2 strongly convex function ψx : B(x, rx) → R such that
ϕ − ψx is convex on B(x, rx). A convex hypersurface S ⊂ Rn will be called real-analytic
(resp. a strongly convex real-analytic surface) provided that there exists a real-analytic
convex (resp. strongly convex) function g : U ⊆ Rn → R such that S = g−1(r) for some
r > infx∈Rn g(x) (which implies that Dg(x) 6= 0 for all x ∈ S).

Let us now explain what we mean by a ray in the case that U 6= Rn. The phrase the
graph of f contains a ray will mean, in this paper, that there exists x ∈ U and e ∈ Rd

such that the restriction of the function f to the set {x+ te : t ∈ [0,∞)}∩U is affine. Line
segments of the form [x, z) := {(1− t)x+ tz : t ∈ [0, 1)}, where x ∈ U and z ∈ ∂U , are
rays for us. Similarly, in the above results and what follows, in the case U 6= Rn, a line in
U will be a nonempty intersection of U with a line in Rn. It is worth noting that, when
U = Rn, saying that the graph of a convex function f : Rn → R does not contain any line
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is equivalent to asserting that f is essentially coercive (which means coercive up to a linear
perturbation). This is a consequence of [1, Lemma 4.2] or [3, Theorem 1.11].

For background about this kind of problems, see [1] and the references therein. In [1]
it was proved that every convex function f : U ⊆ Rn → R and every ε ∈ (0,∞) there
exists a real-analytic convex function g : U → R such that |f − g| ≤ ε. This result is no
longer valid in general when the number ε is replaced with a strictly positive continuous
function, although in [1] it was also shown that if f is properly convex, then the result
is still true.1 However, unless U = Rn, proper convexity is not a necessary condition for
this kind of approximation. The following result enlarges the class of functions known to
admit such approximations, providing a simple geometrical characterization of the class
of convex functions (defined on an arbitrary convex and open subset of Rn) that can be
approximated in the C0-fine topology by real-analytic strictly convex functions.

Corollary 6. Let U ⊆ Rn be a non-empty open convex set, let f : U → R be convex. The
following statements are equivalent.

(1) The graph of f does not contain any line.
(2) For every continuous function ε : U → (0,∞) there exists a real-analytic strongly

convex function g : U → R such that |f − g| < ε.
(3) For every continuous function ε : U → (0,∞) there exists a strictly convex function

g : U → R such that |f − g| < ε.

Our methods can be tuned to obtain C1-fine approximation of C1 convex functions by
real-analytic convex functions. The following result improves [1, Theorem 1.10].

Theorem 7. Let U ⊆ Rn be a non-empty open convex set and let f : U → R be convex and
of class C1. The following statements are equivalent.

(1) The graph of f does not contain any line.
(2) For every continuous function ε : U → (0,∞) there exists a real-analytic strongly

convex function g : U → R such that |f − g| < ε and ‖Df −Dg‖ < ε.

Section 2 contains results on approximation of convex functions by other convex functions
from below and above; here we do not care about the smoothness of functions. Section 3
derives Theorems 4, 5, and Corollary 6 from the results of Section 2 and techniques of [1].
Section 4 contains the proofs Theorems 1 and 2. The last Section 5 is devoted to the proof
of Theorem 7.

2. Approximation by rough functions

In the proofs of Theorems 4 and 5 we will use the following two theorems (Theorems 8
and 10 below), which we believe to be novel and of independent interest.

1A function f : U → R is properly convex provided that f = ϕ + `, with ` linear and ϕ : U → [a, b)
convex and proper (meaning that ϕ−1[a, c] is compact for every c ∈ [a, b)); here b ∈ R ∪ {∞}.
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Theorem 8. Let U ⊆ Rn be a non-empty open convex set, let f : U → R be convex. The
graph of f does not contain any ray if and only if for every compact subset K of U there
exists a compact subset C of U such that K ⊂ int(C) and, for

ϕ(x) := sup{f(y) + ξ(x− y) : y ∈ U \ C, ξ ∈ ∂f(y)}, x ∈ U,

we have that

inf{f(x)− ϕ(x) : x ∈ K} > 0.

Here ∂f(x) stands for the the subdifferential of f at the point x:

(1) ∂f(x) =
{
L is a linear function: ∀y ∈ U f(y) ≥ f(x) + L(y − x)

}
, x ∈ U.

Recall that the set ∂f(x) is non-empty and

(2) f(x) = sup
{
f(y) + L(x− y) : y ∈ U, L ∈ ∂f(x)

}
, x ∈ U.

Proof of Theorem 8. The ’only if’ implication is evident, let us prove the ’if’ part. If
the statement is not true, then there exist x0 ∈ U and a sequence (yk) ⊂ U such that
limk→∞ ‖yk‖ =∞ or limk→∞ d(yk, ∂U) = 0 (if U 6= Rn), and

(3) f(x0) = lim
k→∞

(
f(yk) + ηk(x0 − yk)

)
for some ηk ∈ ∂f(yk). Denoting

vk :=
yk − x0
‖yk − x0‖

,

up to passing to some subsequence, we may assume that (vk) converges to some v0 ∈ Sn−1.
Here and in what follows we use the standard Euclidean norm on Rn and denote the unit
sphere by Sn−1. Since the graph of f does not contain any ray and f is convex, there exist
two points z0, w0 ∈ U ∩ {x0 + tv0 : t > 0} such that ‖w0 − x0‖ > ‖z0 − x0‖ and

f(z0)− f(x0)

‖z0 − x0‖
<
f(w0)− f(z0)

‖w0 − z0‖
≤ L(v0)

for every L ∈ ∂f(w0).

Let us define

wk := x0 + |w0 − x0|vk, zk := x0 + |z0 − x0|vk.
The points wk and zk may fall out of U for some k, but for all k large enough we have that
wk, zk ∈ U . Up to extracting a subsequence, we may, thus, assume that wk, zk ∈ U for all
k ∈ N. Let us also set

rk :=
f(wk)− f(zk)

‖wk − zk‖
− f(zk)− f(x0)

‖zk − x0‖
,

and choose ξk ∈ ∂f(wk) for each k ∈ N. Note that

(4)
f(wk)− f(zk)

‖wk − zk‖
≤ ξk(vk).
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Since limk→∞wk = w0, limk→∞ zk = z0, and f is continuous, we have that

lim
k→∞

rk = r :=
f(w0)− f(z0)

‖w0 − z0‖
− f(z0)− f(x0)

‖z0 − x0‖
> 0.

For sufficiently large k ∈ N, we have ‖yk − x0‖ > ‖wk − x0‖, and by convexity,

ξk(vk) ≤ ηk(vk),

and

(5) ηk(vk) ≥
f(yk)− f(wk)

‖yk − wk‖
.

Therefore we have

f(yk) + ηk(x0 − yk) = f(yk)− ‖yk − x0‖ηk(vk) =

f(yk)− ‖yk − wk‖ηk(vk)− ‖wk − x0‖ηk(vk)
(5)

≤
f(yk)− f(yk) + f(wk)− ‖wk − x0‖ηk(vk) ≤
f(wk)− ‖wk − x0‖ξk(vk) =

f(wk)− ‖wk − zk‖ξk(vk)− ‖zk − x0‖ξk(vk)
(4)

≤

f(wk) + f(zk)− f(wk) + ‖zk − x0‖
f(zk)− f(wk)

‖wk − zk‖
=

f(zk) + ‖zk − x0‖
(
−rk −

f(zk)− f(x0)

‖zk − x0‖

)
=

f(x0)− rk‖zk − x0‖,
which implies

lim sup
k→∞

(
f(yk) + ηk(x0 − yk)

)
≤ f(x0)− ‖z0 − x0‖r < f(x0),

in contradiction to (3). �

Corollary 9. Let U ⊆ Rn be a non-empty open convex set, let f : U → R be convex.
Let ε : U → R+ be a strictly positive continuous function. Assume that the graph of f does
not contain rays. There exists a convex function g : U → R such that

(6) f(x)− ε(x) < g(x) < f(x)

for all x ∈ U .

The strict sign in the second inequality is important.

Proof. Let us construct g with the formula

(7) g(y) = sup
{
f(x) + L(y − x)− 1

2
ε(x) : x ∈ U, Lx ∈ ∂f(x)

}
.

The function g is clearly convex. Plugging x := y into this formula, we get g(y) ≥
f(y) − 1

2
ε(y) > f(y) − ε(y). The inequality g(y) < f(y) follows from Theorem 8 and the

continuity of ε. �
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Theorem 10. The graph of f does not contain lines if and only if for any x ∈ U there
exists a compact set Cx ⊂ U and an affine function Ax such that f(x) < Ax(x), however,
f(y) > Ax(y) provided y ∈ U \ Cx.

The proof of the theorem will take some time.

Let L be a function in the subdifferential of f at x. Consider the set

(8) V = {y ∈ U : f(y) = f(x) + L(y − x)}.
Then V is a relatively closed convex subset of U (of course, V is not necessarily closed as
a subset of Rn). Let V∞ be another set,

(9) V∞ =
{
y ∈ U : ∃ a ray [x, z) ⊂ V such that y ∈ [x, z)

}
.

As usual, by a ray we understand either a classical ray (then z is an infinite point) or the
segment [x, z) with z ∈ ∂U . The set V∞ is relatively closed in U . However, in general
situation, it might be non-convex.

Lemma 11. Assume V does not contain lines. Then V∞ is convex.

cc

dd

Figure 1. Illustration to the proof of Lemma 11.

Proof. Let y1 and y2 be two
points in V∞ lying on the rays [x, z1)
and [x, z2) correspondingly. The rea-
soning depends on whether z1 and z2
are finite or infinite. Let us consider
the case where z1 is a finite point
and z2 is infinite (this case is the most
’representative’), see Fig. 1 for a vi-
sualization. Consider the ray (z1, z2)
(which means a ray with the ver-
tex z1 and collinear with [x, z2)).
It (z1, z2) ∩ U 6= ∅, then this inter-
section is contained in V (by convex-
ity and closedness of V ); this cannot
happen since in such a case (z1, z2)∩

U is a line.

Let y ∈ (y1, y2), we wish to show that y ∈ V∞. Let Y = (z1, z2) ∩ {x+ t(y − x) : t > 0}.
By the above, Y ∈ ∂U and [x, Y ) ⊂ V . Thus, y ∈ V∞.

The case where z1 and z2 are finite points is similar. The only difference is that
now (z1, z2) is a classical segment. The case where z1 and z2 are both infinite is a lit-
tle bit different (in fact, it simplifies). In this case, we do not need the assumption that V
does not contain lines. We consider the ray {x + t(y − x) : t > 0} and prove directly that
it belongs to V∞ (this follows from the closedness and convexity of V ). �

We will also need a version of the hyperplane separation theorem. We provide the proof
since the construction will be used in Section 4 below.
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Theorem 12. Let K be a convex closed cone in Rn with the vertex at the origin. Assume K
does not contain lines. There exists a linear hyperplane H such that H ∩K = {0}.

Proof. First, we note that the origin is an extreme point of K. Second, consider the
set K̃ = conv(K ∩ Sn−1). This is a compact convex set that does not contain the origin
(since K ∩ Sn−1 ⊂ K \ {0}, K ∩ Sn−1 is compact, and 0 is an extreme point of K). Thus,
by the classical hyperplane separation theorem, there exists a hyperplane H̃ that strongly
separates K̃ and 0. For example, one may consider the point ζ ∈ K̃ that has the smallest
possible Euclidean norm and set H̃ to be the midperpendicular of ζ and the origin. Let H
be the translate of H̃ passing through 0. Then H ∩ K̃ = ∅. Therefore, H ∩K = {0}. �

Proof of Theorem 10. If Cx and Ax as in the second condition of the theorem exist for
any x, then the graph of f does not contain lines. The reverse implication is less trivial.

Set x = 0 for convenience. Pick some L ∈ ∂f(0), consider the set V defined in (8) and
note that it does not contain lines (since the graph of f does not). Then, by Lemma 11, V∞
given by (9) is a closed convex set that does not contain lines. Consider the minimal convex
cone with the vertex 0 that contains V∞ and call it V ∗ (note that V ∗ is not necessarily a
subset of U). This cone is also convex, closed, and does not contain lines. By Theorem 12,
there exists a hyperplane H that intersects V ∗ (and therefore, V∞) at the origin only.
Without loss of generality, we may assume H = {y ∈ Rn : yn = 0} and that V∞ lies in the
hyperspace where yn ≥ 0. We also assume f(0) = 0 and L = 0 (we may subtract an affine
function from f and Ax).

We set A(y) = −εyn, where ε is a sufficiently small parameter to be specified later.
Since V ∗ meets H only at the origin, there exists δ > 0 such that

(10) V∞ \ {0} ⊂
{
y ∈ Rn : yn > δ‖y‖

}
.

Let us call the latter set Kδ. Note that W = conv(V \Kδ) is a compact set lying inside U .
Let S be a star-shaped (not necessarily convex) closed bounded set such that V \Kδ ⊂ intS
and (S∩Kδ) ⊂ U . We may construct the set S in the following way. Assume U contains the
closed Euclidean ball of radius ν centered at the origin. Let ρ be the distance between W
and ∂U . Define the function s : Sn−1 → R+ by the formula

(11) s(z) = max
(
ν, (µW (z))−1 + ρ/2

)
, z ∈ Sn−1;

here µW denotes the Minkowski functional of W . We set S = ∪z∈Sn−1 [0, s(z)z].

Let

(12) M = max
z∈S
‖zn‖; m = inf

z∈∂S\Kδ

(
f(z)

)
; ε =

m

2M
.

Note that m > 0 since ∂S \ Kδ is a compact set, which does not intersect V . We will
shortly prove that with this choice of ε, A(y) > f(y) when y ∈ Kδ∪ (U \S); in such a case,
we may set C0 (the compact set we are looking for) equal to S and A0(y) := A(y) + ε1 for
sufficiently small ε1. If y ∈ Kδ and ‖y‖ > ν, then

(13) A(y) ≤ −εδν < 0 ≤ f(y).
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In the case y /∈ Kδ, we also have y /∈ S. Let y∗ be the point on the intersection of the
segment [0, y] with the boundary of S. Then,

(14) A(y) = −εyn = −ε ‖y‖
‖y∗‖

y∗n ≤
m

2

‖y‖
‖y∗‖

<
‖y‖
‖y∗‖

f(y∗) ≤ f(y),

the last inequality in the chain follows from the convexity of f (since y∗ ∈ [0, y)). �

Corollary 13. Let ε : U → R+ be a positive continuous function. Assume the graph of f
does not contain lines. There exists a convex function g : U → R such that

(15) f(x) < g(x) ≤ f(x) + ε(x), x ∈ U.

Proof. Let the graph of g coincide with the convex hull of the graph of f + ε. The inequal-
ity g ≤ f + ε is evident. To prove the inequality f < g, we need to modify the function Ax
provided by Theorem 10. Given any x ∈ U , we will construct an affine function Ãx such
that f(x) < Ãx(x) and Ãx(y) < f(y) + ε(y) for all y ∈ U . This will prove the desired
inequality f < g.

Let Cx be the compact set delivered by Theorem 10 together with Ax. We pick some
number θ ∈ (0, 1) such that

(16) θ <
inf{ε(y) : y ∈ Cx}

sup{Ax(y)− f(y) : y ∈ Cx}
and define

(17) Ãx(y) = θAx(y) + (1− θ)
(
f(x) + L(y − x)

)
,

here L ∈ ∂f(x) is an arbitrary function. Then,

(18) Ãx(y)− f(y) =

θ
(
Ax(y)− f(y)

)
+ (1− θ)

(
f(x) + L(y − x)− f(y)

)
< ε(y), y ∈ Cx.

In the case y /∈ Cx we simply have Ãx(y) < f(y); the inequality f(x) < Ãx(x) is also
true. �

3. Proofs of theorems 4 and 5, and of Corollary 6.

We need to gather some facts and techniques from [1]. For instance we will be using
smooth maxima: for any number δ > 0, denote

Mδ(x, y) =
x+ y + θ(x− y)

2
, (x, y) ∈ R2,

where θ : R→ (0,∞) is a C∞ function such that:

(1) θ(t) = |t| if and only if |t| ≥ δ;
(2) θ is convex and symmetric;
(3) Lip(θ) = 1.
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If f, g : U ⊆ Rn → R, define the function Mδ(f, g) : U → R by

Mδ(f, g)(x) = Mδ(f(x), g(x)).

By Lip(f) we mean the Lipschitz constant of f .

Proposition 14. Let f, g : U ⊆ Rn → R be convex functions. For every δ > 0, the function
Mδ(f, g) : U → R has the following properties:

(1) Mδ(f, g) is convex.
(2) If f is Ck on {x : f(x) ≥ g(x) − δ} and g is Ck on {x : g(x) ≥ f(x) − δ} then

Mδ(f, g) is Ck on U . In particular, if f, g are Ck, then so is Mδ(f, g).
(3) Mδ(f, g)(x) = f(x) if f(x) ≥ g(x) + δ.
(4) Mδ(f, g)(x) = g(x) if g(x) ≥ f(x) + δ.
(5) max{f, g} ≤Mδ(f, g) ≤ max{f, g}+ δ/2.
(6) Mδ(f, g) = Mδ(g, f).
(7) Lip(Mδ(f, g)|B) ≤ max{Lip(f |B),Lip(g|B)} for every ball B ⊂ U .
(8) If f, g are strictly convex on a set B ⊆ U , then so is Mδ(f, g).
(9) If f, g ∈ C2(U) are strongly convex on a set B ⊆ U , then so is Mδ(f, g).

(10) If f1 ≤ f2 and g1 ≤ g2 then Mδ(f1, g1) ≤Mδ(f2, g2).

Proof. See [1, Section 2]. �

The result below follows from the proof of [1, Theorem 1.1], although it was not explicitly
mentioned there.

Theorem 15. Let U be a nonempty convex open subset of Rn, and f : U → R be convex.
Assume that f cannot be written as f = c ◦ P + `, where P : Rn → Rk is linear and
surjective, k < n, c : P (U) → R, and ` is linear. Then f can be uniformly approximated
on U by real-analytic strongly convex functions.

For the sake of completeness, let us review the main points of the proof of [1, Theorem
1.1] and make some remarks as to why the approximations can be taken strongly convex
if f is not of the form f = c ◦ P + `. We will use some terminology from [1].

Definition 16. We will say that a function C : Rn → R is a k-dimensional corner function
on Rn if it is of the form

C(x) = max{ `1 + b1, `2 + b2, ..., `k + bk },

where the `j : Rn → R are linear functions such that the functions Lj : Rn+1 → R defined
by Lj(x, xn+1) = xn+1 − `j(x), 1 ≤ j ≤ k, are linearly independent, and the bj ∈ R.

We will also say that a convex function f : U ⊆ Rn → R is supported by C at a point
x ∈ U provided we have C ≤ f on U and C(x) = f(x).

The following lemma is a refinement of [1, Lemma 4.2].
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Lemma 17. Let U ⊆ Rn be open and convex, let f : U → R be a convex function and
x0 ∈ U . Assume that f is not supported at x0 by any (n+ 1)-dimensional corner function.
Then there exist k < n, a linear projection P : Rn → Rk, a Cp convex function c : P (U) ⊆
Rk → R, and a linear function ` : Rn → R such that f = c ◦ P + `.

In the statement of [1, Lemma 4.2], f was assumed to be C1, but this was just for
convenience; the same proof can be used to show the result for an arbitrary convex function
(using the fact that if the range of the subdifferential of a convex function is contained
in {0} then the function is constant, and applying this to the function (t1, ..., tn−k) 7→
(f − `1)(y +

∑n−k
j=1 tjwj)).

Proof of Theorem 15. In order to show Theorem 15, one can argue as follows. Let us
consider a compact convex subset K of U . Given ε > 0, since f is convex and Lipschitz on
K we can find finitely many points x1, ...., xm ∈ K and affine functions h1, ..., hm : Rn → R
such that f is differentiable at each xj, each hj supports f − ε at xj, and f − 2ε ≤
max{h1, ..., hm} on K. By convexity we also have max{h1, ..., hm} ≤ f − ε on all of U . By
the preceding lemma, for each xj we may find a (n + 1)-dimensional corner function Cj
that supports f − ε at xj. Note that these corner functions are always defined on all of
Rn (even when f is not). Since f is convex and differentiable at xj, we have hj = Cj on a
neighborhood of xj and, by convexity, also hj ≤ Cj ≤ f − ε and max{C1, ..., Cm} ≤ f − ε
on U . We also have f−2ε ≤ max{h1, ..., hm} ≤ max{C1, ..., Cm} ≤ f−ε on K. Now apply
[1, Lemma 4.1] to the functions Cj + ε′/2 in order to find C∞ strongly convex functions
g1, ..., gm : Rn → R such that Cj ≤ gj ≤ Cj + ε′, where ε′ := ε/2m, and define g : Rn → R
by

g = Mε′(g1,Mε′(g2,Mε′(g3, ...,Mε′(gm−1, gm))...))

(for instance, if m = 3, then g = Mε′(g1,Mε′(g2, g3))). By Proposition 14, we have that
g ∈ C∞(Rd) is strongly convex,

max{C1, ..., Cm} ≤ g ≤ max{C1, ..., Cm}+mε′ ≤ f − ε

2
on U,

and
f − 2ε ≤ max{C1, ..., Cm} ≤ g on K.

Therefore, f : U ⊆ R → R can be approximated from below by C∞ strongly convex
functions, uniformly on each compact convex subset of U . By [1, Theorem 1.2] and Remark
1 in Section 2 of the same paper, we conclude that, given ε > 0 we may find a C∞ strongly
convex function h such that f − 2ε ≤ h ≤ f − ε on U .

Finally, set

η(x) =
1

2
min{ε, min{D2h(x)(v)2 : v ∈ Rn, ‖v‖ = 1}}, x ∈ U.

The function η : U → (0,∞) is continuous, so we can apply Whitney’s theorem (Lemma 6
in [6]) on C2-fine approximation of C2 functions by real-analytic functions to find a real
analytic function g : U → R such that

max{|h− g|, ‖Dh−Dg|, ‖D2h−D2g|} ≤ η.

This implies that f−3ε ≤ g ≤ f and D2g ≥ 1
2
D2h > 0, so g is strongly convex as well. �
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We will also make use of the following simple fact.

Lemma 18. Let I = (a, b), where −∞ ≤ a < b ≤ +∞, let ϕ : I → R be convex and
let ψ : R → [0, 1] be differentiable and such that lim|t|→∞ ψ(t) = 0. If I 6= R, also assume
that ψ−1(0) = R \ I. If |ϕ(t)| ≤ ψ(t) for all t ∈ I, then ϕ(t) = 0 for all t ∈ I.

Proof. If ϕ(s) > 0 for some s ∈ I, then ϕ attains a maximum in I, and since ϕ is convex
and limt→a+ ϕ(t) = 0, ϕ it must be constantly 0. Hence ϕ ≤ 0. Let us see that ϕ(t) = 0
for all t ∈ I. Take t0 ∈ I. If a ∈ R, by convexity we have

− ψ(t)

t− a
≤ ϕ(t)

t− a
≤ ϕ(t0)

t0 − a
for all t ∈ [a, t0],

but

lim
t→a+

−ψ(t)

t− a
= −ψ′(a) = 0,

so 0 ≤ ϕ(t0). If b ∈ R, similarly we get ϕ(t0) ≥ 0. Finally, if I = R, since ϕ ≤ 0 is convex,
ϕ must be constant, and the assumptions that lim|t|→∞ ψ(t) = 0 and |ϕ| ≤ ψ imply that
this constant must be 0. �

Proof of Theorem 5. (2) =⇒ (3) is trivial.

(3) =⇒ (1) is a consequence of Lemma 18: if the restriction of f to U ∩ {x+ tv : t ∈ R}
is affine, we may consider a function ε : Rd → [0, 1] of class C1 such that lim|x|→∞ ε(x) = 0
and Rn \U = ε−1(0) (if U 6= Rn). By assumption there exists a convex function g : U → R
such that f < g < f + ε. Then we may apply Lemma 18 with ϕ(t) := g(x+ tv)− f(x+ tv)
and ψ(t) = ε(x+ tv) to find that g(x+ tv) = f(x+ tv) for all t, contradicting that f < g.

(1) =⇒ (2): We may assume that lim|x|→∞ ε(x) = 0, and if U 6= Rn, we may also assume
that ε has C1 extension to all of Rn, denoted still by ε, such that ε−1(0) = Rn \ U . Let us
fix a sequence of compact sets (Kj) such that

U =
∞⋃
j=1

Kj and Kj ⊂ int(Kj+1) for every j ∈ N.

By Corollary 13 there exists a convex function h1 : U → R such that

f < h1 < f + ε.

Since the graph of f contains no lines, using the preceding lemma it is easy to see that
the graph of h1 contains no lines either (if the restriction of f to U ∩ {x + te : t ∈ R}
is affine, we may apply the lemma with the functions ϕ(t) := h1(x + te) − f(x + te) and
ψ(t) := ε(x+te)). In particular h1 is not of the form h1 = c◦P +` for any linear projection
P : Rn → Rk with k < n and ` linear. Then, according to Theorem 15, we may find a
strongly convex C∞ function g1 : U → R such that

h1 −
ε1
3
< g1 < h1 −

ε1
6

on U,
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where

ε1 := inf
x∈K1

{h1(x)− f(x)}.

For future notational consistency, we also write ϕ1 = g1. By continuity of ε and compact-
ness of K1 there exists m1 ∈ N such that

f +
ε

m1

< h1 −
2

3
ε1 on K1,

and applying again Corollary 13 we can take a convex function h2 : U → R such that

f < h2 < f +
ε

m1

on U.

Observe that the graph of h2 cannot contain any line. Now let us set

ε2 := inf
x∈K2

{h2(x)− f(x)} > 0,

and use Theorem 15 to obtain a strongly convex C∞ function ϕ2 : U → R such that

h2 −
ε2
3
< ϕ2 < h2 −

ε2
6

on U.

Let us define

g2 := Mδ2(g1, ϕ2),

where δ2 = ε2/12. By using Proposition 14 we see that g2 is a strongly convex C∞ function
satisfying

max{g1, ϕ2} ≤ g2 ≤ max{g1, ϕ2}+ δ2/2.

Also, since ϕ2 < h2 − ε2/6 < h1 − 2ε1/3 < g1 − ε1/3 on K1, and ε1/3 > δ2, we obtain

g2 = g1 on K1.

Moreover, we have

f < g2 < f + ε on K2,

because

g2 ≥ ϕ2 > h2 − ε2/3 > h2 − ε2 ≥ f on K2

and

g2 ≤ max{g1, ϕ2}+ δ2/2 ≤ max{h1 − ε1/6, h2 − ε2/6}+ δ2/2 ≤
max{h1, h2} − ε2/12 < f + ε

on U .

We continue this process by induction: suppose that, for N ≥ 2, we have defined convex
functions h1, ..., hN : U → R, strongly convex functions g1, ..., gN , and ϕ1, ..., ϕN ∈ C∞(U)
(with ϕ1 = g1), numbers 1 = m0 < m1 < m2 < ... < mN−1 ∈ N such that, for every
j = 1, ..., N ,

f +
ε

mj

< hj −
2

3
εj on Kj,

and

hj −
εj
3
< ϕj < hj −

εj
6

on U,



INNER AND OUTER SMOOTH APPROXIMATION OF CONVEX HYPERSURFACES 13

where
εj := inf

x∈Kj
{hj(x)− f(x)},

gj = Mδj(gj−1, ϕj),

with
δj =

εj
3 · 2j

,

and also
gj = gj−1 on Kj−1,

gj ≤ max{h1, ..., hj} − δj < f + ε on U,

gj ≥ hj − εj ≥ f on Kj.

Then we can find mN ∈ N such that mN > mN−1 and

f +
ε

mN

< hN −
2

3
εN on KN ,

and using Corollary 13, we obtain a convex function hN+1 : U → R such that

f < hN+1 < f +
ε

mN

on U.

According to Lemma 18 the graph of hN cannot contain any line, so by Theorem 15, for

εN+1 := inf
x∈KN+1

{hN+1(x)− f(x)} > 0,

there exists a strongly convex function ϕN+1 ∈ C∞(U) such that

hN+1 −
εN+1

3
< ϕN+1 < hN+1 −

εN+1

6
on U.

We define
δN+1 =

εN+1

3 · 2N+1
,

and
gN+1 = MδN+1

(gN , ϕN+1),

which is a strongly convex C∞ function satisfying

max{gN , ϕN+1} ≤ gN+1 ≤ max{gN , ϕN+1}+ δN+1/2.

Since ϕN+1 < hN+1 − εN+1/6 < hN+1 − 2εN/3 < gN − εN/3 on KN , and εN/3 > δN+1,
Proposition 14 implies

gN+1 = gN on KN .

On the other hand,

gN+1 ≥ ϕN+1 > hN+1 − εN+1/3 > hN+1 − εN+1 ≥ f on KN+1

and

gN+1 ≤ max{gN , ϕN+1}+
δN+1

2
≤ max{max{h1, ..., hN} − δN , hN+1 −

εN+1

6
}+ δN+1

≤ max{h1, ..., hN+1} − δN+1 < f + ε

on U .

Therefore, by induction there exist sequences of functions (gj), (ϕj), (hj) satisfying the
properties listed above for every j ∈ N.
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Let us finally define

g(x) = lim
j→∞

gj(x), x ∈ U.

Since the gj ∈ C∞(U) are strongly convex and satisfy gj+1 = gj on Kj, Kj ⊂ intKj+1 for
every j, and U =

⋃
j∈NKj, it is clear that g is well defined, strongly convex, and of class

C∞(U). We also have gj > f on Kj for every j, and gj < f + ε on U for every j, which
imply f < g < f + ε on U .

In order to obtain a real-analytic function ψ with these properties, let

η(x) :=

1

2
min

{
g(x)− f(x), f(x) + ε(x)− g(x), min

{
D2g(x)(v)2 : v ∈ Rn, ‖v‖ = 1

}}
,

x ∈ U,

which defines a strictly positive continuous function on U . We can apply Whitney’s theorem
(Lemma 6 in [6]) on C2-fine approximation of C2 functions to find a real-analytic function
ψ : U → R such that

max{|ψ − g|, ‖Dψ −Dg|, ‖D2ψ −D2g|} ≤ η.

This implies that f < ψ < f + ε and D2ψ ≥ 1
2
D2g > 0, so g is strongly convex too. �

Proof of Theorem 4. (1) =⇒ (2): Since the graph of f does not contain any ray, it does
not contain any line either. Then, according to Theorem 8, there exists a convex function
h : U → R such that f − ε < h < f . Setting δ(x) = f(x) − h(x), x ∈ U , we may
apply Theorem 5 to h to find a real-analytic strongly convex function g : U → R such that
h < g < h+ δ, which implies f − ε < g < f .

(2) =⇒ (3) is trivial.

(3) =⇒ (1) can be proved by using the following variant of Lemma 18 with the function
ϕ(t) = g(x+ tv)− f(x+ tv), t ∈ (a, t0], assuming that the graph of f is affine on some ray
{x+ tv : t ∈ (a, t0]} of U .

Lemma 19. Let I = (a, b), where −∞ ≤ a < b ≤ +∞, let ϕ : I → R be convex and let
ψ : R→ [0, 1] be differentiable and such that lim|t|→∞ ψ(t) = 0. If I 6= R, also assume that
ψ−1(0) = R \ I. Let t0 ∈ I. If −ψ(t) ≤ ϕ(t) for all t ∈ I ∩ (a, t0], then ϕ(t) ≥ 0 for all
t ∈ I sufficiently close to a.

The proof of this lemma is similar to that of Lemma 18 and is left to the reader. �

Proof of Corollary 6. (1) =⇒ (2) is an obvious consequence of Theorem 5, and (2) =⇒
(3) is trivial. Let us see that (3) =⇒ (1): assume (1) is false; then there exists a line
{x + tv : t ∈ R} ∩ U = {x + tv : t ∈ (a, b)}, on which f is affine. Let ε : Rn → [0, 1] be of
class C1 and such that lim|x|→∞ ε(x) = 0 and (if U 6= Rn) also Rn \ U = ε−1(0). By the
assumption there exists a strictly convex function g : U → R such that |f − g| < ε. Then,
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by applying Lemma 18 with ϕ(t) := g(x+ tv)− f(x+ tv) and ψ(t) = ε(x+ tv), we deduce
that g(x+ tv) = f(x+ tv) for all t. This contradicts that g is strictly convex. �

4. Proofs of Theorems 1 and 2.

Besides Theorems 4 and 5, in the proofs of Theorems 1 and 2 we will use the following
lemmas.

Lemma 20 (See [2], Lemma 3.2). Let W ⊂ Rn be a closed convex set such that 0 ∈ int(W ),
and let µ = µW denote the Minkowski functional of W . The following assertions are
equivalent:

(a) W does not contain any line.
(b) ∂W does not contain any line.
(c) µ−1(0) does not contain any line
(d) µ is essentially coercive.

Lemma 21. Let S = ∂V , where V is a closed convex set V with nonempty interior in Rn.
If S does not contain any rays and is unbounded, then S can be regarded (up to a suitable
rotation and translation) as the graph of a convex function f : U ⊆ Rn−1 → R such that
limy∈U,|y|→∞ f(y) = ∞ (if U is unbounded) and limy→x f(y) = ∞ for every x ∈ ∂U (if
U 6= Rn−1). In particular f is properly convex and its graph contains no ray.

Proof. Since S does not contain any line, nor does V (according to the preceding lemma).
And since S is unbounded, so is V , hence V contains a ray. Consider the maximal inscribed
cone of V :

(19) K =
{
e ∈ Rn : ∃x ∈ U such that {x+ te : t > 0} ⊂ V

}
.

The cone K is non-empty, closed, convex, and does not contain lines. Consider the hyper-
plane H constructed in the proof of Theorem 12 (we need the explicit construction with
the closest point ζ presented in the proof). Let us introduce the orthogonal coordinates
such that H = {x ∈ Rn : xn = 0} and xn > 0 on K. Note that in such a case ζ lies on
the Oxn axis, which yields the ray (0, 0, . . . , 0, t), where t ∈ R+, belongs to K. We will call
this ray the positive half of the Oxd-axis.

Let PH be the orthogonal projection of Rn onto H. Set U = PH(V ) and f(y) =
inf{t ∈ R : (y, t) ∈ V }, here y ∈ U . Let us prove that this choice indeed fulfills the
requirements. First, since the positive half of the Oxd axis lies in K, any ray of the
form {x+ (0, 0, . . . , 0, t) : t > 0} lies in V , provided x ∈ V . Thus, V is indeed the epigraph
of f .

Second, let us check two limit assertions. Similar to (10),

(20) K ⊂
{
y ∈ Rn : yn > δ‖y‖

}
for a sufficiently small number δ > 0. This, in particular, leads to the bound f(y) ≥
δ‖y‖−C for a sufficiently large constant C. Therefore, f(x) tends to infinity as x tends to
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infinity inside U , supporting the first limit assertion. On the other hand, if U 6= Rn−1 and
x ∈ ∂U , the limit β := limy→x f(y) exists in (0,+∞]. If β were finite then S would contain
the ray {(x, t) : t ≥ β}, contradicting the assumption that S contain no rays. Therefore β
is infinite, and the second limit assertion is also verified. This also shows S is the graph
of f . �

Proof of Theorem 1. (1) =⇒ (3): If S is unbounded then this implication is an immediate
consequence of Theorem 4 and Lemma 21. On the other hand, if S is compact, the result
is well known. Nevertheless, for completeness, let us provide a short proof of this case
based on the preceding results. We may assume that 0 ∈ int(V ) and U is of the form
ϕ−1(1 − 2ε, 1 + 2ε), where ϕ = µ2, µ denoting the Minkowski functional of V , and ε is a
positive constant. The function ϕ is convex and coercive, and its graph does not contain
any ray. By Theorem 4 there exists a real-analytic strongly convex function g : Rn → R
such that ϕ − ε < g < ϕ. Let us define W = g−1(−∞, 1]. Then SU := ∂W = g−1(1) is a
real-analytic strongly convex hypersurface with SU ⊂ U \ V .

(3) =⇒ (2) is obvious.

(2) =⇒ (1): this can be proved similarly to (3) =⇒ (1) of Theorem 4. The details are
left to the reader. �

Proof of Theorem 2. (1) =⇒ (3): By Lemma 20, the Minkowski functional of V , which
we will denote µ, is essentially coercive (and in particular its graph does not contain any
line). Given an open set U ⊃ S, by using partitions of unity for instance, it is not difficult
to construct a continuous function ε : Rn → (0, 1] such that

µ(x) + ε(x) < 1 for all x ∈ V \ U.

Then we may apply Theorem 5 to find a real-analytic strongly convex function g : Rn → R
such that µ < g < µ+ ε. Define SU = g−1(1). It is clear that SU is a real-analytic strongly
convex hypersurface (the boundary of the convex body g−1(−∞, 1]). If x ∈ V \ U , then
we have g(x) < µ(x) + ε(x) < 1, and if x ∈ Rn \ int(V ), then g(x) > µ(x) ≥ 1. Therefore,
SU = g−1(1) ⊂ U ∩ int(V ).

(3) =⇒ (2) is trivial.

(2) =⇒ (1) is similar to (3) =⇒ (1) of Theorem 5. The details are left to the reader. �

5. Proof of Theorem 7.

Let us gather some preliminary results that we will be using in the proof. The following
theorem is well known; see, for instance, [4, Theorem 25.7]).

Theorem 22. Let U be a nonempty open convex subset of Rn, let f : U → R be a differen-
tiable convex function, and (fk) be a sequence of differentiable convex functions such that
f(x) = limk→∞ fk(x) for every x ∈ U . Then Dfk converges to Df , uniformly on each
compact subset of U .
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The following fact about smooth maxima is shown in [1, Lemma 7.1].

Lemma 23. Let Mδ the smooth maximum of Proposition 14, and let V ⊆ Rn be an open
set. If ϕ, ψ ∈ C1(V ), then

‖DMδ(ϕ, ψ)− Dϕ+Dψ

2
‖ ≤ 1

2
‖Dϕ−Dψ‖.

We will also use the following consequence of Theorems 10, 4 and 22.

Lemma 24. Let U be a nonempty open convex subset of Rn, and f : U → R be convex and
C1. Assume that the graph of f contains no lines. Then, for every continuous function
ε : U → (0, 1) and every compact set K ⊂ U there exist a compact set C and a convex C1

function ψ : U → R such that:

(1) f ≤ ψ < f + ε on U ;
(2) f < ψ on K;
(3) K ⊂ int(C) ⊂ C ⊂ U ;
(4) f = ψ on U \ C;
(5) ψ is strongly convex on int(C), and
(6) ‖Dψ −Df‖ < ε on U .

Proof. For every x ∈ K, by Theorem 10 there exist an affine function Ax : Rn → R and a
compact set Cx ⊂ U such that f(x)−Ax(x) < 0 and f(y)−Ax(y) > 0 for all y ∈ U \ Cx.
In particular Dx := {y ∈ U : f(y) − Ax(y) ≤ 0} is a compact convex neighborhood of x.
Since K is compact, we may find finitely many points x1, ..., xm ∈ K such that

K ⊂
m⋃
j=1

int(Dxj).

Observe that the graph of the restriction of f to int(Dxj) cannot contain any line for
any j = 1, ...,m. For every j = 1, ...,m, let εj : U → [0, 1] be a C1 function such that
ε−1j (0) = U \ int(Dxj) and εj ≤ ε. According to Theorem 4, for each j there exists a
strongly convex C∞ function ϕj : int(Dxj) → R such that f < ϕj < εj on int(Dxj). For
each j, we can extend ϕj to all of U by setting ϕj = f on U \ int(Dxj), and since εj is of
class C1 and satisfies εj = 0 on U \ int(Dxj), we have that ϕj is differentiable on U , which
(because ϕj is convex) amounts to saying that ϕj ∈ C1(U).

Let us call C =
⋃m
j=1Dxj and

ϕ =
1

m

m∑
j=1

ϕj.

It is easy to check that C and ϕ satisfy properties (1) − (5) of the statement (with ϕ in
place of ψ).

Now, for each k ∈ N, we may apply what we have just proved with ε/k replacing ε, and
we obtain a sequence (ψk) of C1 convex functions satisfying properties (1)− (5) (with the
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same C) and also

f ≤ ψk ≤ f +
ε

k
on U

for every k. Then, by Theorem 22, Dψk converges to Df uniformly on C, and therefore
we can find k large enough so that

‖Dψk(x)−Df(x)‖ ≤ min
y∈C

ε(y) for all x ∈ C.

Since ψk = f on U \ C, we also have Dψk = Df on U \ C, so by setting ψ = ψk we get a
C1 convex function satisfying properties (1)− (6). �

We are ready to establish a C1-fine version of Corollary 13.

Proposition 25. Let U be an nonempty open convex subset of Rn, f : U → R a convex
function, and ε : U → (0, 1) a continuous function. Assume that the graph of f contains
no lines. Then there exists a C1 strongly convex function g : U → R such that

f < g < f + ε and ‖Dg −Df‖ < ε on U.

Proof. Let us fix a sequence of compact sets (Kj) such that

U =
∞⋃
j=1

Kj and Kj ⊂ int(Kj+1) for every j ∈ N.

For every j ∈ N, by Lemma 24 there exist a compact set Cj and a convex C1 function
gj : U → R such that:

(1) f ≤ gj ≤ f + ε/2 on U ;
(2) f < gj on Kj;
(3) Kj ⊂ int(Cj) ⊂ Cj ⊂ U ;
(4) f = gj on U \ Cj;
(5) gj is strongly convex on int(Cj), and
(6) ‖Dgj −Df‖ ≤ ε/2 on U .

Let us define

g =
∞∑
j=1

1

2j
gj.

It is routine to check that g : U → R is of class C1, strongly convex, and satisfies f < g <
f + ε and ‖Dg −Df‖ < ε on U . �

Now let us proceed with the proof of Theorem 7. We only need to show that (1) =⇒ (2)
(the converse is easily shown as in the proof of Corollary 6).

As in the proof of Theorem 5, we may assume that lim|x|→∞ ε(x) = 0 and, if U 6= Rd,
that ε has C1 extension to all of Rd, denoted still by ε, such that ε−1(0) = Rd \ U . Let us
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fix a sequence of compact sets (Kj) such that

U =
∞⋃
j=1

Kj and Kj ⊂ int(Kj+1) for every j ∈ N.

By the preceding proposition there exist a compact set C1 and a strongly convex C1

function h1 : U → R such that h1 : U → R such that

f < h1 < f + ε and ‖Dh1 −Df‖ < ε on U.

Let us set
ε1 := inf

x∈K1

{h1(x)− f(x)}.

By continuity of ε and compactness of K1 there exists m1 ∈ N such that

f +
ε

m1

< h1 −
2

3
ε1 on K1,

and applying again Proposition 25 we can take a C1 strongly convex function h2 : U → R
such that

f < h2 < f +
ε

m1

and ‖Df −Dh2‖ ≤
1

4
ε on U.

Using the limiting properties of ε, the inequalities f < h1 < f + ε and f < h2 < f + ε/m1,
and the fact that U =

⋃∞
j=1Kj, we may find a number n2 ∈ N such that

h2 > h1 −
ε1
12

on U \Kn2 .

We set n1 = 1, ε2 = infy∈Kn2{h2(y)− f(y)}, and find n3 > n2 so that

h3 > h2 −
ε2
96

on U.

By continuing this process by induction, we obtain sequences m0 = 1 < m1 < m2 < ... and
n1 = 1 < n2 < n3 < ... of positive integers, and C1 strongly convex functions hj : U → R,
j ∈ N, satisfying

f +
ε

mj

< hj −
2

3
εj on Knj ,

f < hj < f +
ε

mj−1
and ‖Dhj −Df‖ <

1

4
ε on U,

and
hj+1 > hj −

εj
23j−1 · 3

on U \Knj+1
,

where
εj := inf

x∈Knj
{hj(x)− f(x)}.

Next, for every j ∈ N, we may combine Theorems 5 and 22 in order to find a C∞ strongly
convex function ϕj : U → R such that

hj −
εj

23j−3 · 3
< ϕj < hj −

εj
23j−2 · 3

on U,

and

‖Dϕj −Dhj‖ <
1

4
inf{ε(y) : y ∈ Knj+1

} on Knj+1
.
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Now let us call ϕ1 = g1, and for every j ≥ 2, define

gj = Mδj (gj−1, ϕj) ,

where

δj =
εj

23j−2 · 3
.

Claim 26. For every j ∈ N, gj is a C∞ strongly convex function satisfying:

(1) gj+1 = gj on Knj

(2) gj+1 = ϕj+1 on U \Knj+1

(3) gj ≤ max{h1, ..., hj} − δj/2 < f + ε on U
(4) gj ≥ hj − εj ≥ f on Knj .

Proof. By using Proposition 14 we see that gj+1 is a strongly convex C∞ function satisfying

max{gj, ϕj+1} ≤ gj ≤ max{gj, ϕj+1}+ δj+1/2.

Since

gj ≥ ϕj > hj −
εj

23j−3 · 3
> hj+1 +

2

3
εj −

εj
23j−3 · 3

> ϕj+1 +
εj+1

23(j+1)−2 · 3
+

2

3
εj −

εj
23j−3 · 3

> ϕj+1 + δj+1,

Proposition 14 also implies that

gj+1 = Mδj+1
(gj, ϕj+1) = gj on Knj ,

which shows (1). As for (4), we have

gj ≥ ϕj > hj −
εj

23j−3 · 3
> hj − εj ≥ f on Knj .

We show the rest of these properties by induction on j. On U \Kn2 , we have

ϕ2 > h2 − ε2/24 > h1 − ε1/12− ε2/24 > g1 + ε1/6− ε1/12− ε2/24 > g1 + δ2,

so we obtain that g2 = ϕ2 outside Kn2 . Assuming that (2) is true for 1 ≤ j ≤ `− 1, let us
see that g`+1 = ϕ`+1 on U \Kn`+1

. On U \Kn`+1
we have

ϕ`+1 > h`+1 −
ε`+1

23(`+1)−3 · 3
> h` −

εj
23`−1 · 3

− ε`+1

23(`+1)−3 · 3
> ϕ` +

ε`
23`−2 · 3

− ε`
23`−1 · 3

− ε`+1

23(`+1)−3 · 3
= g` +

ε`
23`−1 · 3

− ε`+1

23(`+1)−3 · 3
≥ g` +

ε`+1

23`−1 · 3
− ε`+1

23(`+1)−3 · 3
> g` + δ`+1,

hence g`+1 = Mδ`+1
(g`, ϕ`+1) = ϕ`+1 outside Kn`+1

. This proves (2).

Finally, for (3), we have

g2 ≤ max{g1, ϕ2}+δ2/2 ≤ max{h1−ε1/6, h2−ε2/48}+δ2/2 ≤ max{h1, h2}−δ2/2 < f+ε
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on U . Assume now that property (3) is true for j, and let us see that it is also true for
j + 1. Indeed we have

gj+1 ≤ max{gj, ϕj+1}+
δj+1

2
≤ max{max{h1, ..., hj} −

δj
2
, hj+1 − δj+1}+

δj+1

2
≤ max{h1, ..., hj+1} − δj+1 < f + ε

on U . This shows (3). �

Claim 27. For every j ∈ N we have ‖Dgj −Df‖ ≤ ε on Knj+1
.

Proof. On Knj+1
\Knj we know by the preceding claim that gj = ϕj, so we also have

‖Dgj −Df‖ = ‖Dϕj −Df‖ ≤ ‖Dϕj −Dhj‖+ ‖Dhj −Df‖ ≤
1

4
min

y∈Knj+1

ε(y) +
1

4
< ε.

On Knj \Knj−1
we have, using Lemma 23 and the above claim,

‖Dgj −Df‖ ≤
1

2
‖Dgj−1 −Dϕj‖+

1

2
‖Dgj +Dϕj − 2Df‖

≤ 1

2
‖Dgj−1 −Dϕj‖+

1

2
‖Dgj−1 −Df‖+

1

2
‖Df −Dϕj‖

≤ 1

2
‖Dϕj−1 −Dhj−1‖+

1

2
‖Dhj−1 −Df‖+

1

2
‖Df −Dϕj‖+

1

2
‖Dgj−1 −Df‖+

1

2
‖Df −Dϕj‖

≤ ‖Dϕj−1 −Dhj−1‖+ ‖Df −Dhj−1‖+ ‖Dϕj −Dhj‖+ ‖Df −Dhj‖

≤ 1

4
min
y∈Knj

ε(y) +
1

4
ε+

1

4
min

y∈Knj+1

ε(y) +
1

4
ε.

On Kn1 = K1, we have g2 = g1 = ϕ1, hence

‖Dg2 −Df‖ ≤ ‖Dg1 −Dh1‖+ ‖Dh1 −Df‖ ≤
1

4
min
y∈Kn2

ε(y) +
1

4
ε ≤ ε.

By combining this with the above properties and an obvious induction argument (using
property (1) of the preceding claim), we deduce that ‖Dgj −Df‖ ≤ ε on Knj+1

for every
j. �

Let us finally define
g(x) = lim

j→∞
gj(x), x ∈ U.

Since the gj ∈ C∞(U) are strongly convex and satisfy gj+1 = gj on Knj , Knj ⊂ int(Knj+1
)

for every j, and U =
⋃
j∈NKnj , it is clear that g is well defined, strongly convex, and of

class C∞(U). From Claim 26 we see that

f < g < f + ε on U,

and from Claim 27 we deduce that

‖Dg −Df‖ ≤ ε on U.

In order to obtain a real-analytic function ψ with these properties, we consider

η(x) :=
1

4
min{g(x)−f(x), ‖Dg(x)−Df(x)‖, f(x)+ε(x)−g(x), min

|v|=1
D2g(x)(v)2}, x ∈ U,
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which defines a strictly positive continuous function on U , and we apply Whitney’s ap-
proximation theorem to find a real-analytic function ψ : U → R such that

max{|ψ − g|, ‖Dψ −Dg|, ‖D2ψ −D2g|} ≤ η.

This implies that f < ψ < f + ε, ‖Df −Dg‖ < ε and D2ψ ≥ 1
2
D2g > 0, so g is strongly

convex too. �

Let us make one final remark. One can wonder if there are analogues of Theorem 7
for Ck fine approximation with k ≥ 2. Our methods cannot be employed to answer this
question, due to the following fact: if f, g are C2 convex functions, then in general the
second derivative of Mδ(f, g) blows up as δ goes to 0.
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