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Abstract. We introduce a proximal subdifferential and develop a calculus for
nonsmooth functions defined on any Riemannian manifold M . We give some
applications of this theory, concerning, for instance, a Borwein-Preiss type
variational principle on a Riemannian manifold M , as well as differentiability
and geometrical properties of the distance function to a closed subset C of
M .

Mathematics Subject Classification (2000). 49J52, 58E30, 58C30, 47H10.

Keywords. Proximal subdifferential, Riemannian manifold, variational princi-
ple, mean value theorem.

1. Introduction

The proximal subdifferential of lower semicontinuous real-valued functions is a
very powerful tool which has been extensively studied and used in problems of op-
timization, control theory, differential inclusions, Lyapunov Theory, stabilization,
and Hamilton-Jacobi equations (see [6] and references therein).

In this paper we will introduce a notion of proximal subdifferential for func-
tions defined on a Riemannian manifold M (either finite or infinite dimensional)
and we will develop the rudiments of a calculus for nonsmooth functions defined
on M . Next we will prove an important result concerning inf-convolutions of lower
semicontinuous functions with squared distance functions on M , from which a
number of interesting consequences are deduced. For instance, we show a Borwein-
Preiss type variational principle for functions defined on M , and we study some
differentiability and geometrical properties of the distance function to a closed
subset C of M .

This paper should be compared with [5], where a theory of viscosity subdiffer-
entials for functions defined on Riemaniann manifolds is established and applied to
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show existence and uniqueness of viscosity solutions to Hamilton-Jacobi equations
on such manifolds.

In a sequel to the present paper we will elaborate on the applications of this
proximal calculus on Riemannian manifolds, establishing a decrease principle from
which one can deduce new theorems about functions having fixed points even after
perturbing them with Lipschitzian functions (see [3]).

2. The main tools on proximal subdifferential

Let us recall the definition of the proximal subdifferential for functions defined
on a Hilbert space X . A vector ζ∈ X is called a proximal subgradient of a lower
semicontinuous function f at x ∈ domf := {y ∈ X : f(y) < +∞} provided there
exist positive numbers σ and η such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ ‖y − x‖2 for all y ∈ B (x, η) .

The set of all such ζ is denoted ∂P f(x), and is referred to as the proximal sub-
differential, or P-subdiferential. A comprehensive study of this subdifferential and
its numerous applications can be found in [6].

Before giving the definition of proximal subdifferential for a function defined
on a Riemannian manifold, we must establish a few preliminary results.

The following result is proved in [4, Corollary 2.4].

Proposition 2.1. Let X be a real Hilbert space, and f : X −→ (−∞,+∞] be a
proper, lower semicontinuous function. Then,

∂pf(x) = {ϕ′(x) : ϕ ∈ C2(X,R), f − ϕ attains a local minimum at x}.
In particular this implies that ∂P f(x) ⊆ D−f(x), where D−f(x) is the vis-

cosity subdifferential of f at x.

Lemma 2.2. Let X1 and X2 be two real Hilbert spaces, Φ : X2 → X1 a C2

diffeomorphism, f : X1 → (−∞,+∞] a lower semicontinuous function. Then
v ∈ ∂P f(x1) if and only if DΦ(x2)∗(v) ∈ ∂(f ◦ Φ)(x2), where Φ(x2) = x1.

Proof. This is a trivial consequence of Proposition 2.1, bearing in mind that com-
positions with diffeomorphisms preserve local minima. �
Corollary 2.3. Let M be a Riemannian manifold, p ∈ M , (ϕi, Ui) i = 1, 2, two
charts with p ∈ U1 ∩ U2, and ϕi(p) = xi. Then ∂P (f ◦ ϕ−1

1 )(x1) �= ∅ if and
only if ∂P (f ◦ ϕ−1

2 )(x2) �= ∅. Moreover, D(ϕ1 ◦ ϕ−1
2 )(x2)∗(∂P (f ◦ ϕ−1

1 )(x1)) =
∂P (f ◦ ϕ−1

2 )(x2).

Now we can extend the notion of P-subdifferential to functions defined on a
Riemannian manifold.

Notation. In the sequel, M will stand for a Riemannian manifold defined on a real
Hilbert space X (either finite dimensional or infinite dimensional). As usual, for a
point p ∈M , TMp will denote the tangent space of M at p, and expp : TMp →M
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will stand for the exponential function at p. Recall that expp maps straight lines
of the tangent space TMp passing through 0p ∈ TMp into geodesics of M passing
through p.

We will also use the parallel transport of vectors along geodesics. Recall that,
for a given curve γ : I →M , numbers t0, t1 ∈ I, and a vector V0 ∈ TMγ(t0), there
exists a unique parallel vector field V (t) along γ(t) such that V (t0) = V0. Moreover,
the mapping defined by V0 
→ V (t1) is a linear isometry between the tangent spaces
TMγ(t0) and TMγ(t1), for each t1 ∈ I. In the case when γ is a minimizing geodesic
and γ(t0) = x, γ(t1) = y, we will denote this mapping by Lxy, and we call it
the parallel transport from TMx to TMy along the curve γ (see [9] for general
reference on these topics).

The parallel transport allows us to measure the length of the “difference”
between vectors (or forms) which are in different tangent spaces (or in duals of
tangent spaces, that is, fibers of the cotangent bundle), and do so in a natural
way. Indeed, let γ be a minimizing geodesic connecting two points x, y ∈ M , say
γ(t0) = x, γ(t1) = y. Take vectors v ∈ TMx, w ∈ TMy. Then we can define the
distance between v and w as the number

‖v − Lyx(w)‖x = ‖w − Lxy(v)‖y

(this equality holds because Lxy is a linear isometry between the two tangent
spaces, with inverse Lyx). Since the spaces T ∗Mx and TMx are isometrically iden-
tified by the formula v = 〈v, ·〉, we can obviously use the same method to measure
distances between forms ζ ∈ T ∗Mx and η ∈ T ∗My lying on different fibers of the
cotangent bundle.

Definition 2.4. Let M be a Riemannian manifold, p ∈ M , f : M → (−∞,+∞] a
lower semicontinuous function. We define the proximal subdifferential of f at p,
denoted by ∂P f(p) ⊂ TMp, as ∂P (f ◦ expp)(0) (understood that ∂P f(p) = ∅ for all
p /∈ domf).

The following result is an immediate consequence of Lemma 2.2.

Proposition 2.5. Let M be a Riemannian manifold, p ∈ M , (ϕ,U) a chart, with
p ∈ U , and f : M → (−∞,+∞] a lower semicontinuous function. Then

∂P f(p) = Dϕ(p)∗[∂P (f ◦ ϕ−1)(ϕ(p))].

As a consequence of the definition of ∂P (f ◦ expp)(0) we get the following
result.

Corollary 2.6. Let M be a Riemannian manifold, p ∈ M , f : M → (−∞,+∞] a
lower semicontinuous function. Then ζ ∈ ∂P f(p) if and only if there is a σ > 0
such that

f(q) ≥ f(p) + 〈ζ, exp−1
p (q)〉 − σd(p, q)2

for every q in a neighborhood of p.
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We can also define the proximal superdifferential of a function f from a
Hilbert space X into [−∞,+∞) as follows. A vector ζ∈ X is called a proximal
supergradient of an upper semicontinuous function f at x ∈ domf if there are
positive numbers σ and η such that

f (y) ≤ f (x) + 〈ζ, y − x〉 + σ ‖y − x‖2 for all y ∈ B (x, η)

and we denote the set of all such ζ by ∂P f(x), which we call P-subdifferential of
f at x.

Now, let M be a Riemannian manifold, p ∈ M , f : M → [−∞,+∞) an
upper semicontinuous function. We define the proximal superdifferential of f at p,
denoted by ∂P f(p) ⊂ TMp, as ∂P (f ◦expp)(0). As before, we have that ζ ∈ ∂P f(p)
if and only if there is a σ > 0 such that

f(q) ≤ f(p) + 〈ζ, exp−1
p (q)〉 + σd(p, q)2

for every q in a neighborhood of p. It is also clear that ∂P f(p) = −∂P (−f)(p).
Before going into a study of the properties and applications of this proxi-

mal subdifferential, let us recall Ekeland’s approximate version of the Hopf-Rinow
theorem for infinite dimensional Riemannian manifolds (see [8]). In some of our
proofs we will use Ekeland’s theorem for the cases where the complete manifold
M is infinite dimensional (so we cannot ensure the existence of a geodesic joining
any two given points in the same connected component of M).

Theorem 2.7 (Ekeland). If M is an infinite dimensional Riemannian manifold
which is complete and connected then, for any given point p, the set

{q ∈M : q can be joined to p by a unique minimizing geodesic}
is dense in M .

3. Properties and applications of the proximal subdifferential

Most of the following properties are easily translated from the corresponding ones
for M = X a Hilbert space through charts (see [6]). Recall that a real-valued
function f defined on a Riemannian manifold is said to be convex provided its
composition f ◦ α with any geodesic arc α : I → M is convex as a function from
I ⊂ R into R.

Proposition 3.1. Let M be a Riemannian manifold, p ∈M , f, g : M → (−∞,+∞]
lower semicontinuous functions. We have:

(i) if f is C2, then ∂P f(p) = {df(p)};
(ii) if f is convex, then ζ ∈ ∂P f(p) if and only if f(q) ≥ f(p) + 〈ζ, v〉 for every

q ∈M and v ∈ exp−1
p (q);

(iii) if f has a local minimum at p, then 0 ∈ ∂P f(p);
(iv) every local minimum of a convex function f is global;
(v) if f is convex and 0 ∈ ∂P f(p), then p is a global minimum of f ;
(vi) ∂P f(p) + ∂P g(p) ⊆ ∂P (f + g)(p), with equality if f or g is C2;
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(vii) ∂P (cf)(p) = c∂P f(p), for c > 0;
(viii) if f is K-Lipschitz, then ∂P f(p) ⊂ B(0,K);
(ix) ∂P f(p) is a convex subset of TMp;
(x) if ζ ∈ ∂P f(p) and f is differentiable at p then ζ = df(p).

Proof. All the properties but perhaps (ii), (viii) and (x) are easily shown to be
true. Property (viii) follows from the fact that exp−1

p (·) is almost 1-Lipschitz when
restricted to balls of center 0p and small radius.

Let us prove (ii). Let q ∈ M . Let γ(t) = expp(tv), t ∈ [0, 1], which is a
minimal geodesic joining p and q. The function f ◦ γ is convex and satisfies

f(γ(t)) ≥ f(γ(0)) + 〈ζ, tv〉 − σd(γ(t)), γ(0))2

= f(γ(0)) + 〈ζ, tγ′(0))〉 − σt2

for some σ > 0 and t > 0 small. Hence 〈ζ, γ′(0))〉 ∈ ∂P (f ◦γ)(0), and consequently
(bearing in mind that f ◦ γ is convex on a Hilbert space) f(γ(t)) ≥ f(γ(0)) +
〈ζ, tγ′(0))〉, which implies f(q) ≥ f(p) + 〈ζ, v〉.

To see (x), note that Proposition 2.1 implies that ζ ∈ D−f(p), that is, ζ is a
viscosity subdifferential of f at p in the sense of [5]. Then, since f is differentiable,
we have that ζ ∈ D−f(p) = D+f(p) = {df(p)}, so we conclude that ζ = df(p). �

The following important result is also local and follows from [6, Theorem
1.3.1].

Theorem 3.2 (Density Theorem). Let M be a Riemannian manifold, p ∈ M ,
f : M → (−∞,+∞] a lower semicontinuous function, ε > 0. Then there exists a
point q such that d(p, q) < ε, f(p) − ε ≤ f(q) ≤ f(p), and ∂P f(q) �= ∅.

Now we arrive to one of the main results of this paper. We are going to extend
the definition and main properties of the Moreau-Yosida regularization (see [1] for
instance) to the category of functions defined on Riemannian manifolds of arbitrary
dimension (finite or infinite).

Theorem 3.3. Let M be a connected, complete Riemannian manifold, and let f :
M → R be a continuous function, bounded from below by a constant c. Then we
have that for every α > 0 the function

fα(x) = inf
y∈M

{f(y) + αd(x, y)2}
is bounded from below by c, it is Lipschitz on bounded sets and satisfies

lim
α→+∞ fα(x) = f(x).

Moreover, for every x0 ∈M with ∂P fα(x0) �= ∅, there is a y0 ∈M such that:
a) every minimizing sequence (yn)n in the definition of fα(x0) converges to y0,

and consequently the infimum is a strong minimum;
b) there is a minimizing geodesic γ joining x0 and y0;
c) fα is differentiable at x0;
d) Lx0y0 [dfα(x0)] ∈ ∂P f(y0).
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Finally, if we assume that M is finite dimensional (or, more generally, if we as-
sume that M can be infinite dimensional but still has the property that every two
points of M are connected by a minimizing geodesic) then the same remains true
of every lower semicontinuous function f : M → (−∞,+∞] which is bounded from
below by c.

Proof. It is clear that fα(x) ≥ inf
y∈M

{c + αd(x, y)2} = c, and it is easily seen

that lim
α→+∞ fα(x) = f(x). Let A ⊂ M be a bounded set. We have that fα(x) ≤

f(z0) + αd(x, z0)2 for a fixed z0, hence there is a positive m such that fα(x) ≤ m
provided x ∈ A. Let us consider x, y ∈ A and ε > 0, choose z = zy ∈ M such
that fα(y) + ε ≥ f(z) + αd(y, z)2. We have that d(y, z) ≤ [ 1

α (fα(y) + ε − c)]
1
2 ≤

[ 1
α (m− c+ ε)]

1
2 := R. Consequently,

fα(x) − fα(y) ≤ fα(x) − f(z) − αd(y, z)2 + ε

≤ f(z) + αd(x, z)2 − f(z) − αd(y, z)2 + ε

= α(d(x, z) + d(y, z))(d(x, z) − d(y, z)) + ε

≤ α(2R+ diamA)d(x, y) + ε.

By letting ε go to 0, and changing x by y, we get that fα is Lipschitz on A.
For the second part, fix x0 ∈ M , ζ ∈ ∂P fα(x0), and a sequence (yn)n such

that f(yn) + αd(x0, yn)2 converges to the infimum defining fα(x0). First of all
let us observe that we can always assume that for each n there is a minimizing
geodesic γn : [0, 1] → M joining the point yn to x0. Indeed, for each couple of
points yn, x0 we can apply Ekeland’s Theorem 2.7 and continuity of f to find a
point y′n and a unique minimizing geodesic γn joining y′n to x0 in such a way that

d(yn, y
′
n) ≤ 1

n
and f(y′n) + αd(x0, y

′
n) ≤ f(yn) + αd(x0, yn) +

1
n
.

Let us also notice that, if M is finite dimensional then we can directly apply the
classical Hopf-Rinow theorem to find geodesics γn and we can dispense with the
continuity assumption, thus requiring only that f be lower semicontinuous.

Since the sequence (yn)n realizes the infimum defining fα(x0), so the sequence
(y′n)n does. Then we can apply the argument which follows below to the sequence
(y′n)n in order to find a point y0 with the required properties. Finally the original
sequence (yn)n must also converge to y0 because d(yn, y

′
n) → 0 as n → +∞. So,

to save notation, we assume yn = y′n for each n.
Because ζ ∈ ∂P fα(x0), there is σ > 0 such that, if y is in a neighborhood of

x0, we have
〈ζ, exp−1

x0
(y)〉 ≤ fα(y) − fα(x0) + σd(x0, y)2. (∗)

Now, define εn ≥ 0 by fα(x0) + ε2n = f(yn) + αd(yn, x0)2. We have lim
n
εn = 0.

From (∗), it follows that

〈ζ, exp−1
x0

(y)〉 ≤ f(yn) + αd(yn, y)2 − [f(yn) + αd(yn, x0)2 − ε2n] + σd(x0, y)2

= αd(yn, y)2 − αd(yn, x0)2 + σd(x0, y)2 + ε2n,
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because fα(y) ≤ f(yn) + αd(yn, y)2. Particularizing for y = expx0
(εnv), with

v ∈ TMx0, ‖v‖ = 1, we have

εn〈ζ, v〉 ≤ (σ + 1)ε2n + α[d(yn, y)2 − d(yn, x0)2]. (∗∗)
Now, let us choose tn close enough to 1 in order to ensure that the function d(·, x̂n)
is differentiable at x0, where x̂n = γn(tn). Let us denote the length of γn|[0,tn] by
ln. By using Taylor’s Theorem, we have that:

d(yn, y)2 − d(yn, x0)2 ≤ (d(y, x̂n) + ln)2 − l(γn)2

≤ (d(y, x̂n) + ln)2 − (d(x0, x̂n) + ln)2 = ϕ(y) − ϕ(x0)
= ϕ′(x0)(εnv) + ϕ′′(exp−1

x0
(λεnv))(εnv)

= ϕ′(x0)(εnv) + ϕ′′(x)(εnv),

where x = exp−1
x0

(λεnv),

ϕ(y) = (d(y, x̂n) + ln)2, ϕ′(x0) = 2(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
,

ϕ′′(x) = 2[
∂d(x, x̂n)

∂x
]2 + 2(d(x, x̂n) + ln)

∂2d(x, x̂n)
∂x2

,

and 0 < λ < 1. Hence,

d(yn, y)2 − d(yn, x0)2 ≤ 2εn(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
(v)

+2ε2n

[
∂d(x, x̂n)

∂x
(v)

]2

+ 2(d(x, x̂n) + ln)
∂2d(x, x̂n)

∂x2
(εnv)

≤ 2εn(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
(v) + 2(d(x, x̂n) + ln)

∂2d(x, x̂n)
∂x2

(εnv) + 2ε2n

≤ 2εn(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
(v) +

[
2(d(x, x̂n) + ln)

d(x, x̂n)
+ 2

]
ε2n,

since ‖∂d(x,x̂n)
∂x ‖ = 1 and ‖∂2d(x,x̂n)

∂x2 ‖ = 1
d(x,x̂n) . On the other hand, firstly we may

assume that the sequence (yn)n is bounded, hence so it is (ln)n; and secondly that
(x̂n)n is uniformly away from x0, hence 2(d(x,x̂n)+ln)

d(x,x̂n) + 2 is bounded by a constant
K. Therefore,

d(yn, y)2 − d(yn, x0)2 ≤ 2εn(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
(v) +Kε2n,

and from (∗∗) we get

εn〈ζ − 2α(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
, v〉 ≤ (K + σ + 1)ε2n.

This implies that

lim
n

‖ζ − 2α(d(x0, x̂n) + ln)
∂d(x0, x̂n)

∂x
‖x0 = 0.
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From ‖∂d(x0,x̂n)
∂x ‖x0 = 1, it follows that

lim
n
d(x0, x̂n) + ln =

1
2α

‖ζ‖x0 and lim
n

∂d(x0, x̂n)
∂x

=
ζ

‖ζ‖ .
Since γn are minimizing geodesics, we can deduce that

yn = expx0
[−(d(x0, x̂n) + ln)

∂d(x0, x̂n)
∂x

].

Finally, the expected y0 is necessarily y0 = expx0
(− 1

2αζ). This proves (a).
The announced geodesic in part (b) is γ : [0, 1] → M defined by γ(t) =

expx0
(− 1

2α tζ), which is minimizing because

d(x0, y0) = lim
n
d(x0, yn) = lim

n
(d(x0, x̂n) + ln) =

1
2α

‖ζ‖x0 .

In order to show (c), we observe that, for y near x0, we have

fα(x0)−fα(y) ≥ f(y0)+αd(y0, x0)2−f(y0)−αd(y0, y)2 = α[d(y0, x0)2−d(y0, y)2],
hence, using Taylor’s Theorem again,

fα(y) ≤ fα(x0) + α[d(y0, y)2 − d(y0, x0)2] = fα(x0) + α(ψ(y) − ψ(x0))
= fα(x0) + αψ′(x0)(exp−1

x0
(y)) + αψ′′(x0)(exp−1

x0
(y)) + o(‖ exp−1

x0
(y)‖2)

≤ fα(x0) + αψ′(x0)(exp−1
x0

(y)) + Cd(x0, y)2,

where ψ(y) = (d(ŷ0, y) + d(ŷ0, y0))2 is C2 at x0, for some ŷ0 lying on γ. This
implies that αψ′(x0) ∈ ∂P fα(x0) and therefore fα is differentiable at x0.

Part (d) is trivial if x0 = y0. Otherwise the function f + αd(x0, ·)2 = f +
α[d(x0, x̂0) + d(x̂0, ·)]2 attains its minimum at y0 and therefore

0 ∈ ∂P (f + αd(x0, ·)2)(y0) = ∂P f(y0) + 2αd(x0, y0)
∂d(x̂0, y0)

∂y

since [d(x0, x̂0) + d(x̂0, ·)]2 is C2 at y0, provided that x̂0 ∈ γ and is close enough
to y0. Then, according to the antisymmetry property of the partial derivatives of
the distance function (see [5, Lemma 6.5]), we have

Lx0y0 [dfα(x0)] = Lx0y0

[
2αd(x0, y0)

∂d(x0, ŷ0)
∂x

]

= −2αd(x0, y0)
∂d(x̂0, y0)

∂y
∈ ∂P f(y0).

Let us observe that, as a consequence of part (c), the minimizing geodesic
joining x0 and y0 is unique. �

Now, we deduce a Borwein-Preiss variational principle for continuous func-
tions defined on any complete Riemannian manifold M . Let us recall that, when
M is infinite dimensional, generally a bounded continuous function f : M → R

does not attain any minima. In fact, as shown recently in [2], the set of smooth
functions with no critical points is dense in the space of continuous functions onM .
Therefore, in optimization problems one has to resort to perturbed minimization
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results, such as Ekeland’s variational principle (which is applicable to any com-
plete Riemannian manifold). Apart from Ekeland’s result we have at least two
other options.

If one wants to perturb a given function with a small smooth function which
has a small derivative everywhere, in such a way that the sum of the two functions
does attain a minimum, then one can use a Deville-Godefroy-Zizler smooth vari-
ational principle (originally proved for Banach spaces). An extension of the DGZ
smooth variational principle is established in [5] for functions defined on those
Riemannian manifolds which are uniformly bumpable.

If we wish to perturb the original function with small multiples of squares
of distance functions (so that, among other interesting properties, we get local
smoothness of the perturbing function near the approximate minimizing point) we
can use the following Borwein-Preiss type variational principle.

Theorem 3.4. Let M be a complete, connected Riemannian manifold, f : M → R

a continuous function which is bounded from below, and ε > 0. Let x0 ∈M be such
that f(x0) < inf f + ε. Then, for every λ > 0 there exist z ∈ B(x0, λ), y ∈ B(z, λ)
with f(y) ≤ f(x0), and such that the function ϕ(x) = f(x) + ε

λ2 d(x, z)2 attains a
strong minimum at y.

On the other hand, if M has the property that every two points of M are
connected by a minimizing geodesic (such is the case, for instance, of any finite
dimensional manifold), then it is enough to assume that f : M → (−∞,+∞] is
lower semicontinuous.

Proof. Let us consider fα as in Theorem 3.3, with α = ε
λ2 . According to the

Density Theorem 3.2, there is a z such that d(x0, z) ≤ λ, ∂P fα(z) �= ∅, and
fα(z) ≤ fα(x0) ≤ f(x0). Hence, by Theorem 3.3, ϕ attains a strong minimum at
a point y0.

Finally, f(y0) + ε
λ2 d(y0, z)2 = fα(z) ≤ f(x0) < inf f + ε ≤ f(y0) + ε, hence

d(y0, z) < λ. �

Next, as an application of Theorem 3.3 we establish three results concerning
differentiability and geometrical properties of the distance function to a closed
subset S of a Riemannian manifold M . These properties are probably known by
the specialists, though we do not know of any suitable reference.

Theorem 3.5. Let S be a nonempty closed subset of a complete connected finite
dimensional Riemannian manifold M (or else, an infinite dimensional manifold
M with the property that every two points of M are connected by a minimizing
geodesic), and x ∈M−S. If ∂P dS(x) �= ∅, then dS is differentiable at x. Moreover,
there is an s0 ∈ S such that:

(a) every minimizing sequence of dS(x) converges to s0;
(b) dS(x) = d(x, s0) and d(x, s) > dS(x) for every s ∈ S, s �= s0;
(c) there is a unique minimizing geodesic joining x and s0.
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Proof. Let assume that ξ ∈ ∂P dS(x), this implies that there is a σ > 0 such that

dS(y) − dS(x) ≥ 〈ξ, exp−1
x (y)〉 − σd(x, y)2

if y is near x. We have that

d2
S(y) − d2

S(x) = 2dS(x)(dS(y) − dS(x)) + (dS(y) − dS(x))2

≥ 2dS(x)(dS(y) − dS(x)) ≥ 2dS(x)[〈ξ, exp−1
x (y)〉 − σd(x, y)2],

which implies that 2dS(x)ξ ∈ ∂Pd
2
S(x). On the other hand d2

S(y) = infz∈M{IS(z)+
d(z, y)2} = fα(y) with α = 1, f = IS , where IS is the indicator function of S,
that is IS(z) = 0 if z ∈ S, and IS(z) = +∞ otherwise. Therefore, properties (a),
(b) and (c), which are equivalent for dS and d2

S , follow from Theorem 3.3, as well
as the fact that d2

S is differentiable at x. Hence dS is differentiable at x because
dS(x) > 0. �

By combining this with the Density Theorem 3.2 we get, under the same
assumptions on M and S, the following.

Corollary 3.6. There is a dense subset of points x ∈ M − S such that dS(x) =
d(x, sx) for a unique sx ∈ S and dS is differentiable at x.

Corollary 3.7. Let x, x0 be two different points of a complete connected finite di-
mensional Riemannian manifold M (or, more generally, of a Riemannian manifold
with the property that every two points can be connected by a minimizing geodesic).
The following statements are equivalent:

(i) the function d(·, x0) is subdifferentiable (in the proximal sense) at x;
(ii) the function d(·, x0) is Fréchet differentiable at x;
(iii) there is a unique minimizing geodesic joining x and x0.

Proof. (i) =⇒ (ii) and the existence of a unique minimizing geodesic follow from
Theorems 3.3 and 3.5.

Let us assume that there is a unique minimizing geodesic joining x and x0. We
may prolong the geodesic up to a point x̂ satisfying d(x̂, x0) = d(x̂, x) + d(x, x0).
In order to prove that d(·, x0) is subdifferentiable, it is enough to see that ϕ(y) =
d(x̂, x0)−d(y, x0) is superdifferentiable at x, which is a consequence of the following
inequalities:

ϕ(y) − ϕ(x) = d(x̂, x0) − d(y, x0) − d(x̂, x) ≤ d(y, x̂) − d(x̂, x)

≤ 〈∂d(x, x̂)
∂x

, exp−1
x (y)〉 + σd(x, y)2.

�

Finally, we turn to another topic of the theory of proximal subdifferentials,
namely mean value theorems. We begin with a few local results which will be
used in the proof of a proximal mean value inequality. The following result can be
deduced from [6, Theorem 1.8.3].
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Theorem 3.8 (Fuzzy rule for the sum). Let f1, f2 : M → (−∞,+∞] be two lower
semicontinuous functions such that at least one of them is Lipschitz near x0. If
ζ ∈ ∂P (f1 + f2)(x0) then, for every ε > 0, there exist x1, x2 and ζ1 ∈ ∂P f1(x1),
ζ2 ∈ ∂P f2(x2) such that
(a) d(xi, x0) < ε and |fi(xi) − fi(x0)| < ε for i = 1, 2;
(b) ‖ζ − (Lx1x0(ζ)1 + Lx2x0(ζ2))‖x0 < ε.

The following theorem is also local, a consequence of the Fuzzy Chain Rule
known for functions defined on Hilbert spaces (see [6, Theorem 1.9.1, pp. 59]).

Theorem 3.9 (Fuzzy chain rule). Let g : N → R be lower semicontinuous, F :
M → N be locally Lipschitz, and assume that g is Lipschitz near F (x0). Then,
for every ζ ∈ ∂P (g ◦ F )(x0) and ε > 0, there are x̃, ỹ and η ∈ ∂P g(ỹ) such that
d(x̃, x0) < ε, d(ỹ, F (x0)) < ε, d(F (x̃), F (x0)) < ε, and

Lxx̃ζ ∈ ∂P [〈LỹF (x0) (η) , exp−1
F (x0)

◦F (·)〉](x̃) + εBTMx̃ .

The following result, which is local as well, relates the proximal subdiffer-
ential ∂P f(x) to the viscosity subdifferential D−f(x) of a function f defined on
a Riemannian manifold M (see [5] for the definition of D−f(x) in the manifold
setting).

Proposition 3.10. Let ξ0 ∈ D−f(x0), ε > 0. Then there exist x ∈ B(x0, ε) and
ζ ∈ ∂P f(x) such that |f(x) − f(x0)| < ε and ‖ξ0 − Lxx0(ζ)‖x0 < ε.

Proof. This follows from [6, Proposition 3.4.5, pp. 138]. �

The above result is a fuzzy converse of the following obvious inclusion:

∂P f(x) ⊆ D−f(x).

We conclude with the announced mean value inequality for the proximal
subdifferential.

Theorem 3.11 (Proximal Mean Value Theorem). Let x, y ∈ M , γ : [0, T ] → M
be a path joining x and y. Let f be a Lipschitz function around γ[0, T ]. Then, for
every ε > 0, there exist t0, z ∈ M and ζ ∈ ∂P f(z) with d(z, γ(t0)) < ε, and so
that

1
T

(f(y) − f(x)) ≤ 〈ζ, Lγ(t0),z(γ
′(t0))〉 + ε.

Proof. Let us consider the function ϕ : [0, T ] → R defined as

ϕ(t) = f(γ(t)) −G(t),

where
G(t) =

t

T
f(y) +

T − t

T
f(x).

The function ϕ is continuous, and ϕ(0) = ϕ(T ) = 0. Since the interval [0, T ] is
compact, there exists t0 ∈ [0, T ] such that ϕ(t0) ≤ ϕ(t) for all t ∈ [0, T ]. We will
consider two cases.
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Case 1. Assume that t0 ∈ (0, T ). Since ϕ attains a local minimum at t0, we know
that 0 ∈ ∂Pϕ(t0). Since the function G(t) is of class C2, according to the easy sum
rule Proposition 3.1(vi), we have that

1
T

(f(y) − f(x)) = 0 +G′(t0) ∈ ∂P (f ◦ γ)(t0).

Now, by the fuzzy chain rule Theorem 3.9, there exist t̃, z̃, ζ ∈ ∂P f(z̃) such that
|t̃− t0| < ε, d(z̃, γ(t0)) < ε, d(γ(t̃), γ(t0)) < ε, and

1
T

(f(y) − f(x)) ∈ ∂P

(
〈Lz̃γ(t0)(ζ), exp−1

γ(t0)
◦γ(·)〉

)
(t̃) + [−ε, ε]

=
d

dt

(
〈Lz̃γ(t0)(ζ), exp−1

γ(t0)
◦γ(·)〉

)
|t=t̃

+ [−ε, ε]
= 〈Lz̃γ(t0)(ζ), γ

′(t0)〉 + [−ε, ε] = 〈ζ, Lγ(t0)z̃ (γ′(t0))〉 + [−ε, ε].

In particular, we obtain that

1
T

(f(y) − f(x)) ≤ 〈ζ, Lγ(t0),z(γ
′(t0))〉 + ε.

Case 2. Now let us suppose that t0 = 0 or t0 = T . Since ϕ(0) = ϕ(T ) = 0, this
means that ϕ(t) ≥ ϕ(0) = ϕ(T ) for all t ∈ [0, T ]. We may assume that ϕ attains
no local minima in (0, T ) (otherwise the argument of Case 1 applies and we are
done). Then there must exist t′0 ∈ (0, T ) such that ϕ is increasing on (0, t′0) and ϕ is
decreasing on (t′0, T ). This implies that ζ ≥ 0 for every ζ ∈ ∂P f(t) with t ∈ (0, t′0),
and η ≤ 0 for every η ∈ ∂P f(t′) with t′ ∈ (t′0, T ). Indeed, assume for instance that
t ∈ (0, t′0) and take ζ ∈ ∂P f(t). Then we have that f(s) ≥ f(t)+ζ(s− t)−σ(s− t)2
for some σ ≥ 0 and s in a neighborhood of t. By taking s close enough to t with
s < t, we get

ζ ≥ f(t) − f(s)
t− s

− σ(t− s),

and hence

ζ ≥ lim inf
s→t−

[
f(t) − f(s)

t− s
− σ(t− s)

]
≥ 0.

Now, by the Density Theorem 3.2 there exist t1, η1 such that t1 ∈ (0, t′0) and
η1 ∈ ∂Pϕ(t1). According to the preceding discussion, we have η1 ≥ 0. Since G(t)
is of class C2, by the easy sum rule Proposition 3.1(vi), we have that

η1 +
1
T

(f(y) − f(x)) = η1 +G′(t1) ∈ ∂P (f ◦ γ)(t1).
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Finally, by the fuzzy chain rule Theorem 3.9, there exist t̃, z̃, ζ ∈ ∂P f(z̃) such that
|t̃− t1| < ε, d(z̃, γ(t1)) < ε, d(γ(t̃), γ(t1)) < ε, and

η1 +
1
T

(f(y) − f(x)) ∈ ∂P

(
〈Lz̃γ(t1)(ζ), exp−1

γ(t1)
◦γ(·)〉

)
(t̃) + [−ε, ε]

=
d

dt

(
〈Lz̃γ(t1)(ζ), exp−1

γ(t1)
◦γ(·)〉

)
|t=t̃

+ [−ε, ε]
= 〈Lz̃γ(t1)(ζ), γ

′(t1)〉 + [−ε, ε]
= 〈ζ, Lγ(t1)z̃ (γ′(t1))〉 + [−ε, ε].

In particular, we get

1
T

(f(y) − f(x)) ≤ η1 +
1
T

(f(y) − f(x)) ≤ 〈ζ, Lγ(t1),z(γ
′(t1))〉 + ε. �
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