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SUBDIFFERENTIABLE FUNCTIONS SATISFY LUSIN PROPERTIES OF

CLASS C1 OR C2

D. AZAGRA, J. FERRERA, M. GARCÍA-BRAVO, AND J. GÓMEZ-GIL

Abstract. Let f : Rn → R be a function. Assume that for a measurable set Ω and almost
every x ∈ Ω there exists a vector ξx ∈ R

n such that

lim inf
h→0

f(x + h) − f(x) − 〈ξx, h〉

|h|2
> −∞.

Then we show that f satisfies a Lusin-type property of order 2 in Ω, that is to say, for every
ε > 0 there exists a function g ∈ C2(Rn) such that Ln({x ∈ Ω : f(x) 6= g(x)} ≤ ε. In particular
every function which has a nonempty proximal subdifferential almost everywhere also has the
Lusin property of class C2. We also obtain a similar result (replacing C2 with C1) for the
Fréchet subdifferential. Finally we provide some examples showing that this kind of results are
no longer true for Taylor subexpansions of higher order.

A classical theorem of Lusin [27] states that for every Lebesgue measurable function f : Rn → R

and every ε > 0 there exists a continuous function g : Rn → R such that

(1) L
n ({x ∈ R

n : f(x) 6= g(x)}) ≤ ε.

Here, as in the rest of this note, Ln denotes the Lebesgue measure in R
n.

Several authors have shown that one can take g of class Ck, provided that f has some regularity
properties of order k (for instance, locally bounded distributional derivatives up to the order
k, or Taylor expansions of order k almost everywhere). If, given a differentiability class C and
a function f : Rn → R we can find, for each ε > 0, a function g ∈ C satisfying (1), we will say
that f has the Lusin property of class C.
The first of such results was discovered by Federer [15, p. 442], who showed that a.e differ-
entiable functions (and in particular locally Lipschitz functions) have the Lusin property of
class C1. H. Whitney [31] improved this result by showing that a function f : Rn → R has
approximate partial derivatives of first order a.e. if and only if f has the Lusin property of
class C1.
In [11, Theorem 13] Calderon and Zygmund established analogous results of order k for the
classes of Sobolev functions W k,p(Rn). Other authors, including Liu [25], Bagby, Michael and
Ziemer [5, 28, 32], Bojarski, Haj lasz and Strzelecki [6, 7], and Bourgain, Korobkov and Kris-
tensen [8] have improved Calderon and Zygmund’s result in different ways, by obtaining addi-
tional estimates for f−g in the Sobolev norms, as well as the Bessel capacities or the Hausdorff
contents of the exceptional sets where f 6= g. In [8] some Lusin properties of the class BVk(R

n)
(of integrable functions whose distributional derivatives of order up to k are Radon measures)
are also established. The Whitney extension technique [30], and some related techniques as the
Whitney smoothing introduced in [7], play a key role in the proofs of all of these results.

Key words and phrases. Lusin property of order 2, Proximal subdifferential, Fréchet subdifferential.
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For the special class of convex functions f : Rn → R, Alberti and Imonkulov [2, 21] showed
that every convex function has the Lusin property of class C2 (with g not necessarily convex
in (1)); see also [1] for a related problem. More recently Azagra and Haj lasz [4] have proved
that g can be taken to be C1 and convex in (1) if and only if either f is essentially coercive
(meaning that f is coercive up to a linear perturbation) or else f is already C1 (in which case
taking g = f is the only possible option); they have also shown that if f : Rn → R is strongly
convex then for every A ⊂ R

n of finite measure and every ε > 0 there exists g : Rn → R convex
and C1,1 such that L

n ({x ∈ A : f(x) 6= g(x)}) ≤ ε.
On the other hand, generalizing Whitney’s result [31] to higher orders of differentiability, Isakov
[22] and Liu and Tai [26] independently established that a function f : Rn → R has the Lusin
property of class Ck if and only if f is approximately differentiable of order k almost everywhere
(and if and only if f has an approximate (k − 1)-Taylor polynomial at almost every point).
In this note we will answer the following question (which we think may be quite natural for
people working on nonsmooth analysis or viscosity solutions to PDE such as Hamilton-Jacobi
equations): do functions with nonempty subdifferentials a.e. have Lusin properties of order C1

or C2? By subdifferentials we mean the Fréchet subdifferential, or the proximal subdifferential,
or the second order viscosity subdifferential; see [12, 13, 16] and the references therein for
information about subdifferentials and their applications. As we will see the answer is positive:
Fréchet subdifferentiable functions have the Lusin property of class C1, and functions with
nonempty proximal subdifferentials a.e. (in particular functions with a.e. nonempty viscosity
subdifferentials of order 2) have the Lusin property of class C2.
This question can be formulated in a more general form (perhaps appealing to a wider audience)
as a problem about Taylor subexpansions: given k ∈ N and a function f : Rn → R, assume
that for almost every x ∈ R

n there exists a polynomial Px of degree less than or equal to k − 1
such that

lim inf
y→x

f(y) − Px(y)

|y − x|k
> −∞.

Is it then true that f has the Lusin property of order k?
The results of this note will show that the answer to this question is positive for k = 1, 2, but
negative for k ≥ 3.
In the case k = 1 the proof is very simple and natural.

Theorem 1. Let Ω ⊂ R
n be a Lebesgue measurable set, and f : Ω → R a function. Assume

that for almost every x ∈ Ω we have

(2) lim inf
y→x

f(y) − f(x)

|y − x|
> −∞.

Then, for every ε > 0 there exists a function g ∈ C1(Rn) such that

L
n ({x ∈ Ω : f(x) 6= g(x)}) ≤ ε.

In order to facilitate the proof of Theorem 1, as well as that of Theorem 6 below, let us state the
following technical lemma, which is standard. We include its proof for the readers’ convenience.

Lemma 2. Let Ω be a Lebesgue measurable subset of Rn, k ∈ N, and f : Ω → R be measurable.
Then f has the Lusin property of class Ck (meaning that for every ε > 0 there exists g ∈ Ck(Rn)
such that L

n {x ∈ Ω : f(x) 6= g(x)}) ≤ ε) if and only if the restriction of f to each compact
subset of Ω has the Lusin property of class Ck.
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Proof. It is obvious that if f : Ω → R has the Lusin property of class Ck then, for every compact
subset K of Ω, the function f|K : K → R has the Lusin property of class Ck. Let us prove
the converse. Assume first that Ω is bounded. By the regularity of the measure L

n, for every
ε > 0 we may find Kε, a compact subset of Ω, such that L

n (Ω \Kε) ≤ ε/2. By assumption,
there exists a function g = gKε

∈ Ck(Rn) such that L
n ({x ∈ Kε : f(x) 6= g(x)}) ≤ ε/2. Then

we have

L
n {x ∈ Ω : f(x) 6= g(x)}) ≤ L

n (Ω \Kε) + L
n ({x ∈ Kε : f(x) 6= g(x)}) ≤ ε,

and therefore f : Ω → R has the Lusin property of class Ck.
Now let us consider the general case that Ω is not necessarily bounded. We can write

Ω =

∞⋃

j=1

Ωj , where Ω1 = Ω ∩ intB(0, 1), and Ωj+1 := Ω ∩ intB(0, j + 1) \B(0, j),

where B(x, r) denotes the closed ball of center x and radius r. According to the previous
argument, for each j ∈ N there exists a function gj ∈ Ck(Rn) such that

L
n ({x ∈ Ωj : gj(x) 6= f(x)}) ≤

ε

6j
.

Let (ψj)
∞
j=1 be a C∞ smooth partition of unity subordinated to the covering {intB(0, j + 1) \

B(0, j−1)}∞j=1∪{intB(0, 1)} of Rn (see for instance [20, Ch. 2, Theorem 2.1]), and let us define

g(x) =
∞∑

j=1

ψj(x)gj(x).

Notice that

{x ∈ Ωj : f(x) 6= g(x)} ⊆

j⋃

i=j−1

{x ∈ Ωj : f(x) 6= gi(x)}.

This implies that

L
n ({x ∈ Ω : f(x) 6= g(x)}) ≤ 2

∞∑

j=1

L
n ({x ∈ Ωj : f(x) 6= gj(x)}) ≤ 2

∞∑

j=1

ε

6j
≤ ε,

and concludes the proof of the Lemma. �

Now let us present the proof of Theorem 1. Let us call N ⊂ Ω the set of points for which (2)
does not hold. Since N has measure zero, proving Lusin property of class C1 for the restriction
of f to Ω \N would immediately lead to Lusin property of class C1 for f . So we may and do
assume in what follows that N = ∅, and in particular that

lim inf
y→x

f(y) − f(x)

|y − x|
> −∞

for every x ∈ Ω. Note that this inequality implies that f is lower semicontinuous on Ω, and
in particular f is measurable. Now, according to Lemma 2, it is enough to check that the
restriction of f to every compact subset of Ω has the Lusin property of class C1, and therefore
we may also assume without loss of generality that Ω is compact. Define for each j ∈ N,

Ej :=

{
x ∈ Ω : f(y) − f(x) ≥ −j|y − x| for all y ∈ B

(
x,

1

j

)
∩ Ω

}
∩ {x ∈ Ω : |f(x)| ≤ j} .
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Because f is lower semicontinuous the sets
{
x ∈ Ω : f(y) − f(x) ≥ −j|y − x| for all y ∈ B

(
x,

1

j

)
∩ Ω

}

are closed, and by using the measurability of f this implies that each set Ej is measurable.
These sets form an increasing sequence such that

Ω =

∞⋃

j=1

Ej ,

so we have

lim
j→∞

L
n (Ω \ Ej) = 0,

and therefore, for a given ε > 0 we may find j0 ∈ N large enough such that L
n(Ω \ Ej0) <

ε
2
.

Take now x, y ∈ Ej0. If |y − x| ≤ 1

j0
then we have

|f(y) − f(x)| ≤ j0|y − x| and |f(x)| ≤ j0.

On the other hand, if x, y ∈ Ej0 and |y − x| > 1/j0 then we trivially get

|f(y) − f(x)| ≤ 2 sup
z∈Ej0

|f(z)| ≤M0|y − x|,

where M0 := 2j0 (1 + supz∈Ω |f(z)|).
Observe that M0 ≥ j0. Thus in either case we see that

|f(y) − f(x)| ≤ M0|y − x| and |f(x)| ≤M0, for all x, y ∈ Ej0 .

That is, f is bounded and M0-Lipschitz on Ej0 . Then we can extend f to a Lipschitz function
F on R

n, for instance by using the McShane-Whitney formula

F (x) = inf
y∈Ej0

{f(y) +M0|x− y|},

which defines an M0-Lipschitz function on R
n that coincides with f on Ej0 . Obviously we have

L
n({x ∈ Ω : f(x) 6= F (x)}) ≤ L

n(Ω \ Ej0) <
ε

2
.

But according to the result of Federer’s that we mentioned above (see also [14, Theorem 6.11]),
Lipschitz functions have the C1 Lusin property, so we may find another function g ∈ C1(Rn)
such that L

n({x ∈ Ω : F (x) 6= g(x)}) < ε
2
. Thus we conclude that

L
n({x ∈ Ω : f(x) 6= g(x)}) =

= L
n({x ∈ Ej0 : F (x) 6= g(x)} ∪ {x ∈ Ω \ Ej0 : f(x) 6= g(x)}) ≤

≤ L
n({x ∈ Ej0 : F (x) 6= g(x)}) + L

n(Ω \ Ej0) ≤
ε

2
+
ε

2
= ε.

�

Corollary 3. Let U be a measurable subset of Rn, f : U → R be a measurable function, and
define Ω = {x ∈ U : D−f(x) 6= ∅}. Then for every ε > 0 there exists a function g ∈ C1(Rn)
such that

L
n ({x ∈ Ω : f(x) 6= g(x)}) ≤ ε.
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Here D−f(x) denotes the Fréchet subdifferential of f at x, that is the set of vectors ζ ∈ R
n

such that

lim inf
h→0

f(x+ h) − f(x) − 〈ζ, h〉

|h|
≥ 0.

Remark 4. In the above corollary we also have D−f(x) = {∇g(x)} for almost every x ∈ Ω
with f(x) = g(x).

Proof. Almost every point of the set A = {x ∈ Ω : f(x) = g(x)} is a point of density 1 of A,
and for every such point x and every ξx ∈ D−f(x) we have

0 ≤ lim inf
y→x,y∈A

f(y) − f(x) − 〈ξx, y − x〉

|y − x|
= lim inf

y→x,y∈A

g(y) − g(x) − 〈ξx, y − x〉

|y − x|
,

and

lim
y→x,y∈A

g(y) − g(x) − 〈∇g(x), y − x〉

|y − x|
= 0,

hence also

lim inf
y→x,y∈A

〈∇g(x) − ξx, y − x〉

|y − x|
≥ 0,(3)

which, because x is a point of density 1 of A and h 7→ 〈∇g(x) − ξx, h〉 is linear, implies that
∇g(x) = ξx. Indeed, we have

(4) lim
r→0+

L
n (A ∩B(x, r))

Ln (B(x, r))
= 1.

Assume we had ζ := ∇g(x) − ξx 6= 0, and consider the sets

Sζ := {v ∈ R
n : |v| = 1, 〈ζ, v〉 ≤ −

1

2
|ζ |},

which determines a region of positive surface measure in the unit sphere, and the associated
cone

Cx,ζ = {x+ tv : v ∈ Sζ , t > 0},

of which x is thus a point of positive density. Hence Cx,ζ also satisfies, in view of (4), that

lim inf
r→0+

L
n (A ∩ Cx,ζ ∩ B(x, r))

Ln (B(x, r))
> 0.

In particular there exists a sequence (yk) = (x + tkvk) ⊂ A ∩ Cx,ζ (with tk > 0 and vk ∈ Sζ ,
k ∈ N) such that limk→∞ yk = x. For this sequence we have, because of the definition of Cx,ζ,
that

〈∇g(x) − ξx, yk − x〉

|yk − x|
=

〈ζ, tkvk〉

tk
≤ −

1

2
|ζ | < 0

for all k ∈ N, which contradicts (3). �

A natural question at this point is the following. Does Corollary 3 hold true if we replace the
Frechet subdifferential by the limiting subdifferential? Let us recall that the limiting subdiffer-
ential ∂Lf(x) of a lower semicontinuous function f : Rn → R at a point x consists of all vectors
of the form ζ = limn ζn, where ζn ∈ D−f(xn), for sequences {xn} satisfying limn xn = x, and
limn f(xn) = f(x); see [12, 16], for instance, for elementary properties of this subdifferential.
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The question is whether or not the assumption that ∂Lf(x) 6= ∅ for every x ∈ R
n implies that

f satisfies the Lusin property of order C1. Since one trivially has that D−f(x) ⊂ ∂Lf(x), such
a result would be much stronger than Corollary 3 above. The following example shows that
the answer is negative.

Example 5. We consider the classical Takagi function T : R → R defined as follows. If Dn

denotes the set of real numbers { k
2n

: k ∈ Z}, and d(x,Dn) is the distance of x to Dn, then

T (x) =

∞∑

n=1

d(x,Dn)

This function was introduced by Takagi, [29], as an easy example of a continuous function
which is nowhere differentiable. In [9, Theorem 2] it is proved that T does not agree with
any C1 function on any set of positive measure, and in particular T does not satisfy the Lusin
property of order C1. However, in [17, Corollary 1.4], and also implicitly in [18], it is proved
that ∂LT (x) = R for every x ∈ R.

Concerning the Lusin property of class C2 we have the following result.

Theorem 6. Let Ω ⊂ R
n be a Lebesgue measurable set, and f : Ω → R be a function such that

for almost every x ∈ Ω there exists a vector ξx ∈ R
n such that

(5) lim inf
y→x

f(y) − f(x) − 〈ξx, y − x〉

|y − x|2
> −∞.

Then for every ε > 0 there exists a function g ∈ C2(Rn) such that

L
n ({x ∈ Ω : f(x) 6= g(x)}) ≤ ε.

Proof. Let N be the subset of points for which (5) does not hold, and put Ω1 = Ω \N . Since
N has measure zero, it will be enough to show that the restriction f1 of f to Ω1 has the Lusin
property of class C2. Since (5) holds for every x ∈ Ω1, it follows that f is lower semicontinuous
on Ω1, and in particular f1 is measurable (hence so is f , since N has measure zero). Now,
according to Lemma 2, if we take an arbitrary compact subset Ω2 of Ω1, it will be enough for
us to check that the restriction f2 of f1 to Ω2 has the Lusin property of class C2.
Because (5) holds for every x ∈ Ω2 and this implies

lim inf
y→x

f2(y) − f2(x)

|y − x|
> −∞

for all x ∈ Ω2, given ε > 0, we may apply Theorem 1 to get a function g ∈ C1(Rn) such that

L
n({x ∈ Ω2 : f2(x) 6= g(x)}) ≤

ε

4
.

Observe also that the set A = {x ∈ Ω2 : f2(x) = g(x)} is measurable and bounded, and
according to the preceding remark we have ξx = ∇g(x) for almost every x ∈ A, so we can find
a compact subset Ω3 of A such that L

n (A \ Ω3) ≤ ε/4 and ξx = ∇g(x) for all x ∈ Ω3. Then
we have that

(6) lim inf
y→x,y∈Ω3

g(y) − g(x) − 〈∇g(x), y − x〉

|y − x|2
> −∞
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for every x ∈ Ω3. Now let us define for each j ∈ N

Ej :=
{
x ∈ Ω3 : g(y) − 〈∇g(x), y〉 ≥ g(x) − 〈∇g(x), x〉 − j|y − x|2 for all y ∈ Ω3

}
,

and note that the sets Ej are measurable and increasing to Ω3. There exists j0 ∈ N such that

L
n(Ω3 \ Ej0) ≤

ε

4
.

It will be enough for us to prove the following:

Claim 7. We have that

lim sup
y→x, y∈Ej0

|g(y) − g(x) − 〈∇g(x), y − x〉|

|y − x|2
< +∞

for almost every x ∈ Ej0.

Assume for a moment that the Claim is true, that is, the restriction of g to Ej0 has an ap-
proximate (2 − 1)-Taylor polynomial at every x ∈ Ej0 . By [26, Theorem 1] this is equivalent
to saying that the restriction of g to Ej0 has the Lusin property of class C2. So we may find a
function h ∈ C2(Rn;R) such that

L
n({x ∈ Ej0 ; g(x) 6= h(x)}) ≤

ε

4
,

and we easily conclude that

L
n({x ∈ Ω2 : f2(x) 6= h(x)}) ≤ ε,

as we wanted to show.
In order to prove Claim (7) we will borrow some ideas from [24]. We define new functions
g̃ : Rn → R and ĝ : Rn → R by

g̃(x) = g(x) + j0|x|
2, x ∈ R

n

ĝ(x) = sup {p(x) : p affine and p ≤ g̃ on Ω3 } , x ∈ R
n

By definition of Ej0 we have g̃(y) ≥ g̃(x) + 〈∇g̃(x), y − x〉 for all y ∈ Ω3, x ∈ Ej0, and by using
this inequality it is easy to see that

g̃(x) = ĝ(x)

for all x ∈ Ej0 . On the other hand, since Ω3 is compact and g is continuous on Ω3, it is easy
to see that ĝ is everywhere finite. Moreover, as a supremum of affine functions, ĝ is convex.
Therefore ĝ is locally Lipschitz on Ω3. Also g is of class C1, hence so is g̃. Since the functions
g̃ and ĝ agree on Ej0, we then also have that

∇ĝ(x) = ∇g̃(x)

for almost every x ∈ Ej0 (see [14, Theorem 3.3(i)] for instance).
Next, by applying Alexandroff’s theorem [3] (see also [10] in dimension 2) with the convex
function ĝ, we obtain that ĝ is twice differentiable almost everywhere in Ω3. This implies that

(7) lim sup
y→x, y∈Ej0

|g̃(y) − g̃(x) − 〈∇g̃(x), y − x〉|

|y − x|2
=

= lim sup
y→x, y∈Ej0

|ĝ(y) − ĝ(x) − 〈∇ĝ(x), y − x〉|

|y − x|2
< +∞
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for almost every x ∈ Ej0. However, by the definition of g̃(x) = g(x) + j0|x|
2, we have

|g(y) − g(x) − 〈∇g(x), y − x〉|

|y − x|2
≤

≤
|g(y) − g(x) − 〈∇g(x), y − x〉 + (j0(|y|

2 + |x|2 − 2〈x, y〉)|

|y − x|2
+ j0 =

=
|g̃(y) − g̃(x) − 〈∇g̃(x), y − x〉|

|y − x|2
+ j0,

and by combining with (7) we immediately obtain Claim (7). �

Corollary 8. Let Ω ⊂ R
n be a Lebesgue measurable set, and f : Ω → R be a function such

that for almost every x ∈ Ω there exists a vector ξx ∈ R
n such that

(8) lim sup
y→x

f(y) − f(x) − 〈ξx, y − x〉

|y − x|2
< +∞.

Then for every ε > 0 there exists a function g ∈ C2(Rn) such that

L
n ({x ∈ Ω : f(x) 6= g(x)}) ≤ ε.

This is of course an immediate consequence of Theorem 6 applied to −f .
According to Remark 4, we also have that

ξx = ∇g(x)

for almost every x ∈ Ω with f(x) = g(x).

Corollary 9. Let f : Rn → R be a measurable function, and define Ω = {x ∈ R
n : ∂Pf(x) 6= ∅}.

Then for every ε > 0 there exists a function g ∈ C2(Rn) such that

L
n ({x ∈ Ω : f(x) 6= g(x)}) ≤ ε.

Here ∂Pf(x) denotes the proximal subdifferential of f at x, which is defined as the set of all
ζ ∈ R

n for which there exist σ, η > 0 such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ|y − x|2

for all y ∈ B (x, η). The set ∂Pf(x) coincides with {ζ ∈ R
n : ζ = ∇ϕ(x), ϕ ∈ C2(Rn), f − ϕ

attains a minimum at x}, so every function f for which the viscosity subdifferential of second
order is nonempty at x also has a nonempty proximal subdifferential at x. The set ∂Pf(x) can
also be equivalently defined as the set of vectors ζ ∈ R

n such that

lim inf
h→0

f(x+ h) − f(x) − 〈ζ, h〉

|h|2
> −∞,

so it is clear that the above Corollary is an immediate consequence of Theorem 6. Notice also
that this corollary allows us to recover, with a different proof, the mentioned result for convex
functions established independently by Alberti [2] and Imonkulov [21].

Let us finally present two examples. The first one concerns the following matter: one could
erroneously think that if a function f satisfies (5) then f will automatically satisfy

(9) lim sup
y→x

f(y) − f(x) − 〈ξx, y − x〉

|y − x|2
< +∞
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for almost every x ∈ Ω as well, and then one could immediately apply Liu-Tai’s theorem [26]
to conclude the proof of Theorem 6. This is not feasible.

Example 10. Let us first consider a Cantor set of positive measure, C ⊂ [0, 1]. More precisely,

C = [0, 1] \
⋃

n

Jn

where each Jn is the union of 2n−1 disjoint intervals of length 1

4n
and Jn ∩ Jm = ∅ for n 6= m.

Jn =
2n−1⋃

k=1

(akn, b
k
n),

where bkn < ak+1
n for k < 2n−1. Let us inductively construct the sets Jn. Setting J1 = (3

8
, 5
8
), if

n ≥ 1, we assume that J1, . . . , Jn satisfy that

[0, 1] \
n⋃

k=1

Jk

consists in 2n disjoint intervals of length 1

2n+1 + 1

22n+1 , because

L
(
[0, 1] \

n⋃

k=1

Jk
)

= 1 −
n∑

k=1

2k−1

4k
= 1 −

1

2
(1 −

1

2n
) =

1

2
+

1

2n+1
.

For each of these intervals composing [0, 1] \
⋃n

k=1
Jk, we consider a subinterval, centered at the

corresponding middle point, of length 1

4n+1 . Then Jn+1 will be the union of these subintervals.

It is clear that L(C) = 1

2
.

Now let us define a function f in the following way: we set

f(x) = 0 for every x ∈ C,

while for every n ∈ N and k = 1, . . . , 2n−1, f : [akn, b
k
n] → R will be a non negative continuous

function such that f : (akn, b
k
n) → R is C∞,

max
x∈Ikn

f(x) = f(akn +
1

2
(bkn − akn)) =

1

2n
,

and such that f , as well as all its one-sided derivatives, equal 0 at akn and at bkn. It is clear that
f is continuous. Let us denote

∆x(y) =
f(y) − f(x) − ξx(y − x)

|y − x|2
.

If x 6∈ C then, taking ξx = f ′(x), we have limy→x ∆x(y) = 1

2
f ′′(x). If x ∈ C, then

f(y) − f(x)

|y − x|2
≥ 0.

Hence for every x there exists ξx such that

lim inf
y→x

∆x(y) > −∞.
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Let us observe that f also satisfies conditions of the form

lim inf
y→x

f(y) − P (y − x)

|y − x|k
> −∞,

where P is a polynomial of degree k − 1 for every k.
Now let C̃ = C \ ({0, 1} ∪ {akn, b

k
n}n,k). We claim that

lim sup
y→x

∆x(y) = +∞

for every x ∈ C̃ and every ξx. Let us prove this. If x ∈ C̃ there exist subsequences {a
rj
mj}j and

{b
kj
nj}j, decreasing and increasing respectively, such that

lim
j
arjmj

= lim
j
bkjnj

= x.

More precisely, we chose a
rj
mj such that

0 < arjmj
− x ≤

1

2mj+1
+

1

22mj+1
,

and b
kj
nj such that

0 < x− bkjnj
≤

1

2nj+1
+

1

22nj+1
.

Let us consider the case that ξx ≥ 0. We take yj = b
kj
nj −

1

2
(b

kj
nj − a

kj
nj ). We have

∆x(yj) ≥
f(yj)

|yj − x|2
=

1

2nj

1

|yj − x|2
≥ 2nj

since |yj − x| ≤ 1

2
nj . In particular we obtain that lim supy→x ∆x(y) = +∞.

The case ξx ≤ 0 can be dealt with similarly by considering yj = a
rj
mj + 1

2
(b

rj
mj − a

rj
mj ). �

Our second example shows that there are no analogues of Theorem 6 for higher order of differ-
entiability.

Example 11. Let f : R → R be the function given by

f(x) =
1

π2

∞∑

n=1

2−3n cos (2nπx) .

This is a C2 function such that f ′′ is not differentiable at any point (see [19]) and

lim sup
|y|→0

|f ′′(x + y) + f ′′(x− y) − 2f ′′(x)|

|y|
< +∞

for every x ∈ R (see [Stein(1970), p. 148]). By [26, Theorem 4] f ′′ is not approximately
differentiable on a set of positive measure.
For every x, we have that

lim
y→x

f(y) − f(x) − f ′(x)(y − x) − 1

2
f ′′(x)(y − x)2

|y − x|2
= 0
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If a > 0 we have

lim inf
y→x

f(y) − f(x) − f ′(x)(y − x) − (1
2
f ′′(x) − a)(y − x)2

|y − x|2
> 0,

hence

lim inf
y→x

f(y) − f(x) − f ′(x)(y − x) − (1
2
f ′′(x) − a)(y − x)2

|y − x|k
= ∞ > −∞

for every k > 2. If an analogue of Theorem 6 for some order k > 2 were true for this function
f , then, according to Liu-Tai’s characterization of Lusin properties and approximate differen-
tiability of higher order [26], we would have that f is approximately differentiable of order k.
However, in [26, p. 194] it is shown that the coefficients of order j of the Taylor expansion
of an approximately differentiable function of order k coincide, up to sets of arbitrarily small
measure, with derivatives of order j of Ck functions; in particular those coefficients have the
Lusin property of class Ck−j and therefore, again by [26, Theorem 1], they are almost every-
where approximately differentiable of order k − j. This would imply that f ′′ is approximately
differentiable almost everywhere, which we know to be false.
Another example can be given by taking g : R → R to be a continuous function which is
nowhere approximately differentiable (see [23, Chapter 6]), setting

f(x) =

∫ x

0

(∫ t

0

g(s)ds

)
dt,

and repeating the preceding argument word by word. One could also use as g the Takagi
function of Example 5, which by [9, Theorem 2] and [26] is not approximately differentiable on
any set of positive measure.
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(1936), no. 1, 1–47.

[11] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia
Math. 20 (1961), 171–225.

[12] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Grad.
Texts in Math. 178, Springer, 1998.



12 D. AZAGRA, J. FERRERA, M. GARCÍA-BRAVO, AND J. GÓMEZ-GIL
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