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Abstract We consider the generalized evolution of compact level sets by functions of
their normal vectors and second fundamental forms on a Riemannian manifold M . The
level sets of a function u : M → R evolve in such a way whenever u solves an equation
ut + F(Du, D2u) = 0, for some real function F satisfying a geometric condition. We show
existence and uniqueness of viscosity solutions to this equation under the assumptions that M
has nonnegative curvature, F is continuous off {Du = 0}, (degenerate) elliptic, and locally
invariant by parallel translation. We then prove that this approach is geometrically consistent,
hence it allows to define a generalized evolution of level sets by very general, singular
functions of their curvatures. For instance, these assumptions on F are satisfied when F is
given by the evolutions of level sets by their mean curvature (even in arbitrary codimension)
or by their positive Gaussian curvature. We also prove that the generalized evolution is
consistent with the classical motion by the corresponding function of the curvature, whenever
the latter exists. When M is not of nonnegative curvature, the same results hold if one
additionally requires that F is uniformly continuous with respect to D2u. Finally we give
some counterexamples showing that several well known properties of the evolutions in R

n

are no longer true when M has negative sectional curvature.
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1 Introduction

In the last 30 years there has been a lot of interest in the evolution of hypersurfaces of R
n

by functions of their curvatures. In this kind of problem one is asked to find a one parameter
family of orientable, compact hypersurfaces �t which are boundaries of open sets Ut and
satisfy

V = −G(ν, Dν) for t > 0, x ∈ �t , and

�t |t=0 = �0 (1.1)

for some initial set �0 = ∂U0, where V is the normal velocity of �t , ν = ν(t, ·) is a normal
field to �t at each x , and G is a given (nonlinear) function.

Two of the most studied examples are the evolutions by mean curvature and by
(positive) Gaussian curvature. In both cases, short time existence of classical solutions has
been established. For strictly convex initial data U0, it has been shown that Ut shrinks to a
point in finite time, and moreover, �t becomes spherical at the end of the contraction. See
[3,14,15,20,21,23,24,34] and the references therein.

For dimension n ≥ 3 it has been shown [19] that a hypersurface evolution �t may develop
singularities before it disappears. Hence it is natural to try to develop weak notions of solutions
to (1.1) which allow to deal with singularities of the evolutions, and even with nonsmooth
initial data �0.

There are two mainstream approaches concerning weak solutions of (1.1): the first one
uses geometric measure theory to construct (generally nonunique) varifold solutions, see
[6,26], while the second one adapts the theory of second order viscosity solutions developed
in the 1980s (see [8] and the references therein) to show existence and uniqueness of level-set
weak solutions to (1.1).

In this paper we will focus on this second approach. The first works to develop a notion of
viscosity level set solution to (1.1) were those of Evans and Spruck [10] and, independently
developed, Chen et al. [7], [17]. This was followed by many important developments, which
we find impossible to properly quote here; we refer the reader to the very comprehensive
monograph [16] and the bibliography therein. This level set approach consists in observing
that a smooth function u : [0, T ] × R

n → R with Du := Dx u �= 0 has the property that all
its level sets evolve by (1.1) if and only if u is a solution of

ut + F(Du, D2u) = 0, (1.2)

where F is related to G in (1.1) through of the following formula:

F(p, A) = |p|G
(

p

|p| ,
1

|p|
(

I − p ⊗ p

|p|2
)

A

)
. (1.3)

The function F is assumed to be continuous off {p = 0} and (degenerate) elliptic, that is

F(p, B) ≤ F(p, A) whenever A ≤ B. (1.4)

Because of (1.3), F also has the following geometric property:

F(λp, λA + µp ⊗ p) = λF(p, A) for all λ > 0, µ ∈ R. (1.5)
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Generalized motion of level sets by functions of their curvatures on Riemannian manifolds 135

The function F does not generally admit any continuous extension to R
n × R

n2
but, if it is

bounded near {p = 0} (this is the case of the mean curvature evolution equation), one can
show that there is a unique viscosity solution to (1.2) with initial datum u(0, x) = g(x) (for
any continuous g such that �0 = {x : g(x) = 0}). Next one can also see that if θ : R → R

is continuous and u is a solution of (1.2) then θ ◦ u is a solution too, and this, together with
a comparison principle, allows to show that the generalized geometric evolution

�0 → �t := {x : u(t, x) = 0}
is well defined (that is, the zero level set of a solution to (1.2) only depends on the zero level
set of its initial datum). It is also possible to show that this level set evolution agrees with
any classical solution of (1.1).

When F(p, A) is not bounded as p → 0 (this is the case of more singular equations such
as the Gaussian evolution), then the standard notion of viscosity solution to (1.2) (as is used,
for instance, in [7]) at points z = (t, x) where the test function ϕ satisfies Dϕ(z) = 0 is
not suitable to tackle the problem. In this case two different modifications of the notion of
solution have been proposed in the literature.

One possibility is simply not to specify any condition for the derivatives of a test function
ϕ such that u − ϕ attains a maximum or a minimum at a point (t0, x0) with Dϕ(t0, x0) = 0.
This is Goto’s approach in [18]. When one uses this definition of solution, the corresponding
comparison theorem becomes harder to prove, and it is indeed a stronger statement since the
class of solutions becomes bigger in this case, while the existence result is comparatively
weaker.

The other possibility is to make the class of test functions ϕ smaller, in a clever way so
that, if zk → z0 and Dϕk(zk)→ 0, one can show that F(Dϕk(zk), D2ϕk(zk)) goes to 0, and
then to demand that a subsolution u should satisfy that if u − ϕ has a maximum at z0 then
ϕt (z0) ≤ 0. This is what Ishii and Souganidis did in [28]. The corresponding (sub)solutions
are called F-(sub)solutions in Giga’s book [16]. In this approach the maximum principle is
relatively easier to prove, while existence becomes harder (and is really a stronger result,
because the class of solutions is smaller in this case).

The aim of this paper is to investigate to what extent one can develop a general theory of
(viscosity) level-set solutions to the problem of the evolution of hypersurfaces by functions of
their curvatures in a Riemannian manifold. To the best of our knowledge, the only work in this
direction is Ilmanen’s paper [25] (in fact this is the only paper we know of in which second
order viscosity solutions are employed to deal with a second order evolution equation within
the context of Riemannian manifolds). In [25] Ilmanen shows existence and uniqueness of
a (standard) viscosity solution to the mean curvature evolution equation, that is (1.1) in the
case when F is given by

F(p, A) = −trace

((
I − p ⊗ p

|p|2
)

A

)
,

with initial condition u(0, x) = g(x), thus obtaining a corresponding generalized evolu-
tion by mean curvature, some of whose geometric properties he next studies. For instance,
he proves that if noncompact initial data �0 are allowed then one loses uniqueness of the
generalized geometric evolution.

In recent years, an interest has grown in the use of viscosity solutions of (first order)
Hamilton–Jacobi equations defined on Riemannian manifolds (in relation to dynamical sys-
tems, to geometric problems, or from a theoretical point of view), see [4,9,12,13,22,29,30],
but no second order theory, apart from Ilmanen’s paper, has apparently been developed for
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parabolic equations (in the case of stationary, degenerate elliptic equations, such a study was
recently started in [5]).

We believe that a level set method for generalized evolution of hypersurfaces by functions
of their curvatures can be useful in the setting of Riemannian manifolds. On the one hand we
think that it is very natural, from a geometric point of view, to try to study the evolutions of
level sets in a general Riemannian manifold M by their Gaussian (or by other functions of
their) curvatures, in a way that is supple enough so that nonsmooth initial data and singularities
of the evolutions are allowed. On the other hand, as one sees, for instance, by restricting to
the case M = R

n endowed with a non Euclidean metric, the tools developed here allow to
treat level set evolutions in inhomogeneous media, in which the function F depends (in a
very special manner) on the position variable x .

Let us briefly describe the main results of this paper. In Sect. 2 we consider equations of
the form (1.1), (1.2) for level sets of functions u defined on a Riemannian manifold M , and
we show how the F’s corresponding to the evolutions by mean curvature (even in arbitrary
codimension, in the line of [2]) and by (positive) Gaussian curvature are extended to J 2

0 (M)
in such a way that F is (degenerate) elliptic, translation invariant, geometric, and continuous
off {Du = 0} (see properties (A - D) in Sect. 2). Following [16,28], for each F we next define
an appropriate class of test functions A(F) which allows us to deal with equation (1.2) on
M , and we define the corresponding class of F-solutions, see Definitions 2.4, 2.7. We also
show that for all F which are continuous off {Du = 0}, elliptic, translation invariant and
geometric, one has that A(F) �= ∅ provided that M is compact. Moreover, in the cases when
F is given by the mean curvature or the Gaussian curvature evolution equations, we have
A(F) �= ∅ no matter whether M is compact or not.

In Sect. 3 we present some technical results that will be used later on in the proofs of the
main results.

Section 4 is devoted to proving a comparison result for viscosity solutions of (1.2) on
M : under the above assumptions on F (namely, continuity, ellipticity, geometricity and
translation invariance) we show that if M has nonnegative curvature u is a subsolution, v is a
supersolution, u ≤ v on {0}×M , and lim sup(t,x)→∞(u−v) ≤ 0 (this condition is understood
to be requiring nothing when M is compact), then u ≤ v on [0, T ] × M . When M is not of
nonnegative curvature, we have to additionally require that F be uniformly continuous with
respect to D2u.

In Sect. 5 we show that Perron’s method (first used in [27]) works to produce A(F)-
solutions of (1.2) on a Riemannian manifold M , provided that comparison holds and
A(F) �= ∅.

Therefore, for all such M and F , for every compact subset �0 of M , and for every
continuous function g on M such that �0 = {x ∈ M : g(x) = 0}, there exists a unique
solution of (1.2) on M with initial condition u(0, ·) = g. One can then define, for each
compact �0, an evolution �t = {x ∈ M : u(t, x) = 0}, t ≥ 0. In Sect. 6 we see that �t

does not depend on the function g chosen to represent �0, and consequently the generalized
geometric evolution �0 
→ �t is well defined.

Next, in Sect. 7 we prove that this generalized evolution is consistent with the classical
motion, whenever the latter exists. Namely, if (�t )t∈[0,T ] is a family of smooth, compact,
orientable hypersurfaces in a Riemannian manifold M evolving according to a classical
geometric motion, locally depending only on its normal vector fields and second fundamental
forms according to an equation of the form (1.1), and �0 can be represented as the zero level
set of a smooth function g on M , then �t coincides with the generalized level set evolution
(with initial datum �0) defined above.
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Generalized motion of level sets by functions of their curvatures on Riemannian manifolds 137

Finally, in Sect. 8, we give some counterexamples showing that several well known
properties of generalized solutions to the mean curvature flow cannot be extended from
Euclidean spaces to Riemannian manifolds of negative sectional curvature. For instance,
Ambrosio and Soner [1,2,32,33] showed that the distance function from �t ⊂ R

n given by
|d|(t, x) = dist(x, �t ) is a supersolution of (1.2) when F corresponds to the mean curvature
evolution equation. We show that this result fails when R

n is replaced with a manifold of
negative sectional curvature. On the other hand, if M has negative curvature, then Eq. (1.2)
does not preserve Lipschitz properties of the initial data, in contrast with [16, Chap. 3]. And,
again in the case of the mean curvature flow, if �0, �̂0 are smooth 1-codimensional subma-
nifolds of a manifold M of negative curvature, then the function t 
→ dist(�t , �̂t ) can be
decreasing, in contrast with [10, Theorem 7.3].

An the end of this article, the reader will find an appendix describing a comparison and an
existence result for (standard) viscosity solutions to general evolution equations of the form

ut + F(x, t, u, Du, D2u) = 0

where F has no singularities. We omit the proofs because they resemble (and are easier than)
those of the main comparison and existence result for F-solutions of (1.2) given in Sects. 4
and 5.

Notation M will always be a finite-dimensional Riemannian manifold. We will write 〈·, ·〉
for the Riemannian metric and | · | for the Riemannian norm on M . The tangent and cotangent
space of M at a point x will be respectively denoted by T Mx and T M∗

x . We will often identify
them via the isomorphism induced by the Riemannian metric. The space of bilinear forms on
T Mx (respectively symmetric bilinear forms) will be denoted by L2(T Mx ) (resp. L2

s (T Mx )).
Elements of L2(T Mx ) will be denoted by the letters A, B, P, Q, and those of T M∗

x by ζ, η,
etc. Also, we will respectively denote the cotangent bundle and the tensor bundle of symmetric
bilinear forms in M by

T M∗ :=
⋃

x∈M

T M∗
x , T2,s(M) :=

⋃
x∈M

L2
s (T Mx ).

We will also consider the two-jet bundles:

J 2 M :=
⋃

x∈M

T M∗
x × L2

s (T Mx ), J 2
0 (M) :=

⋃
x∈M

(
T M∗

x \ {0x }
)× L2

s (T Mx ).

The letters X, Y, Z will stand for smooth vector fields on M , and ∇Y X will always denote
the covariant derivative of X along Y . Curves and geodesics in M will be denoted by γ ,
σ , and their velocity fields by γ ′, σ ′. If X is a vector field along γ we will often denote
X ′(t) = d

dt X (t) = ∇γ ′(t)X (t). Recall that X is said to be parallel along γ if X ′(t) = 0 for all
t . The Riemannian distance in M will always be denoted by d(x, y) (defined as the infimum
of the lengths of all curves joining x to y in M).

Given a smooth function u : M → R, we will denote its differential by Dx u ∈ T M∗; its
gradient vector field will be written as ∇u, and its Hessian as D2

x u. Recall that, for any two
vector fields X, Y satisfying X (p) = v, Y (p) = w at some p ∈ M we have:

D2
x u (X, Y ) := 〈∇Y∇u, X〉 , D2

x u (v,w) := D2
x u (X, Y ) (p).

Given a function v : M → R we will use the notation:

v∗(t, x) = limr↓0 sup{v(s, y) : y ∈ M, s > 0, |t − s| ≤ r, d(y, x) ≤ r},

v∗(t, x) = limr↓0 inf{v(s, y) : y ∈ M, s > 0, |t − s| ≤ r, d(y, x) ≤ r};
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that is v∗ denotes the upper semicontinuous envelope of v (the smallest upper semicontinuous
function, with values in [−∞,∞], satisfying v ≤ v∗), and similarly v∗ stands for the lower
semicontinuous envelope of v.

We will make frequent use of the exponential mapping expx and of the parallel translation
along a geodesic γ . Recall that for every x ∈ M there exists a mapping expx , defined on
a neighborhood of 0 in the tangent space T Mx , and taking values in M , which is a local
diffeomorphism and maps straight line segments passing through 0 onto geodesic segments
in M passing through x . The exponential mapping induces a local diffeomorphism on the
cotangent space T M∗

x , via the identification given by the metric, that will be also denoted by
expx . On the other hand, for a minimizing geodesic γ : [0, �] → M connecting x to y in M ,
and for a vector v ∈ T Mx there is a unique parallel vector field P along γ such that P(0) = v,
this is called the parallel translation of v along γ . The mapping T Mx � v 
→ P(�) ∈ T My is
a linear isometry from T Mx onto T My which we will denote by Lxy . This isometry naturally
induces an isometry between the space of bilinear forms on T Mx and the space of bilinear
forms on T My . Whenever we use the notation Lxy we assume implicitly that x and y are
close enough to each other so that this makes sense.

By iM (x) we will denote the injectivity radius of M at x , that is the supremum of the
radius r of all balls B(0x , r) in T Mx for which expx is a diffeomorphism from B(0x , r)
onto B(x, r). Similarly, i(M) will denote the global injectivity radius of M , that is i(M) =
inf{iM (x) : x ∈ M}. Recall that the function x 
→ iM (x) is continuous. In particular, if M
is compact, we always have i(M) > 0.

2 General curvature evolution equations on Riemannian manifolds

Consider the following evolution equation on a Riemannian manifold M , given by

ut − F(Du, D2u) = 0 on (0, T )× M, (CEE)

u(0, x) = g(x), on x ∈ M,

where u is a function of (t, x) ∈ [0, T )× M .
In what follows, ut , Du and D2u will stand for Dt u, Dx u(t, x) ∈ T M∗

x and D2
x u(t, x) ∈

L2
s (T Mx ), respectively. The function F is assumed to be continuous on the normal vector to

the level set �t = {x ∈ M : u(t, x) = 0} and on the curvature tensor, and having the form

F(ζ, A) = |ζ |G
(
ζ

|ζ | ,
1

|ζ |
(

I − ζ ⊗ ζ
|ζ |2

)
A

)
, (2.1)

for all ζ ∈ T M∗
x \{0x } and A ∈ L2

s (T Mx ), where G is any (nonlinear) function such that:

(A) F : J 2
0 (M)→ R is continuous;

(B) F is (degenerate) elliptic, that is,

A ≤ B �⇒ F(ζ, B) ≤ F(ζ, A),

for all x ∈ M, ζ ∈ T M∗
x \{0}, A, B ∈ L2

s (T Mx );
(C) F is translation invariant, meaning that there exists τ > 0 such that

F(Lxyζ, A) = F(ζ, L yx (A)),

for every x, y ∈ M, d(x, y) < τ , ζ ∈ T M∗
x \{0}, A ∈ L2

s (T My).
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Generalized motion of level sets by functions of their curvatures on Riemannian manifolds 139

Notice that, because (
I − ζ ⊗ ζ

|ζ |2
)
(ζ ⊗ ζ ) = 0,

any function F of the form (2.1) also satisfies

(D) F is geometric, that is,

F(λζ, λA + µζ ⊗ ζ ) = λF(ζ, A)

for every λ > 0, µ ∈ R.

Two very important problems where such functions F arise are the evolutions of level sets
by mean curvature and by Gaussian curvature.

Example 2.1 Motion of level sets by their mean curvature.

If u is a function on [0, T ] × M such that Du(t, x) �= 0 for all t, x with u(t, x) = c, then
each level set �t = {u(t, ·) = c} evolves according to its mean curvature if and only if u
satisfies

ut

|Du| = div

(
Du

|Du|
)

(that is, the normal velocity of �t at a point x equals (n − 1) times the mean curvature of �t

at x), which in turn is equivalent to

ut − trace

((
I − Du ⊗ Du

|Du|2
)

D2u

)
= 0 on (0, T )× M. (MCE)

That is, ut + F(Du, D2u) = 0, where

F(ζ, A) = −trace

((
I − ζ ⊗ ζ

|ζ |2
)

A

)
. (2.2)

It is not difficult to see that the function F : J 2
0 (M) −→ R is continuous (though the function

F remains undefined at ζ = 0 and, in fact, there is no continuous extension of F to J 2(M).
Nevertheless, F(ζ, A) remains bounded as ζ → 0).

Let us now check that the function F is degenerate elliptic. If P ≤ Q, since R :=
I − ζ ⊗ ζ

|ζ |2 ≥ 0 and S := Q − P ≥ 0, we obtain from the properties of the trace that

trace(RS) ≥ 0 and therefore

F(ζ, P)− F(ζ, Q) = trace

((
I − ζ ⊗ ζ

|ζ |2
)
(Q − P)

)
≥ 0. (2.3)

Finally, let us see that the function F in (2.2) is translation invariant. Notice that trace(A) =
trace(L−1

xy ◦ A ◦ Lxy) = trace(L yx (A)), and

trace

(
ζ ⊗ ζ
|ζ |2 ◦ L yx (A)

)
= trace

(
Lxy ◦ ζ ⊗ ζ|ζ |2 ◦ L yx (A) ◦ L−1

xy

)

= trace

(
Lxy ◦ ζ ⊗ ζ|ζ |2 ◦ L−1

xy ◦ A

)
.
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On the other hand,

Lxy ◦ ζ ⊗ ζ|ζ |2 ◦ L−1
xy =

Lxyζ ⊗ Lxyζ

|Lxyζ |2 , (2.4)

hence we immediately deduce that F(Lxyζ, A) = F(ζ, L yx (A))whenever d(x, y) < i(M),
ζ ∈ T Mx , A ∈ L2

s (T My).

Example 2.2 Motion of level sets by their Gaussian curvature.

Now, if u is a function on [0, T ] × M such that Du(t, x) �= 0 for all t, x with u(t, x) = c,
then all level sets �t = {u(t, ·) = c} evolve according to their Gaussian curvature if and only
if u satisfies

ut

|Du| = det

(
∇T

( ∇u

|∇u|
))

,

where ∇T stands for the orthogonal projection onto T�t of the covariant derivative in M .
This equation is equivalent to

ut − |Du|det

(
1

|Du|
(

I − Du ⊗ Du

|Du|2
)

D2u + Du ⊗ Du

|Du|2
)
= 0. (GCE)

That is, ut + H(Du, D2u) = 0, where

H(ζ, A) = −|ζ |det

((
I − ζ ⊗ ζ

|ζ |2
)

A + ζ ⊗ ζ
|ζ |2

)
.

However, the function H is not elliptic, so this problem cannot be treated, in its most
general form, with the theory of viscosity solutions. Nevertheless, if our initial data u(0, x) =
g(x) satisfies that D2g(x) ≥ 0 (that is, if the initial hypersurface �0 = {x ∈ M : g(x) = c}
has nonnegative Gaussian curvature) then it is reasonable, and consistent with the classical
motion of convex surfaces by their Gaussian curvature, to assume that D2u(t, x) ≥ 0 for all
(t, x) with u(t, x) = c (that is, �t will have nonnegative Gaussian curvature as long as it
exists). In this case our equation becomes

ut − |Du|det+
(

1

|Du|
(

I − Du ⊗ Du

|Du|2
)

D2u + Du ⊗ Du

|Du|2
)
= 0, (+GCE)

where det+ is defined by

det+(A) =
n∏

j=1

max{λ j , 0}

if λ1, . . . , λn are the eigenvalues of A. That is,

ut + F(Du, D2u) = 0,

where

F(ζ, A) = −|ζ |det+
(

1

|ζ |
(

I − ζ ⊗ ζ
|ζ |2

)
A + ζ ⊗ ζ

|ζ |2
)
. (2.5)

As in the case of the mean curvature, it is not difficult to see that F is elliptic and translation
invariant, and that F is continuous off {ζ = 0} (this time the singularities at ζ = 0 are of
higher order, as F(ζ, A) generally tends to ±∞ as ζ goes to 0).
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Generalized motion of level sets by functions of their curvatures on Riemannian manifolds 141

Example 2.3 Motion by mean curvature in arbitrary codimension.

If �0 is a k-codimensional surface of an n-dimensional Riemannian manifold M , we
choose a continuous function v0 with �0 = v−1

0 (0), and consider

ut + F(Du, D2u) = 0, u(0, x) = v0(x),

where

F(ζ, A) =
d−k∑
i=1

λi (Q)

and

λ1(Q) ≤ λ2(Q) ≤ · · · ≤ λd−1(Q)

are the eigenvalues of Q := Sζ ASζ , with

Sζ :=
(

I − ζ ⊗ ζ
|ζ |2

)
,

corresponding to eigenvectors orthogonal to ζ (note that ζ is an eigenvector corresponding
to the eigenvalue 0 of Q).

The same proof as in [2] shows that F is elliptic, the key observation is that

λi (Q) = max

{
min
η∈E

〈Qη, η〉
|η|2 : E ⊂ T Mx , codim(E) ≤ i − 1

}
.

On the other hand, it is easy to see, as in Example 2.1, that F is translation invariant.
Our aim is to establish comparison, existence and uniqueness of viscosity solutions to the

general curvature evolution equation CEE, and then to prove that the resulting generalized
motion is consistent with the corresponding classical motion (whenever the latter exists).
However, because this equation is, in general, highly singular, one has to define very carefully
what a viscosity solution to CEE is at points where Du = 0. Here we will adapt Ishii-
Souganidis’ definition [28] (see also [16]) from the Euclidean to the Riemannian setting.
This requires a slight change in the definition of the set of test functions ϕ.

Definition 2.4 Let F : J 2
0 (M) → R be continuous, (degenerate) elliptic, translation inva-

riant and geometric. Denote by F = F(F) the set of functions f ∈ C2([0,∞)) such that
f (0) = f ′(0) = f ′′(0) = 0 and f ′′(s) > 0 for s > 0 which satisfy

lim|ζ |→0

f ′(|ζ |)
|ζ | F(ζ, 2I ) = lim|ζ |→0

f ′(|ζ |)
|ζ | F(ζ,−2I ) = 0. (2.6)

It is clear that F is a cone (that is, f + g ∈ F and λ f ∈ F whenever f, g ∈ F, λ ∈ [0,∞)).

Proposition 2.5 If M is compact and F : J 2
0 (M) → R is continuous, elliptic, translation

invariant, and geometric, then F(F) �= ∅.

Proof One can adapt the proof given in [28, p. 229] for the case M = R
n . The only difference

(apart from the replacement of I with 2I ) is that |ζ | = |ζ |x depends on the point x such that
ζ ∈ T Mx , and one has to be cautious about this dependence (as a matter of fact, that is why
we require compactness of M). Let us give the essential details for the reader’s convenience.
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Since F is continuous on J 2
0 (M) and the sets {(ζx ,±2I ) : |ζx |x = 1, x ∈ M} are compact

in J 2
0 (M), there exists a continuous function c : (0,∞)→ (0,∞) such that

−c(|ζ |) ≤ F(ζ, 2I ) ≤ F(ζ,−2I ) ≤ c(|ζ |)
for all ζ ∈ T M∗\{0x : x ∈ M}. Without loss of generality one can then assume that c is C1

on (0,∞) and satisfies (1/c)′ > 0 in (0, 1], limr→0+ c(r) = ∞, and limr→0+(1/c)
′(r) = 0.

Then it is not difficult to show that an appropriate extension to [0,∞) of the function f
defined on [0, 1] by

f (r) =
⎧⎨
⎩

r∫
0

s2

c(s)ds, if 0 < r ≤ 1;

0, if r = 0,

belongs to F(F). ��
For many interesting choices of the function F it is easy to show that F(F) �= ∅ without

requiring M to be compact:

Example 2.6 If F is given by (2.2) (corresponding to the mean curvature evolution equation),
then we may take f ∈ F(F) of the form

f (t) = t4.

On the other hand, when F is associated to the Gaussian curvature evolution equation [that
is, F is given by (2.5)] then

f (t) = t2n

belongs to F(F) (here n is the dimension of M).

Definition 2.7 We define the set A(F) of admissible test functions for the equation (CEE)
as the set of all functions ϕ ∈ C2((0, T ) × M) such that, for every z0 = (t0, x0) ∈
(0, T ) × M with Dϕ(z0) = 0 there exist some δ > 0, f ∈ F , w ∈ C([0,∞)) satisfying
limr→0+ w(r)/r = 0 and

|ϕ(z)− ϕ(z0)− ϕt (z0)(t − t0)| ≤ f (d(x, x0))+ w(|t − t0|)
for all z = (t, x) ∈ B(z0, δ).

Notice that in particular, for all ϕ ∈ A(F) we have that

Dϕ(z) = 0 �⇒ D2ϕ(z) = 0.

Proposition 2.8 If M is a compact Riemannian manifold then the class A(F) of admissible
test functions is dense in the space C(M) of continuous functions on M.

Proof It is not difficult to check that the class A(F) satisfies the hypotheses of the Stone–
Weierstrass theorem. ��
Definition 2.9 We will say that an upper semicontinuous function u : [0, T )× M → R is a
viscosity subsolution of (CEE) provided that, for every ϕ ∈ A(F) and every maximum point
z = (t, x) of u − ϕ, we have{

ϕt + F(Dϕ(z), D2ϕ(z)) ≤ 0 if Dϕ(z) �= 0,

ϕt (z) ≤ 0 otherwise.
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Similarly, we will say that a lower semicontinuous function u : [0, T )×M → R is a viscosity
supersolution of (CEE) if, for every ϕ ∈ A(F) and every minimum point z = (t, x) of u−ϕ,
we have

{
ϕt + F(Dϕ(z), D2ϕ(z)) ≥ 0 if Dϕ(z) �= 0,

ϕt (z) ≥ 0 otherwise.

A viscosity solution of (CEE) is a continuous function u : [0, T )× M → R which is both a
viscosity subsolution and a viscosity supersolution of (CEE).

In [16] this kind of solution is called an F-solution, but here we will simply call it a
solution. It is clear that one can always assume that the minimum or maximum in these
definitions are strict.

Notice that the set of test functions ϕ we are using is smaller than the standard one in the
general theory of viscosity solutions, and that we here require that ϕ is C2 with respect to
the variables t and x (while in the usual definition of the parabolic semijets one demands C1

differentiability with respect to t and C2 differentiability with respect to x).
It is easy to check that this definition is consistent with u being a classical solution. Indeed,

if u is a classical solution then we have Du(z) �= 0 and ut (z)+ F(Du(z), D2u(z)) = 0 for
all z. Then, if ϕ ∈ A(F) is such that u − ϕ attains a minimum at z, we have ϕt (z) = ut (z),
Dϕ(z) = Du(z) �= 0, and D2u(z) ≥ D2ϕ(z). Since F is elliptic we get

ϕt (z)+ F(Dϕ(z), D2ϕ(z)) ≥ ut (z)+ F(Du(z), D2u(z)) = 0,

that is, u is a supersolution at z. A similar argument shows that u is a subsolution.
It can be proved, as in the Euclidean case [16], that if the lower and upper semicontinuous

envelopes of F (denoted by F and F respectively) are finite and F(0, 0) = F(0, 0) = 0,
then every standard viscosity solution is an F-solution, and conversely. This is the case of
the F associated to the mean curvature evolution.

3 Some technical tools

In this section we collect some rather technical results that will be needed in the proof of the
main comparison theorem.

First, we will need to use the following variant of the maximum principle for semicon-
tinuous functions already used in [5], which we restate here for the reader’s convenience.

Theorem 3.1 Let M1, . . . ,Mk be Riemannian manifolds, and�i ⊂ Mi open subsets. Define
� = �1 × · · · ×�n ⊂ M1 × · · · × Mk = M. Let ui be upper semicontinuous functions on
�i , i = 1, . . . , k; let ϕ be a C2 smooth function on � and set

ω(x) = u1(x1)+ · · · + un(xk)

for x = (x1, . . . , xk) ∈ �. Assume that (x̂1, . . . , x̂k) is a local maximum of ω− ϕ. Then, for
each ε > 0 there exist bilinear forms Bi ∈ L2

s ((T Mi )x̂i ), i = 1, . . . , k, such that

(
Dxiϕ(x̂), Bi

) ∈ J
2,+

ui (x̂i )
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for i = 1, . . . , k, and the block diagonal matrix with entries Bi satisfies

−
(

1

ε
+ ‖A‖

)
I ≤

⎛
⎜⎝

B1 . . . 0
...
. . .

...

0 . . . Bk

⎞
⎟⎠ ≤ A + εA2,

where A = D2ϕ(x̂) ∈ L2
s (T Mx̂ ).

We recall that

J 2,+ f (x) = {(Dϕ(x), D2ϕ(x)) : ϕ ∈ C2(M,R), f − ϕ attains a local maximum at x},
and

J
2,+

f (x) = {(ζ, A) ∈ T M∗
x × Ls(T Mx ) : ∃(xk, ζk, Ak) ∈ M × T M∗

xk
× Ls(T Mxk )

s.t. (ζk, Ak) ∈ J 2,+ f (xk), (xk, f (xk), ζk, Ak)→ (x, f (x), ζ, A)},
see [5].

Another important ingredient of the proof of our main comparison result is the following
Proposition, established in [5, Proposition 3.3].

Proposition 3.2 Consider the function�(x, y) = d(x, y)2, defined on M×M. Assume that
the sectional curvature K of M is bounded below, say K ≥ −K0. Then

D2
x,y�(x, y)(v, Lxyv)

2 ≤ 2K0d(x, y)2‖v‖2

for all v ∈ T Mx and x, y ∈ M with d(x, y) < min{iM (x), iM (y)}.
In particular, if −K0 ≥ 0 (that is M has nonnegative sectional curvature) one has that

the restriction of D2
x,y�(x, y) to the subspace D = {(v, Lxyv) : v ∈ T Mx } of T Mx × T My

is negative semidefinite.

We will also need the following auxiliary result.

Lemma 3.3 Let φ ∈ U SC(M), ψ ∈ L SC(M), f ∈ F(F), and

mα := sup
M×M

(
φ(x)− ψ(y)− α f

(
d(x, y)2

))

for α > 0. Suppose mα <∞ for large α and let (xα, yα) be such that

lim
α→∞

(
mα − (φ(xα)− ψ(yα)− α f (d(xα, yα)

2))
) = 0.

Then we have:

(1) limα→∞ α f (d(xα, yα)2) = 0, and
(2) if x̂ ∈ M is a limit point of xα as α→∞ then

lim
α→∞mα = φ(̂x)− ψ(̂x) = sup

x∈M
(φ(x)− ψ(x)).

Proof A more general form of this result is proved in [8, Theorem 3.7] in the case when M
is an Euclidean space, and the same proof clearly works in a general metric space. ��

Let us now define P2,+, P2,−, P2,+
, and P2,−

, the “parabolic” variants of the semijets

J 2,+, J 2,−, J
2,+
, J

2,−
introduced in [5] for functions defined on a Riemannian manifold.
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Definition 3.4 Let f : (0, T ) × M → (−∞,+∞] be a lower semicontinuous (LSC)
function. We define the parabolic second order subjet of f at a point (t0, x0) ∈ (0, T )×M by

P2,− f (t0, x0) :={(Dtϕ(t0, x0), Dxϕ(t0, x0)), D2
xϕ(t0, x0)) : ϕ is once continuously

differentiable in t ∈ (0, T ), twice continuously differentiable in x ∈ M

and f − ϕ attains a local minimum at (t0, x0)}.
Similarly, for an upper semicontinuous (USC) function f : (0, T )× M → [−∞,+∞), we
define the parabolic second order superjet of f at (t0, x0) by

P2,+ f (t0, x0) :={(Dtϕ(t0, x0), Dxϕ(t0, x0)), D2
xϕ(t0, x0)) : ϕ is once continuously

differentiable in t ∈ (0, T ), twice continuously differentiable in x ∈ M

and f − ϕ attains a local maximum at (t0, x0)}.

Observe that P2,− f (t, x) and P2,+ f (t, x) are subsets of R× T M∗
x × L2

s (T Mx ). Notice
that we can assume that the auxiliary functions ϕ are defined on a neighborhood of (t0, x0).
We may as well assume (just by adding a function of the form±εd(x, x0)

4) that the minima
or maxima in these definitions are strict. It is also easily seeing that the min or max can
always be supposed to be global.

Definition 3.5 Let f : (0, T )×M −→ (−∞,+∞] be a LSC function and (t, x) ∈ (0, T )×
M . We define P2,−

f (t, x) as the set of the (a, ζ, A) ∈ R×T M∗
x ×L2

s (T Mx ) such that there
exist a sequence (xk, ak, ζk, Ak) in M × R× T M∗

xk
× L2

s (T Mxk ) satisfying:

(i) (ak, ζk, Ak) ∈ P2,− f (tk, xk),

(ii) limk(tk, xk, f (tk, xk), ak, ζk, Ak) = (t, x, f (t, x), a, ζ, A).

The corresponding definition of P2,+
f (t, x) when f is an upper semicontinuous function is

then clear.
The next two lemmas are needed to establish the parabolic version of the maximum

principle we state as follows.

Lemma 3.6 ([5]) Let U ⊂ M be an open subset, (t, z) ∈ (0, T ) × U and a function
ϕ : (0, T ) × U → R. Assume that ϕ is once continuously differentiable in (0, T ) and
twice continuously differentiable in U. Define ψ(s, v) = ϕ(s, expz v) on a neighborhood of
0 ∈ T Mz. Let Ṽ be a vector field defined on a neighbourhood of 0 in T Mz, and consider
the vector field defined by V (y) = D expz(wy)(Ṽ (wy)) on a neighbourhood of z, where
wy := exp−1

z (y), and let

σy(r) = expz(wy + r Ṽ (wy)).

Then we have that

D2
vψ(Ṽ , Ṽ )(t, wy) = D2

xϕ(V, V )(t, y)+ 〈∇xϕ(t, y), σ ′′y (0)〉.
Observe that σ ′′z (0) = 0 so, when y = z, we obtain

D2
vψ(t, 0) = D2

xϕ(t, z).

Proof Analogous to [5, Lemma 2.7]. ��
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Lemma 3.7 Let U ⊂ M be an open subset, (t, z) ∈ (0, T ) × U and u : (0, T ) × M →
[−∞,∞)be an upper semicontinuous function and consider a neighbourhood V of 0 ∈ T Mz

and ũ : (0, T ) × V → [−∞,∞) defined as ũ(s, v) = u(s, expz v). Then, if (b, ζ, A) ∈
R× T M∗

z × L2
s (T Mz),

(b, ζ, A) ∈ P2,+
u(t, z) ⇐⇒ (b, ζ, A) ∈ P2,+

ũ(t, 0).

Proof Use the above Lemma as in the proof of [5, Proposition 2.8]. ��
As in [25] in the case of the mean curvature evolution equation and [5] in the case of

general (nonsingular) stationary equations, the following result is one of the keys to the proof
of the comparison result for general (nonsingular) evolution equations which we give in the
Appendix.

Theorem 3.8 Let M1, . . . ,Mk be Riemannian manifolds, and�i ⊂ Mi open subsets. Define
� = (0, T ) × �1 × · · · × �k . Let ui be upper semicontinuous functions on (0, T ) × �i ,
i = 1, . . . , k; let ϕ be a function defined on� such that it is once continuously differentiable
in t ∈ (0, T ) and twice continuously differentiable in x := (x1, . . . , xk) ∈ �1 × · · · × �k

and set

ω(t, x1, . . . , xk) = u1(t, x1)+ · · · + uk(t, xk)

for (t, x1, . . . , xk) ∈ �. Assume that (̂t, x̂1, . . . , x̂k) is a maximum of ω − ϕ in �. Assume,
moreover, that there is an τ > 0 such that for every M > 0 there is C > 0 such that for
i = 1, . . . , k,{

ai ≤ C whenever (ai , ζi , Ai ) ∈ P2,+
Mi

ui (t, xi )

d(xi , x̂i )+ |t − t̂ | ≤ τ and |ui (t, xi )| + |ζi | + ||Ai || ≤ M.
(3.1)

Then, for each ε > 0 there exist real numbers bi and bilinear forms Bi ∈ L2
s ((T Mi )x̂i ),

i = 1, . . . , k, such that
(
bi , Dxiϕ(̂t, x̂1, . . . , x̂k), Bi

) ∈ P 2,+
Mi

ui (̂t, x̂i )

for i = 1, . . . , k, and the block diagonal matrix with entries Bi satisfies

−
(

1

ε
+ ‖A‖

)
I ≤

⎛
⎜⎝

B1 . . . 0
...
. . .

...

0 . . . Bk

⎞
⎟⎠ ≤ A + εA2,

where A = D2
xϕ(̂t, x̂1, . . . , x̂k) and b1 + · · · + bk = ∂ϕ

∂t (̂t, x̂1, . . . , x̂k).

Proof The result is proved in [8] for Mi = R
ni , i = 1, . . . , k. As in the stationary case [5],

we can reduce the problem to this situation by an adecuate composition with the exponential
mappings. Let us give some details for completeness. We may assume (by taking smaller
neighborhoods of xi , if necessary), that the sets �i are diffeomorphic images of balls by
the exponential mappings expx̂i

: B(0x̂i , ri ) → �i := B(̂xi , ri ). Consider the Riemannian
manifold M := M1 × · · · × Mk and x̂ := (̂x1, . . . , x̂k) ∈ �1 × · · · × �k . Recall that if
v := (v1, . . . , vk) ∈ B(0x̂1 , r1) × · · · × B(0x̂k , rk) the exponential map expx̂ is defined
as expx̂ (v) =

(
expx̂1

(v1), . . . , expx̂k
(vk)

)
. Then expx̂ maps diffeomorphically the open set

B(0x̂1 , r1)× · · · × B(0x̂k , rk) ⊂ T Mx̂ = (T M1)x̂1 × · · · × (T Mk)x̂k onto �1 × · · · ×�k .
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We consider the functions, defined on suitable open subsets of euclidean spaces,

ω̃(t, v) := ω(t, expx̂ (v)), ψ(t, v) := ϕ(t, expx̂ (v)), ũi (t, vi ) := ui (t, expx̂i
(vi )).

We have that

ω̃(t, v1, . . . , vk) = ũ1(t, v1)+ · · · + ũk(t, vk),

and (̂t, 0x̂ ) = (̂t, 0x̂1 , . . . , 0x̂k ) is the maximum of ω̃−ψ . Therefore, we apply [8, Theorem
8.3] to ensure, for every ε > 0, the existence of real numbers bi and bilinear forms Bi ∈
L2

s (R
ni ), i = 1, . . . , k, such that

(
bi , Dviψ(̂t, 0x̂ ), Bi

) ∈ P 2,+
ũi (̂t, 0x̂i )

for i = 1, . . . , k, and the block diagonal matrix with entries Bi satisfies

−
(

1

ε
+ ‖A‖

)
I ≤

⎛
⎜⎝

B1 . . . 0
...
. . .

...

0 . . . Bk

⎞
⎟⎠ ≤ A + εA2,

where A = D2
vψ(̂t, 0x̂ ) and b1 + · · · + bk = ∂ψ

∂t (̂t, 0x̂ ). Clearly

∂ψ

∂t
(̂t, 0x̂ ) = ∂ϕ

∂t
(̂t, x̂), Dviψ(̂t, 0x̂ ) = Dxiϕ(̂t, x̂),

and Lemma 3.6 provides the equality D2
vψ(̂t, 0x̂ ) = D2

xϕ(̂t, x̂). To conclude this proof it
remains to apply Lemma 3.7 to obtain the equivalence

(
bi , Dviψ(̂t, 0x̂ ), Bi

) ∈ P 2,+
ũi (̂t, 0x̂i ) ⇐⇒ (

bi , Dxiϕ(̂t, x̂), Bi
) ∈ P2,+

ui (̂t, x̂i ).

��

4 Comparison

Let us state and prove our main comparison result for viscosity solutions of (CEE).

Theorem 4.1 Let M be a compact Riemannian manifold of nonnegative sectional curvature,
and let F : J 2

0 (M) → R be continuous, elliptic, translation invariant and geometric. Let
u ∈ U SC([0, T ) × M) be a subsolution and v ∈ L SC([0, T ) × M) be a supersolution of
(CEE) on M. Then u ≤ v on [0, T )× M whenever u ≤ v on {0} × M.

Proof Since M is compact we know that M has injectivity radius iM > 0.
Let us start noting that we may assume u and−v bounded above on [0, T )×M . Otherwise,

for every 0 < S < T , consider u and−v defined on the compact set [0, S] × M , where they
are also u.s.c. and thus bounded above. Then, we apply the arguments of the proof to u and
−v in [0, S)× M .

Next, let us observe that for ε > 0, the function ũ = u − ε
T−t is also a subsolution of

ut + F(Du, D2u) = 0 on [0, T )× M . Moreover,

ũt + F(Dũ, D2ũ) ≤ − ε

T 2 for Dũ �= 0, (4.1)

ũt ≤ − ε

T 2 for Dũ = 0, and (4.2)

lim
t→T−

ũ(t, x) = −∞ uniformly on M. (4.3)
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Since the assertion ũ ≤ v for every ε > 0 implies u ≤ v, it will suffice to prove the
comparison result under the assumptions given in (4.1–4.3).

Assume to the contrary that sup
[0,T )×M

(u − v) > 0. Take f ∈ F . Since M is compact, u and

−v are u.s.c. and (4.3) holds, we can consider for every α ∈ N,

mα := sup
0≤s,t<T
x,y∈M

{u(s, x)− v(t, y)− α f
(
d(x, y)2

)− α(t − s)2},

which is attained at some (sα, tα, xα, yα) ∈ [0, T )× [0, T )× M × M . Clearly,

mα ≥ sup
[0,T )×M

(u − v) > 0.

If tα = 0 for infinitely many α’s, which we may assume are all α, then we have

0 < sup
[0,T )×M

(u − v) ≤ mα = sup
s,x,y

(
u(s, x)− v(0, y)− α f

(
d(x, y)2

)− αs2)

We deduce from Lemma 3.3 that limα→∞ α f
(
d(xα, yα)2

) = 0 and limα→∞ α(tα−sα)2 = 0.
By compactness, we can assume that a subsequence of (tα, sα, xα, yα), which we still denote
(tα, sα, xα, yα), converges to a point (s0, t0, x0, y0). By Lemma 3.3 we have that x0 = y0

and s0 = t0 = 0, and limα→∞ mα = u(0, x0)− v(0, x0) = supx∈M (u(0, x)− v(0, x)) ≤ 0,
which is a contradiction.

A completely analogous argument leads us to a contradiction if sα = 0 for infinitely
many α’s.

Thus we may assume that there exist α0 > 0 such that sα > 0 and tα > 0 for α > α0. By
compactness and Lemma 3.3 we may also assume that xα and yα converge to the same point
x0 = y0, and in particular that xα, yα ∈ B(x0, r/2) for all α > α0, where r > 0 is small
enough such that 0 < r < iM and conditions (B, C) of Sect. 2 hold whenever d(x, y) < r .
Therefore the function d(x, y)2 and hence the functions

�α(x, y) := α f (d(x, y)2), ϕα(s, t, x, y) := �α(x, y)+ α(t − s)2

are C2 smooth on (0, T )× (0, T )× B(x0, r/2)× B(x0, r/2).

Recall that P2,−
v(tα, yα) = −P2,+

(−v)(tα, yα), and if we consider the function

�(x, y) := d(x, y)2

we obtain from [5, Sect. 3] that

Dx�(xα, yα) = −2 exp−1
xα (yα), and Dy�(xα, yα) = −2 exp−1

yα (xα).

Now we cannot directly apply Theorem 3.8, because condition (3.1) is not generally

satisfied due to the singularity of F (one has a serious difficulty when P 2,+
u(sα, xα) contains

triplets of the form (a, 0, A): in this case one cannot use the fact that u is a subsolution to
guarantee that a ≤ C , since F(ζ, A) → ∞ as ζ → 0). Instead we will use Theorem 3.1,
treating the variables s, t as if they were spatial variables in the stationary case, and then
ignoring the information that this result gives about the second derivatives with respect to
the variables t, s, which we do not need here. Bearing in mind that (sα, tα, xα, yα) is the
maximum of the function (s, t, x, y)→ u(s, x)− v(t, y)− ϕα(s, t, x, y), and setting

Aα := D2
x,yϕα(sα, tα, xα, yα), ε := εα = 1

1+ ||Aα|| ,
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we obtain this way two bilinear forms Pα ∈ L2
s (T Mxα ), and Qα ∈ L2

s (T Myα ) such that
(
∂

∂s
ϕα(sα, tα, xα, yα), Dxϕα(sα, tα, xα, yα), Pα

)
∈ P 2,+

u(sα, xα), (4.4)

(
− ∂

∂t
ϕα(sα, tα, xα, yα),−Dyϕα(sα, tα, xα, yα), Qα

)
∈ P 2,−

v(tα, yα), (4.5)

and

−
(

1

εα
+ ‖Aα‖

)
I ≤

(
Pα 0
0 −Qα

)
≤ Aα + εαA2

α. (4.6)

These inequalities can be deduced from the corresponding ones in Theorem 3.1 (just bear in
mind the special form of our function ϕα , and apply the inequalities given by Theorem 3.1
to vectors of the form (0, 0, v, w), where the zeros correspond to the variables s and t).

In our case we have

aα := ∂

∂s
ϕα(sα, tα, xα, yα) = −2α(tα − sα), (4.7)

−bα := − ∂

∂t
ϕα(sα, tα, xα, yα) = −2α(tα − sα),

Dxϕα(sα, tα, xα, yα) = −2α f ′(d(xα, yα)
2) exp−1

xα (yα), (4.8)

−Dyϕα(sα, tα, xα, yα) = 2α f ′(d(xα, yα)
2) exp−1

yα (xα),

and in particular we see that

aα + bα = 0. (4.9)

Let us now distinguish two cases.
Case 1. Assume that xα �= yα . Let us consider the non-zero vectors

ζα := −2α f ′(d(xα, yα)
2) exp−1

xα (yα),

and notice that

Lxα yα ζα = 2α f ′(d(xα, yα)
2) exp−1

yα (xα).

Since u is a strict subsolution and v is a supersolution of ut + F(Du, D2u) = 0, we have
that

aα + F(ζα, Pα) ≤ −ε
T 2 < 0 ≤ −bα + F(Lxα yα ζα, Qα)

(notice that here we used continuity of F off {ζ = 0}, and the important observation that if

(ζ, A) ∈ P2,+
u(z) and ζ �= 0 then (ζ, A) is a limit of a sequence (ζk, Ak) with (ζk, Ak) =

(Dϕk(zk), D2ϕk(zk)) for some ϕk ∈ A(F) and zk → z).
Thus, there is c := ε

T 2 such that

0 < c ≤ F(Lxα yα ζα, Qα)− F(ζα, Pα). (4.10)

On the other hand, since F is translation invariant, we deduce

0 < c ≤ F(Lxα yα ζα, Qα)− F(ζα, Pα) = F(ζα, L yα xα (Qα))− F(ζα, Pα) (4.11)
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Recall that Aα = D2ϕα(sα, tα, xα, yα) and �α = α f ◦�. Then

Dx,y�α(x, y) = α f ′(�(x, y))
(
Dx�(x, y), Dy�(x, y)

)
= −2α f ′(�(x, y))

(
exp−1

x y, exp−1
y x

)
. (4.12)

Now D2
x,yϕα , the Hessian of ϕα , satisfies for every vector fields X, Y on M × M

D2
x,yϕα(s, t, X, Y ) = 〈∇X (Dϕα), Y 〉 = 〈∇X (α f ′(�)D�), Y 〉

= α〈 f ′(�)∇X (D�)+ X ( f ′(�))D�, Y 〉
= α f ′(�)〈∇X (D�), Y 〉 + αX ( f ′(�))〈D�, Y 〉
= α f ′(�)D2

x,y�(X, Y )+ α f ′′(�)X (�)〈D�, Y 〉
= α f ′(�)D2

x,y�(X, Y )+ α f ′′(�)(D� ⊗ D�)(X, Y ). (4.13)

In particular for every two points x, y ∈ M such that d(x, y) < min{iM (x), iM (y)} and
every v ∈ T Mx , we consider X = Y with X (x, y) = (v, Lxyv) ∈ T Mx × T My and we
obtain

X (�)(x, y) = D2
x,y�(x, y)(v, Lxyv) = Dx�(x, y)(v)+ Dy�(x, y)(Lxyv) = 0.

The last equality in the above expression is proved in [5, Sect. 3]. Therefore, if M has sectional
curvature bounded below by some constant −K0 ≤ 0, we obtain from equation (5.5) and
Proposition 3.2 that

Aα(sα, tα, xα, yα)(v, Lxα yα v)
2 = D2ϕα(sα, tα, xα, yα)(v, Lxα yα v)

2

= α f ′(�(xα, yα))D
2�(xα, yα)(v, Lxα yα v)

2

≤ α f ′(�(xα, yα))2K0�(xα, yα)||v||2, (4.14)

for every v ∈ T Mxα . Let us denote by λ1 ≤ · · · ≤ λn the eigenvalues of the restriction of
Aα to the subspace D = {(v, Lxα yα v) : v ∈ T Mxα } of T Mxα × T Myα . The above inequality
implies that λ1, . . . , λn ≤ 2αK0�(xα, yα) f ′(�(xα, yα)). With our choice of εα , we have
that

λi + εαλ2
i ≤ λi + 1

1+ sup1≤ j≤n |λ j | λ
2
i ≤ λi + |λi | ≤ 2 max{0, λn}, i = 1, . . . , n.

Since λi +εα λ2
i , i = 1, . . . , n, are the eigenvalues of

(
Aα + εαA2

α

) |D , this means that when
M has nonnegative sectional curvature, that is K0 = 0, or equivalently λn ≤ 0, we have

(
Aα + εαA2

α

)
(v, Lxα yα v)

2 ≤ 0.

Therefore, the second inequality in (4.6) implies Pα − L yα xα (Qα) ≤ (Aα + εαA2
α)|D ≤ 0.

Thus Eq. (4.11), and the fact that F is elliptic imply that

0 < c ≤ F(ζα, L yα xα (Qα))− F(ζα, Pα) ≤ 0,

a contradiction.
Case 2. If we are not in Case 1 then we may assume xα = yα for every α > α0. We know
that

u(s, x)− v(t, y)− α f (d(x, y)2)− α(t − s)2 ≤ u(sα, xα)− v(tα, yα)− α(tα − sα)
2
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for all (s, t, x, y). By taking y = yα , t = tα we get that the function (s, x) 
→ u(s, x) −
α f (d(x, yα)2)−α(tα− s)2 has a maximum at (sα, xα), which (bearing in mind that f ′(0) =
0 = f ′′(0)) yields

(−2α(tα − sα), 0, 0) ∈ P 2,+u(sα, xα).

Similarly, we also deduce that

(−2α(tα − sα), 0, 0) ∈ P 2,−v(tα, yα).

Since u is a strict subsolution and v is a supersolution, we get

−2α(tα − sα) ≤ −ε
T 2 < 0 ≤ −2α(tα − sα),

a contradiction. ��
The preceding proof can be easily modified to yield the following more general results.

Remark 4.2 One can replace the compactness of M in the statement of Theorem 4.1 by the
following condition on the behavior of u and v at∞:

lim sup
(t,x)→∞

u(t, x)− v(t, x) ≤ 0 (4.15)

(this condition is meant to be empty when M is compact).

In the case when M does not have positive curvature, one can prove the following.

Theorem 4.3 Let M be a complete Riemannian manifold with sectional curvature bounded
below and positive injectivity radius. Let F satisfy conditions (A - D) of Sect. 2. Assume
furthermore that there exist f ∈ F(F) and C > 0 such that

t f ′(t) ≤ C f (t) for all t > 0, (4.16)

and that F satisfies the following uniform continuity assumption with respect to the variable
D2u:

F(ζ, P − δ I )− F(ζ, P)
δ→0−−→ 0 uniformly on ζ, P. (4.17)

Let u ∈ U SC([0, T )× M) be a subsolution and v ∈ L SC([0, T )× M) be a supersolution
of (CEE) on M. Suppose that u ≤ v on {0} × M and

lim sup
(t,x)→∞

u(t, x)− v(t, x) ≤ 0. (4.18)

Then u ≤ v on [0, T )× M.

Proof Assume that the sectional curvature of M is bounded below by −K0, with K0 > 0.
We have, with the notation used in the proof of Theorem 4.1, case 1, following equation
(4.14), that λn > 0, and

λi + εαλ2
i ≤ 2λn ≤ 4αK0�(xα, yα) f ′(�(xα, yα)),

hence (
Aα + εαA2

α

)
(v, Lxα yα v)

2 ≤ 4αK0�(xα, yα) f ′(�(xα, yα))||v||2.
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Thus, inequality (4.6) and condition (4.16) imply that

Pα(v)
2 − L yαxα (Qα)(v)

2 = Pα(v)
2 − Qα(Lxα yα v)

2

≤ (
Aα + εαA2

α

)
(v, Lxα yα v)

2

≤ 4αK0�(xα, yα) f ′(�(xα, yα))||v||2
≤ 4αK0C f (�(xα, yα))||v||2. (4.19)

Let us denote

δα := 4αK0C f (�(xα, yα)).

We have that limα→∞ δα = 0. From (4.19) we obtain Pα − δα I ≤ L yαxα (Qα). Then,
Eq. (4.11), the fact that F is elliptic, and condition (4.17) imply that

0 < c ≤ F(ζα, L yα xα (Qα))− F(ζα, Pα)

≤ F(ζα, Pα − δα I )− F(ζα, Pα)
α→∞−−−→ 0,

which again leaves us with a contradiction. The proof of case 2 parallels that in Theorem 4.1.
��

Remark 4.4 Condition (4.16) is always met when one is able to take an f of the form

f (t) = tk,

with k ≥ 2. Therefore, in the cases when F is given by the evolutions by mean curvature or
by Gaussian curvature (4.16) is automatically satisfied.

On the other hand, condition (4.17) is also clearly met by the function F associated to the
mean curvature evolution problem. Indeed, in this case the function A 
→ F(ζ, A) is linear,
so we have

F(ζ, P − δ I )− F(ζ, P) = −δF(ζ, I ) = δ trace

(
I − ζ ⊗ ζ

|ζ |2
)
≤ δ(n − 1),

where n is the dimension of M . We thus recover Ilmanen’s Theorem from [25]:

Corollary 4.5 (Ilmanen) Let M be complete, with sectional curvature bounded below and
positive injectivity radius. Let F be given by (2.2). Let u ∈ U SC([0, T )×M) be a subsolution
and v ∈ L SC([0, T )×M) be a supersolution of (MCE) on M. Suppose that u ≤ v on {0}×M
and lim sup(t,x)→∞ u(t, x)− v(t, x) ≤ 0. Then u ≤ v on [0, T )× M.

Unfortunately, condition (4.17) in Theorem 4.3 is not satisfied by the function F given by
(2.5) corresponding to the evolution of level sets by Gaussian curvature. In this case, we can
only apply Theorem 4.1 in order to deduce a comparison result for manifolds of nonnegative
curvature:

Corollary 4.6 Let M be a complete Riemannian manifold of nonnegative sectional curvature
and positive injectivity radius. Let F be given by (2.5). Let u ∈ U SC([0, T ) × M) be a
subsolution and v ∈ L SC([0, T ) × M) be a supersolution of (+GCE) on M. Suppose that
u ≤ v on {0} × M and lim sup(t,x)→∞ u(t, x)− v(t, x) ≤ 0. Then u ≤ v on [0, T )× M.

Given the form of the equation (CEE), it immediately follows that, in all cases where
comparison holds, one has continuous dependence of solutions with respect to initial data.

Remark 4.7 If u, v are solutions with initial conditions g and h respectively, and ‖g −
h‖L∞(M) ≤ ε, then ‖u − v‖L∞(M×[0,T )) ≤ ε.
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5 Existence by Perron’s method

We will have to use the following estimation for the second derivative of the distance to a
fixed point.

Lemma 5.1 [31, p. 153] Let M be a complete Riemannian manifold whose sectional cur-
vature K satisfies δ ≤ K ≤ �. Suppose 0 < r < min{iM (x0), π/2

√
�}. Then, for all

x ∈ B(x0, r) and v⊥∇d(·, x0)(x), one has

c�(d(x, x0))

s�(d(x, x0))
〈v, v〉 ≤ D2d(·, x0)(x)(v, v) ≤ cδ(d(x, x0))

sδ(d(x, x0))
〈v, v〉,

and the gradient ∇d(·, x0)(x) belongs to the null space of D2d(·, x0)(x).

Here sδ and cδ are defined by

sδ(t) :=
⎧⎨
⎩
(sin(

√
δ t))/

√
δ, δ > 0;

t, δ = 0;
(sinh(

√|δ| t))/√δ, δ < 0,

and

cδ(t) :=
⎧⎨
⎩

cos(
√
δ t), δ > 0;

1, δ = 0;
cosh(

√|δ| t), δ < 0.

Notice that

lim
t→0

t c�(t)

s�(t)
= 1. (5.1)

Proposition 5.2 Let F satisfy conditions (A - D) of Sect. 2, and assume F(F) �= ∅. Let S
be a nonempty family of subsolutions of

ut + F(Du, D2u) = 0, (5.2)

and define

W (z) := sup{v(z) : v ∈ S}.
Suppose that W ∗(z) < +∞ for all z ∈ [0, T ) × M. Then W ∗ is a subsolution of (5.2) on
[0, T )× M.

Proof Let ϕ ∈ A(F) be such that W ∗ − ϕ has a strict maximum at z0 = (t0, x0). We may
assume that W ∗(z0)− ϕ(z0) = 0.
Case 1. Suppose first that Dϕ(z0) �= 0, and let us see that

ϕt (z0)+ F(Dϕ(z0), D2ϕ(z0)) ≤ 0.

Define ψ(t, x) := ϕ(t, x)+ f (d(x, x0))+ (t − t0)4, where f ∈ F(F), and observe that

W ∗(z)− ψ(z) ≤ − f (d(x, x0))− (t − t0)
4. (5.3)

Also notice thatψ ∈ A(F),ψt (z0) = ϕt (z0), Dψ(z0) = Dϕ(z0), and D2ψ(z0) = D2ϕ(z0).
By definition of W ∗ there exist z′k such that limk→∞ z′k = z0 and

αk := W ∗(z′k)− ψ(z′k)→ W ∗(z0)− ψ(z0) = 0.
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Now, by definition of W , there exists a sequence (vk) ⊂ S such that vk(z′k) > W (z′k) − 1
k ,

which implies

(vk − ψ)(z′k) > ak − 1

k
. (5.4)

Since vk ≤ W (5.3) implies

(vk − ψ)(z) ≤ − f (d(x, x0))− (t − t0)
4 for all z. (5.5)

Let B be a closed ball of center z0. Since vk − ψ is upper semicontinuous it attains its
maximum on B at some point zk ∈ B. From (5.4) and (5.5) we get

αk − 1

k
< (vk − ψ)(z′k) ≤ (vk − ψ)(zk) ≤ − f (d(xk, x0))− (tk − t0)

4 ≤ 0,

and since αk → 0 we deduce that zk → z0 and tk → t0. Moreover, vk − ψ has a local
maximum at zk .

Since Dψ(z0) = Dϕ(z0) �= 0, we have Dψ(z) �= 0 for all z in a neighborhood (which
we may assume to be B) of z0. Because vk is a subsolution and Dϕ(zk) �= 0, we get

ψt (zk)+ F(Dψ(zk), D2ψ(zk)) ≤ 0.

Therefore, by taking limits and using the continuity of F off {ζ = 0} and the continuity of
ψt , Dψ , D2ψ , we obtain

ϕt (z0)+ F(Dϕ(z0), D2ϕ(z0)) = ψt (z0)+ F(Dψ(z0), D2ψ(z0)) ≤ 0,

and we conclude that W ∗ is a subsolution of (5.2) at z0.
Case 2. Assume now that Dϕ(z0) = 0, and let us check that ϕt (z0) ≤ 0. Since ϕ ∈ A(F),
there exist δ0 > 0, ω ∈ C(R) with ω(r) = o(r), and f ∈ F(F) such that

|ϕ(x, t)− ϕ(z0)− ϕt (z0)(t − t0)| ≤ f (d(x, x0))+ ω(t − t0) (5.6)

for all z = (t, x) ∈ B := B(z0, δ0). We may assume that ω ∈ C1(R), ω(0) = 0 = ω′(0),
and ω(r) > 0 for r > 0. Let us define

ψ(t, x) := ϕt (z0)(t − t0)+ 2 f (d(x, x0))+ 2ω(t − t0), and

ψk(t, x) := ϕt (z0)(t − t0)+ 2 f (d(x, x0))+ 2ωk(t − t0),

where (ωk) is a sequence of C2 functions on R such that ωk → ω and ω′k → ω′ uniformly
on R.

From (5.6) we deduce that W ∗ − ψ has a local strict maximum at z0. On the other hand
it is clear that (ψk) ⊂ A(F), and ψk → ψ uniformly. Arguing as in Case 1, we may find
a sequence of subsolutions (vk) ⊂ S and a sequence of points zk such that zk → z0 and
vk − ψk attains a maximum at zk . Since vk is a subsolution we have

(ψk)t (zk)+ F(Dψk(zk), D2ψk(zk)) ≤ 0 for all k, when xk �= x0, and (5.7)

(ψk)t (zk) ≤ 0, when xk = x0. (5.8)

Notice that

lim
k→∞(ψk)t (zk) = ϕt (z0). (5.9)
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If xk = x0 for infinitely many k’s, we immediately deduce from (5.8) and (5.9) that ϕt (z0) ≤
0.

Therefore we may assume that xk �= x0 for all k. If we set

ζk := − exp−1
xk
(x0),

Ak := D2d(·, x0)(xk)

then we have that |ζk | = d(xk, x0), and

(ψk)t (zk) = ϕt (z0)+ 2ω′k(tk − t0)

Dψk(zk) = 2

|ζk | f ′(|ζk |) ζk,

D2ψk(zk) = 2 f ′′(|ζk |) ζk ⊗ ζk

|ζk |2 + 2 f ′(|ζk |)Ak .

Since F is geometric we have

F(Dψk(zk), D2ψk(zk)) = 2 f ′(|ζk |)F
(
ζk

|ζk | , Ak

)
. (5.10)

Next, because B = B(z0, δ0) is compact, we may find numbers �, δ > 0 such that
the sectional curvature K of M satisfies δ ≤ K ≤ � on B. We may of course assume
δ0 < min{iM (x0), π/2

√
�}, so that we can apply Lemma 5.1: we obtain that Ak(ζk, ζk) = 0,

and for all v ∈ T Mxk such that v⊥ζk we have

c�(|ζk |)
s�(|ζk |) 〈v, v〉 ≤ Ak(v, v) ≤ cδ(|ζk |)

sδ(|ζk |) 〈v, v〉.
This implies

c�(|ζk |)
s�(|ζk |)

(
I − ζk ⊗ ζk

|ζk |2
)
≤ Ak ≤ cδ(|ζk |)

sδ(|ζk |)
(

I − ζk ⊗ ζk

|ζk |2
)
. (5.11)

On the other hand, Eq. (5.1) tells us that

c�(t)

s�(t)
≥ 1

2t
and

cδ(t)

sδ(t)
≤ 2

t

if t > 0 is small enough. Hence we have

c�(|ζk |)
s�(|ζk |) ≥

1

2|ζk | and
cδ(|ζk |)
sδ(|ζk |) ≤

2

|ζk |
for k large enough, which we may assume are all k. By plugging these inequalities into (5.11)
we obtain

1

2|ζk |
(

I − ζk ⊗ ζk

|ζk |2
)
≤ Ak ≤ 2

|ζk |
(

I − ζk ⊗ ζk

|ζk |2
)

(5.12)

Bearing in mind that F is elliptic and geometric, we get

1

|ζk | F(ζk, 2I ) = F

(
ζk

|ζk | ,
2

|ζk | I
)
= F

(
ζk

|ζk | ,
2

|ζk |
(

I − ζk ⊗ ζk

|ζk |2
))

≤ F

(
ζk

|ζk | , Ak

)
≤ F

(
ζk

|ζk | ,
1

2|ζk |
(

I − ζk ⊗ ζk

|ζk |2
))

= F

(
ζk

|ζk | ,
1

2|ζk | I

)
≤ 1

|ζk | F(ζk,−2I ),
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which combined with (5.10) yields

2
f ′(|ζk |)
|ζk | F(ζk, 2I ) ≤ F(Dψk(zk), D2ψk(zk)) ≤ 2

f ′(|ζk |)
|ζk | F(ζk,−2I ), (5.13)

which, thanks to condition (2.6), allows to conclude that

lim
k→∞ F(Dψk(zk), D2ψk(zk)) = 0. (5.14)

Finally, from (5.7), (5.9) and (5.14), it follows that

ϕt (z0) ≤ 0.

In either case we see that W ∗ is a subsolution of (5.2). ��
Theorem 5.3 Let F satisfy conditions (A - D) of Sect. 2, and assume that F(F) �= ∅ and
comparison holds for the equation{

ut + F(Du, D2u) = 0
u(0, x) = g(x).

(5.15)

Let u and u be a subsolution and a supersolution of (5.15), respectively, satisfying u∗(0, x) =
u∗(0, x) = g(x). Then w = sup{v : u ≤ v ≤ u, v is a subsolution} is a solution of (5.15).

Proof From = u∗ ≤ w∗ ≤ w ≤ w∗ ≤ u∗, we deduce that w∗(0, x) = w(0, x) =
w∗(0, x) = g(x). On the other hand w∗ is a subsolution by Proposition 5.2, and w∗ ≤ u by
comparison, hence w∗ = w by definition of w. We claim that w∗ is a supersolution. This
implies w∗ ≤ w∗ by comparison, hence w∗ = w = w∗ and consequently w is a solution.

Let us prove the claim. Suppose to the contrary that w∗ is not a supersolution. Then there
exist z0 = (t0, x0) and a C2 function ϕ such that (w∗ − ϕ)(z) ≥ 0 = (w∗ − ϕ)(z0) for all z,
and either

ϕt (z0)+ F(Dϕ(z0), D2ϕ(z0)) < 0, when Dϕ(z0) �= 0, or (5.16)

ϕt (z0) < 0, when Dϕ(z0) = 0. (5.17)

By replacing ϕ(t, x) with the function ϕ(t, x)+ d(x, x0)
4 + (t − t0)4 on a neighborhood

of z0 we can furthermore assume that

(w∗ − ϕ)(t, x) ≥ d(x, x0)
4 + (t − t0)

4. (5.18)

Let us denote

Uδ := {(t, x) : d(x, x0)
4 + (t − t0)

4 ≤ δ4}.
Case 1. In the case when (5.16) holds, by continuity of ϕt , Dϕ, D2ϕ and F , we can find
r > 0 such that

ϕt (z)+ F(Dϕ(z), D2ϕ(z)) < 0

for all z ∈ U2r , that is ϕ is a subsolution on U2r , and obviously the same is true of ϕ̃ :=
ϕ + r4/2.

From (5.18) we have that

w(z) ≥ w∗(z)− r4

2
≥ ϕ(z)+ r4

2
for all z ∈ U2r\Ur . (5.19)
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Now let us define

W (z) =
{

max{ϕ̃(z), w(z)}, if z ∈ Ur ;
w(z), otherwise.

By using Proposition 5.2 and Eq. (5.19), it is immediately checked that W is a subsolution.
We have W = w outside B(z0, r), but

sup(W − w) > 0 (5.20)

because, by definition ofw∗, there exits a sequence {(tn, xn)} converging to (t0, x0) such that
limw(tn, xn) = w∗(t0, x0), and consequently we have

lim(W (tn, xn)− w(tn, xn)) ≥ lim(ϕ̃(tn, xn)− w(tn, xn)) = r4/2 > 0.

On the other hand, W (0, x) = w(0, x) = g(x), because we could of course have taken r > 0
small enough such that (0, x) �∈ B(z0, r). We deduce (from comparison again) that W ≤ u
and consequently W ≤ w, which contradicts (5.20).
Case 2. On the other hand, in the case when (5.17) holds, since ϕ ∈ A(F), there exist δ0 > 0,
ω ∈ C(R) with ω(r) = o(r), and f ∈ F(F) such that

|ϕ(x, t)− ϕ(z0, t0)− ϕt (t0, x0)(t − t0)| ≤ f (d(x, x0))+ ω(t − t0)

for all z = (t, x) ∈ B := B(z0, δ0). We may assume that ω ∈ C1(R), ω(0) = 0 = ω′(0),
and ω(r) > 0 for r > 0. Let us define

ψ(t, x) = ϕ(z0)+ ϕt (z0)(t − t0)− 2 f (d(x, x0))− 2ω(t − t0).

Thenw∗−ψ attains a strict minimum at z0. Also notice that Dψ(z) �= 0 for z �= z0. Arguing
as in Case 2 of the proof of Proposition 5.2, one can show that

lim
z→z0

F(Dψ(z), D2ψ(z)) = 0. (5.21)

By combining this with the continuity of ψt and the fact that ψt (z0) = ϕt (z0) < 0, we can
find an r > 0 such that

ψt (z)+ F(Dψ(z), D2ψ(z)) < 0

for all z ∈ U2r , z �= z0. The rest of the proof is identical to that of Case 1 (just replace ϕ
with ψ). ��

Let us now show how to apply the above Theorem in order to construct solutions of (5.15).
We will need to use the following stability result.

Lemma 5.4 Assume that u.s.c. (respectively l.s.c.) functions uk are subsolutions (super-
solutions, respectively) of (CEE). Assume also that {uk} converges locally uniformly to a
function u. Then u is subsolution (supersolution, respectively) of (CEE).

Proof Suppose that ϕ ∈ A(F) and u − ϕ attains a strict local maximum at (t0, x0). The
convergence of the subsolutions uk allows us to find a sequence of local maxima (tk, xk)

of uk − ϕ which converges to (t0, x0). Then, by a similar argument to that of the proof of
Proposition 5.2, one can show that u is a subsolution of (CEE) at (t0, x0). ��

Let M be a compact Riemannian manifold. Assume that comparison holds for the equation
(5.15). Let us first produce solutions of (5.15) for initial data g in the class A(F).
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Let us define

u(t, x) = −K t + g(x) and u(t, x) = K t + g(x),

where K := supx∈M |F(Dg(x), D2g(x))| (which is finite because g ∈ A(F) and M is
compact). It is immediately seen that u is a subsolution and u is a supersolution of (5.15),
and obviously u∗(0, x) = u∗(0, x) = g(x). According to Theorem 5.3 and comparison,
there exists a unique solution u of (5.15).

Now take g a continuous function on M . According to Proposition 2.8, we can find a
sequence gk of functions in A(F) such that gk → g uniformly on M . Let uk be the unique
solution of (5.15) with initial datum gk . By Remark 4.7, (uk) is a Cauchy sequence in
C([0,∞)× M), hence it converges to some u ∈ C([0,∞)× M) uniformly on [0,∞)× M .
Then by Lemma 6.1 it follows that u is a solution with initial datum u(0, x) = g(x).

Therefore we can combine this argument with Theorems 4.1 and 4.3 to obtain the following
corollaries.

Corollary 5.5 Let M be a compact Riemannian manifold of nonnegative sectional curvature,
g : M → R a continuous function, and let F : J 2

0 (M)→ R be continuous, elliptic, transla-
tion invariant and geometric. Then there exists a unique solution of (CEE) on [0,∞)× M.

Corollary 5.6 Let M be a compact Riemannian manifold, g : M → R a continuous function,
and let F satisfy conditions (A - D) of Sect. 2. Assume furthermore that (4.16) and (4.17)
are satisfied. Then there exists a unique solution of (CEE) on [0,∞)× M.

Corollary 5.7 (Ilmanen) Let M be a compact Riemannian manifold, g : M → R continuous.
There exists a unique solution u of the mean curvature evolution equation (MCE) such that
u(0, x) = g(x).

Corollary 5.8 Let M be a compact Riemannian manifold, g : M → R continuous. There
exists a unique solution u of the positive Gaussian curvature evolution equation (+GCE) such
that u(0, x) = g(x).

Corollary 5.9 Let M be a compact Riemannian manifold, g : M → R continuous. There
exists a unique solution u of the mean curvature evolution equation in arbitrary codimension
(given in Example 2.3) such that u(0, x) = g(x).

When M is not compact, analogous corollaries can be established if one additionally
demands that the initial datum g be a (positive) constant outside some bounded set of M ,
and that i(M) > 0. The proof is similar (replacing uniform convergence on M with uniform
convergence on compact subsets of M).

6 Geometric consistency and level set method

Theorem 6.1 Let θ : R → R be a continuous function, and let u be a bounded continuous
solution of (CEE). Then v = θ ◦ u is also a solution. Moreover, if θ is nondecreasing and u
is a subsolution (resp. supersolution) then v = θ ◦ u is a subsolution (resp. supersolution)
as well.

Proof Assume first that θ is monotone. We may consider a sequence of smooth functions
θk with nonvanishing derivatives, converging uniformly to θ over the bounded range of u.
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Hence by Lemma 5.4, we may directly assume that θ ′ �= 0. Notice that g = θ−1 satisfies
g′ �= 0 too.

Suppose first that θ ′ > 0. Let ϕ ∈ A(F) and assume that θ ◦u−ϕ attains a local maximum
at z0. If we denote ψ = g ◦ ϕ, it is not difficult to check that ψ ∈ A(F), and u − ψ clearly
attains a local maximum at (t0, x0). Consequently

ψt (z0)+ F(Dψ(z0), D2ψ(z0)) ≤ 0

if Dψ(t0, x0) �= 0, andψt (t0, x0) ≤ 0 otherwise. But Dψ(z0) = 0 if and only if Dϕ(z0) = 0,
and

ψt = g′(ϕ)ϕt

Dψ = g′(ϕ)Dϕ
D2ψ = g′′(ϕ)Dψ ⊗ Dψ + g′(ϕ)D2ϕ.

Since F is geometric and g′ > 0, one immediately sees that

ϕt (z0)+ F(Dϕ(z0), D2ϕ(z0)) = 1

g′(ϕ)(z0)

(
ψt (z0)+ F(Dψ(z0), D2ψ(z0))

) ≤ 0

if Dϕ(z0) �= 0, and ϕt (t0, x0) = 1
g′(ϕ(z0))

ψt (z0) ≤ 0 otherwise. This shows that θ ◦ u is a
subsolution.

If θ ′ < 0, the same argument tells us that if u is subsolution (respectively supersolu-
tion), then v is supersolution (respectively subsolution). In order to establish the result for
continuous functions, it is enough to observe that a continuous function can be uniformly
approximated by a sequence of locally monotone functions. Then a local application of
Lemma 5.4 yields the result. ��

Now one can show that, if comparison and existence hold for (CEE) (e.g. when M is a
compact Riemannian manifold of nonnegative curvature), then for every compact level set
�0 there is a unique, well-defined, level set evolution �t of �0 by the geometric curvature
evolution equation corresponding to (CEE).

Let g be a continuous function on M with �0 = {x ∈ M : g(x) = 0}, and assume that �0

is compact. We may also assume that g is constant outside a bounded neighborhood of �0,
and in particular bounded. Let u be the unique solution of (CEE) with u(0, ·) = g. We define

�t = {x ∈ M : u(t, x) = 0}.

Theorem 6.2 Assume that comparison and existence hold for (CEE). Let ĝ : M → R be a
continuous function satisfying �0 = {x ∈ M : ĝ(x) = 0} and such that ĝ is constant outside
a bounded neighborhood of �0. Let û be the unique continuous solution of (CEE) with initial
condition ĝ. Then

�t = {x ∈ M : û(t, x) = 0}.

Proof This is a consequence of Theorem 6.1 and the comparison principle. It follows exactly
as in the case M = R

n , see [10, Theorem 5.1], or [16, Chap. 4], for instance. ��

Corollary 6.3 The definition of �t = {x ∈ M : u(t, x) = 0} does not depend upon the
particular choice of the function g satisfying �0 = {x ∈ M : g(x) = 0}.
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It can also be checked that the evolution �0 
→ K(t)�0 := �t thus defined has the
semigroup property

K(t + s) = K(t)K(s).

Some other properties of the evolutions can be established as in the case M = R
n . For

instance, in the case of the evolution by mean curvature, it is possible to show that if�0 = ∂U
is a smooth connected hypersurface with positive mean curvature with respect to the inner
unit normal field, then �t continues to have positive mean curvature as long as it exists, in
the sense that

�t = {x ∈ M : v(x) = t},
where v is the solution of the stationary problem

⎧⎨
⎩
−trace

((
I − Du ⊗ Du

|Du|2
)

D2u

)
= 1, on U ;

v = 0, on �0 = ∂U ,

(which admits a unique viscosity solution, see [5]).
However, one has to be very cautious and not take it for granted that all the usual geome-

trical properties of the generalized evolutions by mean curvature or by Gaussian curvature
could be immediately extended from the Euclidean to the Riemannian setting. As a matter
of fact, many of these properties are very likely to fail in the case of manifolds of negative
curvature. We will present several counterexamples and related conjectures in Sect. 8.

7 Consistency with the classical motion

In this section we suppose that equation (CEE) arises from a classical geometric evolution
for hypersurfaces in M . We establish the consistency of the level set evolution equation with
this classical geometric motion.

More precisely, suppose (�t )t∈[0,T ] is a family of smooth, compact, orientable hypersur-
faces in M evolving according to a classical geometric motion, locally depending only on its
normal vector fields and second fundamental forms. In particular, we shall assume that �t is
the boundary of a bounded open set Ut ⊂ M and that there exists a family of diffeomorphisms
of manifolds with boundary

φt : U0 → Ut , t ∈ [0, T ] ,

such that:

(i) φ0 =Id, and,
(ii) for every x ∈ �0 the following holds:

d

dt
φt (x) = G

(
ν

(
t, φt (x)

)
,∇�ν (

t, φt (x)
))
, (7.1)

where ν (t, ·) is a unit normal vector field to �t , and the linear map

∇�ν (t, x) : (T�t )x � ξ 
→ ∇T
ξ ν (t, x) ∈ (T�t )x

and∇T stands for the orthogonal projection onto (T�t )x of covariant derivative in M .
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Classical motion by mean curvature corresponds to taking f
(
ν,∇�ν) = tr

(−∇�ν) ν,
whereas classical motion by Gaussian curvature is defined by f

(
ν,∇�ν) = det

(−∇�ν) ν.
The level set evolution equation induced by (7.1) is of the form (CEE) where F is related to
G through formula (2.1). As before, we assume that F is elliptic, translation invariant and
geometric. In this case we already know that F is continuous, and in fact smooth off {ζ = 0},
because F is of the form (2.1) with G smooth.

Define d : [0, T ]× M → R, the signed distance function from �t , as:

d (t, x) :=
{

dist (x, �t ) if x ∈ Ut

−dist (x, �t ) if x ∈ M\Ut .

Lemma 7.1 There exist constants K , δ > 0 such that d is smooth in

Iδ := {(t, x) ∈ [0, T ]× M : |d (t, x)| < δ}
and ∣∣dt + F

(
Dd, D2d

)∣∣ ≤ K |d| in Iδ. (7.2)

Proof We consider geodesic normal coordinates from �t ,

�(t, s, x) := expx (sν (t, x)) ,

assuming that ν (t, x) points towards the interior Ut for every x ∈ �t . Clearly, for s small
enough,

d (t,� (t, s, x)) = s.

Given x0 ∈ �0 there exists a neighborhood V of x0 in �0 and an interval (−r, r) such that
�(t, ·, ·) is a diffeomorphism from (−r, r) × φt (V ) onto its image Xt := �

(
(−r, r) ×

φt (V )
)

for t ∈ [0, T ]. Note that � is also smooth in t . Denote by � (t, ·) the inverse of
�(t, ·, ·) and write

� (t, y) := (ρ (t, y) , X (t, y)) .

Now for x ∈ φt (V ) and s ∈ (−r, r)we have X (t,� (t, s, x)) = x and ρ (t,� (t, s, x)) = s.
Both X and ρ are smooth in t , and clearly ρ = d in

⋃
t∈[0,T ] {t} × Xt = Iδ .

In order to prove (7.2) it suffices to note that, since, for x ∈ �t , Dd (t, x) = ν (t, x) �= 0,

r (t, x) := dt + F
(
Dd, D2d

)
is a smooth function vanishing for x ∈ �t . This gives (7.2) locally; a global bound then
follows by the compactness of �t . ��
Next we state and prove the main result of this section.

Theorem 7.2 Let u be the unique viscosity solution to the level set equation (CEE) with
initial datum u|t=0 = d|t=0. Then, for every t ∈ [0, T ], the zero level set of u (t, ·) coincides
with �t :

�t = {x ∈ M : u (t, x) = 0} .
Proof Define

v (t, x) := et K ((d (t, x) ∨ 0) ∧ δ/2) ,
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where K is the constant given by (7.2). We shall prove that v is a viscosity supersolution to
equation (CEE). Clearly, v|t=0 ≥ u|t=0 ∧ δ/2, and, by Theorem 6.1, u ∧ (δ/2) is a viscosity
solution to (CEE) as well. The comparison principle (Theorem 4.1) then will ensure that
v ≥ u ∧ (δ/2). In particular,

{x ∈ M : u (t, x) > 0} ⊆ Ut , t ∈ [0, T ] . (7.3)

On the other hand, we shall prove that

w (t, x) := e−t K ((d (t, x) ∧ 0) ∨ (−δ/2))
is a viscosity subsolution to (CEE). Now w|t=0 ≤ u|t=0 ∨ (−δ/2), and the comparison
principle will imply that w ≤ u ∨ (−δ/2). This, together with (7.3) yields

{x ∈ M : u (t, x) > 0} = Ut , t ∈ [0, T ] .

Now take ε > 0 and let uε := u + ε; this is again a viscosity solution to (CEE). It turns out
that

vε (t, x) := et K (((d (t, x)+ ε) ∨ 0) ∧ δ/2) ,

wε (t, x) := e−t K (((d (t, x)+ ε) ∧ 0) ∨ (−δ/2)) ,
are respectively super and subsolutions to (CEE) provided ε is much smaller than δ – namely,
small enough to ensure that vε and wε are smooth in the regions 0 < d (t, x)+ ε < δ/2 and
−δ/2 < d (t, x)+ ε < 0, respectively. Applying the comparison principle as we did before
we ensure that

{x ∈ M : u (t, x) > −ε} = {x ∈ M : d (t, x) > −ε} .
Letting ε go to zero we conclude that the zero level set of u (t, ·) is precisely�t , as we wanted
to prove.

We now show our claim that v is a supersolution to (CEE). Start noticing that Lemma 7.1
ensures that, for t ∈ [0, T ] the following holds:⎧⎨

⎩
vt (t, x)+ F

(
Dv (t, x) , D2v (t, x)

) ≥ 0, if 0 < d (t, x) < δ/2,

vt (t, x) ≥ 0, if d (t, x) < 0 or d (t, x) > δ/2.
(7.4)

Let (t0, x0) ∈ [0, T ]×M and ϕ ∈ A (F) be such that v−ϕ has a local minimum at (t0, x0).
Without loss of generality, we may assume that

ϕ (t0, x0) = v (t0, x0) , (7.5)

and that

ϕ ≤ v, locally around (t0, x0) . (7.6)

Since the level sets d (t, x) = c ∈ (−δ, δ) are smooth hypersurfaces, necessarily d (t0, x0) �=
δ/2. If moreover (t0, x0) /∈ �t , then (7.5), (7.6) and the smoothness of v imply that, at (t0, x0)

one has ϕt = vt and Dϕ = Dv. Therefore, using (7.4) we conclude that:⎧⎨
⎩
ϕt (t0, x0)+ F

(
Dϕ (t0, x0) , D2ϕ (t0, x0)

) ≥ 0, if Dϕ (t0, x0) �= 0,

ϕt (t0, x0) ≥ 0, otherwise.
(7.7)

Now we shall prove that the above identity also holds when (t0, x0) ∈ �t . Let Q :=⋃
t∈[0,T ] {t} × �t ; this is precisely the set of zeroes of d . As |Dd| = 1 on Iδ , we infer
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that Q is a smooth hypersurface of [0, T ]× M ; since (7.5) and (7.6) imply that v − ϕ has a
minimum at (t0, x0), the following holds for every tangent vector (τ, ξ) ∈ T Q(t0,x0):

ϕt (t0, x0) τ + Dϕ (t0, x0) (ξ) = 0; (7.8)

moreover, for every curve γ : (−1, 1)→ �t0 with γ (0) = x0, and γ ′ (0) = ξ we have,

d2

ds2 ϕ (t0, γ (s)) |s=0 ≤ 0. (7.9)

From identity (7.8) we deduce that

(ϕt (t0, x0) , Dϕ (t0, x0)) = λ (dt (t0, x0) , Dd (t0, x0)) , (7.10)

for some λ ∈ R, whereas (7.9) merely states that:

〈
D2ϕ (t0, x0) ξ, ξ

〉 ≤ − 〈∇ϕ (t0, x0) , γ
′′ (0)

〉
.

Taking into account that
〈∇d (t0, γ (0)) , γ ′ (0)

〉 = 0, we obtain:

〈
D2ϕ (t0, x0) ξ, ξ

〉 ≤ − 〈∇ϕ (t0, x0) , γ
′′ (0)

〉
= −λ 〈∇d (t0, x0) , γ

′′ (0)
〉 = λ 〈

D2d (t0, x0) ξ, ξ
〉
. (7.11)

Given a smooth curve η : (−1, 1)→ Q such that η (0) = (t0, x0) and η′ (0) = −(
dt (t0, x0) ,

∇d (t0, x0)
)

the following holds:

d

dt
ϕ (η (t)) |t=0 = −λ

(
dt (t0, x0)

2 + |Dd (t0, x0)|2
)
.

Since necessarily v (η (t)) = v (η (0)) = 0 for t ≥ 0 sufficiently small (7.5) and (7.6) imply
that λ ≥ 0.

Now (7.7) trivially holds if λ = 0. Suppose λ > 0, then using (7.10), (7.11) we deduce

−F
(
Dϕ (t0, x0) , D2ϕ (t0, x0)

) ≤ −F
(
λDd (t0, x0) , λD2d (t0, x0)

)
= −λF

(
Dd (t0, x0) , D2d (t0, x0)

)
,

and

ϕt (t0, x0) = λdt (t0, x0) = −λF
(
Dd (t0, x0) , D2d (t0, x0)

)
.

Therefore, we conclude that ϕ satisfies (7.7) at (t0, x0).
A completely analogous proof shows that vε is a supersolution, and w and wε are subso-

lutions to (CEE). ��

Remark 7.3 In the very special case of the evolution by mean curvature in arbitrary codi-
mension (see Example 2.3) the above proof breaks down because the sets �t are no longer
hypersurfaces of M , but k-codimensional submanifolds. The consistency of the generali-
zed motion (given, e.g., by Corollary 5.9) with the classical evolution thus remains an open
problem (whose solution would probably require a careful analysis of the properties of the
distance functions to the submanifolds �t , and of the eigenvalues of their Hessians, similar
to the study carried out in [2] for the case M = R

n).
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8 Counterexamples and conjectures

In this final section we provide some counterexamples showing that many well known
properties of the evolutions by mean curvature in R

n fail when M is a Riemannian manifold
of negative curvature.

Example 8.1 When (M, g) is the Euclidean space equipped with the canonical metric,
Ambrosio and Soner have proved in [2] that the distance function |d| is always a super-
solution to the mean curvature equation (MCE). This is no longer the case of a general
Riemannian manifold, as the following example shows.

Let (M, g) be a surface of revolution embedded in R
3, locally parameterized by:

I × (−π, π) � (s, θ) 
→ (r (s) cos θ, r (s) sin θ, s) ∈ R
3,

where I ⊆ R is an open interval and r ∈ C∞ (I ) with r ≥ ρ > 0. In these coordinates, the
metric takes the form: (

r ′ (s)2 + 1 0
0 r (s)2

)
.

Suppose 0 ∈ I and r ′ (0) = 0; then the “Equator” s = 0 is a geodesic of M , denote it by �0.
The classical evolution by mean curvature starting from �0 is constant in time. Therefore,
the corresponding signed distances satisfy d (t, ·) = d (0, ·) ≡ d for every t ∈ R (we shall
assume d > 0 for s > 0). Let us next explicitly compute d . The geodesics of M that are
orthogonal to �0 are of the form (s (t) , θ) with θ ∈ (−π, π) constant. Take such a geodesic
and assume that is parameterized by arc length and satisfies s′ > 0. In particular, since its
tangent vector

(
s′, 0

)
must be of norm one,

v (s (t))2
(
s′ (t)

)2 = 1, v (s) :=
√

r ′ (s)2 + 1. (8.1)

Clearly, d (s (t) , θ) = t and ∂sd (s (t) , θ) s′ (t) = 1. Identity (8.1) and our assumption
s′ > 0 allow us to conclude that ∂sd (s, θ) = v (s) and Dd = (1/v, 0). Finally, a direct
computation gives:

|Dd| div

(
Dd

|Dd|
)
= r ′

rv
.

The function |d| will be a supersolution to the mean curvature equation provided
r ′ (s) sign (s) ≤ 0. This is always the case if the curvature of M remains nonnegative. On the
other hand, |d| will a subsolution whenever the curvature of M is nonpositive everywhere.
Finally, taking for instance r (s) = 1 + cos2 s we are able to produce a |d| that is not a
supersolution, neither a subsolution to the mean curvature equation.

Conjecture If M has nonnegative sectional curvature then |d| is always a supersolution. If
M has negative curvature then there always exists �0 such that |d| is not a supersolution.

Example 8.2 When M = R
n , Evans and Spruck [10, Theorem 7.3] showed that if �0, �̂0

are compact level sets and �t , �̂t are the corresponding generalized evolutions by mean
curvature, then

dist(�0, �̂0) ≤ dist(�t , �̂t )
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for all t > 0. This result fails for manifolds of negative curvature. For instance, let M =
{(x, y, z) ∈ R

3 : x2 + y2 = 1+ z2} be a hyperboloid of revolution embedded in R
3. Let

�0 = {(x, y, z) ∈ M : z = 0},
and

�̂0 = {(x, y, z) ∈ M : z = 1}.
Then

�t = �0 for all t > 0, and dist(�0, �̂0) > 0,

but

dist(�t , �̂t ) = dist(�0, �̂t )→ 0 as t →∞.
Conjecture Evans-Spruck’s [10, Theorem 7.3] result holds true for all manifolds of nonne-
gative sectional curvature, but fails for all manifolds of negative curvature.

Example 8.3 In the case M = R
n it is well known that equation (CEE) preserves Lipschitz

properties of the initial data. Namely, if g is L-Lipschitz and u is the unique solution of (CEE)
then u(t, ·) is L-Lipschitz too, for all t > 0; see [16, Chap. 3]. Since the proof of Theorem 7.3
in [10] remains valid for any manifold provided that one assumes the Lipschitz preserving
property of (CEE), the preceding example also shows that (CEE) does not preserve Lipschitz
constants when M is a hyperboloid of revolution.

Conjecture: The equation (CEE) has the Lipschitz preserving property if and only if M has
nonnegative sectional curvature.

9 Appendix: Existence and uniqueness of viscosity solutions to a (nonsingular) general
parabolic equation

In this appendix we present the standard definition of viscosity solution and state existence and
comparison result for viscosity solutions to non-singular parabolic fully nonlinear equations.

Definition 9.1 Let M be a finite-dimensional Riemannian manifold, and a continuous func-
tion F : (0, T )× M × R× J 2 M → R. Consider the parabolic equation

ut + F(t, x, u, Du, D2u) = 0, (9.1)

where u is a function of (t, x). We say that an USC function u : (0, T ) × M → R

is a viscosity subsolution of the partial differential evolution equation provided that a +
F(t, x, u(t, x), ζ, A) ≤ 0 for all (t, x) ∈ (0, T ) × M and (a, ζ, A) ∈ P2,+u(t, x). Simi-
larly, a viscosity supersolution of (9.1) is a LSC function u : (0, T ) × M → R such that
a+F(t, x, u(t, x), ζ, A) ≥ 0 for every (t, x) ∈ (0, T )×M and (a, ζ, A) ∈ P2,−u(t, x). If u
is both a viscosity subsolution and a viscosity supersolution of ut+F(t, x, u, Du, D2u) = 0,
we say that u is a viscosity solution.

Remark 9.2 f u is a subsolution of ut + F(t, x, u, Du, D2u) = 0 and F is lower semicon-
tinuous, then a + F(t, x, u(t, x), ζ, A) ≤ 0 for every (a, ζ, A) ∈ P 2,+

u(t, x) and every
(t, x) ∈ (0, T ) × M . A similar observation applies to supersolutions when F is upper
semicontinuous, and to solutions when F is continuous.

123



166 D. Azagra et al.

Theorem 9.3 Let M be a compact and F : (0, T ) × M × R × J 2 M → R be continuous,
proper, and such that

(1) there exists γ > 0 with

γ (r − s) ≤ F(t, x, r, ζ, Q)− F(t, x, s, ζ, Q)

for all r ≥ s, (t, x, ζ, Q) ∈ (0, T )× M × J 2 M);
(2) there exists a function ω : [0,∞] → [0,∞] with limt→0+ ω(t) = 0 and such that, for

every α > 0,

F(t, y, r, α exp−1
y (x), Q)− F(t, x, r,−α exp−1

x (y), P) ≤ ω (
αd(x, y)2 + d(x, y)

)
for all t ∈ (0, T ), x, y ∈ M, r ∈ R, P ∈ L2

s (T Mx ), Q ∈ L2
s (T My) with

−
(

1

εα
+ ‖Aα‖

)
I ≤

(
P 0
0 −Q

)
≤ Aα + εαA2

α

and εα = (2+ 2‖Aα‖)−1, where Aα is the second derivative of the function ϕα(x, y) =
α
2 d(x, y)2 at the point (x, y) ∈ M × M with d(x, y) < min{iM (x), iM (y)}.

Assume that u ∈ U SC([0, T ) × M) is a subsolution and v ∈ L SC([0, T ) × M) is a
supersolution of (9.1) on M and u ≤ v on {0} × M. Then u ≤ v on [0, T )× M.

The proof of this result is a combination of the ideas in the proof of [8, Theorem 8.2]
with the new techniques for second order nonsmooth analysis on manifolds developed when
dealing with the stationary case in [5, Theorem 4.2]. See also Theorem 3.8, which should be
used in this proof. We leave the details to the reader’s care.

Analogous results to Corollaries 4.6 and 4.8 stated in [5] can also be obtained in a similar
way for these general evolution equations. We say in such cases that “comparison holds”.

As it is customary in these cases, whenever the Comparison Theorem holds there is no
difficulty in applying Perron’s method (see [8,27]) to show that the problem{

ut + F(t, x, u(t, x), Du(t, x), D2u(t, x)) = 0,
u(0, x) = g(x).

(GEE)

has a unique bounded viscosity solution u on M , provided that comparison holds and one is
able to find a viscosity subsolution u and a viscosity supersolution u such that u∗(0, x) =
u∗(0, x) = g(x). In fact u is given by

W (t, x) = sup{w(t, x) : u ≤ w ≤ u and w is a subsolution of (9.1)}.
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